Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes
Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable...
Saved in:
Published in | Frontiers in microbiology Vol. 8; p. 1127 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
19.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage) either with or without crop residue retention. Soil samples were collected over the growing season of two crops (
and
) below the seedbed (15-20 cm). Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional tillage, whereas taxa featuring more oligotrophic lifestyles were more abundant under reduced tillage. Our study found that, under the specific edaphic and climatic context of central Belgium, different tillage regimes created different ecological niches that select for different microbial lifestyles with potential consequences for the ecosystem services provided to the plants and their environment. |
---|---|
AbstractList | Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage) either with or without crop residue retention. Soil samples were collected over the growing season of two crops (Vicia faba and Triticum aestivum) below the seedbed (15–20 cm). Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional tillage, whereas taxa featuring more oligotrophic lifestyles were more abundant under reduced tillage. Our study found that, under the specific edaphic and climatic context of central Belgium, different tillage regimes created different ecological niches that select for different microbial lifestyles with potential consequences for the ecosystem services provided to the plants and their environment. Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage) either with or without crop residue retention. Soil samples were collected over the growing season of two crops ( Vicia faba and Triticum aestivum ) below the seedbed (15–20 cm). Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional tillage, whereas taxa featuring more oligotrophic lifestyles were more abundant under reduced tillage. Our study found that, under the specific edaphic and climatic context of central Belgium, different tillage regimes created different ecological niches that select for different microbial lifestyles with potential consequences for the ecosystem services provided to the plants and their environment. Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage) either with or without crop residue retention. Soil samples were collected over the growing season of two crops (Vicia faba and Triticum aestivum) below the seedbed (15-20 cm). Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional tillage, whereas taxa featuring more oligotrophic lifestyles were more abundant under reduced tillage. Our study found that, under the specific edaphic and climatic context of central Belgium, different tillage regimes created different ecological niches that select for different microbial lifestyles with potential consequences for the ecosystem services provided to the plants and their environment.Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage) either with or without crop residue retention. Soil samples were collected over the growing season of two crops (Vicia faba and Triticum aestivum) below the seedbed (15-20 cm). Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional tillage, whereas taxa featuring more oligotrophic lifestyles were more abundant under reduced tillage. Our study found that, under the specific edaphic and climatic context of central Belgium, different tillage regimes created different ecological niches that select for different microbial lifestyles with potential consequences for the ecosystem services provided to the plants and their environment. Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage) either with or without crop residue retention. Soil samples were collected over the growing season of two crops ( and ) below the seedbed (15-20 cm). Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional tillage, whereas taxa featuring more oligotrophic lifestyles were more abundant under reduced tillage. Our study found that, under the specific edaphic and climatic context of central Belgium, different tillage regimes created different ecological niches that select for different microbial lifestyles with potential consequences for the ecosystem services provided to the plants and their environment. |
Author | Colinet, Gilles Bodson, Bernard Hartmann, Martin Daube, Georges Taminiau, Bernard Vandenbol, Micheline Theodorakopoulos, Nicolas Degrune, Florine Hiel, Marie-Pierre |
AuthorAffiliation | 5 Food Microbiology, University of Liège Liège, Belgium 1 Microbiology and Genomics, Department of AGROBIOCHEM, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium 3 Exchanges Ecosystems – Atmosphere, Department of BIOSE, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium 2 TERRA-AgricultureIsLife, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium 6 Forest Soils and Biogeochemistry, Research Institute for Forest, Snow and Landscape Research WSL Birmensdorf, Switzerland 4 Crop Sciences, Department of AGROBIOCHEM, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium |
AuthorAffiliation_xml | – name: 1 Microbiology and Genomics, Department of AGROBIOCHEM, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium – name: 2 TERRA-AgricultureIsLife, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium – name: 4 Crop Sciences, Department of AGROBIOCHEM, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium – name: 3 Exchanges Ecosystems – Atmosphere, Department of BIOSE, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium – name: 6 Forest Soils and Biogeochemistry, Research Institute for Forest, Snow and Landscape Research WSL Birmensdorf, Switzerland – name: 5 Food Microbiology, University of Liège Liège, Belgium |
Author_xml | – sequence: 1 givenname: Florine surname: Degrune fullname: Degrune, Florine – sequence: 2 givenname: Nicolas surname: Theodorakopoulos fullname: Theodorakopoulos, Nicolas – sequence: 3 givenname: Gilles surname: Colinet fullname: Colinet, Gilles – sequence: 4 givenname: Marie-Pierre surname: Hiel fullname: Hiel, Marie-Pierre – sequence: 5 givenname: Bernard surname: Bodson fullname: Bodson, Bernard – sequence: 6 givenname: Bernard surname: Taminiau fullname: Taminiau, Bernard – sequence: 7 givenname: Georges surname: Daube fullname: Daube, Georges – sequence: 8 givenname: Micheline surname: Vandenbol fullname: Vandenbol, Micheline – sequence: 9 givenname: Martin surname: Hartmann fullname: Hartmann, Martin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28674527$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Ul1rFDEUDVKxtfbdJ8mjL7vma_LxIsjWj0JFsCv4FpLJnWnKzGRNZi3992Z3a2kF85CE3HPO5eacl-hoShMg9JqSJefavOvG2PolI1QtCaVMPUMnVEqx4IT9PHp0P0ZnpdyQugRhdX-BjpmWSjRMnaB-DeMmZTfg87vJVcWCU4evUhzw19jm5GMtrdI4bqc4RyjYw5Bu8XwN-AogeAh4OwXIeH2bKm6asytznHq8jsPgesDfoY8jlFfoeeeGAmf35yn68enjevVlcfnt88Xqw-WiFZLNC5A8hOA97xhorXjLaaNb6YInFCRRjXOKGcGl4h147ZimWnnlJRgutNP8FF0cdENyN3aT4-jynU0u2v1Dyr11eY7tALbyhAzGgDZahGA0E9rrxrdEACVdV7XeH7Q2Wz9CaGE33fBE9Gllite2T79tI5QQilWBt_cCOf3aQpntGEsL9WMmSNtiqanTaWIMr9A3j3s9NPnrVAWQA6CaUkqG7gFCid3lwe7zYHd5sPs8VIr8h9LG2c1x71Ic_k_8Az0AvDw |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_171564 crossref_primary_10_1007_s42398_018_00038_w crossref_primary_10_1016_j_apsoil_2022_104553 crossref_primary_10_2136_sssaj2019_05_0160 crossref_primary_10_1007_s00248_021_01754_3 crossref_primary_10_1093_femsec_fiz002 crossref_primary_10_1002_ldr_3619 crossref_primary_10_1016_j_agee_2024_108937 crossref_primary_10_1093_femsec_fiab165 crossref_primary_10_1093_femsec_fiaf002 crossref_primary_10_1002_saj2_20780 crossref_primary_10_1016_j_jenvman_2024_123425 crossref_primary_10_1016_j_apsoil_2022_104562 crossref_primary_10_1093_femsec_fiab023 crossref_primary_10_1038_s43017_022_00366_w crossref_primary_10_1111_mec_16036 crossref_primary_10_1128_mBio_03099_20 crossref_primary_10_3389_fmicb_2020_01649 crossref_primary_10_1016_j_agee_2019_03_015 crossref_primary_10_3389_fmicb_2019_02047 crossref_primary_10_3389_fevo_2019_00261 crossref_primary_10_3389_fagro_2021_714700 crossref_primary_10_1093_femsec_fiab018 crossref_primary_10_3389_fmicb_2021_799014 crossref_primary_10_3390_agronomy10040551 crossref_primary_10_1016_j_eja_2021_126277 crossref_primary_10_1016_j_scitotenv_2021_147751 crossref_primary_10_3389_fmicb_2018_01909 crossref_primary_10_1111_1751_7915_13693 crossref_primary_10_1088_1755_1315_624_1_012220 crossref_primary_10_1016_j_still_2019_104501 crossref_primary_10_3389_fmicb_2020_00968 crossref_primary_10_1016_j_soilbio_2018_09_015 crossref_primary_10_1128_mbio_03829_21 crossref_primary_10_2139_ssrn_4003246 crossref_primary_10_1002_agj2_20417 crossref_primary_10_1016_j_soilbio_2024_109484 crossref_primary_10_1016_j_bcab_2025_103527 crossref_primary_10_1016_j_scitotenv_2020_138527 crossref_primary_10_1016_j_still_2019_104452 crossref_primary_10_1093_femsec_fiab007 crossref_primary_10_3389_fmicb_2017_01489 crossref_primary_10_1155_2019_6121467 crossref_primary_10_3390_microorganisms9061244 crossref_primary_10_1016_j_still_2020_104666 crossref_primary_10_1002_ece3_4940 crossref_primary_10_1016_j_still_2019_05_017 crossref_primary_10_3389_fsufs_2021_624203 crossref_primary_10_1007_s00284_020_02303_w crossref_primary_10_1016_j_apsoil_2022_104627 crossref_primary_10_1016_j_apsoil_2020_103623 crossref_primary_10_1002_mlf2_12116 crossref_primary_10_1038_s42003_024_07059_8 crossref_primary_10_1111_ecog_07086 crossref_primary_10_3389_fsoil_2022_837508 crossref_primary_10_1093_femsec_fiy195 crossref_primary_10_1016_j_apsoil_2019_103488 crossref_primary_10_1128_spectrum_01834_21 crossref_primary_10_1016_j_apsoil_2023_104876 crossref_primary_10_1016_j_scitotenv_2024_176891 crossref_primary_10_1016_j_ecoser_2022_101474 crossref_primary_10_3390_app14188411 crossref_primary_10_3390_soilsystems5040064 crossref_primary_10_1094_PBIOMES_02_24_0028_R crossref_primary_10_1016_j_still_2020_104804 crossref_primary_10_1007_s12155_019_10024_7 crossref_primary_10_1016_j_apsoil_2022_104520 crossref_primary_10_3390_agronomy14112706 crossref_primary_10_1128_AEM_02345_20 crossref_primary_10_1016_j_eja_2022_126726 crossref_primary_10_1088_1755_1315_624_1_012013 crossref_primary_10_1016_j_ejsobi_2020_103253 crossref_primary_10_3390_microorganisms10030540 crossref_primary_10_1016_j_still_2019_104518 crossref_primary_10_3389_fsoil_2021_659454 crossref_primary_10_3389_fsufs_2023_1197624 crossref_primary_10_1016_j_agee_2021_107413 crossref_primary_10_1371_journal_pone_0204085 crossref_primary_10_3390_agriculture12030415 crossref_primary_10_7717_peerj_8549 crossref_primary_10_1002_ldr_3919 crossref_primary_10_1038_s41598_024_84590_y crossref_primary_10_3389_fmicb_2022_944874 crossref_primary_10_1016_j_cpb_2020_100148 crossref_primary_10_1016_j_agee_2024_109371 crossref_primary_10_1016_j_agee_2021_107475 crossref_primary_10_1016_j_soilbio_2022_108718 crossref_primary_10_1016_j_apsoil_2017_10_005 crossref_primary_10_1016_j_ecoleng_2022_106837 crossref_primary_10_1016_j_still_2019_104302 crossref_primary_10_3390_d14110994 crossref_primary_10_1016_j_soilbio_2021_108472 crossref_primary_10_1016_j_soilbio_2022_108830 crossref_primary_10_3389_fmicb_2023_1237842 crossref_primary_10_1186_s13717_024_00573_x crossref_primary_10_3390_agronomy12112781 crossref_primary_10_1016_j_soilbio_2018_11_002 crossref_primary_10_1038_s43705_021_00046_8 crossref_primary_10_1111_ejss_70037 crossref_primary_10_1016_j_farsys_2024_100125 crossref_primary_10_1016_j_still_2022_105585 crossref_primary_10_1016_j_still_2023_105920 crossref_primary_10_1016_j_soilbio_2025_109732 crossref_primary_10_1016_j_still_2023_105923 crossref_primary_10_1111_sum_12871 crossref_primary_10_3389_fmicb_2022_953624 crossref_primary_10_1016_j_scitotenv_2022_152928 crossref_primary_10_1016_j_jenvman_2020_110985 crossref_primary_10_1186_s12864_020_07126_4 |
Cites_doi | 10.1016/j.soilbio.2013.05.009 10.1016/S0167-8809(99)00031-6 10.1073/pnas.1508382112 10.1073/pnas.0611508104 10.1038/ismej.2010.138 10.1038/ismej.2007.66 10.1098/rstb.2007.2178 10.1007/s00248-003-1063-2 10.3389/fmicb.2015.00713 10.1038/nrmicro3109 10.1111/j.1574-6941.2006.00085.x 10.1128/AEM.64.8.3042-3051.1998 10.1023/A:1020635214971 10.1016/j.soilbio.2011.09.003 10.1371/journal.pone.0099949 10.1007/s00792-016-0865-3 10.1038/ismej.2014.210 10.1023/A:1020565523615 10.2307/2346101 10.1128/AEM.69.3.1800-1809.2003 10.1371/journal.pone.0008230 10.1080/15275922.2011.622348 10.7150/ijbs.13537 10.1007/s00374-013-0773-y 10.1016/j.still.2008.03.003 10.1007/s13593-012-0106-9 10.1038/nmeth.1361 10.1128/AEM.02734-14 10.1007/s00253-013-5253-7 10.1111/ejss.12261 10.1093/bioinformatics/btq725 10.1016/j.soilbio.2015.02.005 10.1128/AEM.66.2.754-762.2000 10.1098/rstb.2007.2169 10.1016/j.geoderma.2004.03.005 10.1093/bioinformatics/btp021 10.1128/AEM.67.11.5273-5284.2001 10.1111/j.1574-6941.2008.00535.x 10.1101/gr.1239303 10.1007/978-3-319-26803-3_3 10.1038/ismej.2011.159 10.1093/nar/gks1219 10.1038/ismej.2012.160 10.3389/fmicb.2011.00094 10.3390/d4040375 10.1093/bioinformatics/btr381 10.1111/j.1574-6941.2012.01348.x 10.1093/nar/24.1.82 10.1038/23932 10.1016/S0167-8809(99)00028-6 10.1038/nrmicro2367 10.1128/AEM.02726-09 10.2136/sssaj2004.0347 10.1038/ismej.2013.141 10.1016/j.funeco.2010.05.002 10.1016/j.soilbio.2008.07.020 10.1111/j.1442-9993.2001.01070.pp.x 10.1128/AEM.65.8.3690-3696.1999 10.1016/j.envint.2008.06.009 10.1016/j.apsoil.2013.05.021 10.1002/9780470015902.a0000347.pub2 10.2136/sssaj1999.6351350x 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 10.1016/j.soilbio.2014.07.021 10.1111/1467-9868.00346 10.1007/s00248-015-0609-4 10.1111/j.1574-6941.2010.01030.x 10.1126/science.1224041 10.1128/AEM.00335-09 10.1134/S0003683806020013 10.1016/S0038-0717(03)00186-X 10.3852/mycologia.98.6.1076 10.1038/nature14486 10.1016/j.soilbio.2003.10.026 10.1016/j.mimet.2010.08.008 10.1007/s00253-009-2092-7 10.1890/05-1839 10.1371/journal.pone.0078501 10.1016/j.agee.2016.03.017 10.1002/spe.4380211102 10.1016/S0167-4838(99)00190-9 10.1016/j.landusepol.2008.02.001 10.1111/jam.13072 10.1016/S0167-1987(00)00187-2 10.1093/molbev/msv281 10.1016/j.still.2012.05.011 10.1128/AEM.00062-07 10.1093/femsec/fiw018 10.1038/ismej.2013.50 10.1016/j.still.2005.07.012 10.1007/3-540-30985-3_13 10.1038/nrmicro1129 10.1016/S0038-0717(02)00040-8 10.2307/3545749 10.1093/biomet/53.3-4.325 10.1016/j.apsoil.2016.03.014 10.2307/3761776 |
ContentType | Journal Article |
Copyright | Copyright © 2017 Degrune, Theodorakopoulos, Colinet, Hiel, Bodson, Taminiau, Daube, Vandenbol and Hartmann. 2017 Degrune, Theodorakopoulos, Colinet, Hiel, Bodson, Taminiau, Daube, Vandenbol and Hartmann |
Copyright_xml | – notice: Copyright © 2017 Degrune, Theodorakopoulos, Colinet, Hiel, Bodson, Taminiau, Daube, Vandenbol and Hartmann. 2017 Degrune, Theodorakopoulos, Colinet, Hiel, Bodson, Taminiau, Daube, Vandenbol and Hartmann |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmicb.2017.01127 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_7b746d99e8984dd98248b85bc04e10ff PMC5474472 28674527 10_3389_fmicb_2017_01127 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c462t-e63dddbb3f2e8873c3158c6adb01e6075aa72943673feb8a28187b7b6e9348a83 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:29:05 EDT 2025 Thu Aug 21 18:16:54 EDT 2025 Fri Jul 11 07:56:05 EDT 2025 Thu Apr 03 06:59:11 EDT 2025 Tue Jul 01 00:54:42 EDT 2025 Thu Apr 24 23:12:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | crop residue management metabarcoding microbial diversity conventional tillage reduced tillage cropping season |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-e63dddbb3f2e8873c3158c6adb01e6075aa72943673feb8a28187b7b6e9348a83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Etienne Yergeau, Institut National de la Recherche Scientifique, Canada Reviewed by: Jacynthe Masse, Institut de Recherche en Biologie Végétale, Canada; Bobbi Helgason, Agriculture and Agri-Food Canada, Canada This article was submitted to Terrestrial Microbiology, a section of the journal Frontiers in Microbiology |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2017.01127 |
PMID | 28674527 |
PQID | 1915880993 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7b746d99e8984dd98248b85bc04e10ff pubmedcentral_primary_oai_pubmedcentral_nih_gov_5474472 proquest_miscellaneous_1915880993 pubmed_primary_28674527 crossref_primary_10_3389_fmicb_2017_01127 crossref_citationtrail_10_3389_fmicb_2017_01127 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-19 |
PublicationDateYYYYMMDD | 2017-06-19 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2017 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Fruchterman (B34) 1991; 21 Lüdemann (B61) 2000; 66 Bottalico (B9) 2002; 108 Oksanen (B73) 2007; 10 Spedding (B96) 2004; 36 Schramm (B86) 1999; 65 Wrighton (B104) 2012; 337 Nelson (B70) 2015; 6 Shannon (B89) 2003; 13 Storey (B97) 2002; 64 Nilsson (B71) 2010; 3 Jiménez-Bueno (B49) 2016; 120 Tsavkelova (B99) 2006; 42 Anderson (B3) 2001; 26 Buzzini (B15) 2012; 82 Lipiec (B60) 2006; 89 Douds (B25) 1999; 74 Zhang (B108) 2006; 98 Murphy (B67) 2016; 103 Hartmann (B42) 2015; 9 Quince (B80) 2009; 6 Altieri (B2) 1999; 74 Degrune (B23) 2016; 224 Käll (B51) 2009; 25 Souza (B95) 2013; 72 Goldfarb (B38) 2011; 2 Zandi (B106) 2016 Brown (B13) 2015; 523 Salinas-Garcia (B84) 2001; 59 Nannipieri (B68) 2003 Wang (B102) 2007; 73 Cai (B16) 2005; 19 Frey (B32) 2016; 92 Gower (B39) 1966; 53 Fonseca (B31) 2006 Sengupta (B88) 2015; 70 Girvan (B37) 2003; 69 Martiny (B64) 2013; 7 Binh (B7) 2011 Maidak (B62) 1996; 24 Six (B93) 2006; 70 Chau (B20) 2011; 12 Fierer (B30) 2012; 6 Nowka (B72) 2015; 81 Drenovsky (B26) 2004; 48 Ghani (B35) 2003; 35 Koga (B54) 1999; 1435 Navarro-Noya (B69) 2013; 65 Fierer (B29) 2007; 88 Brockett (B11) 2012; 44 Jiménez (B48) 2013; 98 Booth (B8) 1971 Edgar (B27) 2011; 27 Lauber (B57) 2009; 75 Haas (B40) 2005; 3 Leff (B59) 2015; 112 Benjamini (B5) 1995; 57 Ceja-Navarro (B19) 2010; 76 Van Der Heijden (B101) 1998; 396 Lauber (B58) 2013; 7 Houlden (B47) 2008; 65 Rasche (B82) 2011; 5 Hartmann (B43) 2010; 83 Panettieri (B75) 2014; 78 Juretschko (B50) 1998; 64 (B81) 2011 Clarke (B21) 2006 Shi (B90) 2013; 49 Yeoh (B105) 2015; 33 Bronick (B12) 2005; 124 Carbonetto (B18) 2014; 9 Zhu (B109) 2013; 8 Kowalchuk (B55) 2002; 81 Scopel (B87) 2012; 33 Six (B92) 1999; 63 Calleja-Cervantes (B17) 2015; 66 Kibblewhite (B53) 2008; 363 Zhang (B107) 2012; 124 Quast (B79) 2012; 41 D’Haene (B24) 2008; 99 Philippot (B76) 2010; 8 Hobbs (B46) 2008; 363 Montgomery (B66) 2007; 104 Quadros (B78) 2012; 4 Frey (B33) 2008; 40 Hartmann (B44) 2014; 8 McArdle (B65) 2001; 82 Hao (B41) 2011; 27 Säle (B83) 2015; 84 Philippot (B77) 2013; 11 Berg (B6) 2009; 84 Osono (B74) 2002; 94 Héry (B45) 2007; 2 Burgess (B14) 2015 Schloss (B85) 2009; 4 Martinez (B63) 2016; 20 Eylenbosch (B28) 2015 Giller (B36) 1998; 30 Watkinson (B103) 2008 Brandão (B10) 2011; 76 Daims (B22) 2001; 67 Aislabie (B1) 2013 Bending (B4) 2002; 34 Smith (B94) 1996; 76 Ulrich (B100) 2006; 56 Lahmar (B56) 2010; 27 Siddiqui (B91) 2008 Kameshwar (B52) 2016; 12 Tilman (B98) 1982 19668203 - Nat Methods. 2009 Sep;6(9):639-41 26083755 - Nature. 2015 Jul 9;523(7559):208-11 23193283 - Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 15759041 - Nat Rev Microbiol. 2005 Apr;3(4):307-19 16689875 - FEMS Microbiol Ecol. 2006 Jun;56(3):430-43 9687471 - Appl Environ Microbiol. 1998 Aug;64(8):3042-51 26884714 - Int J Biol Sci. 2016 Jan 01;12 (2):156-71 21700674 - Bioinformatics. 2011 Aug 15;27(16):2194-200 19568745 - Appl Microbiol Biotechnol. 2009 Aug;84(1):11-8 25930203 - Microb Ecol. 2015 Oct;70(3):853-9 18049457 - ISME J. 2008 Jan;2(1):92-104 23019650 - Science. 2012 Sep 28;337(6102):1661-5 17720669 - Philos Trans R Soc Lond B Biol Sci. 2008 Feb 12;363(1491):543-55 22385361 - FEMS Microbiol Ecol. 2012 Nov;82(2):217-41 11679356 - Appl Environ Microbiol. 2001 Nov;67(11):5273-84 26257709 - Front Microbiol. 2015 Jul 21;6:713 24056930 - Nat Rev Microbiol. 2013 Nov;11(11):789-99 10427067 - Appl Environ Microbiol. 1999 Aug;65(8):3690-6 8594608 - Nucleic Acids Res. 1996 Jan 1;24(1):82-5 12448746 - Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):509-20 19502440 - Appl Environ Microbiol. 2009 Aug;75(15):5111-20 12620873 - Appl Environ Microbiol. 2003 Mar;69(3):1800-9 27469174 - Extremophiles. 2016 Sep;20(5):759-69 21223324 - FEMS Microbiol Ecol. 2011 Apr;76(1):1-13 17785275 - Philos Trans R Soc Lond B Biol Sci. 2008 Feb 27;363(1492):685-701 10653747 - Appl Environ Microbiol. 2000 Feb;66(2):754-62 25350160 - ISME J. 2015 May;9(5):1177-94 20382808 - Appl Environ Microbiol. 2010 Jun;76(11):3685-91 21156513 - Mycologia. 2002 May-Jun;94(3):421-7 23552625 - ISME J. 2013 Aug;7(8):1641-50 21233169 - Bioinformatics. 2011 Mar 1;27(5):611-8 26283343 - Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10967-72 24923965 - PLoS One. 2014 Jun 12;9(6):e99949 17586664 - Appl Environ Microbiol. 2007 Aug;73(16):5261-7 17486982 - Mycologia. 2006 Nov-Dec;98(6):1076-87 15692862 - Microb Ecol. 2004 Oct;48(3):424-30 17686990 - Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13268-72 26615204 - Mol Biol Evol. 2016 Apr;33(4):915-27 19193729 - Bioinformatics. 2009 Apr 1;25(7):964-6 21833332 - Front Microbiol. 2011 May 02;2:94 24113822 - Appl Microbiol Biotechnol. 2014 Mar;98(6):2789-803 22134642 - ISME J. 2012 May;6(5):1007-17 20531276 - Nat Rev Microbiol. 2010 Jul;8(7):523-9 21610715 - J Antibiot (Tokyo). 2011 Sep;64(9):599-606 16761564 - Prikl Biokhim Mikrobiol. 2006 Mar-Apr;42(2):133-43 20804791 - J Microbiol Methods. 2010 Nov;83(2):250-3 26808352 - J Appl Microbiol. 2016 Apr;120(4):921-33 25398863 - Appl Environ Microbiol. 2015 Jan;81(2):745-53 18616582 - FEMS Microbiol Ecol. 2008 Aug;65(2):193-201 23235290 - ISME J. 2013 Apr;7(4):830-8 10561543 - Biochim Biophys Acta. 1999 Nov 16;1435(1-2):117-26 24030594 - ISME J. 2014 Jan;8(1):226-44 20882059 - ISME J. 2011 Mar;5(3):389-402 26832204 - FEMS Microbiol Ecol. 2016 Mar;92 (3):null 17601128 - Ecology. 2007 Jun;88(6):1354-64 24205246 - PLoS One. 2013 Oct 21;8(10):e78501 20011594 - PLoS One. 2009 Dec 14;4(12):e8230 14597658 - Genome Res. 2003 Nov;13(11):2498-504 |
References_xml | – year: 2006 ident: B21 publication-title: Primer v6: User Manual/Tutorial. – volume: 65 start-page: 86 year: 2013 ident: B69 article-title: Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.05.009 – volume: 74 start-page: 77 year: 1999 ident: B25 article-title: Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. publication-title: Agric. Ecosyst. Environ. doi: 10.1016/S0167-8809(99)00031-6 – volume: 112 start-page: 10967 year: 2015 ident: B59 article-title: Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1508382112 – volume: 104 start-page: 13268 year: 2007 ident: B66 article-title: Soil erosion and agricultural sustainability. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0611508104 – volume: 5 start-page: 389 year: 2011 ident: B82 article-title: Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. publication-title: ISME J. doi: 10.1038/ismej.2010.138 – volume: 2 start-page: 92 year: 2007 ident: B45 article-title: Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil. publication-title: ISME J. doi: 10.1038/ismej.2007.66 – volume: 363 start-page: 685 year: 2008 ident: B53 article-title: Soil health in agricultural systems. publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2007.2178 – volume: 48 start-page: 424 year: 2004 ident: B26 article-title: Soil water content and organic carbon availability are major determinants of soil microbial community composition. publication-title: Microb. Ecol. doi: 10.1007/s00248-003-1063-2 – volume: 6 year: 2015 ident: B70 article-title: The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00713 – volume: 11 start-page: 789 year: 2013 ident: B77 article-title: Going back to the roots: the microbial ecology of the rhizosphere. publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3109 – volume: 56 start-page: 430 year: 2006 ident: B100 article-title: Soil parent material is a key determinant of the bacterial community structure in arable soils. publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2006.00085.x – volume: 64 start-page: 3042 year: 1998 ident: B50 article-title: Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.64.8.3042-3051.1998 – volume: 108 start-page: 611 year: 2002 ident: B9 article-title: Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. publication-title: Eur. J. Plant Pathol. doi: 10.1023/A:1020635214971 – volume: 44 start-page: 9 year: 2012 ident: B11 article-title: Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.09.003 – volume: 9 year: 2014 ident: B18 article-title: Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in argentine pampas. publication-title: PLoS ONE doi: 10.1371/journal.pone.0099949 – volume: 20 start-page: 759 year: 2016 ident: B63 article-title: Yeasts from sub-Antarctic region: biodiversity, enzymatic activities and their potential as oleaginous microorganisms. publication-title: Extremophiles doi: 10.1007/s00792-016-0865-3 – volume: 9 start-page: 1177 year: 2015 ident: B42 article-title: Distinct soil microbial diversity under long-term organic and conventional farming. publication-title: ISME J. doi: 10.1038/ismej.2014.210 – volume: 81 start-page: 509 year: 2002 ident: B55 article-title: Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. publication-title: Antonie Van Leeuwenhoek doi: 10.1023/A:1020565523615 – volume: 57 start-page: 289 year: 1995 ident: B5 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing. publication-title: J. R. Stat. Soc. Series B Stat. Methodol. doi: 10.2307/2346101 – volume: 69 start-page: 1800 year: 2003 ident: B37 article-title: Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.69.3.1800-1809.2003 – year: 2015 ident: B28 publication-title: Use of NIR Hyperspectral Imaging and Chemometrics to Quantify Roots and Crop Residues in Soil. – volume: 4 year: 2009 ident: B85 article-title: A high-throughput DNA sequence aligner for microbial ecology studies. publication-title: PLoS ONE doi: 10.1371/journal.pone.0008230 – volume: 12 start-page: 333 year: 2011 ident: B20 article-title: The effect of soil texture on richness and diversity of bacterial communities. publication-title: Environ. Forensics doi: 10.1080/15275922.2011.622348 – volume: 12 start-page: 156 year: 2016 ident: B52 article-title: Recent developments in using advanced sequencing technologies for the genomic studies of lignin and cellulose degrading microorganisms. publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.13537 – year: 1982 ident: B98 publication-title: Resource Competition and Community Structure. – volume: 49 start-page: 803 year: 2013 ident: B90 article-title: Seasonal variation of microbial biomass, activity, and community structure in soil under different tillage and phosphorus management practices. publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-013-0773-y – volume: 99 start-page: 279 year: 2008 ident: B24 article-title: Reduced tillage effects on physical properties of silt loam soils growing root crops. publication-title: Soil Tillage Res. doi: 10.1016/j.still.2008.03.003 – volume: 33 start-page: 113 year: 2012 ident: B87 article-title: Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-012-0106-9 – volume: 6 start-page: 639 year: 2009 ident: B80 article-title: Accurate determination of microbial diversity from 454 pyrosequencing data. publication-title: Nat. Methods doi: 10.1038/nmeth.1361 – volume: 81 start-page: 745 year: 2015 ident: B72 article-title: Comparison of oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as a key factor in niche differentiation. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02734-14 – volume: 98 start-page: 2789 year: 2013 ident: B48 article-title: Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion. publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-013-5253-7 – volume: 66 start-page: 802 year: 2015 ident: B17 article-title: Changes in soil nutrient content and bacterial community after 12 years of organic amendment application to a vineyard. publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12261 – volume: 27 start-page: 611 year: 2011 ident: B41 article-title: Clustering 16S rRNA for OTU prediction: a method of unsupervised Bayesian clustering. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq725 – volume: 84 start-page: 38 year: 2015 ident: B83 article-title: Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.02.005 – volume: 66 start-page: 754 year: 2000 ident: B61 article-title: Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.66.2.754-762.2000 – volume: 363 start-page: 543 year: 2008 ident: B46 article-title: The role of conservation agriculture in sustainable agriculture. publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2007.2169 – year: 2013 ident: B1 article-title: Soil microbes and their contribution to soil services publication-title: Ecosystem Services in New Zealand – Conditions and Trends – start-page: 57 year: 2003 ident: B68 article-title: Biological processes publication-title: Handbook of Processes and Modelling in the Soil-Plant System – volume: 124 start-page: 3 year: 2005 ident: B12 article-title: Soil structure and management: a review. publication-title: Geoderma doi: 10.1016/j.geoderma.2004.03.005 – volume: 25 start-page: 964 year: 2009 ident: B51 article-title: QVALITY: non-parametric estimation of q-values and posterior error probabilities. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp021 – volume: 67 start-page: 5273 year: 2001 ident: B22 article-title: In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.67.11.5273-5284.2001 – volume: 65 start-page: 193 year: 2008 ident: B47 article-title: Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2008.00535.x – volume: 13 start-page: 2498 year: 2003 ident: B89 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks. publication-title: Genome Res. doi: 10.1101/gr.1239303 – start-page: 71 year: 2016 ident: B106 article-title: Role of plant growth-promoting rhizobacteria (PGPR) as biofertilizers in stabilizing agricultural ecosystems publication-title: Organic Farming for Sustainable Agriculture doi: 10.1007/978-3-319-26803-3_3 – volume: 6 start-page: 1007 year: 2012 ident: B30 article-title: Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. publication-title: ISME J. doi: 10.1038/ismej.2011.159 – volume: 41 start-page: D590 year: 2012 ident: B79 article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1219 – volume: 7 start-page: 830 year: 2013 ident: B64 article-title: Phylogenetic conservatism of functional traits in microorganisms. publication-title: ISME J. doi: 10.1038/ismej.2012.160 – volume: 2 year: 2011 ident: B38 article-title: Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2011.00094 – year: 2011 ident: B81 publication-title: R: A Language and Environment for Statistical Computing. – volume: 4 start-page: 375 year: 2012 ident: B78 article-title: The effect of tillage system and crop rotation on soil microbial diversity and composition in a subtropical Acrisol. publication-title: Diversity doi: 10.3390/d4040375 – volume: 27 start-page: 2194 year: 2011 ident: B27 article-title: UCHIME improves sensitivity and speed of chimera detection. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr381 – volume: 82 start-page: 217 year: 2012 ident: B15 article-title: Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2012.01348.x – volume: 24 start-page: 82 year: 1996 ident: B62 article-title: The ribosomal database project (RDP). publication-title: Nucleic Acids Res. doi: 10.1093/nar/24.1.82 – volume: 396 start-page: 69 year: 1998 ident: B101 article-title: Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. publication-title: Nature doi: 10.1038/23932 – volume: 74 start-page: 19 year: 1999 ident: B2 article-title: The ecological role of biodiversity in agroecosystems. publication-title: Agric. Ecosyst. Environ. doi: 10.1016/S0167-8809(99)00028-6 – volume: 8 start-page: 523 year: 2010 ident: B76 article-title: The ecological coherence of high bacterial taxonomic ranks. publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2367 – year: 2011 ident: B7 publication-title: Taxonomic and Ecological Studies of Actinomycetes from Vietnam: Isolation and Genus-level Diversity – volume: 76 start-page: 3685 year: 2010 ident: B19 article-title: Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02726-09 – volume: 70 start-page: 555 year: 2006 ident: B93 article-title: Bacterial and fungal contributions to carbon sequestration in agroecosystems. publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2004.0347 – volume: 8 start-page: 226 year: 2014 ident: B44 article-title: Resistance and resilience of the forest soil microbiome to logging-associated compaction. publication-title: ISME J. doi: 10.1038/ismej.2013.141 – volume: 3 start-page: 284 year: 2010 ident: B71 article-title: An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology. publication-title: Fungal Ecol. doi: 10.1016/j.funeco.2010.05.002 – volume: 40 start-page: 2904 year: 2008 ident: B33 article-title: Microbial biomass, functional capacity, and community structure after 12 years of soil warming. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.07.020 – year: 1971 ident: B8 publication-title: The Genus Fusarium. – year: 2015 ident: B14 publication-title: Synergistic Degradation of Lignocellulose by Fungi and Bacteria in Boreal Forest Soil. – year: 2008 ident: B91 publication-title: Mycorrhizae: Sustainable Agriculture and Forestry. – volume: 26 start-page: 32 year: 2001 ident: B3 article-title: A new method for non-parametric multivariate analysis of variance. publication-title: Austral Ecol. doi: 10.1111/j.1442-9993.2001.01070.pp.x – volume: 65 start-page: 3690 year: 1999 ident: B86 article-title: Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.8.3690-3696.1999 – volume: 30 start-page: 1389 year: 1998 ident: B36 article-title: Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. publication-title: Soil Biol. Biochem. doi: 10.1016/j.envint.2008.06.009 – volume: 72 start-page: 49 year: 2013 ident: B95 article-title: Soil metagenomics reveals differences under conventional and no-tillage with crop rotation or succession. publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2013.05.021 – year: 2008 ident: B103 article-title: Basidiomycota publication-title: Encyclopedia of Life Sciences doi: 10.1002/9780470015902.a0000347.pub2 – volume: 63 start-page: 1350 year: 1999 ident: B92 article-title: Aggregate and soil organic matter dynamics under conventional and no-tillage systems. publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1999.6351350x – volume: 82 start-page: 290 year: 2001 ident: B65 article-title: Fitting multivariate models to community data: a comment on distance-based redundancy analysis. publication-title: Ecology doi: 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 – volume: 78 start-page: 170 year: 2014 ident: B75 article-title: Soil organic matter degradation in an agricultural chronosequence under different tillage regimes evaluated by organic matter pools, enzymatic activities and CPMAS 13C NMR. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.07.021 – volume: 64 start-page: 479 year: 2002 ident: B97 article-title: A direct approach to false discovery rates. publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/1467-9868.00346 – volume: 70 start-page: 853 year: 2015 ident: B88 article-title: Bacterial community diversity in soil under two tillage practices as determined by pyrosequencing. publication-title: Microb. Ecol. doi: 10.1007/s00248-015-0609-4 – volume: 76 start-page: 1 year: 2011 ident: B10 article-title: Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes: yeast diversity of Nahuel Huapi Lake. publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2010.01030.x – volume: 337 start-page: 1661 year: 2012 ident: B104 article-title: Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. publication-title: Science doi: 10.1126/science.1224041 – volume: 75 start-page: 5111 year: 2009 ident: B57 article-title: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00335-09 – volume: 19 start-page: 1 year: 2005 ident: B16 article-title: Phylogenetic evaluation and taxonomic revision of Schizothecium based on ribosomal DNA and protein coding genes. publication-title: Fungal Divers. – volume: 42 start-page: 117 year: 2006 ident: B99 article-title: Microbial producers of plant growth stimulators and their practical use: a review. publication-title: Appl. Biochem. Microbiol. doi: 10.1134/S0003683806020013 – volume: 35 start-page: 1231 year: 2003 ident: B35 article-title: Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(03)00186-X – volume: 98 start-page: 1076 year: 2006 ident: B108 article-title: An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. publication-title: Mycologia doi: 10.3852/mycologia.98.6.1076 – volume: 523 start-page: 208 year: 2015 ident: B13 article-title: Unusual biology across a group comprising more than 15% of domain Bacteria. publication-title: Nature doi: 10.1038/nature14486 – volume: 36 start-page: 499 year: 2004 ident: B96 article-title: Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2003.10.026 – volume: 83 start-page: 250 year: 2010 ident: B43 article-title: V-Xtractor: an open-source, high-throughput software tool to identify and extract hypervariable regions of small subunit (16S/18S) ribosomal RNA gene sequences. publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2010.08.008 – volume: 84 start-page: 11 year: 2009 ident: B6 article-title: Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-2092-7 – volume: 88 start-page: 1354 year: 2007 ident: B29 article-title: Toward an ecological classification of soil bacteria. publication-title: Ecology doi: 10.1890/05-1839 – volume: 8 year: 2013 ident: B109 article-title: Bacterial community composition of south china sea sediments through pyrosequencing-based analysis of 16S rRNA genes. publication-title: PLoS ONE doi: 10.1371/journal.pone.0078501 – volume: 224 start-page: 12 year: 2016 ident: B23 article-title: No favorable effect of reduced tillage on microbial community diversity in a silty loam soil (Belgium). publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2016.03.017 – volume: 21 start-page: 1129 year: 1991 ident: B34 article-title: Graph drawing by force-directed placement. publication-title: Softw. Pract. Exp. doi: 10.1002/spe.4380211102 – volume: 1435 start-page: 117 year: 1999 ident: B54 article-title: Novel bacterial peroxidase without catalase activity from Flavobacterium meningosepticum: purification and characterization. publication-title: Biochim. Biophys. Acta doi: 10.1016/S0167-4838(99)00190-9 – volume: 27 start-page: 4 year: 2010 ident: B56 article-title: Adoption of conservation agriculture in Europe: lessons of the KASSA project. publication-title: Land Use Policy doi: 10.1016/j.landusepol.2008.02.001 – volume: 120 start-page: 921 year: 2016 ident: B49 article-title: Bacterial indicator taxa in soils under different long-term agricultural management. publication-title: J. Appl. Microbiol. doi: 10.1111/jam.13072 – volume: 59 start-page: 67 year: 2001 ident: B84 article-title: Residue removal and tillage interaction effects on soil properties under rain-fed corn production in Central Mexico. publication-title: Soil Tillage Res. doi: 10.1016/S0167-1987(00)00187-2 – volume: 33 start-page: 915 year: 2015 ident: B105 article-title: Comparative genomics of candidate phylum TM6 suggests that parasitism is widespread and ancestral in this lineage. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msv281 – volume: 124 start-page: 153 year: 2012 ident: B107 article-title: Soil microbial community dynamics over a maize (Zea mays L.) growing season under conventional-and no-tillage practices in a rainfed agroecosystem. publication-title: Soil Tillage Res. doi: 10.1016/j.still.2012.05.011 – volume: 73 start-page: 5261 year: 2007 ident: B102 article-title: Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00062-07 – volume: 92 year: 2016 ident: B32 article-title: Microbial diversity in European alpine permafrost and active layers. publication-title: FEMS Microbiol. Ecol. doi: 10.1093/femsec/fiw018 – volume: 7 start-page: 1641 year: 2013 ident: B58 article-title: Temporal variability in soil microbial communities across land-use types. publication-title: ISME J. doi: 10.1038/ismej.2013.50 – volume: 89 start-page: 210 year: 2006 ident: B60 article-title: Soil porosity and water infiltration as influenced by tillage methods. publication-title: Soil Tillage Res. doi: 10.1016/j.still.2005.07.012 – start-page: 263 year: 2006 ident: B31 article-title: Phylloplane yeasts publication-title: Biodiversity and Ecophysiology of Yeasts doi: 10.1007/3-540-30985-3_13 – volume: 3 start-page: 307 year: 2005 ident: B40 article-title: Biological control of soil-borne pathogens by fluorescent pseudomonads. publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1129 – volume: 34 start-page: 1073 year: 2002 ident: B4 article-title: Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(02)00040-8 – volume: 76 start-page: 70 year: 1996 ident: B94 article-title: A consumer’s guide to evenness indices. publication-title: Oikos doi: 10.2307/3545749 – volume: 53 start-page: 325 year: 1966 ident: B39 article-title: Some distance properties of latent root and vector methods used in multivariate analysis. publication-title: Biometrika doi: 10.1093/biomet/53.3-4.325 – volume: 103 start-page: 110 year: 2016 ident: B67 article-title: Crop residue retention enhances soil properties and nitrogen cycling in smallholder maize systems of Chiapas. Mexico. publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2016.03.014 – volume: 10 start-page: 631 year: 2007 ident: B73 article-title: The vegan package. publication-title: Community Ecol. Package – volume: 94 start-page: 421 year: 2002 ident: B74 article-title: Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. publication-title: Mycologia doi: 10.2307/3761776 – reference: 23552625 - ISME J. 2013 Aug;7(8):1641-50 – reference: 20011594 - PLoS One. 2009 Dec 14;4(12):e8230 – reference: 26257709 - Front Microbiol. 2015 Jul 21;6:713 – reference: 21833332 - Front Microbiol. 2011 May 02;2:94 – reference: 25350160 - ISME J. 2015 May;9(5):1177-94 – reference: 21156513 - Mycologia. 2002 May-Jun;94(3):421-7 – reference: 22385361 - FEMS Microbiol Ecol. 2012 Nov;82(2):217-41 – reference: 9687471 - Appl Environ Microbiol. 1998 Aug;64(8):3042-51 – reference: 24056930 - Nat Rev Microbiol. 2013 Nov;11(11):789-99 – reference: 18049457 - ISME J. 2008 Jan;2(1):92-104 – reference: 26283343 - Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10967-72 – reference: 25398863 - Appl Environ Microbiol. 2015 Jan;81(2):745-53 – reference: 16761564 - Prikl Biokhim Mikrobiol. 2006 Mar-Apr;42(2):133-43 – reference: 10427067 - Appl Environ Microbiol. 1999 Aug;65(8):3690-6 – reference: 27469174 - Extremophiles. 2016 Sep;20(5):759-69 – reference: 17720669 - Philos Trans R Soc Lond B Biol Sci. 2008 Feb 12;363(1491):543-55 – reference: 17601128 - Ecology. 2007 Jun;88(6):1354-64 – reference: 22134642 - ISME J. 2012 May;6(5):1007-17 – reference: 20804791 - J Microbiol Methods. 2010 Nov;83(2):250-3 – reference: 25930203 - Microb Ecol. 2015 Oct;70(3):853-9 – reference: 10561543 - Biochim Biophys Acta. 1999 Nov 16;1435(1-2):117-26 – reference: 20382808 - Appl Environ Microbiol. 2010 Jun;76(11):3685-91 – reference: 16689875 - FEMS Microbiol Ecol. 2006 Jun;56(3):430-43 – reference: 10653747 - Appl Environ Microbiol. 2000 Feb;66(2):754-62 – reference: 26884714 - Int J Biol Sci. 2016 Jan 01;12 (2):156-71 – reference: 17586664 - Appl Environ Microbiol. 2007 Aug;73(16):5261-7 – reference: 20882059 - ISME J. 2011 Mar;5(3):389-402 – reference: 14597658 - Genome Res. 2003 Nov;13(11):2498-504 – reference: 21700674 - Bioinformatics. 2011 Aug 15;27(16):2194-200 – reference: 15759041 - Nat Rev Microbiol. 2005 Apr;3(4):307-19 – reference: 24923965 - PLoS One. 2014 Jun 12;9(6):e99949 – reference: 24205246 - PLoS One. 2013 Oct 21;8(10):e78501 – reference: 20531276 - Nat Rev Microbiol. 2010 Jul;8(7):523-9 – reference: 26083755 - Nature. 2015 Jul 9;523(7559):208-11 – reference: 17686990 - Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13268-72 – reference: 17486982 - Mycologia. 2006 Nov-Dec;98(6):1076-87 – reference: 23235290 - ISME J. 2013 Apr;7(4):830-8 – reference: 19568745 - Appl Microbiol Biotechnol. 2009 Aug;84(1):11-8 – reference: 11679356 - Appl Environ Microbiol. 2001 Nov;67(11):5273-84 – reference: 26808352 - J Appl Microbiol. 2016 Apr;120(4):921-33 – reference: 15692862 - Microb Ecol. 2004 Oct;48(3):424-30 – reference: 18616582 - FEMS Microbiol Ecol. 2008 Aug;65(2):193-201 – reference: 26832204 - FEMS Microbiol Ecol. 2016 Mar;92 (3):null – reference: 21233169 - Bioinformatics. 2011 Mar 1;27(5):611-8 – reference: 21610715 - J Antibiot (Tokyo). 2011 Sep;64(9):599-606 – reference: 19193729 - Bioinformatics. 2009 Apr 1;25(7):964-6 – reference: 12620873 - Appl Environ Microbiol. 2003 Mar;69(3):1800-9 – reference: 19502440 - Appl Environ Microbiol. 2009 Aug;75(15):5111-20 – reference: 24113822 - Appl Microbiol Biotechnol. 2014 Mar;98(6):2789-803 – reference: 24030594 - ISME J. 2014 Jan;8(1):226-44 – reference: 23019650 - Science. 2012 Sep 28;337(6102):1661-5 – reference: 21223324 - FEMS Microbiol Ecol. 2011 Apr;76(1):1-13 – reference: 17785275 - Philos Trans R Soc Lond B Biol Sci. 2008 Feb 27;363(1492):685-701 – reference: 26615204 - Mol Biol Evol. 2016 Apr;33(4):915-27 – reference: 8594608 - Nucleic Acids Res. 1996 Jan 1;24(1):82-5 – reference: 12448746 - Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):509-20 – reference: 19668203 - Nat Methods. 2009 Sep;6(9):639-41 – reference: 23193283 - Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 |
SSID | ssj0000402000 |
Score | 2.4923959 |
Snippet | Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming,... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1127 |
SubjectTerms | conventional tillage crop residue management cropping season metabarcoding microbial diversity Microbiology reduced tillage |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEBZlodBL6bvpCxV66cFdy5L1OPa1LIXtoZuFvQk9xmkg2CXJsvTfd8byhqSU9tKrJdvDzGgeaOYbxt7kTriEmlApHVylQIbKgc2VaDuRKAJwHfU7n33Vpxfqy2V7uTfqi2rCCjxwYdyxiUbp7PADzqqcnW2UjbaNqVYg6q4j64s-by-ZGm0wpUV1Xe4lMQtzKKZlilTKZd6hStMQmT0_NML1_ynG_L1Ucs_3nNxjd6egkb8vxN5nt6B_wG6XMZI_H7LFvOBLrfinMl9-w4eOnw_LFT9bjkBLuDR1ghB-Ko-wGq45hn78HJ1XhMyplWzN59cDJ7iqddhQNTSf00iiBfBvsKBOkUfs4uTz_ONpNQ1QqJLSzbYCLXPOMcquATQmMknR2qRDjrUAjcFCCBhbK6mN7CDaQMhQyO-owUllg5WP2VE_9PCU8Ua1QIfdygRKWB2FsV0SsXZJNzXUM3Z8w06fJnRxGnKx8phlkAD8KABPAvCjAGbs7e6NHwVZ4y97P5CEdvsIE3t8gJriJ03x_9KUGXt9I1-PZ4guRkIPw9XGY87aoh3DUG3GnhR5737VWG1USySYA004oOVwpV9-H3G6W2WUMs2z_0H8c3aH2EFFasK9YEfb9RW8xHBoG1-Nmv8L49UJTQ priority: 102 providerName: Directory of Open Access Journals |
Title | Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28674527 https://www.proquest.com/docview/1915880993 https://pubmed.ncbi.nlm.nih.gov/PMC5474472 https://doaj.org/article/7b746d99e8984dd98248b85bc04e10ff |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgERIXxJsssDISFw5Z4tjx44AQr2WFVA5sK_VmxY-USlHCpl0t---ZSdKyRRUHLjnEtmJ5xp5v4plvCHkVKmY8aEIqZGlSEXmZmqhDyoqKeUQApsJ858k3eToTX-fF_E969LiAq72uHdaTmnX18a_zq3ew4d-ixwn2FiSw9A6jtNQxaGuubpJbYJcU1jOYjGC_P5fRVcqy4a5y70BkBtZSiQJrzFwzUz2b_z4I-nck5TXTdHKP3B0xJX0_KMF9ciM2D8jtocrk1UOymA70UzX9NJSfX9G2omftsqaTZc_DBE1jogjSq1IX6_aSAjKkZ2DbXAwUM806Or1sKbJZdeUKg6XpFCsWLSL9HheYSPKIzE4-Tz-epmN9hdQLma_TKHkIwTle5RHOGu45K7SXZXAZixKwRFkC9BZcKl5Fp0skjlJOORkNF7rU_DE5aNomPiU0F0XEs0BzHwXT0jGlK89cZrzMs5gl5M1mOa0fycexBkZtwQlBWdheFhZlYXtZJOT1dsTPgXjjH30_oIS2_ZAyu3_Rdgs77kALMxcyGNBEo0UIRudCO104n4nIsqpKyMuNfC1sMbw3KZvYXqwsuLQFHHOA5BLyZJD39lMbfUmI2tGEnbnstjTLHz2NdyGUECo__O-Rz8gdXAMMXGPmOTlYdxfxBUCktTvqfy3A88ucHfW74Dc5dBOg |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+Dynamics+of+Soil+Microbial+Communities+below+the+Seedbed+under+Two+Contrasting+Tillage+Regimes&rft.jtitle=Frontiers+in+microbiology&rft.au=Degrune%2C+Florine&rft.au=Theodorakopoulos%2C+Nicolas&rft.au=Colinet%2C+Gilles&rft.au=Hiel%2C+Marie-Pierre&rft.date=2017-06-19&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=8&rft_id=info:doi/10.3389%2Ffmicb.2017.01127&rft_id=info%3Apmid%2F28674527&rft.externalDocID=PMC5474472 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |