The journey of tin chalcogenides towards high-performance thermoelectrics and topological materials
Lead chalcogenides and their alloys belong at the heart of thermoelectrics due to their large thermoelectric figure of merit ( zT ). However, recent research has shown a limitation in the use of lead (Pb)-based materials due to their toxicity and efforts have been made to produce non-toxic analogues...
Saved in:
Published in | Chemical communications (Cambridge, England) Vol. 54; no. 5; pp. 6573 - 659 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1359-7345 1364-548X 1364-548X |
DOI | 10.1039/c8cc02230e |
Cover
Abstract | Lead chalcogenides and their alloys belong at the heart of thermoelectrics due to their large thermoelectric figure of merit (
zT
). However, recent research has shown a limitation in the use of lead (Pb)-based materials due to their toxicity and efforts have been made to produce non-toxic analogues of lead chalcogenides. Tin chalcogenides have been predicted to be promising for this purpose due to their unique electronic structure and phonon dispersion properties. Here, we discuss the journey of tin chalcogenides in the field of thermoelectrics and topological materials with the main emphasis on the bonding, crystal structures, electronic band structures, phonon dispersion and thermoelectric properties. The thermal transport properties of tin chalcogenides are explained based on lattice dynamics, where resonant bonding and local structural distortion play an important role in creating lattice anharmonicity, thereby lowering the lattice thermal conductivity. Since thermoelectric and topological materials, especially topological insulators and topological crystalline insulators, share similar material features, such as a narrow band gap, heavy constituent elements and significant spin-orbit coupling, we have discussed the thermoelectric properties of several topological tin chalcogenides from a chemistry perspective. This feature article serves as a useful reference for researchers who strive to improve the properties of tin chalcogenides and advance the field of thermoelectric and topological materials.
Sn-Chalcogenides are recognized as high performance thermoelectrics and topological insulators due to their unique crystal and electronic structures and lattice dynamics. |
---|---|
AbstractList | Lead chalcogenides and their alloys belong at the heart of thermoelectrics due to their large thermoelectric figure of merit (
zT
). However, recent research has shown a limitation in the use of lead (Pb)-based materials due to their toxicity and efforts have been made to produce non-toxic analogues of lead chalcogenides. Tin chalcogenides have been predicted to be promising for this purpose due to their unique electronic structure and phonon dispersion properties. Here, we discuss the journey of tin chalcogenides in the field of thermoelectrics and topological materials with the main emphasis on the bonding, crystal structures, electronic band structures, phonon dispersion and thermoelectric properties. The thermal transport properties of tin chalcogenides are explained based on lattice dynamics, where resonant bonding and local structural distortion play an important role in creating lattice anharmonicity, thereby lowering the lattice thermal conductivity. Since thermoelectric and topological materials, especially topological insulators and topological crystalline insulators, share similar material features, such as a narrow band gap, heavy constituent elements and significant spin-orbit coupling, we have discussed the thermoelectric properties of several topological tin chalcogenides from a chemistry perspective. This feature article serves as a useful reference for researchers who strive to improve the properties of tin chalcogenides and advance the field of thermoelectric and topological materials.
Sn-Chalcogenides are recognized as high performance thermoelectrics and topological insulators due to their unique crystal and electronic structures and lattice dynamics. Lead chalcogenides and their alloys belong at the heart of thermoelectrics due to their large thermoelectric figure of merit ( zT ). However, recent research has shown a limitation in the use of lead (Pb)-based materials due to their toxicity and efforts have been made to produce non-toxic analogues of lead chalcogenides. Tin chalcogenides have been predicted to be promising for this purpose due to their unique electronic structure and phonon dispersion properties. Here, we discuss the journey of tin chalcogenides in the field of thermoelectrics and topological materials with the main emphasis on the bonding, crystal structures, electronic band structures, phonon dispersion and thermoelectric properties. The thermal transport properties of tin chalcogenides are explained based on lattice dynamics, where resonant bonding and local structural distortion play an important role in creating lattice anharmonicity, thereby lowering the lattice thermal conductivity. Since thermoelectric and topological materials, especially topological insulators and topological crystalline insulators, share similar material features, such as a narrow band gap, heavy constituent elements and significant spin–orbit coupling, we have discussed the thermoelectric properties of several topological tin chalcogenides from a chemistry perspective. This feature article serves as a useful reference for researchers who strive to improve the properties of tin chalcogenides and advance the field of thermoelectric and topological materials. Lead chalcogenides and their alloys belong at the heart of thermoelectrics due to their large thermoelectric figure of merit (zT). However, recent research has shown a limitation in the use of lead (Pb)-based materials due to their toxicity and efforts have been made to produce non-toxic analogues of lead chalcogenides. Tin chalcogenides have been predicted to be promising for this purpose due to their unique electronic structure and phonon dispersion properties. Here, we discuss the journey of tin chalcogenides in the field of thermoelectrics and topological materials with the main emphasis on the bonding, crystal structures, electronic band structures, phonon dispersion and thermoelectric properties. The thermal transport properties of tin chalcogenides are explained based on lattice dynamics, where resonant bonding and local structural distortion play an important role in creating lattice anharmonicity, thereby lowering the lattice thermal conductivity. Since thermoelectric and topological materials, especially topological insulators and topological crystalline insulators, share similar material features, such as a narrow band gap, heavy constituent elements and significant spin–orbit coupling, we have discussed the thermoelectric properties of several topological tin chalcogenides from a chemistry perspective. This feature article serves as a useful reference for researchers who strive to improve the properties of tin chalcogenides and advance the field of thermoelectric and topological materials. Lead chalcogenides and their alloys belong at the heart of thermoelectrics due to their large thermoelectric figure of merit (zT). However, recent research has shown a limitation in the use of lead (Pb)-based materials due to their toxicity and efforts have been made to produce non-toxic analogues of lead chalcogenides. Tin chalcogenides have been predicted to be promising for this purpose due to their unique electronic structure and phonon dispersion properties. Here, we discuss the journey of tin chalcogenides in the field of thermoelectrics and topological materials with the main emphasis on the bonding, crystal structures, electronic band structures, phonon dispersion and thermoelectric properties. The thermal transport properties of tin chalcogenides are explained based on lattice dynamics, where resonant bonding and local structural distortion play an important role in creating lattice anharmonicity, thereby lowering the lattice thermal conductivity. Since thermoelectric and topological materials, especially topological insulators and topological crystalline insulators, share similar material features, such as a narrow band gap, heavy constituent elements and significant spin-orbit coupling, we have discussed the thermoelectric properties of several topological tin chalcogenides from a chemistry perspective. This feature article serves as a useful reference for researchers who strive to improve the properties of tin chalcogenides and advance the field of thermoelectric and topological materials.Lead chalcogenides and their alloys belong at the heart of thermoelectrics due to their large thermoelectric figure of merit (zT). However, recent research has shown a limitation in the use of lead (Pb)-based materials due to their toxicity and efforts have been made to produce non-toxic analogues of lead chalcogenides. Tin chalcogenides have been predicted to be promising for this purpose due to their unique electronic structure and phonon dispersion properties. Here, we discuss the journey of tin chalcogenides in the field of thermoelectrics and topological materials with the main emphasis on the bonding, crystal structures, electronic band structures, phonon dispersion and thermoelectric properties. The thermal transport properties of tin chalcogenides are explained based on lattice dynamics, where resonant bonding and local structural distortion play an important role in creating lattice anharmonicity, thereby lowering the lattice thermal conductivity. Since thermoelectric and topological materials, especially topological insulators and topological crystalline insulators, share similar material features, such as a narrow band gap, heavy constituent elements and significant spin-orbit coupling, we have discussed the thermoelectric properties of several topological tin chalcogenides from a chemistry perspective. This feature article serves as a useful reference for researchers who strive to improve the properties of tin chalcogenides and advance the field of thermoelectric and topological materials. |
Author | Banik, Ananya Roychowdhury, Subhajit Biswas, Kanishka |
AuthorAffiliation | New Chemistry Unit Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) |
AuthorAffiliation_xml | – name: New Chemistry Unit – name: Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) |
Author_xml | – sequence: 1 givenname: Ananya surname: Banik fullname: Banik, Ananya – sequence: 2 givenname: Subhajit surname: Roychowdhury fullname: Roychowdhury, Subhajit – sequence: 3 givenname: Kanishka surname: Biswas fullname: Biswas, Kanishka |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29749410$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0s1rFTEQAPAgFfuhF-_KSi8irGazSTY5ytKqUPBSwVvIm528TdndrEke0v_evL5WoYjmMoH8ZmBmckqOlrAgIS8b-r6hrf4ACoAy1lJ8Qk6aVvJacPX9aH8Xuu5aLo7JaUo3tJxGqGfkmOmOa97QEwLXI1Y3YRcXvK2Cq7JfKhjtBGGLix8wVTn8tHFI1ei3Y71idCHOdgGs8ohxDjgh5OghVXYZCl7DFLYe7FTNNmP0dkrPyVNXAr64j2fk2-XFdf-5vvr66Uv_8aoGLlmuUYtO2YYxzXXnrGUDFQNHMXTIJGiJCtgGXcMld9qi0tyVB27lRnCwDtoz8vZQd43hxw5TNrNPgNNkFwy7ZBhjVEmqKPs_pa1ispNqT88f0btxlUaKElIJWaZZ1Ot7tdvMOJg1-tnGW_Mw6QLoAUAMKUV0Bny22YclR-sn01CzX6bpVd_fLfOipLx7lPJQ9a_4zQHHBL_dn59h1sEV8-pfpv0Fekq0cg |
CitedBy_id | crossref_primary_10_1016_j_solidstatesciences_2020_106191 crossref_primary_10_1021_jacs_3c02146 crossref_primary_10_1016_j_mtphys_2021_100405 crossref_primary_10_1039_C8TA08731H crossref_primary_10_1021_jacs_8b09029 crossref_primary_10_1002_adts_202400670 crossref_primary_10_1002_anie_202210783 crossref_primary_10_1016_j_joule_2019_03_001 crossref_primary_10_1002_ange_202003946 crossref_primary_10_1039_D3NR05906E crossref_primary_10_1021_acsami_9b07222 crossref_primary_10_1039_D2TA03079A crossref_primary_10_1021_acs_inorgchem_2c00060 crossref_primary_10_1038_s41598_021_96299_3 crossref_primary_10_1021_jacs_3c08637 crossref_primary_10_1016_j_apsadv_2022_100275 crossref_primary_10_1021_acs_chemmater_8b02676 crossref_primary_10_1021_acs_jpcc_0c03093 crossref_primary_10_1039_D4YA00057A crossref_primary_10_1021_acsnano_1c06720 crossref_primary_10_1007_s10854_019_00815_1 crossref_primary_10_1016_j_jallcom_2019_07_220 crossref_primary_10_1002_ange_202000343 crossref_primary_10_1002_anie_202105953 crossref_primary_10_1016_j_jssc_2019_04_005 crossref_primary_10_1039_C8EE03162B crossref_primary_10_1021_acs_jpcc_9b03329 crossref_primary_10_1103_PhysRevB_106_195116 crossref_primary_10_3390_inorganics11080318 crossref_primary_10_3390_nano14181530 crossref_primary_10_1021_acsaem_9b00013 crossref_primary_10_1021_acsenergylett_1c01184 crossref_primary_10_1021_acs_jpcc_9b01081 crossref_primary_10_1088_2053_1591_aaf595 crossref_primary_10_1103_PhysRevB_108_045135 crossref_primary_10_1021_acs_chemmater_0c04184 crossref_primary_10_1021_acs_jpcc_4c03096 crossref_primary_10_1002_anie_202003946 crossref_primary_10_1039_C9DT02225B crossref_primary_10_1002_adma_202002702 crossref_primary_10_1021_acs_jpcc_3c02987 crossref_primary_10_3389_fchem_2020_608398 crossref_primary_10_1021_acs_jpcc_2c06262 crossref_primary_10_1088_2053_1591_ab3db8 crossref_primary_10_1002_anie_202000343 crossref_primary_10_1002_ange_201809841 crossref_primary_10_1002_ange_202105953 crossref_primary_10_1039_D1CC00830G crossref_primary_10_1016_j_jmst_2021_01_040 crossref_primary_10_1039_C8TC05711G crossref_primary_10_1039_D1CP03988A crossref_primary_10_1149_1945_7111_abdc77 crossref_primary_10_1002_ange_201809847 crossref_primary_10_1002_sstr_202400136 crossref_primary_10_1039_D0RA07160A crossref_primary_10_1063_5_0058125 crossref_primary_10_1088_2053_1591_accf61 crossref_primary_10_1016_j_ceramint_2024_06_217 crossref_primary_10_1039_D0TA05197G crossref_primary_10_1039_C9TC03999F crossref_primary_10_1039_D0TA00240B crossref_primary_10_1002_slct_202301351 crossref_primary_10_1039_D1CS00347J crossref_primary_10_1007_s10854_020_03644_9 crossref_primary_10_1039_D1MA00155H crossref_primary_10_1515_rams_2020_0023 crossref_primary_10_1039_C8QI00703A crossref_primary_10_1002_inf2_12044 crossref_primary_10_1063_1_5085255 crossref_primary_10_1016_j_jmst_2020_05_015 crossref_primary_10_1002_ange_202210783 crossref_primary_10_1002_anie_201809841 crossref_primary_10_1007_s10854_021_07455_4 crossref_primary_10_1021_acs_chemmater_0c03657 crossref_primary_10_1002_anie_201809847 crossref_primary_10_1039_D0DT03760E crossref_primary_10_1039_D0TA06710E |
Cites_doi | 10.1038/nmat3273 10.1103/PhysRevLett.101.035901 10.1007/BF00570520 10.1023/B:INMA.0000027590.43038.a8 10.1038/ncomms2191 10.1038/ncomms4525 10.1063/1.1657866 10.1038/nature09996 10.1002/adma.201605887 10.1038/nchem.1171 10.1039/C7TC00009J 10.1021/cm504112m 10.1039/C6EE01755J 10.1021/jacs.5b07284 10.1016/0022-4596(88)90196-X 10.1038/ncomms3696 10.1126/science.1159725 10.1039/c1ee02297k 10.1038/nphys2442 10.1126/science.1194975 10.1039/C4CP02871F 10.1103/PhysRevB.92.045134 10.1002/anie.201801491 10.1016/j.jallcom.2007.01.015 10.1038/nature02073 10.1039/C6EE00728G 10.1073/pnas.1305735110 10.1038/nmat3332 10.1016/j.jpcs.2007.07.131 10.1016/j.jallcom.2005.02.025 10.1021/ja4121583 10.1039/C7TA09941J 10.1039/C5EE01147G 10.1039/c3ee42187b 10.1063/1.3496661 10.1038/nature13184 10.1021/acs.chemmater.5b04365 10.1002/chem.201604161 10.1039/c3ee41935e 10.1088/0022-3727/1/7/304 10.1126/science.1239451 10.1021/jacs.5b13276 10.1039/C6TA01994C 10.1038/nature06843 10.1002/anie.201508381 10.1021/acs.chemmater.5b03708 10.1002/anie.200900598 10.1126/science.1226419 10.1063/1.1777047 10.1134/S0036023617130034 10.1002/anie.201500281 10.1016/j.apsusc.2012.04.048 10.1021/ja500860m 10.1103/PhysRevB.89.014102 10.1039/C6TA04240F 10.1039/C6QI00263C 10.1021/jacs.7b05143 10.1002/pssr.201206411 10.1002/anie.201508492 10.1039/C6CP03688K 10.1103/PhysRevLett.106.106802 10.1038/nphys3012 10.1039/C4TA05530F 10.1038/nmat4215 10.1021/jacs.5b00837 10.1126/science.aad3749 10.1063/1.4963698 10.1039/C3EE43099E 10.1021/jacs.7b11875 10.1063/1.1703182 10.1016/j.jmat.2016.04.001 10.1039/C5EE02423D 10.1039/C5TC02344K 10.1103/PhysRevB.90.134101 10.1063/1.4948969 10.1142/9781786342706_0006 10.1103/PhysRevB.28.7009 10.1016/j.jssc.2015.10.029 10.1143/JPSJ.38.443 10.1039/C1EE02612G 10.1002/anie.201708293 10.1021/ar040176w 10.1038/nchem.955 10.1039/C4TA06955B 10.1021/ja301772w 10.1021/acs.chemrev.6b00255 10.1103/PhysRev.131.104 10.1021/jacs.6b08382 10.1038/nmat3739 10.1038/nature08916 10.1103/PhysRevLett.119.116401 10.1038/nature11439 10.1021/ja5059185 10.1103/PhysRevLett.14.360 10.1002/aenm.201200083 10.1039/C4TA04462B 10.1039/C5CP03700J 10.1039/C4CP02091J 10.1126/science.aad8609 10.1103/PhysRevLett.16.1193 10.1103/PhysRevLett.109.236804 10.1021/jacs.7b01434 10.1021/jacs.6b07010 10.1016/S0925-8388(03)00049-5 10.1103/PhysRevB.77.214304 10.1002/adma.201504833 10.1126/science.1156446 10.1143/JJAP.1.277 10.1002/anie.201511737 10.1016/j.jssc.2016.02.012 10.1103/PhysRevB.61.7770 10.1038/ncomms1969 10.1002/anie.201202480 10.1073/pnas.93.15.7436 10.1063/1.1753977 10.1038/nphys3492 10.1002/aenm.201400486 10.1073/pnas.1410349111 10.1021/acsenergylett.7b00658 10.1021/acs.jpcc.6b11467 10.1038/nmat3828 10.1103/PhysRevB.67.125111 10.1103/PhysRev.119.507 10.1002/pssa.201532045 10.1039/C6TA09941F 10.1103/PhysRevB.88.235122 10.1103/PhysRevB.58.2788 10.1103/PhysRevB.41.5227 10.1039/C5NR03813H 10.1039/C4EE01463D 10.1038/ncomms12167 10.1002/aelm.201600019 10.1038/ncomms13713 10.1021/acs.inorgchem.7b00188 10.1103/PhysRevLett.37.772 10.1007/BF00561976 10.1038/nchem.1589 10.1103/PhysRevB.86.224303 10.1002/anie.201304337 10.1002/aenm.201500360 10.1039/c4ta01333f 10.1021/jacs.7b11662 10.1103/PhysRevLett.112.175501 10.1016/j.mattod.2015.10.004 10.1038/nmat2226 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/c8cc02230e |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-548X |
EndPage | 659 |
ExternalDocumentID | 29749410 10_1039_C8CC02230E c8cc02230e |
Genre | Journal Article |
GroupedDBID | -JG 0-7 1TJ 705 70J 70~ 7~J AAEMU ABGFH ACLDK ADSRN AEFDR AFVBQ AGSTE AUDPV BSQNT C6K EE0 EF- GNO H~N IDZ J3I R7B R7C R7D RCNCU RPMJG RRA RRC RSCEA SKA SKF SKH SLH VH6 --- -DZ -~X 0R~ 0UZ 186 29B 2WC 3EH 4.4 53G 5GY 6J9 6TJ 71~ 9M8 AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYOK AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACBEA ACGFO ACGFS ACHDF ACIWK ACNCT ACRPL ADMRA ADNMO ADXHL AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRDS AFRZK AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AI. AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP AQHUZ ASKNT ASPBG AVWKF AZFZN BBWZM BLAPV CAG CITATION COF CS3 DU5 EBS ECGLT EEHRC EJD F5P FA8 FEDTE GGIMP H13 HVGLF HZ~ IDY IH2 J3G J3H L-8 M4U MVM N9A NDZJH O9- OHT P2P R56 RAOCF RCLXC RIG RNS ROL RRXOS SJN TN5 TWZ UHB UPT VH1 WH7 WHG X7L XJT ZCG ZKB NPM VQA 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c462t-e9578a1229497faa2d05d4e5d7e26c96e8c2bef1464f9ae894fe264a6b54cafc3 |
ISSN | 1359-7345 1364-548X |
IngestDate | Fri Jul 11 15:19:24 EDT 2025 Fri Jul 11 04:08:21 EDT 2025 Mon Jun 30 06:28:36 EDT 2025 Wed Feb 19 02:43:14 EST 2025 Thu Apr 24 22:58:04 EDT 2025 Tue Jul 01 01:14:11 EDT 2025 Wed Jun 05 04:38:23 EDT 2019 Mon Jan 28 17:11:18 EST 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c462t-e9578a1229497faa2d05d4e5d7e26c96e8c2bef1464f9ae894fe264a6b54cafc3 |
Notes | Kanishka Biswas obtained his MS and PhD degree from the Solid State Structural Chemistry Unit at the Indian Institute of Science (2009) under the supervision of Prof. C. N. R. Rao and he did postdoctoral research with Prof. Mercouri G. Kanatzidis at the Department of Chemistry, Northwestern University (2009-2012). He is an Assistant Professor in the New Chemistry Unit, at the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore. He is pursuing research in the solid state inorganic chemistry of metal chalcogenides, thermoelectrics, topological materials, 2D materials and perovskite halides. He has published 96 research papers, 1 book and 4 book chapters. He is a Young Affiliate of The World Academy of Sciences (TWAS) and an Associate of the Indian Academy of Science (IASc), Bangalore, India. He was also the recipient of a Young Scientist Medal in 2016 from the Indian National Science Academy (INSA), Delhi, India and Young Scientist Platinum Jubilee Award in 2015 from The National Academy of Sciences (NASI), Allahabad, India. He received a Materials Research Society of India Medal in 2017. He was the recipient of an IUMRS-MRS Singapore Young Researcher Merit Award in 2016 and he also received a Young Scientist Wiley Award from IUMRS in 2017 in Kyoto, Japan. Ananya Banik obtained her BSc degree from Presidency University, Kolkata in 2012 and her MS degree in Chemical Science in 2015 from the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR). Currently, she is pursuing her PhD under Dr Kanishka Biswas at the New Chemistry Unit, at the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India. Her research focuses on the thermoelectric properties of tin chalcogenides. Subhajit Roychowdhury received his BSc (2012) degree from the University of Burdwan and MSc (2014) degree in Chemistry from the Indian Institute of Technology (IIT), Kharagpur, West Bengal, India. He is currently pursuing his PhD under Dr Kanishka Biswas at the New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India. His research focuses on topological insulators and the thermoelectric properties of heavy metal chalcogenides. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1808-9432 0000-0001-9119-2455 |
PMID | 29749410 |
PQID | 2056856297 |
PQPubID | 2047502 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2220860802 proquest_journals_2056856297 crossref_citationtrail_10_1039_C8CC02230E crossref_primary_10_1039_C8CC02230E rsc_primary_c8cc02230e proquest_miscellaneous_2038267682 pubmed_primary_29749410 |
ProviderPackageCode | RRA J3I ACLDK RRC 7~J AEFDR 70~ VH6 GNO RCNCU SLH 70J EE0 RSCEA AFVBQ C6K H~N 0-7 IDZ RPMJG 1TJ SKA -JG AGSTE AUDPV EF- BSQNT SKF SKH ADSRN ABGFH 705 R7B R7D AAEMU R7C CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical communications (Cambridge, England) |
PublicationTitleAlternate | Chem Commun (Camb) |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Euchner (C8CC02230E-(cit9a)/*[position()=1]) 2012; 86 Aggarwal (C8CC02230E-(cit28)/*[position()=1]) 2016; 2 Li (C8CC02230E-(cit22d)/*[position()=1]) 2017; 29 Jin (C8CC02230E-(cit23c)/*[position()=1]) 2017; 7 Saha (C8CC02230E-(cit33d)/*[position()=1]) 2016; 22 Zhao (C8CC02230E-(cit5b)/*[position()=1]) 2013; 6 Zhao (C8CC02230E-(cit15b)/*[position()=1]) 2012; 134 Tan (C8CC02230E-(cit15d)/*[position()=1]) 2016; 7 Tan (C8CC02230E-(cit48b)/*[position()=1]) 2015; 8 Jana (C8CC02230E-(cit9c)/*[position()=1]) 2016; 55 Chang (C8CC02230E-(cit32)/*[position()=1]) 2016; 353 Liu (C8CC02230E-(cit10a)/*[position()=1]) 2012; 11 Al-Alamy (C8CC02230E-(cit33a)/*[position()=1]) 1977; 12 Hsieh (C8CC02230E-(cit40)/*[position()=1]) 2012; 3 Lu (C8CC02230E-(cit44)/*[position()=1]) 2017; 119 Banik (C8CC02230E-(cit13)/*[position()=1]) 2016; 9 Biswas (C8CC02230E-(cit55)/*[position()=1]) 2011; 4 Waghmare (C8CC02230E-(cit27a)/*[position()=1]) 2003; 67 Rogacheva (C8CC02230E-(cit47)/*[position()=1]) 2008; 69 Roychowdhury (C8CC02230E-(cit65)/*[position()=1]) 2017; 5 Pei (C8CC02230E-(cit2b)/*[position()=1]) 2014; 4 Xiao (C8CC02230E-(cit15c)/*[position()=1]) 2017; 139 Guin (C8CC02230E-(cit34)/*[position()=1]) 2017 Tanaka (C8CC02230E-(cit23a)/*[position()=1]) 2012; 8 Zeier (C8CC02230E-(cit37)/*[position()=1]) 2016; 55 Duong (C8CC02230E-(cit76)/*[position()=1]) 2016; 7 Heremans (C8CC02230E-(cit4b)/*[position()=1]) 2012; 5 Morelli (C8CC02230E-(cit12a)/*[position()=1]) 2008; 101 Parker (C8CC02230E-(cit33b)/*[position()=1]) 2010; 108 Guin (C8CC02230E-(cit12b)/*[position()=1]) 2013; 6 Kafalas (C8CC02230E-(cit45a)/*[position()=1]) 1964; 4 Pal (C8CC02230E-(cit16b)/*[position()=1]) 2015; 3 Shelimova (C8CC02230E-(cit42)/*[position()=1]) 2004; 40 Iizumi (C8CC02230E-(cit26a)/*[position()=1]) 1975; 38 Mahan (C8CC02230E-(cit52)/*[position()=1]) 1996; 93 Klemens (C8CC02230E-(cit60)/*[position()=1]) 1960; 119 Parenteau (C8CC02230E-(cit41)/*[position()=1]) 1990; 41 Kanatzidis (C8CC02230E-(cit84b)/*[position()=1]) 2017; 56 Hsieh (C8CC02230E-(cit17a)/*[position()=1]) 2008; 452 Bera (C8CC02230E-(cit82)/*[position()=1]) 2014; 16 Vergniory (C8CC02230E-(cit24)/*[position()=1]) 2015; 92 Lee (C8CC02230E-(cit11b)/*[position()=1]) 2014; 5 Tan (C8CC02230E-(cit59c)/*[position()=1]) 2014; 2 Kanatzidis (C8CC02230E-(cit84a)/*[position()=1]) 2005; 38 Luo (C8CC02230E-(cit79a)/*[position()=1]) 2017 Tang (C8CC02230E-(cit77b)/*[position()=1]) 2016; 138 Fu (C8CC02230E-(cit18a)/*[position()=1]) 2011; 106 Li (C8CC02230E-(cit20)/*[position()=1]) 2018; 6 Xu (C8CC02230E-(cit74e)/*[position()=1]) 2013; 52 Li (C8CC02230E-(cit22c)/*[position()=1]) 2017; 2 Wu (C8CC02230E-(cit57)/*[position()=1]) 2015; 8 Korkosz (C8CC02230E-(cit6a)/*[position()=1]) 2014; 136 Zhang (C8CC02230E-(cit77a)/*[position()=1]) 2015; 5 Coleman (C8CC02230E-(cit74b)/*[position()=1]) 2011; 331 Biswas (C8CC02230E-(cit6d)/*[position()=1]) 2011; 3 Brebrick (C8CC02230E-(cit21a)/*[position()=1]) 1963; 131 Shportko (C8CC02230E-(cit25)/*[position()=1]) 2008; 7 Bis (C8CC02230E-(cit66a)/*[position()=1]) 1969; 40 Andreev (C8CC02230E-(cit39)/*[position()=1]) 1967; 9 Crocker (C8CC02230E-(cit87b)/*[position()=1]) 1978; 13 Pei (C8CC02230E-(cit5a)/*[position()=1]) 2011; 473 Banik (C8CC02230E-(cit33c)/*[position()=1]) 2017; 56 Roychowdhury (C8CC02230E-(cit70)/*[position()=1]) 2016; 108 Ge (C8CC02230E-(cit1d)/*[position()=1]) 2016; 19 Nakayama (C8CC02230E-(cit86)/*[position()=1]) 2012; 109 Banik (C8CC02230E-(cit22a)/*[position()=1]) 2015; 27 Zhao (C8CC02230E-(cit75a)/*[position()=1]) 2016; 351 Faleev (C8CC02230E-(cit3)/*[position()=1]) 2008; 77 Roychowdhury (C8CC02230E-(cit7)/*[position()=1]) 2018; 57 Okada (C8CC02230E-(cit69b)/*[position()=1]) 2013; 341 Zhao (C8CC02230E-(cit87a)/*[position()=1]) 2008; 455 Damon (C8CC02230E-(cit31)/*[position()=1]) 1966; 37 Tan (C8CC02230E-(cit54)/*[position()=1]) 2015; 137 Xu (C8CC02230E-(cit43)/*[position()=1]) 2012; 3 Roychowdhury (C8CC02230E-(cit71)/*[position()=1]) 2016; 233 Abrikosov (C8CC02230E-(cit72a)/*[position()=1]) 1998; 58 Kong (C8CC02230E-(cit17c)/*[position()=1]) 2011; 3 Moore (C8CC02230E-(cit17b)/*[position()=1]) 2010; 464 Liu (C8CC02230E-(cit18b)/*[position()=1]) 2013; 13 Liang (C8CC02230E-(cit69a)/*[position()=1]) 2013; 4 Jun-ichi (C8CC02230E-(cit45b)/*[position()=1]) 1962; 1 Abrikosov (C8CC02230E-(cit72b)/*[position()=1]) 2000; 61 Banik (C8CC02230E-(cit2c)/*[position()=1]) 2016; 242 Zhou (C8CC02230E-(cit14)/*[position()=1]) 2016; 3 Han (C8CC02230E-(cit66b)/*[position()=1]) 2012; 2 Tan (C8CC02230E-(cit22b)/*[position()=1]) 2014; 136 Banik (C8CC02230E-(cit51)/*[position()=1]) 2014; 2 Sootsman (C8CC02230E-(cit1b)/*[position()=1]) 2009; 48 Li (C8CC02230E-(cit30)/*[position()=1]) 2014; 112 Tan (C8CC02230E-(cit48a)/*[position()=1]) 2015; 137 Zhao (C8CC02230E-(cit56)/*[position()=1]) 2016; 138 Jana (C8CC02230E-(cit9d)/*[position()=1]) 2017; 139 He (C8CC02230E-(cit89)/*[position()=1]) 2015; 212 Tan (C8CC02230E-(cit1a)/*[position()=1]) 2016; 116 Biswas (C8CC02230E-(cit6e)/*[position()=1]) 2012; 489 Roychowdhury (C8CC02230E-(cit67)/*[position()=1]) 2015; 54 Zhao (C8CC02230E-(cit11a)/*[position()=1]) 2014; 508 Al Orabi (C8CC02230E-(cit48c)/*[position()=1]) 2016; 28 Zhang (C8CC02230E-(cit4c)/*[position()=1]) 2013; 110 Heremans (C8CC02230E-(cit4a)/*[position()=1]) 2008; 321 Cui (C8CC02230E-(cit88)/*[position()=1]) 2003; 358 Pei (C8CC02230E-(cit59b)/*[position()=1]) 2016; 2 Kuypers (C8CC02230E-(cit63)/*[position()=1]) 1988; 76 Nicolosi (C8CC02230E-(cit74f)/*[position()=1]) 2013; 340 Zhou (C8CC02230E-(cit49)/*[position()=1]) 2016; 4 Sun (C8CC02230E-(cit23b)/*[position()=1]) 2013; 88 Zhao (C8CC02230E-(cit35a)/*[position()=1]) 2016; 9 Wei (C8CC02230E-(cit78)/*[position()=1]) 2018; 140 Samanta (C8CC02230E-(cit6b)/*[position()=1]) 2017; 139 Poudel (C8CC02230E-(cit6c)/*[position()=1]) 2008; 320 Zeljkovic (C8CC02230E-(cit18c)/*[position()=1]) 2015; 14 Tan (C8CC02230E-(cit59a)/*[position()=1]) 2015; 27 Knox (C8CC02230E-(cit29)/*[position()=1]) 2014; 89 Nicolosi (C8CC02230E-(cit74a)/*[position()=1]) 2013; 340 Li (C8CC02230E-(cit36)/*[position()=1]) 2015; 11 Yang (C8CC02230E-(cit23d)/*[position()=1]) 2012; 11 Wang (C8CC02230E-(cit75b)/*[position()=1]) 2015; 7 Cao (C8CC02230E-(cit74d)/*[position()=1]) 2016; 28 Dimmock (C8CC02230E-(cit38)/*[position()=1]) 1966; 16 Parish (C8CC02230E-(cit72c)/*[position()=1]) 2003; 426 Zhao (C8CC02230E-(cit1c)/*[position()=1]) 2014; 7 Wu (C8CC02230E-(cit2a)/*[position()=1]) 2015; 8 Kobayashi (C8CC02230E-(cit26b)/*[position()=1]) 1976; 37 Sun (C8CC02230E-(cit80b)/*[position()=1]) 2015; 17 Veis (C8CC02230E-(cit46)/*[position()=1]) 1976; 10 Tan (C8CC02230E-(cit53)/*[position()=1]) 2016; 18 Müchler (C8CC02230E-(cit16a)/*[position()=1]) 2012; 51 Tan (C8CC02230E-(cit35b)/*[position()=1]) 2014; 2 Cadoff (C8CC02230E-(cit15a)/*[position()=1]) 1960 Harbec (C8CC02230E-(cit80a)/*[position()=1]) 1983; 28 Nassary (C8CC02230E-(cit81a)/*[position()=1]) 2005; 398 Rogers (C8CC02230E-(cit21b)/*[position()=1]) 1968; 1 Chhowalla (C8CC02230E-(cit74c)/*[position()=1]) 2013; 5 Qiu (C8CC02230E-(cit8)/*[position()=1]) 2014; 111 Zeljkovic (C8CC02230E-(cit18d)/*[position()=1]) 2014; 10 Voneshen (C8CC02230E-(cit9b)/*[position()=1]) 2013; 12 Mitrofanov (C8CC02230E-(cit27b)/*[position()=1]) 2014; 90 Han (C8CC02230E-(cit83)/*[position()=1]) 2015; 3 Chatterjee (C8CC02230E-(cit62)/*[position()=1]) 2015; 54 Das (C8CC02230E-(cit73)/*[position()=1]) 2016; 109 Babanly (C8CC02230E-(cit85)/*[position()=1]) 2017; 62 Guin (C8CC02230E-(cit10b)/*[position()=1]) 2014; 136 Müchler (C8CC02230E-(cit19)/*[position()=1]) 2013; 7 Albers (C8CC02230E-(cit81b)/*[position()=1]) 1961; 32 Ding (C8CC02230E-(cit79b)/*[position()=1]) 2016; 121 Burke (C8CC02230E-(cit68)/*[position()=1]) 1965; 14 Banik (C8CC02230E-(cit58)/*[position()=1]) 2016; 138 Lee (C8CC02230E-(cit61)/*[position()=1]) 2017; 5 Menshchikova (C8CC02230E-(cit64)/*[position()=1]) 2013; 267 Zhang (C8CC02230E-(cit59d)/*[position()=1]) 2016; 4 Zhou (C8CC02230E-(cit50)/*[position()=1]) 2014; 16 |
References_xml | – issn: 1960 publication-title: Thermoelectric materials and devices doi: Cadoff Miller – issn: 2017 end-page: 239 publication-title: 2d Inorganic Materials Beyond Graphene doi: Guin Banik Biswas – volume: 11 start-page: 422 year: 2012 ident: C8CC02230E-(cit10a)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3273 – volume: 101 start-page: 035901 year: 2008 ident: C8CC02230E-(cit12a)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.035901 – volume: 13 start-page: 833 year: 1978 ident: C8CC02230E-(cit87b)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/BF00570520 – volume: 40 start-page: 451 year: 2004 ident: C8CC02230E-(cit42)/*[position()=1] publication-title: Inorg. Mater. doi: 10.1023/B:INMA.0000027590.43038.a8 – volume: 3 start-page: 1192 year: 2012 ident: C8CC02230E-(cit43)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2191 – volume: 5 start-page: 3525 year: 2014 ident: C8CC02230E-(cit11b)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms4525 – volume: 40 start-page: 1918 year: 1969 ident: C8CC02230E-(cit66a)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1657866 – volume: 473 start-page: 66 year: 2011 ident: C8CC02230E-(cit5a)/*[position()=1] publication-title: Nature doi: 10.1038/nature09996 – volume: 29 start-page: 1605887 year: 2017 ident: C8CC02230E-(cit22d)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201605887 – volume: 3 start-page: 845 year: 2011 ident: C8CC02230E-(cit17c)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1171 – volume: 5 start-page: 5737 year: 2017 ident: C8CC02230E-(cit65)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC00009J – volume: 27 start-page: 581 year: 2015 ident: C8CC02230E-(cit22a)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm504112m – volume: 9 start-page: 3044 year: 2016 ident: C8CC02230E-(cit35a)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01755J – volume: 137 start-page: 11507 year: 2015 ident: C8CC02230E-(cit48a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07284 – volume: 76 start-page: 102 year: 1988 ident: C8CC02230E-(cit63)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(88)90196-X – volume: 4 start-page: 2696 year: 2013 ident: C8CC02230E-(cit69a)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms3696 – volume: 321 start-page: 554 year: 2008 ident: C8CC02230E-(cit4a)/*[position()=1] publication-title: Science doi: 10.1126/science.1159725 – volume: 4 start-page: 4675 year: 2011 ident: C8CC02230E-(cit55)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c1ee02297k – start-page: 1702167 year: 2017 ident: C8CC02230E-(cit79a)/*[position()=1] publication-title: Adv. Energy Mater. – volume: 8 start-page: 800 year: 2012 ident: C8CC02230E-(cit23a)/*[position()=1] publication-title: Nat. Phys. doi: 10.1038/nphys2442 – volume: 331 start-page: 568 year: 2011 ident: C8CC02230E-(cit74b)/*[position()=1] publication-title: Science doi: 10.1126/science.1194975 – volume: 16 start-page: 19894 year: 2014 ident: C8CC02230E-(cit82)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP02871F – volume: 92 start-page: 045134 year: 2015 ident: C8CC02230E-(cit24)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.92.045134 – volume: 57 start-page: 4043 year: 2018 ident: C8CC02230E-(cit7)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801491 – volume: 455 start-page: 259 year: 2008 ident: C8CC02230E-(cit87a)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2007.01.015 – volume: 426 start-page: 162 year: 2003 ident: C8CC02230E-(cit72c)/*[position()=1] publication-title: Nature doi: 10.1038/nature02073 – volume: 9 start-page: 2011 year: 2016 ident: C8CC02230E-(cit13)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00728G – volume: 110 start-page: 13261 year: 2013 ident: C8CC02230E-(cit4c)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1305735110 – volume: 11 start-page: 614 year: 2012 ident: C8CC02230E-(cit23d)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3332 – volume: 69 start-page: 259 year: 2008 ident: C8CC02230E-(cit47)/*[position()=1] publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2007.07.131 – volume: 398 start-page: 21 year: 2005 ident: C8CC02230E-(cit81a)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2005.02.025 – volume: 136 start-page: 3225 year: 2014 ident: C8CC02230E-(cit6a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4121583 – volume: 6 start-page: 2432 year: 2018 ident: C8CC02230E-(cit20)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09941J – volume: 8 start-page: 2056 year: 2015 ident: C8CC02230E-(cit2a)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01147G – volume: 6 start-page: 3346 year: 2013 ident: C8CC02230E-(cit5b)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42187b – volume: 108 start-page: 083712 year: 2010 ident: C8CC02230E-(cit33b)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.3496661 – volume: 508 start-page: 373 year: 2014 ident: C8CC02230E-(cit11a)/*[position()=1] publication-title: Nature doi: 10.1038/nature13184 – volume: 28 start-page: 376 year: 2016 ident: C8CC02230E-(cit48c)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04365 – volume: 22 start-page: 15634 year: 2016 ident: C8CC02230E-(cit33d)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201604161 – volume: 6 start-page: 2603 year: 2013 ident: C8CC02230E-(cit12b)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41935e – volume: 1 start-page: 845 year: 1968 ident: C8CC02230E-(cit21b)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/1/7/304 – volume: 341 start-page: 1496 year: 2013 ident: C8CC02230E-(cit69b)/*[position()=1] publication-title: Science doi: 10.1126/science.1239451 – volume: 138 start-page: 2366 year: 2016 ident: C8CC02230E-(cit56)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13276 – volume: 4 start-page: 7936 year: 2016 ident: C8CC02230E-(cit59d)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01994C – volume-title: Thermoelectric materials and devices year: 1960 ident: C8CC02230E-(cit15a)/*[position()=1] – volume: 452 start-page: 970 year: 2008 ident: C8CC02230E-(cit17a)/*[position()=1] publication-title: Nature doi: 10.1038/nature06843 – volume: 55 start-page: 6826 year: 2016 ident: C8CC02230E-(cit37)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201508381 – volume: 27 start-page: 7801 year: 2015 ident: C8CC02230E-(cit59a)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03708 – volume: 48 start-page: 8616 year: 2009 ident: C8CC02230E-(cit1b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200900598 – volume: 340 start-page: 1226419 year: 2013 ident: C8CC02230E-(cit74f)/*[position()=1] publication-title: Science doi: 10.1126/science.1226419 – volume: 32 start-page: 2220 year: 1961 ident: C8CC02230E-(cit81b)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1777047 – volume: 62 start-page: 1703 year: 2017 ident: C8CC02230E-(cit85)/*[position()=1] publication-title: Russ. J. Inorg. Chem. doi: 10.1134/S0036023617130034 – volume: 54 start-page: 5623 year: 2015 ident: C8CC02230E-(cit62)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201500281 – volume: 267 start-page: 1 year: 2013 ident: C8CC02230E-(cit64)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.04.048 – volume: 136 start-page: 7006 year: 2014 ident: C8CC02230E-(cit22b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500860m – volume: 9 start-page: 1232 year: 1967 ident: C8CC02230E-(cit39)/*[position()=1] publication-title: Phys. Solid State – volume: 89 start-page: 014102 year: 2014 ident: C8CC02230E-(cit29)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.89.014102 – volume: 4 start-page: 13171 year: 2016 ident: C8CC02230E-(cit49)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04240F – volume: 3 start-page: 1449 year: 2016 ident: C8CC02230E-(cit14)/*[position()=1] publication-title: Inorg. Chem. Front. doi: 10.1039/C6QI00263C – volume: 139 start-page: 9382 year: 2017 ident: C8CC02230E-(cit6b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05143 – volume: 7 start-page: 91 year: 2013 ident: C8CC02230E-(cit19)/*[position()=1] publication-title: Phys. Status Solidi RRL doi: 10.1002/pssr.201206411 – volume: 54 start-page: 15241 year: 2015 ident: C8CC02230E-(cit67)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201508492 – volume: 18 start-page: 20635 year: 2016 ident: C8CC02230E-(cit53)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP03688K – volume: 106 start-page: 106802 year: 2011 ident: C8CC02230E-(cit18a)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.106802 – volume: 10 start-page: 572 year: 2014 ident: C8CC02230E-(cit18d)/*[position()=1] publication-title: Nat. Phys. doi: 10.1038/nphys3012 – volume: 2 start-page: 20849 year: 2014 ident: C8CC02230E-(cit59c)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05530F – volume: 14 start-page: 318 year: 2015 ident: C8CC02230E-(cit18c)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4215 – volume: 137 start-page: 5100 year: 2015 ident: C8CC02230E-(cit54)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00837 – volume: 351 start-page: 141 year: 2016 ident: C8CC02230E-(cit75a)/*[position()=1] publication-title: Science doi: 10.1126/science.aad3749 – volume: 109 start-page: 132601 year: 2016 ident: C8CC02230E-(cit73)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4963698 – volume: 7 start-page: 251 year: 2014 ident: C8CC02230E-(cit1c)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C3EE43099E – volume: 140 start-page: 499 year: 2018 ident: C8CC02230E-(cit78)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11875 – volume: 37 start-page: 3181 year: 1966 ident: C8CC02230E-(cit31)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1703182 – volume: 2 start-page: 196 year: 2016 ident: C8CC02230E-(cit28)/*[position()=1] publication-title: J. Materiomics doi: 10.1016/j.jmat.2016.04.001 – volume: 340 start-page: 1226419 year: 2013 ident: C8CC02230E-(cit74a)/*[position()=1] publication-title: Science doi: 10.1126/science.1226419 – volume: 8 start-page: 3298 year: 2015 ident: C8CC02230E-(cit57)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02423D – volume: 3 start-page: 12130 year: 2015 ident: C8CC02230E-(cit16b)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C5TC02344K – volume: 90 start-page: 134101 year: 2014 ident: C8CC02230E-(cit27b)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.90.134101 – volume: 108 start-page: 193901 year: 2016 ident: C8CC02230E-(cit70)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4948969 – start-page: 239 volume-title: 2d Inorganic Materials Beyond Graphene year: 2017 ident: C8CC02230E-(cit34)/*[position()=1] doi: 10.1142/9781786342706_0006 – volume: 28 start-page: 7009 year: 1983 ident: C8CC02230E-(cit80a)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.28.7009 – volume: 233 start-page: 199 year: 2016 ident: C8CC02230E-(cit71)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2015.10.029 – volume: 38 start-page: 443 year: 1975 ident: C8CC02230E-(cit26a)/*[position()=1] publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.38.443 – volume: 5 start-page: 5510 year: 2012 ident: C8CC02230E-(cit4b)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C1EE02612G – volume: 56 start-page: 14561 year: 2017 ident: C8CC02230E-(cit33c)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201708293 – volume: 38 start-page: 361 year: 2005 ident: C8CC02230E-(cit84a)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar040176w – volume: 3 start-page: 160 year: 2011 ident: C8CC02230E-(cit6d)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.955 – volume: 3 start-page: 4555 year: 2015 ident: C8CC02230E-(cit83)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06955B – volume: 134 start-page: 7902 year: 2012 ident: C8CC02230E-(cit15b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja301772w – volume: 116 start-page: 12123 year: 2016 ident: C8CC02230E-(cit1a)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00255 – volume: 131 start-page: 104 year: 1963 ident: C8CC02230E-(cit21a)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.131.104 – volume: 138 start-page: 13068 year: 2016 ident: C8CC02230E-(cit58)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08382 – volume: 12 start-page: 1028 year: 2013 ident: C8CC02230E-(cit9b)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3739 – volume: 464 start-page: 194 year: 2010 ident: C8CC02230E-(cit17b)/*[position()=1] publication-title: Nature doi: 10.1038/nature08916 – volume: 119 start-page: 116401 year: 2017 ident: C8CC02230E-(cit44)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.116401 – volume: 489 start-page: 414 year: 2012 ident: C8CC02230E-(cit6e)/*[position()=1] publication-title: Nature doi: 10.1038/nature11439 – volume: 136 start-page: 12712 year: 2014 ident: C8CC02230E-(cit10b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5059185 – volume: 14 start-page: 360 year: 1965 ident: C8CC02230E-(cit68)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.14.360 – volume: 2 start-page: 1218 year: 2012 ident: C8CC02230E-(cit66b)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200083 – volume: 2 start-page: 17302 year: 2014 ident: C8CC02230E-(cit35b)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04462B – volume: 17 start-page: 29844 year: 2015 ident: C8CC02230E-(cit80b)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP03700J – volume: 16 start-page: 20741 year: 2014 ident: C8CC02230E-(cit50)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP02091J – volume: 353 start-page: 274 year: 2016 ident: C8CC02230E-(cit32)/*[position()=1] publication-title: Science doi: 10.1126/science.aad8609 – volume: 16 start-page: 1193 year: 1966 ident: C8CC02230E-(cit38)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.16.1193 – volume: 109 start-page: 236804 year: 2012 ident: C8CC02230E-(cit86)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.236804 – volume: 139 start-page: 4350 year: 2017 ident: C8CC02230E-(cit9d)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01434 – volume: 138 start-page: 13647 year: 2016 ident: C8CC02230E-(cit77b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07010 – volume: 358 start-page: 228 year: 2003 ident: C8CC02230E-(cit88)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(03)00049-5 – volume: 77 start-page: 214304 year: 2008 ident: C8CC02230E-(cit3)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.77.214304 – volume: 28 start-page: 6167 year: 2016 ident: C8CC02230E-(cit74d)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201504833 – volume: 320 start-page: 634 year: 2008 ident: C8CC02230E-(cit6c)/*[position()=1] publication-title: Science doi: 10.1126/science.1156446 – volume: 1 start-page: 277 year: 1962 ident: C8CC02230E-(cit45b)/*[position()=1] publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.1.277 – volume: 55 start-page: 7792 year: 2016 ident: C8CC02230E-(cit9c)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201511737 – volume: 242 start-page: 43 year: 2016 ident: C8CC02230E-(cit2c)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2016.02.012 – volume: 7 start-page: 041020 year: 2017 ident: C8CC02230E-(cit23c)/*[position()=1] publication-title: Phys. Rev. X – volume: 61 start-page: 7770 year: 2000 ident: C8CC02230E-(cit72b)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.61.7770 – volume: 3 start-page: 982 year: 2012 ident: C8CC02230E-(cit40)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms1969 – volume: 51 start-page: 7221 year: 2012 ident: C8CC02230E-(cit16a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201202480 – volume: 93 start-page: 7436 year: 1996 ident: C8CC02230E-(cit52)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.93.15.7436 – volume: 4 start-page: 93 year: 1964 ident: C8CC02230E-(cit45a)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.1753977 – volume: 11 start-page: 1063 year: 2015 ident: C8CC02230E-(cit36)/*[position()=1] publication-title: Nat. Phys. doi: 10.1038/nphys3492 – volume: 4 start-page: 1400486 year: 2014 ident: C8CC02230E-(cit2b)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400486 – volume: 111 start-page: 15031 year: 2014 ident: C8CC02230E-(cit8)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1410349111 – volume: 2 start-page: 2349 year: 2017 ident: C8CC02230E-(cit22c)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00658 – volume: 121 start-page: 225 year: 2016 ident: C8CC02230E-(cit79b)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b11467 – volume: 13 start-page: 178 year: 2013 ident: C8CC02230E-(cit18b)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3828 – volume: 67 start-page: 125111 year: 2003 ident: C8CC02230E-(cit27a)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.67.125111 – volume: 119 start-page: 507 year: 1960 ident: C8CC02230E-(cit60)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.119.507 – volume: 212 start-page: 2191 year: 2015 ident: C8CC02230E-(cit89)/*[position()=1] publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201532045 – volume: 5 start-page: 2235 year: 2017 ident: C8CC02230E-(cit61)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09941F – volume: 88 start-page: 235122 year: 2013 ident: C8CC02230E-(cit23b)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.88.235122 – volume: 58 start-page: 2788 year: 1998 ident: C8CC02230E-(cit72a)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.58.2788 – volume: 41 start-page: 5227 year: 1990 ident: C8CC02230E-(cit41)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.41.5227 – volume: 7 start-page: 15962 year: 2015 ident: C8CC02230E-(cit75b)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR03813H – volume: 8 start-page: 267 year: 2015 ident: C8CC02230E-(cit48b)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01463D – volume: 7 start-page: 12167 year: 2016 ident: C8CC02230E-(cit15d)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms12167 – volume: 10 start-page: 780 year: 1976 ident: C8CC02230E-(cit46)/*[position()=1] publication-title: Semiconductors – volume: 2 start-page: 1600019 year: 2016 ident: C8CC02230E-(cit59b)/*[position()=1] publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201600019 – volume: 7 start-page: 13713 year: 2016 ident: C8CC02230E-(cit76)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms13713 – volume: 56 start-page: 3158 year: 2017 ident: C8CC02230E-(cit84b)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b00188 – volume: 37 start-page: 772 year: 1976 ident: C8CC02230E-(cit26b)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.37.772 – volume: 12 start-page: 2037 year: 1977 ident: C8CC02230E-(cit33a)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/BF00561976 – volume: 5 start-page: 263 year: 2013 ident: C8CC02230E-(cit74c)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1589 – volume: 86 start-page: 224303 year: 2012 ident: C8CC02230E-(cit9a)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.86.224303 – volume: 52 start-page: 10477 year: 2013 ident: C8CC02230E-(cit74e)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201304337 – volume: 5 start-page: 1500360 year: 2015 ident: C8CC02230E-(cit77a)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500360 – volume: 2 start-page: 9620 year: 2014 ident: C8CC02230E-(cit51)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c4ta01333f – volume: 139 start-page: 18732 year: 2017 ident: C8CC02230E-(cit15c)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11662 – volume: 112 start-page: 175501 year: 2014 ident: C8CC02230E-(cit30)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.175501 – volume: 19 start-page: 227 year: 2016 ident: C8CC02230E-(cit1d)/*[position()=1] publication-title: Mater. Today doi: 10.1016/j.mattod.2015.10.004 – volume: 7 start-page: 653 year: 2008 ident: C8CC02230E-(cit25)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2226 |
SSID | ssj0000158 |
Score | 2.5327244 |
Snippet | Lead chalcogenides and their alloys belong at the heart of thermoelectrics due to their large thermoelectric figure of merit (
zT
). However, recent research... Lead chalcogenides and their alloys belong at the heart of thermoelectrics due to their large thermoelectric figure of merit (zT). However, recent research has... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6573 |
SubjectTerms | alloys Anharmonicity Chalcogenides chemical reactions Crystal structure Dispersion Electronic structure Figure of merit Lead Organic chemistry Properties (attributes) Thermal conductivity Thermoelectric materials tin Topological insulators topology Toxicity |
Title | The journey of tin chalcogenides towards high-performance thermoelectrics and topological materials |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29749410 https://www.proquest.com/docview/2056856297 https://www.proquest.com/docview/2038267682 https://www.proquest.com/docview/2220860802 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wAXxGshy4KM4IJQljR-JD7uVkXL84C6Um-R6zhq2SWptqlW4lfwkxnHjps-hBYuUeRHFGe-jMf2zDcIveERSUH1sjClBQspTWSYFlESgmWqZTTICW_omr5-4-cX9NOETXq93x2vpVU9PVG_9saV_I9UoQzkaqJk_0Gy_qFQAPcgX7iChOF6axk3DXVzTl4bn_KZvFIV9JjnDXmDcYpdvjOkxOGiEyNgzL6flc2B0_I01zZfQiM1sGPtALrGqycXUN2okmbb1od-NbrVJgbpbDKcyXJ-af0nQfn4meB7ZbTvTT5zh_mgxWbyx9x74pzNlzc24OwzPGA5u5TdTYoNjUqYCBNiOSNPtCvjNISl0qSrhi2XtIObJaN1SpUzm-3ETdCc2QSjO8o_IoY7dZgOh2CYkGi0nuLaY_2tmc_7IzYn8URk67530EGcJAPWRweno_HHLx1Ksibnqx9WS3lLxPt1700jZ2flAnbMdZtfprFjxg_QfbcAwacWTQ9RT5eP0N1hm_fvMVKAKuxQhasCA6rwBqqwQxXeRhXeQhUGEOAOqrBH1RN08WE0Hp6HLhVHqCiP61AL0OxyEMeCiqSQMs4jllPN8kTHXAmuUxVPdQHTLi2E1KmgBVRQyaeMKlkocoj6ZVXqZwjrPBdsqklSpJLGcSRkTgomNQftwNKIB-ht--0y5XjqTbqUq2xXSgF67dsuLDvL3lbHrQgy9_cusxgs_xSMf5EE6JWvhk9tDsxkqauVaUNg9Q0L8vgvbWAIKTcR6wF6asXrXwUeTgUdRAE6BHn7YpUq1byZDtDR_opskRdHtxrcc3TP_HB2V_AY9evrlX4BdnI9femg-wc9YMBE |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+journey+of+tin+chalcogenides+towards+high-performance+thermoelectrics+and+topological+materials&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Banik%2C+Ananya&rft.au=Roychowdhury%2C+Subhajit&rft.au=Biswas%2C+Kanishka&rft.date=2018&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=54&rft.issue=50&rft.spage=6573&rft.epage=6590&rft_id=info:doi/10.1039%2FC8CC02230E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8CC02230E |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon |