The journey of tin chalcogenides towards high-performance thermoelectrics and topological materials

Lead chalcogenides and their alloys belong at the heart of thermoelectrics due to their large thermoelectric figure of merit ( zT ). However, recent research has shown a limitation in the use of lead (Pb)-based materials due to their toxicity and efforts have been made to produce non-toxic analogues...

Full description

Saved in:
Bibliographic Details
Published inChemical communications (Cambridge, England) Vol. 54; no. 5; pp. 6573 - 659
Main Authors Banik, Ananya, Roychowdhury, Subhajit, Biswas, Kanishka
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 2018
Subjects
Online AccessGet full text
ISSN1359-7345
1364-548X
1364-548X
DOI10.1039/c8cc02230e

Cover

Abstract Lead chalcogenides and their alloys belong at the heart of thermoelectrics due to their large thermoelectric figure of merit ( zT ). However, recent research has shown a limitation in the use of lead (Pb)-based materials due to their toxicity and efforts have been made to produce non-toxic analogues of lead chalcogenides. Tin chalcogenides have been predicted to be promising for this purpose due to their unique electronic structure and phonon dispersion properties. Here, we discuss the journey of tin chalcogenides in the field of thermoelectrics and topological materials with the main emphasis on the bonding, crystal structures, electronic band structures, phonon dispersion and thermoelectric properties. The thermal transport properties of tin chalcogenides are explained based on lattice dynamics, where resonant bonding and local structural distortion play an important role in creating lattice anharmonicity, thereby lowering the lattice thermal conductivity. Since thermoelectric and topological materials, especially topological insulators and topological crystalline insulators, share similar material features, such as a narrow band gap, heavy constituent elements and significant spin-orbit coupling, we have discussed the thermoelectric properties of several topological tin chalcogenides from a chemistry perspective. This feature article serves as a useful reference for researchers who strive to improve the properties of tin chalcogenides and advance the field of thermoelectric and topological materials. Sn-Chalcogenides are recognized as high performance thermoelectrics and topological insulators due to their unique crystal and electronic structures and lattice dynamics.
AbstractList Lead chalcogenides and their alloys belong at the heart of thermoelectrics due to their large thermoelectric figure of merit ( zT ). However, recent research has shown a limitation in the use of lead (Pb)-based materials due to their toxicity and efforts have been made to produce non-toxic analogues of lead chalcogenides. Tin chalcogenides have been predicted to be promising for this purpose due to their unique electronic structure and phonon dispersion properties. Here, we discuss the journey of tin chalcogenides in the field of thermoelectrics and topological materials with the main emphasis on the bonding, crystal structures, electronic band structures, phonon dispersion and thermoelectric properties. The thermal transport properties of tin chalcogenides are explained based on lattice dynamics, where resonant bonding and local structural distortion play an important role in creating lattice anharmonicity, thereby lowering the lattice thermal conductivity. Since thermoelectric and topological materials, especially topological insulators and topological crystalline insulators, share similar material features, such as a narrow band gap, heavy constituent elements and significant spin-orbit coupling, we have discussed the thermoelectric properties of several topological tin chalcogenides from a chemistry perspective. This feature article serves as a useful reference for researchers who strive to improve the properties of tin chalcogenides and advance the field of thermoelectric and topological materials. Sn-Chalcogenides are recognized as high performance thermoelectrics and topological insulators due to their unique crystal and electronic structures and lattice dynamics.
Lead chalcogenides and their alloys belong at the heart of thermoelectrics due to their large thermoelectric figure of merit ( zT ). However, recent research has shown a limitation in the use of lead (Pb)-based materials due to their toxicity and efforts have been made to produce non-toxic analogues of lead chalcogenides. Tin chalcogenides have been predicted to be promising for this purpose due to their unique electronic structure and phonon dispersion properties. Here, we discuss the journey of tin chalcogenides in the field of thermoelectrics and topological materials with the main emphasis on the bonding, crystal structures, electronic band structures, phonon dispersion and thermoelectric properties. The thermal transport properties of tin chalcogenides are explained based on lattice dynamics, where resonant bonding and local structural distortion play an important role in creating lattice anharmonicity, thereby lowering the lattice thermal conductivity. Since thermoelectric and topological materials, especially topological insulators and topological crystalline insulators, share similar material features, such as a narrow band gap, heavy constituent elements and significant spin–orbit coupling, we have discussed the thermoelectric properties of several topological tin chalcogenides from a chemistry perspective. This feature article serves as a useful reference for researchers who strive to improve the properties of tin chalcogenides and advance the field of thermoelectric and topological materials.
Lead chalcogenides and their alloys belong at the heart of thermoelectrics due to their large thermoelectric figure of merit (zT). However, recent research has shown a limitation in the use of lead (Pb)-based materials due to their toxicity and efforts have been made to produce non-toxic analogues of lead chalcogenides. Tin chalcogenides have been predicted to be promising for this purpose due to their unique electronic structure and phonon dispersion properties. Here, we discuss the journey of tin chalcogenides in the field of thermoelectrics and topological materials with the main emphasis on the bonding, crystal structures, electronic band structures, phonon dispersion and thermoelectric properties. The thermal transport properties of tin chalcogenides are explained based on lattice dynamics, where resonant bonding and local structural distortion play an important role in creating lattice anharmonicity, thereby lowering the lattice thermal conductivity. Since thermoelectric and topological materials, especially topological insulators and topological crystalline insulators, share similar material features, such as a narrow band gap, heavy constituent elements and significant spin–orbit coupling, we have discussed the thermoelectric properties of several topological tin chalcogenides from a chemistry perspective. This feature article serves as a useful reference for researchers who strive to improve the properties of tin chalcogenides and advance the field of thermoelectric and topological materials.
Lead chalcogenides and their alloys belong at the heart of thermoelectrics due to their large thermoelectric figure of merit (zT). However, recent research has shown a limitation in the use of lead (Pb)-based materials due to their toxicity and efforts have been made to produce non-toxic analogues of lead chalcogenides. Tin chalcogenides have been predicted to be promising for this purpose due to their unique electronic structure and phonon dispersion properties. Here, we discuss the journey of tin chalcogenides in the field of thermoelectrics and topological materials with the main emphasis on the bonding, crystal structures, electronic band structures, phonon dispersion and thermoelectric properties. The thermal transport properties of tin chalcogenides are explained based on lattice dynamics, where resonant bonding and local structural distortion play an important role in creating lattice anharmonicity, thereby lowering the lattice thermal conductivity. Since thermoelectric and topological materials, especially topological insulators and topological crystalline insulators, share similar material features, such as a narrow band gap, heavy constituent elements and significant spin-orbit coupling, we have discussed the thermoelectric properties of several topological tin chalcogenides from a chemistry perspective. This feature article serves as a useful reference for researchers who strive to improve the properties of tin chalcogenides and advance the field of thermoelectric and topological materials.Lead chalcogenides and their alloys belong at the heart of thermoelectrics due to their large thermoelectric figure of merit (zT). However, recent research has shown a limitation in the use of lead (Pb)-based materials due to their toxicity and efforts have been made to produce non-toxic analogues of lead chalcogenides. Tin chalcogenides have been predicted to be promising for this purpose due to their unique electronic structure and phonon dispersion properties. Here, we discuss the journey of tin chalcogenides in the field of thermoelectrics and topological materials with the main emphasis on the bonding, crystal structures, electronic band structures, phonon dispersion and thermoelectric properties. The thermal transport properties of tin chalcogenides are explained based on lattice dynamics, where resonant bonding and local structural distortion play an important role in creating lattice anharmonicity, thereby lowering the lattice thermal conductivity. Since thermoelectric and topological materials, especially topological insulators and topological crystalline insulators, share similar material features, such as a narrow band gap, heavy constituent elements and significant spin-orbit coupling, we have discussed the thermoelectric properties of several topological tin chalcogenides from a chemistry perspective. This feature article serves as a useful reference for researchers who strive to improve the properties of tin chalcogenides and advance the field of thermoelectric and topological materials.
Author Banik, Ananya
Roychowdhury, Subhajit
Biswas, Kanishka
AuthorAffiliation New Chemistry Unit
Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
AuthorAffiliation_xml – name: New Chemistry Unit
– name: Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
Author_xml – sequence: 1
  givenname: Ananya
  surname: Banik
  fullname: Banik, Ananya
– sequence: 2
  givenname: Subhajit
  surname: Roychowdhury
  fullname: Roychowdhury, Subhajit
– sequence: 3
  givenname: Kanishka
  surname: Biswas
  fullname: Biswas, Kanishka
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29749410$$D View this record in MEDLINE/PubMed
BookMark eNqF0s1rFTEQAPAgFfuhF-_KSi8irGazSTY5ytKqUPBSwVvIm528TdndrEke0v_evL5WoYjmMoH8ZmBmckqOlrAgIS8b-r6hrf4ACoAy1lJ8Qk6aVvJacPX9aH8Xuu5aLo7JaUo3tJxGqGfkmOmOa97QEwLXI1Y3YRcXvK2Cq7JfKhjtBGGLix8wVTn8tHFI1ei3Y71idCHOdgGs8ohxDjgh5OghVXYZCl7DFLYe7FTNNmP0dkrPyVNXAr64j2fk2-XFdf-5vvr66Uv_8aoGLlmuUYtO2YYxzXXnrGUDFQNHMXTIJGiJCtgGXcMld9qi0tyVB27lRnCwDtoz8vZQd43hxw5TNrNPgNNkFwy7ZBhjVEmqKPs_pa1ispNqT88f0btxlUaKElIJWaZZ1Ot7tdvMOJg1-tnGW_Mw6QLoAUAMKUV0Bny22YclR-sn01CzX6bpVd_fLfOipLx7lPJQ9a_4zQHHBL_dn59h1sEV8-pfpv0Fekq0cg
CitedBy_id crossref_primary_10_1016_j_solidstatesciences_2020_106191
crossref_primary_10_1021_jacs_3c02146
crossref_primary_10_1016_j_mtphys_2021_100405
crossref_primary_10_1039_C8TA08731H
crossref_primary_10_1021_jacs_8b09029
crossref_primary_10_1002_adts_202400670
crossref_primary_10_1002_anie_202210783
crossref_primary_10_1016_j_joule_2019_03_001
crossref_primary_10_1002_ange_202003946
crossref_primary_10_1039_D3NR05906E
crossref_primary_10_1021_acsami_9b07222
crossref_primary_10_1039_D2TA03079A
crossref_primary_10_1021_acs_inorgchem_2c00060
crossref_primary_10_1038_s41598_021_96299_3
crossref_primary_10_1021_jacs_3c08637
crossref_primary_10_1016_j_apsadv_2022_100275
crossref_primary_10_1021_acs_chemmater_8b02676
crossref_primary_10_1021_acs_jpcc_0c03093
crossref_primary_10_1039_D4YA00057A
crossref_primary_10_1021_acsnano_1c06720
crossref_primary_10_1007_s10854_019_00815_1
crossref_primary_10_1016_j_jallcom_2019_07_220
crossref_primary_10_1002_ange_202000343
crossref_primary_10_1002_anie_202105953
crossref_primary_10_1016_j_jssc_2019_04_005
crossref_primary_10_1039_C8EE03162B
crossref_primary_10_1021_acs_jpcc_9b03329
crossref_primary_10_1103_PhysRevB_106_195116
crossref_primary_10_3390_inorganics11080318
crossref_primary_10_3390_nano14181530
crossref_primary_10_1021_acsaem_9b00013
crossref_primary_10_1021_acsenergylett_1c01184
crossref_primary_10_1021_acs_jpcc_9b01081
crossref_primary_10_1088_2053_1591_aaf595
crossref_primary_10_1103_PhysRevB_108_045135
crossref_primary_10_1021_acs_chemmater_0c04184
crossref_primary_10_1021_acs_jpcc_4c03096
crossref_primary_10_1002_anie_202003946
crossref_primary_10_1039_C9DT02225B
crossref_primary_10_1002_adma_202002702
crossref_primary_10_1021_acs_jpcc_3c02987
crossref_primary_10_3389_fchem_2020_608398
crossref_primary_10_1021_acs_jpcc_2c06262
crossref_primary_10_1088_2053_1591_ab3db8
crossref_primary_10_1002_anie_202000343
crossref_primary_10_1002_ange_201809841
crossref_primary_10_1002_ange_202105953
crossref_primary_10_1039_D1CC00830G
crossref_primary_10_1016_j_jmst_2021_01_040
crossref_primary_10_1039_C8TC05711G
crossref_primary_10_1039_D1CP03988A
crossref_primary_10_1149_1945_7111_abdc77
crossref_primary_10_1002_ange_201809847
crossref_primary_10_1002_sstr_202400136
crossref_primary_10_1039_D0RA07160A
crossref_primary_10_1063_5_0058125
crossref_primary_10_1088_2053_1591_accf61
crossref_primary_10_1016_j_ceramint_2024_06_217
crossref_primary_10_1039_D0TA05197G
crossref_primary_10_1039_C9TC03999F
crossref_primary_10_1039_D0TA00240B
crossref_primary_10_1002_slct_202301351
crossref_primary_10_1039_D1CS00347J
crossref_primary_10_1007_s10854_020_03644_9
crossref_primary_10_1039_D1MA00155H
crossref_primary_10_1515_rams_2020_0023
crossref_primary_10_1039_C8QI00703A
crossref_primary_10_1002_inf2_12044
crossref_primary_10_1063_1_5085255
crossref_primary_10_1016_j_jmst_2020_05_015
crossref_primary_10_1002_ange_202210783
crossref_primary_10_1002_anie_201809841
crossref_primary_10_1007_s10854_021_07455_4
crossref_primary_10_1021_acs_chemmater_0c03657
crossref_primary_10_1002_anie_201809847
crossref_primary_10_1039_D0DT03760E
crossref_primary_10_1039_D0TA06710E
Cites_doi 10.1038/nmat3273
10.1103/PhysRevLett.101.035901
10.1007/BF00570520
10.1023/B:INMA.0000027590.43038.a8
10.1038/ncomms2191
10.1038/ncomms4525
10.1063/1.1657866
10.1038/nature09996
10.1002/adma.201605887
10.1038/nchem.1171
10.1039/C7TC00009J
10.1021/cm504112m
10.1039/C6EE01755J
10.1021/jacs.5b07284
10.1016/0022-4596(88)90196-X
10.1038/ncomms3696
10.1126/science.1159725
10.1039/c1ee02297k
10.1038/nphys2442
10.1126/science.1194975
10.1039/C4CP02871F
10.1103/PhysRevB.92.045134
10.1002/anie.201801491
10.1016/j.jallcom.2007.01.015
10.1038/nature02073
10.1039/C6EE00728G
10.1073/pnas.1305735110
10.1038/nmat3332
10.1016/j.jpcs.2007.07.131
10.1016/j.jallcom.2005.02.025
10.1021/ja4121583
10.1039/C7TA09941J
10.1039/C5EE01147G
10.1039/c3ee42187b
10.1063/1.3496661
10.1038/nature13184
10.1021/acs.chemmater.5b04365
10.1002/chem.201604161
10.1039/c3ee41935e
10.1088/0022-3727/1/7/304
10.1126/science.1239451
10.1021/jacs.5b13276
10.1039/C6TA01994C
10.1038/nature06843
10.1002/anie.201508381
10.1021/acs.chemmater.5b03708
10.1002/anie.200900598
10.1126/science.1226419
10.1063/1.1777047
10.1134/S0036023617130034
10.1002/anie.201500281
10.1016/j.apsusc.2012.04.048
10.1021/ja500860m
10.1103/PhysRevB.89.014102
10.1039/C6TA04240F
10.1039/C6QI00263C
10.1021/jacs.7b05143
10.1002/pssr.201206411
10.1002/anie.201508492
10.1039/C6CP03688K
10.1103/PhysRevLett.106.106802
10.1038/nphys3012
10.1039/C4TA05530F
10.1038/nmat4215
10.1021/jacs.5b00837
10.1126/science.aad3749
10.1063/1.4963698
10.1039/C3EE43099E
10.1021/jacs.7b11875
10.1063/1.1703182
10.1016/j.jmat.2016.04.001
10.1039/C5EE02423D
10.1039/C5TC02344K
10.1103/PhysRevB.90.134101
10.1063/1.4948969
10.1142/9781786342706_0006
10.1103/PhysRevB.28.7009
10.1016/j.jssc.2015.10.029
10.1143/JPSJ.38.443
10.1039/C1EE02612G
10.1002/anie.201708293
10.1021/ar040176w
10.1038/nchem.955
10.1039/C4TA06955B
10.1021/ja301772w
10.1021/acs.chemrev.6b00255
10.1103/PhysRev.131.104
10.1021/jacs.6b08382
10.1038/nmat3739
10.1038/nature08916
10.1103/PhysRevLett.119.116401
10.1038/nature11439
10.1021/ja5059185
10.1103/PhysRevLett.14.360
10.1002/aenm.201200083
10.1039/C4TA04462B
10.1039/C5CP03700J
10.1039/C4CP02091J
10.1126/science.aad8609
10.1103/PhysRevLett.16.1193
10.1103/PhysRevLett.109.236804
10.1021/jacs.7b01434
10.1021/jacs.6b07010
10.1016/S0925-8388(03)00049-5
10.1103/PhysRevB.77.214304
10.1002/adma.201504833
10.1126/science.1156446
10.1143/JJAP.1.277
10.1002/anie.201511737
10.1016/j.jssc.2016.02.012
10.1103/PhysRevB.61.7770
10.1038/ncomms1969
10.1002/anie.201202480
10.1073/pnas.93.15.7436
10.1063/1.1753977
10.1038/nphys3492
10.1002/aenm.201400486
10.1073/pnas.1410349111
10.1021/acsenergylett.7b00658
10.1021/acs.jpcc.6b11467
10.1038/nmat3828
10.1103/PhysRevB.67.125111
10.1103/PhysRev.119.507
10.1002/pssa.201532045
10.1039/C6TA09941F
10.1103/PhysRevB.88.235122
10.1103/PhysRevB.58.2788
10.1103/PhysRevB.41.5227
10.1039/C5NR03813H
10.1039/C4EE01463D
10.1038/ncomms12167
10.1002/aelm.201600019
10.1038/ncomms13713
10.1021/acs.inorgchem.7b00188
10.1103/PhysRevLett.37.772
10.1007/BF00561976
10.1038/nchem.1589
10.1103/PhysRevB.86.224303
10.1002/anie.201304337
10.1002/aenm.201500360
10.1039/c4ta01333f
10.1021/jacs.7b11662
10.1103/PhysRevLett.112.175501
10.1016/j.mattod.2015.10.004
10.1038/nmat2226
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/c8cc02230e
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
AGRICOLA
PubMed
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-548X
EndPage 659
ExternalDocumentID 29749410
10_1039_C8CC02230E
c8cc02230e
Genre Journal Article
GroupedDBID -JG
0-7
1TJ
705
70J
70~
7~J
AAEMU
ABGFH
ACLDK
ADSRN
AEFDR
AFVBQ
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
GNO
H~N
IDZ
J3I
R7B
R7C
R7D
RCNCU
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SKH
SLH
VH6
---
-DZ
-~X
0R~
0UZ
186
29B
2WC
3EH
4.4
53G
5GY
6J9
6TJ
71~
9M8
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYOK
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACBEA
ACGFO
ACGFS
ACHDF
ACIWK
ACNCT
ACRPL
ADMRA
ADNMO
ADXHL
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AI.
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
AQHUZ
ASKNT
ASPBG
AVWKF
AZFZN
BBWZM
BLAPV
CAG
CITATION
COF
CS3
DU5
EBS
ECGLT
EEHRC
EJD
F5P
FA8
FEDTE
GGIMP
H13
HVGLF
HZ~
IDY
IH2
J3G
J3H
L-8
M4U
MVM
N9A
NDZJH
O9-
OHT
P2P
R56
RAOCF
RCLXC
RIG
RNS
ROL
RRXOS
SJN
TN5
TWZ
UHB
UPT
VH1
WH7
WHG
X7L
XJT
ZCG
ZKB
NPM
VQA
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c462t-e9578a1229497faa2d05d4e5d7e26c96e8c2bef1464f9ae894fe264a6b54cafc3
ISSN 1359-7345
1364-548X
IngestDate Fri Jul 11 15:19:24 EDT 2025
Fri Jul 11 04:08:21 EDT 2025
Mon Jun 30 06:28:36 EDT 2025
Wed Feb 19 02:43:14 EST 2025
Thu Apr 24 22:58:04 EDT 2025
Tue Jul 01 01:14:11 EDT 2025
Wed Jun 05 04:38:23 EDT 2019
Mon Jan 28 17:11:18 EST 2019
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c462t-e9578a1229497faa2d05d4e5d7e26c96e8c2bef1464f9ae894fe264a6b54cafc3
Notes Kanishka Biswas obtained his MS and PhD degree from the Solid State Structural Chemistry Unit at the Indian Institute of Science (2009) under the supervision of Prof. C. N. R. Rao and he did postdoctoral research with Prof. Mercouri G. Kanatzidis at the Department of Chemistry, Northwestern University (2009-2012). He is an Assistant Professor in the New Chemistry Unit, at the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore. He is pursuing research in the solid state inorganic chemistry of metal chalcogenides, thermoelectrics, topological materials, 2D materials and perovskite halides. He has published 96 research papers, 1 book and 4 book chapters. He is a Young Affiliate of The World Academy of Sciences (TWAS) and an Associate of the Indian Academy of Science (IASc), Bangalore, India. He was also the recipient of a Young Scientist Medal in 2016 from the Indian National Science Academy (INSA), Delhi, India and Young Scientist Platinum Jubilee Award in 2015 from The National Academy of Sciences (NASI), Allahabad, India. He received a Materials Research Society of India Medal in 2017. He was the recipient of an IUMRS-MRS Singapore Young Researcher Merit Award in 2016 and he also received a Young Scientist Wiley Award from IUMRS in 2017 in Kyoto, Japan.
Ananya Banik obtained her BSc degree from Presidency University, Kolkata in 2012 and her MS degree in Chemical Science in 2015 from the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR). Currently, she is pursuing her PhD under Dr Kanishka Biswas at the New Chemistry Unit, at the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India. Her research focuses on the thermoelectric properties of tin chalcogenides.
Subhajit Roychowdhury received his BSc (2012) degree from the University of Burdwan and MSc (2014) degree in Chemistry from the Indian Institute of Technology (IIT), Kharagpur, West Bengal, India. He is currently pursuing his PhD under Dr Kanishka Biswas at the New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India. His research focuses on topological insulators and the thermoelectric properties of heavy metal chalcogenides.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1808-9432
0000-0001-9119-2455
PMID 29749410
PQID 2056856297
PQPubID 2047502
PageCount 18
ParticipantIDs proquest_miscellaneous_2220860802
proquest_journals_2056856297
crossref_citationtrail_10_1039_C8CC02230E
crossref_primary_10_1039_C8CC02230E
rsc_primary_c8cc02230e
proquest_miscellaneous_2038267682
pubmed_primary_29749410
ProviderPackageCode RRA
J3I
ACLDK
RRC
7~J
AEFDR
70~
VH6
GNO
RCNCU
SLH
70J
EE0
RSCEA
AFVBQ
C6K
H~N
0-7
IDZ
RPMJG
1TJ
SKA
-JG
AGSTE
AUDPV
EF-
BSQNT
SKF
SKH
ADSRN
ABGFH
705
R7B
R7D
AAEMU
R7C
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical communications (Cambridge, England)
PublicationTitleAlternate Chem Commun (Camb)
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Euchner (C8CC02230E-(cit9a)/*[position()=1]) 2012; 86
Aggarwal (C8CC02230E-(cit28)/*[position()=1]) 2016; 2
Li (C8CC02230E-(cit22d)/*[position()=1]) 2017; 29
Jin (C8CC02230E-(cit23c)/*[position()=1]) 2017; 7
Saha (C8CC02230E-(cit33d)/*[position()=1]) 2016; 22
Zhao (C8CC02230E-(cit5b)/*[position()=1]) 2013; 6
Zhao (C8CC02230E-(cit15b)/*[position()=1]) 2012; 134
Tan (C8CC02230E-(cit15d)/*[position()=1]) 2016; 7
Tan (C8CC02230E-(cit48b)/*[position()=1]) 2015; 8
Jana (C8CC02230E-(cit9c)/*[position()=1]) 2016; 55
Chang (C8CC02230E-(cit32)/*[position()=1]) 2016; 353
Liu (C8CC02230E-(cit10a)/*[position()=1]) 2012; 11
Al-Alamy (C8CC02230E-(cit33a)/*[position()=1]) 1977; 12
Hsieh (C8CC02230E-(cit40)/*[position()=1]) 2012; 3
Lu (C8CC02230E-(cit44)/*[position()=1]) 2017; 119
Banik (C8CC02230E-(cit13)/*[position()=1]) 2016; 9
Biswas (C8CC02230E-(cit55)/*[position()=1]) 2011; 4
Waghmare (C8CC02230E-(cit27a)/*[position()=1]) 2003; 67
Rogacheva (C8CC02230E-(cit47)/*[position()=1]) 2008; 69
Roychowdhury (C8CC02230E-(cit65)/*[position()=1]) 2017; 5
Pei (C8CC02230E-(cit2b)/*[position()=1]) 2014; 4
Xiao (C8CC02230E-(cit15c)/*[position()=1]) 2017; 139
Guin (C8CC02230E-(cit34)/*[position()=1]) 2017
Tanaka (C8CC02230E-(cit23a)/*[position()=1]) 2012; 8
Zeier (C8CC02230E-(cit37)/*[position()=1]) 2016; 55
Duong (C8CC02230E-(cit76)/*[position()=1]) 2016; 7
Heremans (C8CC02230E-(cit4b)/*[position()=1]) 2012; 5
Morelli (C8CC02230E-(cit12a)/*[position()=1]) 2008; 101
Parker (C8CC02230E-(cit33b)/*[position()=1]) 2010; 108
Guin (C8CC02230E-(cit12b)/*[position()=1]) 2013; 6
Kafalas (C8CC02230E-(cit45a)/*[position()=1]) 1964; 4
Pal (C8CC02230E-(cit16b)/*[position()=1]) 2015; 3
Shelimova (C8CC02230E-(cit42)/*[position()=1]) 2004; 40
Iizumi (C8CC02230E-(cit26a)/*[position()=1]) 1975; 38
Mahan (C8CC02230E-(cit52)/*[position()=1]) 1996; 93
Klemens (C8CC02230E-(cit60)/*[position()=1]) 1960; 119
Parenteau (C8CC02230E-(cit41)/*[position()=1]) 1990; 41
Kanatzidis (C8CC02230E-(cit84b)/*[position()=1]) 2017; 56
Hsieh (C8CC02230E-(cit17a)/*[position()=1]) 2008; 452
Bera (C8CC02230E-(cit82)/*[position()=1]) 2014; 16
Vergniory (C8CC02230E-(cit24)/*[position()=1]) 2015; 92
Lee (C8CC02230E-(cit11b)/*[position()=1]) 2014; 5
Tan (C8CC02230E-(cit59c)/*[position()=1]) 2014; 2
Kanatzidis (C8CC02230E-(cit84a)/*[position()=1]) 2005; 38
Luo (C8CC02230E-(cit79a)/*[position()=1]) 2017
Tang (C8CC02230E-(cit77b)/*[position()=1]) 2016; 138
Fu (C8CC02230E-(cit18a)/*[position()=1]) 2011; 106
Li (C8CC02230E-(cit20)/*[position()=1]) 2018; 6
Xu (C8CC02230E-(cit74e)/*[position()=1]) 2013; 52
Li (C8CC02230E-(cit22c)/*[position()=1]) 2017; 2
Wu (C8CC02230E-(cit57)/*[position()=1]) 2015; 8
Korkosz (C8CC02230E-(cit6a)/*[position()=1]) 2014; 136
Zhang (C8CC02230E-(cit77a)/*[position()=1]) 2015; 5
Coleman (C8CC02230E-(cit74b)/*[position()=1]) 2011; 331
Biswas (C8CC02230E-(cit6d)/*[position()=1]) 2011; 3
Brebrick (C8CC02230E-(cit21a)/*[position()=1]) 1963; 131
Shportko (C8CC02230E-(cit25)/*[position()=1]) 2008; 7
Bis (C8CC02230E-(cit66a)/*[position()=1]) 1969; 40
Andreev (C8CC02230E-(cit39)/*[position()=1]) 1967; 9
Crocker (C8CC02230E-(cit87b)/*[position()=1]) 1978; 13
Pei (C8CC02230E-(cit5a)/*[position()=1]) 2011; 473
Banik (C8CC02230E-(cit33c)/*[position()=1]) 2017; 56
Roychowdhury (C8CC02230E-(cit70)/*[position()=1]) 2016; 108
Ge (C8CC02230E-(cit1d)/*[position()=1]) 2016; 19
Nakayama (C8CC02230E-(cit86)/*[position()=1]) 2012; 109
Banik (C8CC02230E-(cit22a)/*[position()=1]) 2015; 27
Zhao (C8CC02230E-(cit75a)/*[position()=1]) 2016; 351
Faleev (C8CC02230E-(cit3)/*[position()=1]) 2008; 77
Roychowdhury (C8CC02230E-(cit7)/*[position()=1]) 2018; 57
Okada (C8CC02230E-(cit69b)/*[position()=1]) 2013; 341
Zhao (C8CC02230E-(cit87a)/*[position()=1]) 2008; 455
Damon (C8CC02230E-(cit31)/*[position()=1]) 1966; 37
Tan (C8CC02230E-(cit54)/*[position()=1]) 2015; 137
Xu (C8CC02230E-(cit43)/*[position()=1]) 2012; 3
Roychowdhury (C8CC02230E-(cit71)/*[position()=1]) 2016; 233
Abrikosov (C8CC02230E-(cit72a)/*[position()=1]) 1998; 58
Kong (C8CC02230E-(cit17c)/*[position()=1]) 2011; 3
Moore (C8CC02230E-(cit17b)/*[position()=1]) 2010; 464
Liu (C8CC02230E-(cit18b)/*[position()=1]) 2013; 13
Liang (C8CC02230E-(cit69a)/*[position()=1]) 2013; 4
Jun-ichi (C8CC02230E-(cit45b)/*[position()=1]) 1962; 1
Abrikosov (C8CC02230E-(cit72b)/*[position()=1]) 2000; 61
Banik (C8CC02230E-(cit2c)/*[position()=1]) 2016; 242
Zhou (C8CC02230E-(cit14)/*[position()=1]) 2016; 3
Han (C8CC02230E-(cit66b)/*[position()=1]) 2012; 2
Tan (C8CC02230E-(cit22b)/*[position()=1]) 2014; 136
Banik (C8CC02230E-(cit51)/*[position()=1]) 2014; 2
Sootsman (C8CC02230E-(cit1b)/*[position()=1]) 2009; 48
Li (C8CC02230E-(cit30)/*[position()=1]) 2014; 112
Tan (C8CC02230E-(cit48a)/*[position()=1]) 2015; 137
Zhao (C8CC02230E-(cit56)/*[position()=1]) 2016; 138
Jana (C8CC02230E-(cit9d)/*[position()=1]) 2017; 139
He (C8CC02230E-(cit89)/*[position()=1]) 2015; 212
Tan (C8CC02230E-(cit1a)/*[position()=1]) 2016; 116
Biswas (C8CC02230E-(cit6e)/*[position()=1]) 2012; 489
Roychowdhury (C8CC02230E-(cit67)/*[position()=1]) 2015; 54
Zhao (C8CC02230E-(cit11a)/*[position()=1]) 2014; 508
Al Orabi (C8CC02230E-(cit48c)/*[position()=1]) 2016; 28
Zhang (C8CC02230E-(cit4c)/*[position()=1]) 2013; 110
Heremans (C8CC02230E-(cit4a)/*[position()=1]) 2008; 321
Cui (C8CC02230E-(cit88)/*[position()=1]) 2003; 358
Pei (C8CC02230E-(cit59b)/*[position()=1]) 2016; 2
Kuypers (C8CC02230E-(cit63)/*[position()=1]) 1988; 76
Nicolosi (C8CC02230E-(cit74f)/*[position()=1]) 2013; 340
Zhou (C8CC02230E-(cit49)/*[position()=1]) 2016; 4
Sun (C8CC02230E-(cit23b)/*[position()=1]) 2013; 88
Zhao (C8CC02230E-(cit35a)/*[position()=1]) 2016; 9
Wei (C8CC02230E-(cit78)/*[position()=1]) 2018; 140
Samanta (C8CC02230E-(cit6b)/*[position()=1]) 2017; 139
Poudel (C8CC02230E-(cit6c)/*[position()=1]) 2008; 320
Zeljkovic (C8CC02230E-(cit18c)/*[position()=1]) 2015; 14
Tan (C8CC02230E-(cit59a)/*[position()=1]) 2015; 27
Knox (C8CC02230E-(cit29)/*[position()=1]) 2014; 89
Nicolosi (C8CC02230E-(cit74a)/*[position()=1]) 2013; 340
Li (C8CC02230E-(cit36)/*[position()=1]) 2015; 11
Yang (C8CC02230E-(cit23d)/*[position()=1]) 2012; 11
Wang (C8CC02230E-(cit75b)/*[position()=1]) 2015; 7
Cao (C8CC02230E-(cit74d)/*[position()=1]) 2016; 28
Dimmock (C8CC02230E-(cit38)/*[position()=1]) 1966; 16
Parish (C8CC02230E-(cit72c)/*[position()=1]) 2003; 426
Zhao (C8CC02230E-(cit1c)/*[position()=1]) 2014; 7
Wu (C8CC02230E-(cit2a)/*[position()=1]) 2015; 8
Kobayashi (C8CC02230E-(cit26b)/*[position()=1]) 1976; 37
Sun (C8CC02230E-(cit80b)/*[position()=1]) 2015; 17
Veis (C8CC02230E-(cit46)/*[position()=1]) 1976; 10
Tan (C8CC02230E-(cit53)/*[position()=1]) 2016; 18
Müchler (C8CC02230E-(cit16a)/*[position()=1]) 2012; 51
Tan (C8CC02230E-(cit35b)/*[position()=1]) 2014; 2
Cadoff (C8CC02230E-(cit15a)/*[position()=1]) 1960
Harbec (C8CC02230E-(cit80a)/*[position()=1]) 1983; 28
Nassary (C8CC02230E-(cit81a)/*[position()=1]) 2005; 398
Rogers (C8CC02230E-(cit21b)/*[position()=1]) 1968; 1
Chhowalla (C8CC02230E-(cit74c)/*[position()=1]) 2013; 5
Qiu (C8CC02230E-(cit8)/*[position()=1]) 2014; 111
Zeljkovic (C8CC02230E-(cit18d)/*[position()=1]) 2014; 10
Voneshen (C8CC02230E-(cit9b)/*[position()=1]) 2013; 12
Mitrofanov (C8CC02230E-(cit27b)/*[position()=1]) 2014; 90
Han (C8CC02230E-(cit83)/*[position()=1]) 2015; 3
Chatterjee (C8CC02230E-(cit62)/*[position()=1]) 2015; 54
Das (C8CC02230E-(cit73)/*[position()=1]) 2016; 109
Babanly (C8CC02230E-(cit85)/*[position()=1]) 2017; 62
Guin (C8CC02230E-(cit10b)/*[position()=1]) 2014; 136
Müchler (C8CC02230E-(cit19)/*[position()=1]) 2013; 7
Albers (C8CC02230E-(cit81b)/*[position()=1]) 1961; 32
Ding (C8CC02230E-(cit79b)/*[position()=1]) 2016; 121
Burke (C8CC02230E-(cit68)/*[position()=1]) 1965; 14
Banik (C8CC02230E-(cit58)/*[position()=1]) 2016; 138
Lee (C8CC02230E-(cit61)/*[position()=1]) 2017; 5
Menshchikova (C8CC02230E-(cit64)/*[position()=1]) 2013; 267
Zhang (C8CC02230E-(cit59d)/*[position()=1]) 2016; 4
Zhou (C8CC02230E-(cit50)/*[position()=1]) 2014; 16
References_xml – issn: 1960
  publication-title: Thermoelectric materials and devices
  doi: Cadoff Miller
– issn: 2017
  end-page: 239
  publication-title: 2d Inorganic Materials Beyond Graphene
  doi: Guin Banik Biswas
– volume: 11
  start-page: 422
  year: 2012
  ident: C8CC02230E-(cit10a)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3273
– volume: 101
  start-page: 035901
  year: 2008
  ident: C8CC02230E-(cit12a)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.035901
– volume: 13
  start-page: 833
  year: 1978
  ident: C8CC02230E-(cit87b)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00570520
– volume: 40
  start-page: 451
  year: 2004
  ident: C8CC02230E-(cit42)/*[position()=1]
  publication-title: Inorg. Mater.
  doi: 10.1023/B:INMA.0000027590.43038.a8
– volume: 3
  start-page: 1192
  year: 2012
  ident: C8CC02230E-(cit43)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2191
– volume: 5
  start-page: 3525
  year: 2014
  ident: C8CC02230E-(cit11b)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4525
– volume: 40
  start-page: 1918
  year: 1969
  ident: C8CC02230E-(cit66a)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1657866
– volume: 473
  start-page: 66
  year: 2011
  ident: C8CC02230E-(cit5a)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature09996
– volume: 29
  start-page: 1605887
  year: 2017
  ident: C8CC02230E-(cit22d)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605887
– volume: 3
  start-page: 845
  year: 2011
  ident: C8CC02230E-(cit17c)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1171
– volume: 5
  start-page: 5737
  year: 2017
  ident: C8CC02230E-(cit65)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC00009J
– volume: 27
  start-page: 581
  year: 2015
  ident: C8CC02230E-(cit22a)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm504112m
– volume: 9
  start-page: 3044
  year: 2016
  ident: C8CC02230E-(cit35a)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01755J
– volume: 137
  start-page: 11507
  year: 2015
  ident: C8CC02230E-(cit48a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07284
– volume: 76
  start-page: 102
  year: 1988
  ident: C8CC02230E-(cit63)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(88)90196-X
– volume: 4
  start-page: 2696
  year: 2013
  ident: C8CC02230E-(cit69a)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3696
– volume: 321
  start-page: 554
  year: 2008
  ident: C8CC02230E-(cit4a)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1159725
– volume: 4
  start-page: 4675
  year: 2011
  ident: C8CC02230E-(cit55)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee02297k
– start-page: 1702167
  year: 2017
  ident: C8CC02230E-(cit79a)/*[position()=1]
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 800
  year: 2012
  ident: C8CC02230E-(cit23a)/*[position()=1]
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2442
– volume: 331
  start-page: 568
  year: 2011
  ident: C8CC02230E-(cit74b)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1194975
– volume: 16
  start-page: 19894
  year: 2014
  ident: C8CC02230E-(cit82)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP02871F
– volume: 92
  start-page: 045134
  year: 2015
  ident: C8CC02230E-(cit24)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.92.045134
– volume: 57
  start-page: 4043
  year: 2018
  ident: C8CC02230E-(cit7)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201801491
– volume: 455
  start-page: 259
  year: 2008
  ident: C8CC02230E-(cit87a)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2007.01.015
– volume: 426
  start-page: 162
  year: 2003
  ident: C8CC02230E-(cit72c)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature02073
– volume: 9
  start-page: 2011
  year: 2016
  ident: C8CC02230E-(cit13)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00728G
– volume: 110
  start-page: 13261
  year: 2013
  ident: C8CC02230E-(cit4c)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1305735110
– volume: 11
  start-page: 614
  year: 2012
  ident: C8CC02230E-(cit23d)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3332
– volume: 69
  start-page: 259
  year: 2008
  ident: C8CC02230E-(cit47)/*[position()=1]
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2007.07.131
– volume: 398
  start-page: 21
  year: 2005
  ident: C8CC02230E-(cit81a)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2005.02.025
– volume: 136
  start-page: 3225
  year: 2014
  ident: C8CC02230E-(cit6a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4121583
– volume: 6
  start-page: 2432
  year: 2018
  ident: C8CC02230E-(cit20)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09941J
– volume: 8
  start-page: 2056
  year: 2015
  ident: C8CC02230E-(cit2a)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01147G
– volume: 6
  start-page: 3346
  year: 2013
  ident: C8CC02230E-(cit5b)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee42187b
– volume: 108
  start-page: 083712
  year: 2010
  ident: C8CC02230E-(cit33b)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3496661
– volume: 508
  start-page: 373
  year: 2014
  ident: C8CC02230E-(cit11a)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature13184
– volume: 28
  start-page: 376
  year: 2016
  ident: C8CC02230E-(cit48c)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04365
– volume: 22
  start-page: 15634
  year: 2016
  ident: C8CC02230E-(cit33d)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201604161
– volume: 6
  start-page: 2603
  year: 2013
  ident: C8CC02230E-(cit12b)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41935e
– volume: 1
  start-page: 845
  year: 1968
  ident: C8CC02230E-(cit21b)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/1/7/304
– volume: 341
  start-page: 1496
  year: 2013
  ident: C8CC02230E-(cit69b)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1239451
– volume: 138
  start-page: 2366
  year: 2016
  ident: C8CC02230E-(cit56)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13276
– volume: 4
  start-page: 7936
  year: 2016
  ident: C8CC02230E-(cit59d)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01994C
– volume-title: Thermoelectric materials and devices
  year: 1960
  ident: C8CC02230E-(cit15a)/*[position()=1]
– volume: 452
  start-page: 970
  year: 2008
  ident: C8CC02230E-(cit17a)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature06843
– volume: 55
  start-page: 6826
  year: 2016
  ident: C8CC02230E-(cit37)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201508381
– volume: 27
  start-page: 7801
  year: 2015
  ident: C8CC02230E-(cit59a)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03708
– volume: 48
  start-page: 8616
  year: 2009
  ident: C8CC02230E-(cit1b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200900598
– volume: 340
  start-page: 1226419
  year: 2013
  ident: C8CC02230E-(cit74f)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1226419
– volume: 32
  start-page: 2220
  year: 1961
  ident: C8CC02230E-(cit81b)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1777047
– volume: 62
  start-page: 1703
  year: 2017
  ident: C8CC02230E-(cit85)/*[position()=1]
  publication-title: Russ. J. Inorg. Chem.
  doi: 10.1134/S0036023617130034
– volume: 54
  start-page: 5623
  year: 2015
  ident: C8CC02230E-(cit62)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201500281
– volume: 267
  start-page: 1
  year: 2013
  ident: C8CC02230E-(cit64)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.04.048
– volume: 136
  start-page: 7006
  year: 2014
  ident: C8CC02230E-(cit22b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500860m
– volume: 9
  start-page: 1232
  year: 1967
  ident: C8CC02230E-(cit39)/*[position()=1]
  publication-title: Phys. Solid State
– volume: 89
  start-page: 014102
  year: 2014
  ident: C8CC02230E-(cit29)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.89.014102
– volume: 4
  start-page: 13171
  year: 2016
  ident: C8CC02230E-(cit49)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04240F
– volume: 3
  start-page: 1449
  year: 2016
  ident: C8CC02230E-(cit14)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C6QI00263C
– volume: 139
  start-page: 9382
  year: 2017
  ident: C8CC02230E-(cit6b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05143
– volume: 7
  start-page: 91
  year: 2013
  ident: C8CC02230E-(cit19)/*[position()=1]
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.201206411
– volume: 54
  start-page: 15241
  year: 2015
  ident: C8CC02230E-(cit67)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201508492
– volume: 18
  start-page: 20635
  year: 2016
  ident: C8CC02230E-(cit53)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP03688K
– volume: 106
  start-page: 106802
  year: 2011
  ident: C8CC02230E-(cit18a)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.106802
– volume: 10
  start-page: 572
  year: 2014
  ident: C8CC02230E-(cit18d)/*[position()=1]
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3012
– volume: 2
  start-page: 20849
  year: 2014
  ident: C8CC02230E-(cit59c)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05530F
– volume: 14
  start-page: 318
  year: 2015
  ident: C8CC02230E-(cit18c)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4215
– volume: 137
  start-page: 5100
  year: 2015
  ident: C8CC02230E-(cit54)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b00837
– volume: 351
  start-page: 141
  year: 2016
  ident: C8CC02230E-(cit75a)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aad3749
– volume: 109
  start-page: 132601
  year: 2016
  ident: C8CC02230E-(cit73)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4963698
– volume: 7
  start-page: 251
  year: 2014
  ident: C8CC02230E-(cit1c)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE43099E
– volume: 140
  start-page: 499
  year: 2018
  ident: C8CC02230E-(cit78)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11875
– volume: 37
  start-page: 3181
  year: 1966
  ident: C8CC02230E-(cit31)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1703182
– volume: 2
  start-page: 196
  year: 2016
  ident: C8CC02230E-(cit28)/*[position()=1]
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2016.04.001
– volume: 340
  start-page: 1226419
  year: 2013
  ident: C8CC02230E-(cit74a)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1226419
– volume: 8
  start-page: 3298
  year: 2015
  ident: C8CC02230E-(cit57)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02423D
– volume: 3
  start-page: 12130
  year: 2015
  ident: C8CC02230E-(cit16b)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC02344K
– volume: 90
  start-page: 134101
  year: 2014
  ident: C8CC02230E-(cit27b)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.90.134101
– volume: 108
  start-page: 193901
  year: 2016
  ident: C8CC02230E-(cit70)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4948969
– start-page: 239
  volume-title: 2d Inorganic Materials Beyond Graphene
  year: 2017
  ident: C8CC02230E-(cit34)/*[position()=1]
  doi: 10.1142/9781786342706_0006
– volume: 28
  start-page: 7009
  year: 1983
  ident: C8CC02230E-(cit80a)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.28.7009
– volume: 233
  start-page: 199
  year: 2016
  ident: C8CC02230E-(cit71)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2015.10.029
– volume: 38
  start-page: 443
  year: 1975
  ident: C8CC02230E-(cit26a)/*[position()=1]
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.38.443
– volume: 5
  start-page: 5510
  year: 2012
  ident: C8CC02230E-(cit4b)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C1EE02612G
– volume: 56
  start-page: 14561
  year: 2017
  ident: C8CC02230E-(cit33c)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201708293
– volume: 38
  start-page: 361
  year: 2005
  ident: C8CC02230E-(cit84a)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar040176w
– volume: 3
  start-page: 160
  year: 2011
  ident: C8CC02230E-(cit6d)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.955
– volume: 3
  start-page: 4555
  year: 2015
  ident: C8CC02230E-(cit83)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06955B
– volume: 134
  start-page: 7902
  year: 2012
  ident: C8CC02230E-(cit15b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja301772w
– volume: 116
  start-page: 12123
  year: 2016
  ident: C8CC02230E-(cit1a)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00255
– volume: 131
  start-page: 104
  year: 1963
  ident: C8CC02230E-(cit21a)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.131.104
– volume: 138
  start-page: 13068
  year: 2016
  ident: C8CC02230E-(cit58)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08382
– volume: 12
  start-page: 1028
  year: 2013
  ident: C8CC02230E-(cit9b)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3739
– volume: 464
  start-page: 194
  year: 2010
  ident: C8CC02230E-(cit17b)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature08916
– volume: 119
  start-page: 116401
  year: 2017
  ident: C8CC02230E-(cit44)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.116401
– volume: 489
  start-page: 414
  year: 2012
  ident: C8CC02230E-(cit6e)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature11439
– volume: 136
  start-page: 12712
  year: 2014
  ident: C8CC02230E-(cit10b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5059185
– volume: 14
  start-page: 360
  year: 1965
  ident: C8CC02230E-(cit68)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.14.360
– volume: 2
  start-page: 1218
  year: 2012
  ident: C8CC02230E-(cit66b)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200083
– volume: 2
  start-page: 17302
  year: 2014
  ident: C8CC02230E-(cit35b)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04462B
– volume: 17
  start-page: 29844
  year: 2015
  ident: C8CC02230E-(cit80b)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP03700J
– volume: 16
  start-page: 20741
  year: 2014
  ident: C8CC02230E-(cit50)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP02091J
– volume: 353
  start-page: 274
  year: 2016
  ident: C8CC02230E-(cit32)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aad8609
– volume: 16
  start-page: 1193
  year: 1966
  ident: C8CC02230E-(cit38)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.16.1193
– volume: 109
  start-page: 236804
  year: 2012
  ident: C8CC02230E-(cit86)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.236804
– volume: 139
  start-page: 4350
  year: 2017
  ident: C8CC02230E-(cit9d)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01434
– volume: 138
  start-page: 13647
  year: 2016
  ident: C8CC02230E-(cit77b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07010
– volume: 358
  start-page: 228
  year: 2003
  ident: C8CC02230E-(cit88)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(03)00049-5
– volume: 77
  start-page: 214304
  year: 2008
  ident: C8CC02230E-(cit3)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.77.214304
– volume: 28
  start-page: 6167
  year: 2016
  ident: C8CC02230E-(cit74d)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504833
– volume: 320
  start-page: 634
  year: 2008
  ident: C8CC02230E-(cit6c)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1156446
– volume: 1
  start-page: 277
  year: 1962
  ident: C8CC02230E-(cit45b)/*[position()=1]
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.1.277
– volume: 55
  start-page: 7792
  year: 2016
  ident: C8CC02230E-(cit9c)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201511737
– volume: 242
  start-page: 43
  year: 2016
  ident: C8CC02230E-(cit2c)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2016.02.012
– volume: 7
  start-page: 041020
  year: 2017
  ident: C8CC02230E-(cit23c)/*[position()=1]
  publication-title: Phys. Rev. X
– volume: 61
  start-page: 7770
  year: 2000
  ident: C8CC02230E-(cit72b)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.61.7770
– volume: 3
  start-page: 982
  year: 2012
  ident: C8CC02230E-(cit40)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1969
– volume: 51
  start-page: 7221
  year: 2012
  ident: C8CC02230E-(cit16a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201202480
– volume: 93
  start-page: 7436
  year: 1996
  ident: C8CC02230E-(cit52)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.93.15.7436
– volume: 4
  start-page: 93
  year: 1964
  ident: C8CC02230E-(cit45a)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1753977
– volume: 11
  start-page: 1063
  year: 2015
  ident: C8CC02230E-(cit36)/*[position()=1]
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3492
– volume: 4
  start-page: 1400486
  year: 2014
  ident: C8CC02230E-(cit2b)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400486
– volume: 111
  start-page: 15031
  year: 2014
  ident: C8CC02230E-(cit8)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1410349111
– volume: 2
  start-page: 2349
  year: 2017
  ident: C8CC02230E-(cit22c)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00658
– volume: 121
  start-page: 225
  year: 2016
  ident: C8CC02230E-(cit79b)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b11467
– volume: 13
  start-page: 178
  year: 2013
  ident: C8CC02230E-(cit18b)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3828
– volume: 67
  start-page: 125111
  year: 2003
  ident: C8CC02230E-(cit27a)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.67.125111
– volume: 119
  start-page: 507
  year: 1960
  ident: C8CC02230E-(cit60)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.119.507
– volume: 212
  start-page: 2191
  year: 2015
  ident: C8CC02230E-(cit89)/*[position()=1]
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201532045
– volume: 5
  start-page: 2235
  year: 2017
  ident: C8CC02230E-(cit61)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09941F
– volume: 88
  start-page: 235122
  year: 2013
  ident: C8CC02230E-(cit23b)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.88.235122
– volume: 58
  start-page: 2788
  year: 1998
  ident: C8CC02230E-(cit72a)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.58.2788
– volume: 41
  start-page: 5227
  year: 1990
  ident: C8CC02230E-(cit41)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.41.5227
– volume: 7
  start-page: 15962
  year: 2015
  ident: C8CC02230E-(cit75b)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR03813H
– volume: 8
  start-page: 267
  year: 2015
  ident: C8CC02230E-(cit48b)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01463D
– volume: 7
  start-page: 12167
  year: 2016
  ident: C8CC02230E-(cit15d)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12167
– volume: 10
  start-page: 780
  year: 1976
  ident: C8CC02230E-(cit46)/*[position()=1]
  publication-title: Semiconductors
– volume: 2
  start-page: 1600019
  year: 2016
  ident: C8CC02230E-(cit59b)/*[position()=1]
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201600019
– volume: 7
  start-page: 13713
  year: 2016
  ident: C8CC02230E-(cit76)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13713
– volume: 56
  start-page: 3158
  year: 2017
  ident: C8CC02230E-(cit84b)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b00188
– volume: 37
  start-page: 772
  year: 1976
  ident: C8CC02230E-(cit26b)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.37.772
– volume: 12
  start-page: 2037
  year: 1977
  ident: C8CC02230E-(cit33a)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00561976
– volume: 5
  start-page: 263
  year: 2013
  ident: C8CC02230E-(cit74c)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1589
– volume: 86
  start-page: 224303
  year: 2012
  ident: C8CC02230E-(cit9a)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.86.224303
– volume: 52
  start-page: 10477
  year: 2013
  ident: C8CC02230E-(cit74e)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201304337
– volume: 5
  start-page: 1500360
  year: 2015
  ident: C8CC02230E-(cit77a)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500360
– volume: 2
  start-page: 9620
  year: 2014
  ident: C8CC02230E-(cit51)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c4ta01333f
– volume: 139
  start-page: 18732
  year: 2017
  ident: C8CC02230E-(cit15c)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11662
– volume: 112
  start-page: 175501
  year: 2014
  ident: C8CC02230E-(cit30)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.175501
– volume: 19
  start-page: 227
  year: 2016
  ident: C8CC02230E-(cit1d)/*[position()=1]
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.10.004
– volume: 7
  start-page: 653
  year: 2008
  ident: C8CC02230E-(cit25)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2226
SSID ssj0000158
Score 2.5327244
Snippet Lead chalcogenides and their alloys belong at the heart of thermoelectrics due to their large thermoelectric figure of merit ( zT ). However, recent research...
Lead chalcogenides and their alloys belong at the heart of thermoelectrics due to their large thermoelectric figure of merit (zT). However, recent research has...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6573
SubjectTerms alloys
Anharmonicity
Chalcogenides
chemical reactions
Crystal structure
Dispersion
Electronic structure
Figure of merit
Lead
Organic chemistry
Properties (attributes)
Thermal conductivity
Thermoelectric materials
tin
Topological insulators
topology
Toxicity
Title The journey of tin chalcogenides towards high-performance thermoelectrics and topological materials
URI https://www.ncbi.nlm.nih.gov/pubmed/29749410
https://www.proquest.com/docview/2056856297
https://www.proquest.com/docview/2038267682
https://www.proquest.com/docview/2220860802
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wAXxGshy4KM4IJQljR-JD7uVkXL84C6Um-R6zhq2SWptqlW4lfwkxnHjps-hBYuUeRHFGe-jMf2zDcIveERSUH1sjClBQspTWSYFlESgmWqZTTICW_omr5-4-cX9NOETXq93x2vpVU9PVG_9saV_I9UoQzkaqJk_0Gy_qFQAPcgX7iChOF6axk3DXVzTl4bn_KZvFIV9JjnDXmDcYpdvjOkxOGiEyNgzL6flc2B0_I01zZfQiM1sGPtALrGqycXUN2okmbb1od-NbrVJgbpbDKcyXJ-af0nQfn4meB7ZbTvTT5zh_mgxWbyx9x74pzNlzc24OwzPGA5u5TdTYoNjUqYCBNiOSNPtCvjNISl0qSrhi2XtIObJaN1SpUzm-3ETdCc2QSjO8o_IoY7dZgOh2CYkGi0nuLaY_2tmc_7IzYn8URk67530EGcJAPWRweno_HHLx1Ksibnqx9WS3lLxPt1700jZ2flAnbMdZtfprFjxg_QfbcAwacWTQ9RT5eP0N1hm_fvMVKAKuxQhasCA6rwBqqwQxXeRhXeQhUGEOAOqrBH1RN08WE0Hp6HLhVHqCiP61AL0OxyEMeCiqSQMs4jllPN8kTHXAmuUxVPdQHTLi2E1KmgBVRQyaeMKlkocoj6ZVXqZwjrPBdsqklSpJLGcSRkTgomNQftwNKIB-ht--0y5XjqTbqUq2xXSgF67dsuLDvL3lbHrQgy9_cusxgs_xSMf5EE6JWvhk9tDsxkqauVaUNg9Q0L8vgvbWAIKTcR6wF6asXrXwUeTgUdRAE6BHn7YpUq1byZDtDR_opskRdHtxrcc3TP_HB2V_AY9evrlX4BdnI9femg-wc9YMBE
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+journey+of+tin+chalcogenides+towards+high-performance+thermoelectrics+and+topological+materials&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Banik%2C+Ananya&rft.au=Roychowdhury%2C+Subhajit&rft.au=Biswas%2C+Kanishka&rft.date=2018&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=54&rft.issue=50&rft.spage=6573&rft.epage=6590&rft_id=info:doi/10.1039%2FC8CC02230E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8CC02230E
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon