Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes

Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 8; p. 1127
Main Authors Degrune, Florine, Theodorakopoulos, Nicolas, Colinet, Gilles, Hiel, Marie-Pierre, Bodson, Bernard, Taminiau, Bernard, Daube, Georges, Vandenbol, Micheline, Hartmann, Martin
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 19.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage) either with or without crop residue retention. Soil samples were collected over the growing season of two crops ( and ) below the seedbed (15-20 cm). Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional tillage, whereas taxa featuring more oligotrophic lifestyles were more abundant under reduced tillage. Our study found that, under the specific edaphic and climatic context of central Belgium, different tillage regimes created different ecological niches that select for different microbial lifestyles with potential consequences for the ecosystem services provided to the plants and their environment.
AbstractList Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage) either with or without crop residue retention. Soil samples were collected over the growing season of two crops (Vicia faba and Triticum aestivum) below the seedbed (15–20 cm). Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional tillage, whereas taxa featuring more oligotrophic lifestyles were more abundant under reduced tillage. Our study found that, under the specific edaphic and climatic context of central Belgium, different tillage regimes created different ecological niches that select for different microbial lifestyles with potential consequences for the ecosystem services provided to the plants and their environment.
Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage) either with or without crop residue retention. Soil samples were collected over the growing season of two crops ( Vicia faba and Triticum aestivum ) below the seedbed (15–20 cm). Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional tillage, whereas taxa featuring more oligotrophic lifestyles were more abundant under reduced tillage. Our study found that, under the specific edaphic and climatic context of central Belgium, different tillage regimes created different ecological niches that select for different microbial lifestyles with potential consequences for the ecosystem services provided to the plants and their environment.
Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage) either with or without crop residue retention. Soil samples were collected over the growing season of two crops (Vicia faba and Triticum aestivum) below the seedbed (15-20 cm). Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional tillage, whereas taxa featuring more oligotrophic lifestyles were more abundant under reduced tillage. Our study found that, under the specific edaphic and climatic context of central Belgium, different tillage regimes created different ecological niches that select for different microbial lifestyles with potential consequences for the ecosystem services provided to the plants and their environment.Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage) either with or without crop residue retention. Soil samples were collected over the growing season of two crops (Vicia faba and Triticum aestivum) below the seedbed (15-20 cm). Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional tillage, whereas taxa featuring more oligotrophic lifestyles were more abundant under reduced tillage. Our study found that, under the specific edaphic and climatic context of central Belgium, different tillage regimes created different ecological niches that select for different microbial lifestyles with potential consequences for the ecosystem services provided to the plants and their environment.
Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage) either with or without crop residue retention. Soil samples were collected over the growing season of two crops ( and ) below the seedbed (15-20 cm). Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional tillage, whereas taxa featuring more oligotrophic lifestyles were more abundant under reduced tillage. Our study found that, under the specific edaphic and climatic context of central Belgium, different tillage regimes created different ecological niches that select for different microbial lifestyles with potential consequences for the ecosystem services provided to the plants and their environment.
Author Colinet, Gilles
Bodson, Bernard
Hartmann, Martin
Daube, Georges
Taminiau, Bernard
Vandenbol, Micheline
Theodorakopoulos, Nicolas
Degrune, Florine
Hiel, Marie-Pierre
AuthorAffiliation 5 Food Microbiology, University of Liège Liège, Belgium
1 Microbiology and Genomics, Department of AGROBIOCHEM, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium
3 Exchanges Ecosystems – Atmosphere, Department of BIOSE, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium
2 TERRA-AgricultureIsLife, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium
6 Forest Soils and Biogeochemistry, Research Institute for Forest, Snow and Landscape Research WSL Birmensdorf, Switzerland
4 Crop Sciences, Department of AGROBIOCHEM, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium
AuthorAffiliation_xml – name: 1 Microbiology and Genomics, Department of AGROBIOCHEM, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium
– name: 2 TERRA-AgricultureIsLife, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium
– name: 4 Crop Sciences, Department of AGROBIOCHEM, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium
– name: 3 Exchanges Ecosystems – Atmosphere, Department of BIOSE, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium
– name: 6 Forest Soils and Biogeochemistry, Research Institute for Forest, Snow and Landscape Research WSL Birmensdorf, Switzerland
– name: 5 Food Microbiology, University of Liège Liège, Belgium
Author_xml – sequence: 1
  givenname: Florine
  surname: Degrune
  fullname: Degrune, Florine
– sequence: 2
  givenname: Nicolas
  surname: Theodorakopoulos
  fullname: Theodorakopoulos, Nicolas
– sequence: 3
  givenname: Gilles
  surname: Colinet
  fullname: Colinet, Gilles
– sequence: 4
  givenname: Marie-Pierre
  surname: Hiel
  fullname: Hiel, Marie-Pierre
– sequence: 5
  givenname: Bernard
  surname: Bodson
  fullname: Bodson, Bernard
– sequence: 6
  givenname: Bernard
  surname: Taminiau
  fullname: Taminiau, Bernard
– sequence: 7
  givenname: Georges
  surname: Daube
  fullname: Daube, Georges
– sequence: 8
  givenname: Micheline
  surname: Vandenbol
  fullname: Vandenbol, Micheline
– sequence: 9
  givenname: Martin
  surname: Hartmann
  fullname: Hartmann, Martin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28674527$$D View this record in MEDLINE/PubMed
BookMark eNp1Ul1rFDEUDVKxtfbdJ8mjL7vma_LxIsjWj0JFsCv4FpLJnWnKzGRNZi3992Z3a2kF85CE3HPO5eacl-hoShMg9JqSJefavOvG2PolI1QtCaVMPUMnVEqx4IT9PHp0P0ZnpdyQugRhdX-BjpmWSjRMnaB-DeMmZTfg87vJVcWCU4evUhzw19jm5GMtrdI4bqc4RyjYw5Bu8XwN-AogeAh4OwXIeH2bKm6asytznHq8jsPgesDfoY8jlFfoeeeGAmf35yn68enjevVlcfnt88Xqw-WiFZLNC5A8hOA97xhorXjLaaNb6YInFCRRjXOKGcGl4h147ZimWnnlJRgutNP8FF0cdENyN3aT4-jynU0u2v1Dyr11eY7tALbyhAzGgDZahGA0E9rrxrdEACVdV7XeH7Q2Wz9CaGE33fBE9Gllite2T79tI5QQilWBt_cCOf3aQpntGEsL9WMmSNtiqanTaWIMr9A3j3s9NPnrVAWQA6CaUkqG7gFCid3lwe7zYHd5sPs8VIr8h9LG2c1x71Ic_k_8Az0AvDw
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_171564
crossref_primary_10_1007_s42398_018_00038_w
crossref_primary_10_1016_j_apsoil_2022_104553
crossref_primary_10_2136_sssaj2019_05_0160
crossref_primary_10_1007_s00248_021_01754_3
crossref_primary_10_1093_femsec_fiz002
crossref_primary_10_1002_ldr_3619
crossref_primary_10_1016_j_agee_2024_108937
crossref_primary_10_1093_femsec_fiab165
crossref_primary_10_1093_femsec_fiaf002
crossref_primary_10_1002_saj2_20780
crossref_primary_10_1016_j_jenvman_2024_123425
crossref_primary_10_1016_j_apsoil_2022_104562
crossref_primary_10_1093_femsec_fiab023
crossref_primary_10_1038_s43017_022_00366_w
crossref_primary_10_1111_mec_16036
crossref_primary_10_1128_mBio_03099_20
crossref_primary_10_3389_fmicb_2020_01649
crossref_primary_10_1016_j_agee_2019_03_015
crossref_primary_10_3389_fmicb_2019_02047
crossref_primary_10_3389_fevo_2019_00261
crossref_primary_10_3389_fagro_2021_714700
crossref_primary_10_1093_femsec_fiab018
crossref_primary_10_3389_fmicb_2021_799014
crossref_primary_10_3390_agronomy10040551
crossref_primary_10_1016_j_eja_2021_126277
crossref_primary_10_1016_j_scitotenv_2021_147751
crossref_primary_10_3389_fmicb_2018_01909
crossref_primary_10_1111_1751_7915_13693
crossref_primary_10_1088_1755_1315_624_1_012220
crossref_primary_10_1016_j_still_2019_104501
crossref_primary_10_3389_fmicb_2020_00968
crossref_primary_10_1016_j_soilbio_2018_09_015
crossref_primary_10_1128_mbio_03829_21
crossref_primary_10_2139_ssrn_4003246
crossref_primary_10_1002_agj2_20417
crossref_primary_10_1016_j_soilbio_2024_109484
crossref_primary_10_1016_j_bcab_2025_103527
crossref_primary_10_1016_j_scitotenv_2020_138527
crossref_primary_10_1016_j_still_2019_104452
crossref_primary_10_1093_femsec_fiab007
crossref_primary_10_3389_fmicb_2017_01489
crossref_primary_10_1155_2019_6121467
crossref_primary_10_3390_microorganisms9061244
crossref_primary_10_1016_j_still_2020_104666
crossref_primary_10_1002_ece3_4940
crossref_primary_10_1016_j_still_2019_05_017
crossref_primary_10_3389_fsufs_2021_624203
crossref_primary_10_1007_s00284_020_02303_w
crossref_primary_10_1016_j_apsoil_2022_104627
crossref_primary_10_1016_j_apsoil_2020_103623
crossref_primary_10_1002_mlf2_12116
crossref_primary_10_1038_s42003_024_07059_8
crossref_primary_10_1111_ecog_07086
crossref_primary_10_3389_fsoil_2022_837508
crossref_primary_10_1093_femsec_fiy195
crossref_primary_10_1016_j_apsoil_2019_103488
crossref_primary_10_1128_spectrum_01834_21
crossref_primary_10_1016_j_apsoil_2023_104876
crossref_primary_10_1016_j_scitotenv_2024_176891
crossref_primary_10_1016_j_ecoser_2022_101474
crossref_primary_10_3390_app14188411
crossref_primary_10_3390_soilsystems5040064
crossref_primary_10_1094_PBIOMES_02_24_0028_R
crossref_primary_10_1016_j_still_2020_104804
crossref_primary_10_1007_s12155_019_10024_7
crossref_primary_10_1016_j_apsoil_2022_104520
crossref_primary_10_3390_agronomy14112706
crossref_primary_10_1128_AEM_02345_20
crossref_primary_10_1016_j_eja_2022_126726
crossref_primary_10_1088_1755_1315_624_1_012013
crossref_primary_10_1016_j_ejsobi_2020_103253
crossref_primary_10_3390_microorganisms10030540
crossref_primary_10_1016_j_still_2019_104518
crossref_primary_10_3389_fsoil_2021_659454
crossref_primary_10_3389_fsufs_2023_1197624
crossref_primary_10_1016_j_agee_2021_107413
crossref_primary_10_1371_journal_pone_0204085
crossref_primary_10_3390_agriculture12030415
crossref_primary_10_7717_peerj_8549
crossref_primary_10_1002_ldr_3919
crossref_primary_10_1038_s41598_024_84590_y
crossref_primary_10_3389_fmicb_2022_944874
crossref_primary_10_1016_j_cpb_2020_100148
crossref_primary_10_1016_j_agee_2024_109371
crossref_primary_10_1016_j_agee_2021_107475
crossref_primary_10_1016_j_soilbio_2022_108718
crossref_primary_10_1016_j_apsoil_2017_10_005
crossref_primary_10_1016_j_ecoleng_2022_106837
crossref_primary_10_1016_j_still_2019_104302
crossref_primary_10_3390_d14110994
crossref_primary_10_1016_j_soilbio_2021_108472
crossref_primary_10_1016_j_soilbio_2022_108830
crossref_primary_10_3389_fmicb_2023_1237842
crossref_primary_10_1186_s13717_024_00573_x
crossref_primary_10_3390_agronomy12112781
crossref_primary_10_1016_j_soilbio_2018_11_002
crossref_primary_10_1038_s43705_021_00046_8
crossref_primary_10_1111_ejss_70037
crossref_primary_10_1016_j_farsys_2024_100125
crossref_primary_10_1016_j_still_2022_105585
crossref_primary_10_1016_j_still_2023_105920
crossref_primary_10_1016_j_soilbio_2025_109732
crossref_primary_10_1016_j_still_2023_105923
crossref_primary_10_1111_sum_12871
crossref_primary_10_3389_fmicb_2022_953624
crossref_primary_10_1016_j_scitotenv_2022_152928
crossref_primary_10_1016_j_jenvman_2020_110985
crossref_primary_10_1186_s12864_020_07126_4
Cites_doi 10.1016/j.soilbio.2013.05.009
10.1016/S0167-8809(99)00031-6
10.1073/pnas.1508382112
10.1073/pnas.0611508104
10.1038/ismej.2010.138
10.1038/ismej.2007.66
10.1098/rstb.2007.2178
10.1007/s00248-003-1063-2
10.3389/fmicb.2015.00713
10.1038/nrmicro3109
10.1111/j.1574-6941.2006.00085.x
10.1128/AEM.64.8.3042-3051.1998
10.1023/A:1020635214971
10.1016/j.soilbio.2011.09.003
10.1371/journal.pone.0099949
10.1007/s00792-016-0865-3
10.1038/ismej.2014.210
10.1023/A:1020565523615
10.2307/2346101
10.1128/AEM.69.3.1800-1809.2003
10.1371/journal.pone.0008230
10.1080/15275922.2011.622348
10.7150/ijbs.13537
10.1007/s00374-013-0773-y
10.1016/j.still.2008.03.003
10.1007/s13593-012-0106-9
10.1038/nmeth.1361
10.1128/AEM.02734-14
10.1007/s00253-013-5253-7
10.1111/ejss.12261
10.1093/bioinformatics/btq725
10.1016/j.soilbio.2015.02.005
10.1128/AEM.66.2.754-762.2000
10.1098/rstb.2007.2169
10.1016/j.geoderma.2004.03.005
10.1093/bioinformatics/btp021
10.1128/AEM.67.11.5273-5284.2001
10.1111/j.1574-6941.2008.00535.x
10.1101/gr.1239303
10.1007/978-3-319-26803-3_3
10.1038/ismej.2011.159
10.1093/nar/gks1219
10.1038/ismej.2012.160
10.3389/fmicb.2011.00094
10.3390/d4040375
10.1093/bioinformatics/btr381
10.1111/j.1574-6941.2012.01348.x
10.1093/nar/24.1.82
10.1038/23932
10.1016/S0167-8809(99)00028-6
10.1038/nrmicro2367
10.1128/AEM.02726-09
10.2136/sssaj2004.0347
10.1038/ismej.2013.141
10.1016/j.funeco.2010.05.002
10.1016/j.soilbio.2008.07.020
10.1111/j.1442-9993.2001.01070.pp.x
10.1128/AEM.65.8.3690-3696.1999
10.1016/j.envint.2008.06.009
10.1016/j.apsoil.2013.05.021
10.1002/9780470015902.a0000347.pub2
10.2136/sssaj1999.6351350x
10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2
10.1016/j.soilbio.2014.07.021
10.1111/1467-9868.00346
10.1007/s00248-015-0609-4
10.1111/j.1574-6941.2010.01030.x
10.1126/science.1224041
10.1128/AEM.00335-09
10.1134/S0003683806020013
10.1016/S0038-0717(03)00186-X
10.3852/mycologia.98.6.1076
10.1038/nature14486
10.1016/j.soilbio.2003.10.026
10.1016/j.mimet.2010.08.008
10.1007/s00253-009-2092-7
10.1890/05-1839
10.1371/journal.pone.0078501
10.1016/j.agee.2016.03.017
10.1002/spe.4380211102
10.1016/S0167-4838(99)00190-9
10.1016/j.landusepol.2008.02.001
10.1111/jam.13072
10.1016/S0167-1987(00)00187-2
10.1093/molbev/msv281
10.1016/j.still.2012.05.011
10.1128/AEM.00062-07
10.1093/femsec/fiw018
10.1038/ismej.2013.50
10.1016/j.still.2005.07.012
10.1007/3-540-30985-3_13
10.1038/nrmicro1129
10.1016/S0038-0717(02)00040-8
10.2307/3545749
10.1093/biomet/53.3-4.325
10.1016/j.apsoil.2016.03.014
10.2307/3761776
ContentType Journal Article
Copyright Copyright © 2017 Degrune, Theodorakopoulos, Colinet, Hiel, Bodson, Taminiau, Daube, Vandenbol and Hartmann. 2017 Degrune, Theodorakopoulos, Colinet, Hiel, Bodson, Taminiau, Daube, Vandenbol and Hartmann
Copyright_xml – notice: Copyright © 2017 Degrune, Theodorakopoulos, Colinet, Hiel, Bodson, Taminiau, Daube, Vandenbol and Hartmann. 2017 Degrune, Theodorakopoulos, Colinet, Hiel, Bodson, Taminiau, Daube, Vandenbol and Hartmann
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmicb.2017.01127
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_7b746d99e8984dd98248b85bc04e10ff
PMC5474472
28674527
10_3389_fmicb_2017_01127
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-e63dddbb3f2e8873c3158c6adb01e6075aa72943673feb8a28187b7b6e9348a83
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:29:05 EDT 2025
Thu Aug 21 18:16:54 EDT 2025
Fri Jul 11 07:56:05 EDT 2025
Thu Apr 03 06:59:11 EDT 2025
Tue Jul 01 00:54:42 EDT 2025
Thu Apr 24 23:12:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords crop residue management
metabarcoding
microbial diversity
conventional tillage
reduced tillage
cropping season
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-e63dddbb3f2e8873c3158c6adb01e6075aa72943673feb8a28187b7b6e9348a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Etienne Yergeau, Institut National de la Recherche Scientifique, Canada
Reviewed by: Jacynthe Masse, Institut de Recherche en Biologie Végétale, Canada; Bobbi Helgason, Agriculture and Agri-Food Canada, Canada
This article was submitted to Terrestrial Microbiology, a section of the journal Frontiers in Microbiology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2017.01127
PMID 28674527
PQID 1915880993
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_7b746d99e8984dd98248b85bc04e10ff
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5474472
proquest_miscellaneous_1915880993
pubmed_primary_28674527
crossref_primary_10_3389_fmicb_2017_01127
crossref_citationtrail_10_3389_fmicb_2017_01127
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-19
PublicationDateYYYYMMDD 2017-06-19
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-19
  day: 19
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2017
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Fruchterman (B34) 1991; 21
Lüdemann (B61) 2000; 66
Bottalico (B9) 2002; 108
Oksanen (B73) 2007; 10
Spedding (B96) 2004; 36
Schramm (B86) 1999; 65
Wrighton (B104) 2012; 337
Nelson (B70) 2015; 6
Shannon (B89) 2003; 13
Storey (B97) 2002; 64
Nilsson (B71) 2010; 3
Jiménez-Bueno (B49) 2016; 120
Tsavkelova (B99) 2006; 42
Anderson (B3) 2001; 26
Buzzini (B15) 2012; 82
Lipiec (B60) 2006; 89
Douds (B25) 1999; 74
Zhang (B108) 2006; 98
Murphy (B67) 2016; 103
Hartmann (B42) 2015; 9
Quince (B80) 2009; 6
Altieri (B2) 1999; 74
Degrune (B23) 2016; 224
Käll (B51) 2009; 25
Souza (B95) 2013; 72
Goldfarb (B38) 2011; 2
Zandi (B106) 2016
Brown (B13) 2015; 523
Salinas-Garcia (B84) 2001; 59
Nannipieri (B68) 2003
Wang (B102) 2007; 73
Cai (B16) 2005; 19
Frey (B32) 2016; 92
Gower (B39) 1966; 53
Fonseca (B31) 2006
Sengupta (B88) 2015; 70
Girvan (B37) 2003; 69
Martiny (B64) 2013; 7
Binh (B7) 2011
Maidak (B62) 1996; 24
Six (B93) 2006; 70
Chau (B20) 2011; 12
Fierer (B30) 2012; 6
Nowka (B72) 2015; 81
Drenovsky (B26) 2004; 48
Ghani (B35) 2003; 35
Koga (B54) 1999; 1435
Navarro-Noya (B69) 2013; 65
Fierer (B29) 2007; 88
Brockett (B11) 2012; 44
Jiménez (B48) 2013; 98
Booth (B8) 1971
Edgar (B27) 2011; 27
Lauber (B57) 2009; 75
Haas (B40) 2005; 3
Leff (B59) 2015; 112
Benjamini (B5) 1995; 57
Ceja-Navarro (B19) 2010; 76
Van Der Heijden (B101) 1998; 396
Lauber (B58) 2013; 7
Houlden (B47) 2008; 65
Rasche (B82) 2011; 5
Hartmann (B43) 2010; 83
Panettieri (B75) 2014; 78
Juretschko (B50) 1998; 64
(B81) 2011
Clarke (B21) 2006
Shi (B90) 2013; 49
Yeoh (B105) 2015; 33
Bronick (B12) 2005; 124
Carbonetto (B18) 2014; 9
Zhu (B109) 2013; 8
Kowalchuk (B55) 2002; 81
Scopel (B87) 2012; 33
Six (B92) 1999; 63
Calleja-Cervantes (B17) 2015; 66
Kibblewhite (B53) 2008; 363
Zhang (B107) 2012; 124
Quast (B79) 2012; 41
D’Haene (B24) 2008; 99
Philippot (B76) 2010; 8
Hobbs (B46) 2008; 363
Montgomery (B66) 2007; 104
Quadros (B78) 2012; 4
Frey (B33) 2008; 40
Hartmann (B44) 2014; 8
McArdle (B65) 2001; 82
Hao (B41) 2011; 27
Säle (B83) 2015; 84
Philippot (B77) 2013; 11
Berg (B6) 2009; 84
Osono (B74) 2002; 94
Héry (B45) 2007; 2
Burgess (B14) 2015
Schloss (B85) 2009; 4
Martinez (B63) 2016; 20
Eylenbosch (B28) 2015
Giller (B36) 1998; 30
Watkinson (B103) 2008
Brandão (B10) 2011; 76
Daims (B22) 2001; 67
Aislabie (B1) 2013
Bending (B4) 2002; 34
Smith (B94) 1996; 76
Ulrich (B100) 2006; 56
Lahmar (B56) 2010; 27
Siddiqui (B91) 2008
Kameshwar (B52) 2016; 12
Tilman (B98) 1982
19668203 - Nat Methods. 2009 Sep;6(9):639-41
26083755 - Nature. 2015 Jul 9;523(7559):208-11
23193283 - Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6
15759041 - Nat Rev Microbiol. 2005 Apr;3(4):307-19
16689875 - FEMS Microbiol Ecol. 2006 Jun;56(3):430-43
9687471 - Appl Environ Microbiol. 1998 Aug;64(8):3042-51
26884714 - Int J Biol Sci. 2016 Jan 01;12 (2):156-71
21700674 - Bioinformatics. 2011 Aug 15;27(16):2194-200
19568745 - Appl Microbiol Biotechnol. 2009 Aug;84(1):11-8
25930203 - Microb Ecol. 2015 Oct;70(3):853-9
18049457 - ISME J. 2008 Jan;2(1):92-104
23019650 - Science. 2012 Sep 28;337(6102):1661-5
17720669 - Philos Trans R Soc Lond B Biol Sci. 2008 Feb 12;363(1491):543-55
22385361 - FEMS Microbiol Ecol. 2012 Nov;82(2):217-41
11679356 - Appl Environ Microbiol. 2001 Nov;67(11):5273-84
26257709 - Front Microbiol. 2015 Jul 21;6:713
24056930 - Nat Rev Microbiol. 2013 Nov;11(11):789-99
10427067 - Appl Environ Microbiol. 1999 Aug;65(8):3690-6
8594608 - Nucleic Acids Res. 1996 Jan 1;24(1):82-5
12448746 - Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):509-20
19502440 - Appl Environ Microbiol. 2009 Aug;75(15):5111-20
12620873 - Appl Environ Microbiol. 2003 Mar;69(3):1800-9
27469174 - Extremophiles. 2016 Sep;20(5):759-69
21223324 - FEMS Microbiol Ecol. 2011 Apr;76(1):1-13
17785275 - Philos Trans R Soc Lond B Biol Sci. 2008 Feb 27;363(1492):685-701
10653747 - Appl Environ Microbiol. 2000 Feb;66(2):754-62
25350160 - ISME J. 2015 May;9(5):1177-94
20382808 - Appl Environ Microbiol. 2010 Jun;76(11):3685-91
21156513 - Mycologia. 2002 May-Jun;94(3):421-7
23552625 - ISME J. 2013 Aug;7(8):1641-50
21233169 - Bioinformatics. 2011 Mar 1;27(5):611-8
26283343 - Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10967-72
24923965 - PLoS One. 2014 Jun 12;9(6):e99949
17586664 - Appl Environ Microbiol. 2007 Aug;73(16):5261-7
17486982 - Mycologia. 2006 Nov-Dec;98(6):1076-87
15692862 - Microb Ecol. 2004 Oct;48(3):424-30
17686990 - Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13268-72
26615204 - Mol Biol Evol. 2016 Apr;33(4):915-27
19193729 - Bioinformatics. 2009 Apr 1;25(7):964-6
21833332 - Front Microbiol. 2011 May 02;2:94
24113822 - Appl Microbiol Biotechnol. 2014 Mar;98(6):2789-803
22134642 - ISME J. 2012 May;6(5):1007-17
20531276 - Nat Rev Microbiol. 2010 Jul;8(7):523-9
21610715 - J Antibiot (Tokyo). 2011 Sep;64(9):599-606
16761564 - Prikl Biokhim Mikrobiol. 2006 Mar-Apr;42(2):133-43
20804791 - J Microbiol Methods. 2010 Nov;83(2):250-3
26808352 - J Appl Microbiol. 2016 Apr;120(4):921-33
25398863 - Appl Environ Microbiol. 2015 Jan;81(2):745-53
18616582 - FEMS Microbiol Ecol. 2008 Aug;65(2):193-201
23235290 - ISME J. 2013 Apr;7(4):830-8
10561543 - Biochim Biophys Acta. 1999 Nov 16;1435(1-2):117-26
24030594 - ISME J. 2014 Jan;8(1):226-44
20882059 - ISME J. 2011 Mar;5(3):389-402
26832204 - FEMS Microbiol Ecol. 2016 Mar;92 (3):null
17601128 - Ecology. 2007 Jun;88(6):1354-64
24205246 - PLoS One. 2013 Oct 21;8(10):e78501
20011594 - PLoS One. 2009 Dec 14;4(12):e8230
14597658 - Genome Res. 2003 Nov;13(11):2498-504
References_xml – year: 2006
  ident: B21
  publication-title: Primer v6: User Manual/Tutorial.
– volume: 65
  start-page: 86
  year: 2013
  ident: B69
  article-title: Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.05.009
– volume: 74
  start-page: 77
  year: 1999
  ident: B25
  article-title: Biodiversity of arbuscular mycorrhizal fungi in agroecosystems.
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/S0167-8809(99)00031-6
– volume: 112
  start-page: 10967
  year: 2015
  ident: B59
  article-title: Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1508382112
– volume: 104
  start-page: 13268
  year: 2007
  ident: B66
  article-title: Soil erosion and agricultural sustainability.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0611508104
– volume: 5
  start-page: 389
  year: 2011
  ident: B82
  article-title: Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest.
  publication-title: ISME J.
  doi: 10.1038/ismej.2010.138
– volume: 2
  start-page: 92
  year: 2007
  ident: B45
  article-title: Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil.
  publication-title: ISME J.
  doi: 10.1038/ismej.2007.66
– volume: 363
  start-page: 685
  year: 2008
  ident: B53
  article-title: Soil health in agricultural systems.
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2007.2178
– volume: 48
  start-page: 424
  year: 2004
  ident: B26
  article-title: Soil water content and organic carbon availability are major determinants of soil microbial community composition.
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-003-1063-2
– volume: 6
  year: 2015
  ident: B70
  article-title: The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00713
– volume: 11
  start-page: 789
  year: 2013
  ident: B77
  article-title: Going back to the roots: the microbial ecology of the rhizosphere.
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3109
– volume: 56
  start-page: 430
  year: 2006
  ident: B100
  article-title: Soil parent material is a key determinant of the bacterial community structure in arable soils.
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2006.00085.x
– volume: 64
  start-page: 3042
  year: 1998
  ident: B50
  article-title: Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.64.8.3042-3051.1998
– volume: 108
  start-page: 611
  year: 2002
  ident: B9
  article-title: Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe.
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1023/A:1020635214971
– volume: 44
  start-page: 9
  year: 2012
  ident: B11
  article-title: Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.09.003
– volume: 9
  year: 2014
  ident: B18
  article-title: Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in argentine pampas.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0099949
– volume: 20
  start-page: 759
  year: 2016
  ident: B63
  article-title: Yeasts from sub-Antarctic region: biodiversity, enzymatic activities and their potential as oleaginous microorganisms.
  publication-title: Extremophiles
  doi: 10.1007/s00792-016-0865-3
– volume: 9
  start-page: 1177
  year: 2015
  ident: B42
  article-title: Distinct soil microbial diversity under long-term organic and conventional farming.
  publication-title: ISME J.
  doi: 10.1038/ismej.2014.210
– volume: 81
  start-page: 509
  year: 2002
  ident: B55
  article-title: Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms.
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1023/A:1020565523615
– volume: 57
  start-page: 289
  year: 1995
  ident: B5
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing.
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol.
  doi: 10.2307/2346101
– volume: 69
  start-page: 1800
  year: 2003
  ident: B37
  article-title: Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.69.3.1800-1809.2003
– year: 2015
  ident: B28
  publication-title: Use of NIR Hyperspectral Imaging and Chemometrics to Quantify Roots and Crop Residues in Soil.
– volume: 4
  year: 2009
  ident: B85
  article-title: A high-throughput DNA sequence aligner for microbial ecology studies.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0008230
– volume: 12
  start-page: 333
  year: 2011
  ident: B20
  article-title: The effect of soil texture on richness and diversity of bacterial communities.
  publication-title: Environ. Forensics
  doi: 10.1080/15275922.2011.622348
– volume: 12
  start-page: 156
  year: 2016
  ident: B52
  article-title: Recent developments in using advanced sequencing technologies for the genomic studies of lignin and cellulose degrading microorganisms.
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.13537
– year: 1982
  ident: B98
  publication-title: Resource Competition and Community Structure.
– volume: 49
  start-page: 803
  year: 2013
  ident: B90
  article-title: Seasonal variation of microbial biomass, activity, and community structure in soil under different tillage and phosphorus management practices.
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-013-0773-y
– volume: 99
  start-page: 279
  year: 2008
  ident: B24
  article-title: Reduced tillage effects on physical properties of silt loam soils growing root crops.
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2008.03.003
– volume: 33
  start-page: 113
  year: 2012
  ident: B87
  article-title: Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review.
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-012-0106-9
– volume: 6
  start-page: 639
  year: 2009
  ident: B80
  article-title: Accurate determination of microbial diversity from 454 pyrosequencing data.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1361
– volume: 81
  start-page: 745
  year: 2015
  ident: B72
  article-title: Comparison of oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as a key factor in niche differentiation.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02734-14
– volume: 98
  start-page: 2789
  year: 2013
  ident: B48
  article-title: Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion.
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-013-5253-7
– volume: 66
  start-page: 802
  year: 2015
  ident: B17
  article-title: Changes in soil nutrient content and bacterial community after 12 years of organic amendment application to a vineyard.
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12261
– volume: 27
  start-page: 611
  year: 2011
  ident: B41
  article-title: Clustering 16S rRNA for OTU prediction: a method of unsupervised Bayesian clustering.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq725
– volume: 84
  start-page: 38
  year: 2015
  ident: B83
  article-title: Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.02.005
– volume: 66
  start-page: 754
  year: 2000
  ident: B61
  article-title: Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.66.2.754-762.2000
– volume: 363
  start-page: 543
  year: 2008
  ident: B46
  article-title: The role of conservation agriculture in sustainable agriculture.
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2007.2169
– year: 2013
  ident: B1
  article-title: Soil microbes and their contribution to soil services
  publication-title: Ecosystem Services in New Zealand – Conditions and Trends
– start-page: 57
  year: 2003
  ident: B68
  article-title: Biological processes
  publication-title: Handbook of Processes and Modelling in the Soil-Plant System
– volume: 124
  start-page: 3
  year: 2005
  ident: B12
  article-title: Soil structure and management: a review.
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.03.005
– volume: 25
  start-page: 964
  year: 2009
  ident: B51
  article-title: QVALITY: non-parametric estimation of q-values and posterior error probabilities.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp021
– volume: 67
  start-page: 5273
  year: 2001
  ident: B22
  article-title: In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.67.11.5273-5284.2001
– volume: 65
  start-page: 193
  year: 2008
  ident: B47
  article-title: Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops.
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2008.00535.x
– volume: 13
  start-page: 2498
  year: 2003
  ident: B89
  article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks.
  publication-title: Genome Res.
  doi: 10.1101/gr.1239303
– start-page: 71
  year: 2016
  ident: B106
  article-title: Role of plant growth-promoting rhizobacteria (PGPR) as biofertilizers in stabilizing agricultural ecosystems
  publication-title: Organic Farming for Sustainable Agriculture
  doi: 10.1007/978-3-319-26803-3_3
– volume: 6
  start-page: 1007
  year: 2012
  ident: B30
  article-title: Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients.
  publication-title: ISME J.
  doi: 10.1038/ismej.2011.159
– volume: 41
  start-page: D590
  year: 2012
  ident: B79
  article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1219
– volume: 7
  start-page: 830
  year: 2013
  ident: B64
  article-title: Phylogenetic conservatism of functional traits in microorganisms.
  publication-title: ISME J.
  doi: 10.1038/ismej.2012.160
– volume: 2
  year: 2011
  ident: B38
  article-title: Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2011.00094
– year: 2011
  ident: B81
  publication-title: R: A Language and Environment for Statistical Computing.
– volume: 4
  start-page: 375
  year: 2012
  ident: B78
  article-title: The effect of tillage system and crop rotation on soil microbial diversity and composition in a subtropical Acrisol.
  publication-title: Diversity
  doi: 10.3390/d4040375
– volume: 27
  start-page: 2194
  year: 2011
  ident: B27
  article-title: UCHIME improves sensitivity and speed of chimera detection.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr381
– volume: 82
  start-page: 217
  year: 2012
  ident: B15
  article-title: Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential.
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2012.01348.x
– volume: 24
  start-page: 82
  year: 1996
  ident: B62
  article-title: The ribosomal database project (RDP).
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/24.1.82
– volume: 396
  start-page: 69
  year: 1998
  ident: B101
  article-title: Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity.
  publication-title: Nature
  doi: 10.1038/23932
– volume: 74
  start-page: 19
  year: 1999
  ident: B2
  article-title: The ecological role of biodiversity in agroecosystems.
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/S0167-8809(99)00028-6
– volume: 8
  start-page: 523
  year: 2010
  ident: B76
  article-title: The ecological coherence of high bacterial taxonomic ranks.
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2367
– year: 2011
  ident: B7
  publication-title: Taxonomic and Ecological Studies of Actinomycetes from Vietnam: Isolation and Genus-level Diversity
– volume: 76
  start-page: 3685
  year: 2010
  ident: B19
  article-title: Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02726-09
– volume: 70
  start-page: 555
  year: 2006
  ident: B93
  article-title: Bacterial and fungal contributions to carbon sequestration in agroecosystems.
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2004.0347
– volume: 8
  start-page: 226
  year: 2014
  ident: B44
  article-title: Resistance and resilience of the forest soil microbiome to logging-associated compaction.
  publication-title: ISME J.
  doi: 10.1038/ismej.2013.141
– volume: 3
  start-page: 284
  year: 2010
  ident: B71
  article-title: An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology.
  publication-title: Fungal Ecol.
  doi: 10.1016/j.funeco.2010.05.002
– volume: 40
  start-page: 2904
  year: 2008
  ident: B33
  article-title: Microbial biomass, functional capacity, and community structure after 12 years of soil warming.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.07.020
– year: 1971
  ident: B8
  publication-title: The Genus Fusarium.
– year: 2015
  ident: B14
  publication-title: Synergistic Degradation of Lignocellulose by Fungi and Bacteria in Boreal Forest Soil.
– year: 2008
  ident: B91
  publication-title: Mycorrhizae: Sustainable Agriculture and Forestry.
– volume: 26
  start-page: 32
  year: 2001
  ident: B3
  article-title: A new method for non-parametric multivariate analysis of variance.
  publication-title: Austral Ecol.
  doi: 10.1111/j.1442-9993.2001.01070.pp.x
– volume: 65
  start-page: 3690
  year: 1999
  ident: B86
  article-title: Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.65.8.3690-3696.1999
– volume: 30
  start-page: 1389
  year: 1998
  ident: B36
  article-title: Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.envint.2008.06.009
– volume: 72
  start-page: 49
  year: 2013
  ident: B95
  article-title: Soil metagenomics reveals differences under conventional and no-tillage with crop rotation or succession.
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2013.05.021
– year: 2008
  ident: B103
  article-title: Basidiomycota
  publication-title: Encyclopedia of Life Sciences
  doi: 10.1002/9780470015902.a0000347.pub2
– volume: 63
  start-page: 1350
  year: 1999
  ident: B92
  article-title: Aggregate and soil organic matter dynamics under conventional and no-tillage systems.
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1999.6351350x
– volume: 82
  start-page: 290
  year: 2001
  ident: B65
  article-title: Fitting multivariate models to community data: a comment on distance-based redundancy analysis.
  publication-title: Ecology
  doi: 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2
– volume: 78
  start-page: 170
  year: 2014
  ident: B75
  article-title: Soil organic matter degradation in an agricultural chronosequence under different tillage regimes evaluated by organic matter pools, enzymatic activities and CPMAS 13C NMR.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.07.021
– volume: 64
  start-page: 479
  year: 2002
  ident: B97
  article-title: A direct approach to false discovery rates.
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/1467-9868.00346
– volume: 70
  start-page: 853
  year: 2015
  ident: B88
  article-title: Bacterial community diversity in soil under two tillage practices as determined by pyrosequencing.
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-015-0609-4
– volume: 76
  start-page: 1
  year: 2011
  ident: B10
  article-title: Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes: yeast diversity of Nahuel Huapi Lake.
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2010.01030.x
– volume: 337
  start-page: 1661
  year: 2012
  ident: B104
  article-title: Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla.
  publication-title: Science
  doi: 10.1126/science.1224041
– volume: 75
  start-page: 5111
  year: 2009
  ident: B57
  article-title: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00335-09
– volume: 19
  start-page: 1
  year: 2005
  ident: B16
  article-title: Phylogenetic evaluation and taxonomic revision of Schizothecium based on ribosomal DNA and protein coding genes.
  publication-title: Fungal Divers.
– volume: 42
  start-page: 117
  year: 2006
  ident: B99
  article-title: Microbial producers of plant growth stimulators and their practical use: a review.
  publication-title: Appl. Biochem. Microbiol.
  doi: 10.1134/S0003683806020013
– volume: 35
  start-page: 1231
  year: 2003
  ident: B35
  article-title: Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(03)00186-X
– volume: 98
  start-page: 1076
  year: 2006
  ident: B108
  article-title: An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny.
  publication-title: Mycologia
  doi: 10.3852/mycologia.98.6.1076
– volume: 523
  start-page: 208
  year: 2015
  ident: B13
  article-title: Unusual biology across a group comprising more than 15% of domain Bacteria.
  publication-title: Nature
  doi: 10.1038/nature14486
– volume: 36
  start-page: 499
  year: 2004
  ident: B96
  article-title: Soil microbial dynamics in maize-growing soil under different tillage and residue management systems.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2003.10.026
– volume: 83
  start-page: 250
  year: 2010
  ident: B43
  article-title: V-Xtractor: an open-source, high-throughput software tool to identify and extract hypervariable regions of small subunit (16S/18S) ribosomal RNA gene sequences.
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2010.08.008
– volume: 84
  start-page: 11
  year: 2009
  ident: B6
  article-title: Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture.
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-009-2092-7
– volume: 88
  start-page: 1354
  year: 2007
  ident: B29
  article-title: Toward an ecological classification of soil bacteria.
  publication-title: Ecology
  doi: 10.1890/05-1839
– volume: 8
  year: 2013
  ident: B109
  article-title: Bacterial community composition of south china sea sediments through pyrosequencing-based analysis of 16S rRNA genes.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0078501
– volume: 224
  start-page: 12
  year: 2016
  ident: B23
  article-title: No favorable effect of reduced tillage on microbial community diversity in a silty loam soil (Belgium).
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.03.017
– volume: 21
  start-page: 1129
  year: 1991
  ident: B34
  article-title: Graph drawing by force-directed placement.
  publication-title: Softw. Pract. Exp.
  doi: 10.1002/spe.4380211102
– volume: 1435
  start-page: 117
  year: 1999
  ident: B54
  article-title: Novel bacterial peroxidase without catalase activity from Flavobacterium meningosepticum: purification and characterization.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0167-4838(99)00190-9
– volume: 27
  start-page: 4
  year: 2010
  ident: B56
  article-title: Adoption of conservation agriculture in Europe: lessons of the KASSA project.
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2008.02.001
– volume: 120
  start-page: 921
  year: 2016
  ident: B49
  article-title: Bacterial indicator taxa in soils under different long-term agricultural management.
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.13072
– volume: 59
  start-page: 67
  year: 2001
  ident: B84
  article-title: Residue removal and tillage interaction effects on soil properties under rain-fed corn production in Central Mexico.
  publication-title: Soil Tillage Res.
  doi: 10.1016/S0167-1987(00)00187-2
– volume: 33
  start-page: 915
  year: 2015
  ident: B105
  article-title: Comparative genomics of candidate phylum TM6 suggests that parasitism is widespread and ancestral in this lineage.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msv281
– volume: 124
  start-page: 153
  year: 2012
  ident: B107
  article-title: Soil microbial community dynamics over a maize (Zea mays L.) growing season under conventional-and no-tillage practices in a rainfed agroecosystem.
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2012.05.011
– volume: 73
  start-page: 5261
  year: 2007
  ident: B102
  article-title: Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00062-07
– volume: 92
  year: 2016
  ident: B32
  article-title: Microbial diversity in European alpine permafrost and active layers.
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1093/femsec/fiw018
– volume: 7
  start-page: 1641
  year: 2013
  ident: B58
  article-title: Temporal variability in soil microbial communities across land-use types.
  publication-title: ISME J.
  doi: 10.1038/ismej.2013.50
– volume: 89
  start-page: 210
  year: 2006
  ident: B60
  article-title: Soil porosity and water infiltration as influenced by tillage methods.
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2005.07.012
– start-page: 263
  year: 2006
  ident: B31
  article-title: Phylloplane yeasts
  publication-title: Biodiversity and Ecophysiology of Yeasts
  doi: 10.1007/3-540-30985-3_13
– volume: 3
  start-page: 307
  year: 2005
  ident: B40
  article-title: Biological control of soil-borne pathogens by fluorescent pseudomonads.
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1129
– volume: 34
  start-page: 1073
  year: 2002
  ident: B4
  article-title: Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(02)00040-8
– volume: 76
  start-page: 70
  year: 1996
  ident: B94
  article-title: A consumer’s guide to evenness indices.
  publication-title: Oikos
  doi: 10.2307/3545749
– volume: 53
  start-page: 325
  year: 1966
  ident: B39
  article-title: Some distance properties of latent root and vector methods used in multivariate analysis.
  publication-title: Biometrika
  doi: 10.1093/biomet/53.3-4.325
– volume: 103
  start-page: 110
  year: 2016
  ident: B67
  article-title: Crop residue retention enhances soil properties and nitrogen cycling in smallholder maize systems of Chiapas. Mexico.
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2016.03.014
– volume: 10
  start-page: 631
  year: 2007
  ident: B73
  article-title: The vegan package.
  publication-title: Community Ecol. Package
– volume: 94
  start-page: 421
  year: 2002
  ident: B74
  article-title: Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan.
  publication-title: Mycologia
  doi: 10.2307/3761776
– reference: 23552625 - ISME J. 2013 Aug;7(8):1641-50
– reference: 20011594 - PLoS One. 2009 Dec 14;4(12):e8230
– reference: 26257709 - Front Microbiol. 2015 Jul 21;6:713
– reference: 21833332 - Front Microbiol. 2011 May 02;2:94
– reference: 25350160 - ISME J. 2015 May;9(5):1177-94
– reference: 21156513 - Mycologia. 2002 May-Jun;94(3):421-7
– reference: 22385361 - FEMS Microbiol Ecol. 2012 Nov;82(2):217-41
– reference: 9687471 - Appl Environ Microbiol. 1998 Aug;64(8):3042-51
– reference: 24056930 - Nat Rev Microbiol. 2013 Nov;11(11):789-99
– reference: 18049457 - ISME J. 2008 Jan;2(1):92-104
– reference: 26283343 - Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10967-72
– reference: 25398863 - Appl Environ Microbiol. 2015 Jan;81(2):745-53
– reference: 16761564 - Prikl Biokhim Mikrobiol. 2006 Mar-Apr;42(2):133-43
– reference: 10427067 - Appl Environ Microbiol. 1999 Aug;65(8):3690-6
– reference: 27469174 - Extremophiles. 2016 Sep;20(5):759-69
– reference: 17720669 - Philos Trans R Soc Lond B Biol Sci. 2008 Feb 12;363(1491):543-55
– reference: 17601128 - Ecology. 2007 Jun;88(6):1354-64
– reference: 22134642 - ISME J. 2012 May;6(5):1007-17
– reference: 20804791 - J Microbiol Methods. 2010 Nov;83(2):250-3
– reference: 25930203 - Microb Ecol. 2015 Oct;70(3):853-9
– reference: 10561543 - Biochim Biophys Acta. 1999 Nov 16;1435(1-2):117-26
– reference: 20382808 - Appl Environ Microbiol. 2010 Jun;76(11):3685-91
– reference: 16689875 - FEMS Microbiol Ecol. 2006 Jun;56(3):430-43
– reference: 10653747 - Appl Environ Microbiol. 2000 Feb;66(2):754-62
– reference: 26884714 - Int J Biol Sci. 2016 Jan 01;12 (2):156-71
– reference: 17586664 - Appl Environ Microbiol. 2007 Aug;73(16):5261-7
– reference: 20882059 - ISME J. 2011 Mar;5(3):389-402
– reference: 14597658 - Genome Res. 2003 Nov;13(11):2498-504
– reference: 21700674 - Bioinformatics. 2011 Aug 15;27(16):2194-200
– reference: 15759041 - Nat Rev Microbiol. 2005 Apr;3(4):307-19
– reference: 24923965 - PLoS One. 2014 Jun 12;9(6):e99949
– reference: 24205246 - PLoS One. 2013 Oct 21;8(10):e78501
– reference: 20531276 - Nat Rev Microbiol. 2010 Jul;8(7):523-9
– reference: 26083755 - Nature. 2015 Jul 9;523(7559):208-11
– reference: 17686990 - Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13268-72
– reference: 17486982 - Mycologia. 2006 Nov-Dec;98(6):1076-87
– reference: 23235290 - ISME J. 2013 Apr;7(4):830-8
– reference: 19568745 - Appl Microbiol Biotechnol. 2009 Aug;84(1):11-8
– reference: 11679356 - Appl Environ Microbiol. 2001 Nov;67(11):5273-84
– reference: 26808352 - J Appl Microbiol. 2016 Apr;120(4):921-33
– reference: 15692862 - Microb Ecol. 2004 Oct;48(3):424-30
– reference: 18616582 - FEMS Microbiol Ecol. 2008 Aug;65(2):193-201
– reference: 26832204 - FEMS Microbiol Ecol. 2016 Mar;92 (3):null
– reference: 21233169 - Bioinformatics. 2011 Mar 1;27(5):611-8
– reference: 21610715 - J Antibiot (Tokyo). 2011 Sep;64(9):599-606
– reference: 19193729 - Bioinformatics. 2009 Apr 1;25(7):964-6
– reference: 12620873 - Appl Environ Microbiol. 2003 Mar;69(3):1800-9
– reference: 19502440 - Appl Environ Microbiol. 2009 Aug;75(15):5111-20
– reference: 24113822 - Appl Microbiol Biotechnol. 2014 Mar;98(6):2789-803
– reference: 24030594 - ISME J. 2014 Jan;8(1):226-44
– reference: 23019650 - Science. 2012 Sep 28;337(6102):1661-5
– reference: 21223324 - FEMS Microbiol Ecol. 2011 Apr;76(1):1-13
– reference: 17785275 - Philos Trans R Soc Lond B Biol Sci. 2008 Feb 27;363(1492):685-701
– reference: 26615204 - Mol Biol Evol. 2016 Apr;33(4):915-27
– reference: 8594608 - Nucleic Acids Res. 1996 Jan 1;24(1):82-5
– reference: 12448746 - Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):509-20
– reference: 19668203 - Nat Methods. 2009 Sep;6(9):639-41
– reference: 23193283 - Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6
SSID ssj0000402000
Score 2.4923959
Snippet Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1127
SubjectTerms conventional tillage
crop residue management
cropping season
metabarcoding
microbial diversity
Microbiology
reduced tillage
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEBZlodBL6bvpCxV66cFdy5L1OPa1LIXtoZuFvQk9xmkg2CXJsvTfd8byhqSU9tKrJdvDzGgeaOYbxt7kTriEmlApHVylQIbKgc2VaDuRKAJwHfU7n33Vpxfqy2V7uTfqi2rCCjxwYdyxiUbp7PADzqqcnW2UjbaNqVYg6q4j64s-by-ZGm0wpUV1Xe4lMQtzKKZlilTKZd6hStMQmT0_NML1_ynG_L1Ucs_3nNxjd6egkb8vxN5nt6B_wG6XMZI_H7LFvOBLrfinMl9-w4eOnw_LFT9bjkBLuDR1ghB-Ko-wGq45hn78HJ1XhMyplWzN59cDJ7iqddhQNTSf00iiBfBvsKBOkUfs4uTz_ONpNQ1QqJLSzbYCLXPOMcquATQmMknR2qRDjrUAjcFCCBhbK6mN7CDaQMhQyO-owUllg5WP2VE_9PCU8Ua1QIfdygRKWB2FsV0SsXZJNzXUM3Z8w06fJnRxGnKx8phlkAD8KABPAvCjAGbs7e6NHwVZ4y97P5CEdvsIE3t8gJriJ03x_9KUGXt9I1-PZ4guRkIPw9XGY87aoh3DUG3GnhR5737VWG1USySYA004oOVwpV9-H3G6W2WUMs2z_0H8c3aH2EFFasK9YEfb9RW8xHBoG1-Nmv8L49UJTQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes
URI https://www.ncbi.nlm.nih.gov/pubmed/28674527
https://www.proquest.com/docview/1915880993
https://pubmed.ncbi.nlm.nih.gov/PMC5474472
https://doaj.org/article/7b746d99e8984dd98248b85bc04e10ff
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgERIXxJsssDISFw5Z4tjx44AQr2WFVA5sK_VmxY-USlHCpl0t---ZSdKyRRUHLjnEtmJ5xp5v4plvCHkVKmY8aEIqZGlSEXmZmqhDyoqKeUQApsJ858k3eToTX-fF_E969LiAq72uHdaTmnX18a_zq3ew4d-ixwn2FiSw9A6jtNQxaGuubpJbYJcU1jOYjGC_P5fRVcqy4a5y70BkBtZSiQJrzFwzUz2b_z4I-nck5TXTdHKP3B0xJX0_KMF9ciM2D8jtocrk1UOymA70UzX9NJSfX9G2omftsqaTZc_DBE1jogjSq1IX6_aSAjKkZ2DbXAwUM806Or1sKbJZdeUKg6XpFCsWLSL9HheYSPKIzE4-Tz-epmN9hdQLma_TKHkIwTle5RHOGu45K7SXZXAZixKwRFkC9BZcKl5Fp0skjlJOORkNF7rU_DE5aNomPiU0F0XEs0BzHwXT0jGlK89cZrzMs5gl5M1mOa0fycexBkZtwQlBWdheFhZlYXtZJOT1dsTPgXjjH30_oIS2_ZAyu3_Rdgs77kALMxcyGNBEo0UIRudCO104n4nIsqpKyMuNfC1sMbw3KZvYXqwsuLQFHHOA5BLyZJD39lMbfUmI2tGEnbnstjTLHz2NdyGUECo__O-Rz8gdXAMMXGPmOTlYdxfxBUCktTvqfy3A88ucHfW74Dc5dBOg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+Dynamics+of+Soil+Microbial+Communities+below+the+Seedbed+under+Two+Contrasting+Tillage+Regimes&rft.jtitle=Frontiers+in+microbiology&rft.au=Degrune%2C+Florine&rft.au=Theodorakopoulos%2C+Nicolas&rft.au=Colinet%2C+Gilles&rft.au=Hiel%2C+Marie-Pierre&rft.date=2017-06-19&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=8&rft_id=info:doi/10.3389%2Ffmicb.2017.01127&rft_id=info%3Apmid%2F28674527&rft.externalDocID=PMC5474472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon