A Novel CNN-BiLSTM Ensemble Model With Attention Mechanism for Sit-to-Stand Phase Identification Using Wearable Inertial Sensors
Sit-to-stand transition phase identification is vital in the control of a wearable exoskeleton robot for assisting patients to stand stably. In this study, we aim to propose a method for segmenting and identifying the sit-to-stand phase using two inertial sensors. First, we defined the sit-to-stand...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 1068 - 1077 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sit-to-stand transition phase identification is vital in the control of a wearable exoskeleton robot for assisting patients to stand stably. In this study, we aim to propose a method for segmenting and identifying the sit-to-stand phase using two inertial sensors. First, we defined the sit-to-stand transition into five phases, namely, the initial sitting phase, the flexion momentum phase, the momentum transfer phase, the extension phase, and the stable standing phase based on the preprocessed acceleration and angular velocity data. We then employed a threshold method to recognize the initial sitting and the stable standing phases. Finally, we designed a novel CNN-BiLSTM-Attention algorithm to identify the three transition phases, namely, the flexion momentum phase, the momentum transfer phase, and the extension phase. Fifteen subjects were recruited to perform sit-to-stand transition experiments under a specific paradigm. A combination of the acceleration and angular velocity data features for the sit-to-stand transition phase identification were validated for the model performance improvements. The integration of the CNN, Bi-LSTM, and Attention modules demonstrated the reasonableness of the proposed algorithms. The experimental results showed that the proposed CNN-BiLSTM-Attention algorithm achieved the highest average classification accuracy of 99.5% for all five phases when compared to both traditional machine learning algorithms and deep learning algorithms on our customized dataset (STS-PD). The proposed sit-to-stand phase recognition algorithm could serve as a foundation for the control of wearable exoskeletons and is important for the further development of intelligent wearable exoskeleton rehabilitation robots. |
---|---|
AbstractList | Sit-to-stand transition phase identification is vital in the control of a wearable exoskeleton robot for assisting patients to stand stably. In this study, we aim to propose a method for segmenting and identifying the sit-to-stand phase using two inertial sensors. First, we defined the sit-to-stand transition into five phases, namely, the initial sitting phase, the flexion momentum phase, the momentum transfer phase, the extension phase, and the stable standing phase based on the preprocessed acceleration and angular velocity data. We then employed a threshold method to recognize the initial sitting and the stable standing phases. Finally, we designed a novel CNN-BiLSTM-Attention algorithm to identify the three transition phases, namely, the flexion momentum phase, the momentum transfer phase, and the extension phase. Fifteen subjects were recruited to perform sit-to-stand transition experiments under a specific paradigm. A combination of the acceleration and angular velocity data features for the sit-to-stand transition phase identification were validated for the model performance improvements. The integration of the CNN, Bi-LSTM, and Attention modules demonstrated the reasonableness of the proposed algorithms. The experimental results showed that the proposed CNN-BiLSTM-Attention algorithm achieved the highest average classification accuracy of 99.5% for all five phases when compared to both traditional machine learning algorithms and deep learning algorithms on our customized dataset (STS-PD). The proposed sit-to-stand phase recognition algorithm could serve as a foundation for the control of wearable exoskeletons and is important for the further development of intelligent wearable exoskeleton rehabilitation robots. Sit-to-stand transition phase identification is vital in the control of a wearable exoskeleton robot for assisting patients to stand stably. In this study, we aim to propose a method for segmenting and identifying the sit-to-stand phase using two inertial sensors. First, we defined the sit-to-stand transition into five phases, namely, the initial sitting phase, the flexion momentum phase, the momentum transfer phase, the extension phase, and the stable standing phase based on the preprocessed acceleration and angular velocity data. We then employed a threshold method to recognize the initial sitting and the stable standing phases. Finally, we designed a novel CNN-BiLSTM-Attention algorithm to identify the three transition phases, namely, the flexion momentum phase, the momentum transfer phase, and the extension phase. Fifteen subjects were recruited to perform sit-to-stand transition experiments under a specific paradigm. A combination of the acceleration and angular velocity data features for the sit-to-stand transition phase identification were validated for the model performance improvements. The integration of the CNN, Bi-LSTM, and Attention modules demonstrated the reasonableness of the proposed algorithms. The experimental results showed that the proposed CNN-BiLSTM-Attention algorithm achieved the highest average classification accuracy of 99.5% for all five phases when compared to both traditional machine learning algorithms and deep learning algorithms on our customized dataset (STS-PD). The proposed sit-to-stand phase recognition algorithm could serve as a foundation for the control of wearable exoskeletons and is important for the further development of intelligent wearable exoskeleton rehabilitation robots.Sit-to-stand transition phase identification is vital in the control of a wearable exoskeleton robot for assisting patients to stand stably. In this study, we aim to propose a method for segmenting and identifying the sit-to-stand phase using two inertial sensors. First, we defined the sit-to-stand transition into five phases, namely, the initial sitting phase, the flexion momentum phase, the momentum transfer phase, the extension phase, and the stable standing phase based on the preprocessed acceleration and angular velocity data. We then employed a threshold method to recognize the initial sitting and the stable standing phases. Finally, we designed a novel CNN-BiLSTM-Attention algorithm to identify the three transition phases, namely, the flexion momentum phase, the momentum transfer phase, and the extension phase. Fifteen subjects were recruited to perform sit-to-stand transition experiments under a specific paradigm. A combination of the acceleration and angular velocity data features for the sit-to-stand transition phase identification were validated for the model performance improvements. The integration of the CNN, Bi-LSTM, and Attention modules demonstrated the reasonableness of the proposed algorithms. The experimental results showed that the proposed CNN-BiLSTM-Attention algorithm achieved the highest average classification accuracy of 99.5% for all five phases when compared to both traditional machine learning algorithms and deep learning algorithms on our customized dataset (STS-PD). The proposed sit-to-stand phase recognition algorithm could serve as a foundation for the control of wearable exoskeletons and is important for the further development of intelligent wearable exoskeleton rehabilitation robots. |
Author | Chen, Xin Du, Mingyu Cai, Shibo Li, Xiaoling Bao, Guanjun Yu, Longjie Fan, Bingfei Liu, Tao |
Author_xml | – sequence: 1 givenname: Xin orcidid: 0009-0004-8879-4219 surname: Chen fullname: Chen, Xin email: chenxin@zjut.edu.cn organization: College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China – sequence: 2 givenname: Shibo orcidid: 0000-0003-0174-3300 surname: Cai fullname: Cai, Shibo email: ccc@zjut.edu.cn organization: College of Mechanical Engineering and the Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, China – sequence: 3 givenname: Longjie surname: Yu fullname: Yu, Longjie email: yulongjie0404@163.com organization: College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China – sequence: 4 givenname: Xiaoling orcidid: 0009-0001-0037-1085 surname: Li fullname: Li, Xiaoling email: 18379438503@163.com organization: College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China – sequence: 5 givenname: Bingfei orcidid: 0000-0002-9531-3549 surname: Fan fullname: Fan, Bingfei email: bingfeifan@zjut.edu.cn organization: College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China – sequence: 6 givenname: Mingyu surname: Du fullname: Du, Mingyu email: dumingyu@zjut.edu.cn organization: College of Mechanical Engineering and the Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, China – sequence: 7 givenname: Tao orcidid: 0000-0002-2797-0264 surname: Liu fullname: Liu, Tao email: liutao@zju.edu.cn organization: State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China – sequence: 8 givenname: Guanjun orcidid: 0000-0002-7184-3510 surname: Bao fullname: Bao, Guanjun email: gjbao@zjut.edu.cn organization: College of Mechanical Engineering and the Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38373135$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kkuP0zAUhSM0iHnAH0AIWWLDJsWvOPGyVAUqtQWRjmZpOc7N1FViD7aLxI6fTvoYhGbBytb1d47u9T3X2YXzDrLsNcETQrD8sFnX3-cTiimfMCaExOWz7IoURZVjSvDF4c54zhnFl9l1jDuMSSmK8kV2ySpWMsKKq-z3FK39T-jRbL3OP9plvVmhuYswND2glW_HlzubtmiaErhkvUMrMFvtbBxQ5wOqbcqTz-ukXYu-bXUEtGgPZGeNPvK30bp7dAc66IPnwkFIVveoBhd9iC-z553uI7w6nzfZ7af5ZvYlX379vJhNl7nhgqYcmDGSEzBdyTBrmgoaqbnudKMl7qSEUna4E7qhuMUUBLC2PFahBKqJZDfZ4uTber1TD8EOOvxSXlt1LPhwr_TYmOlBFbRsK5CF5Jhz3eLKCNLIRgiODcOkG73en7wegv-xh5jUYKOBvtcO_D4qKmlVFQLzYkTfPUF3fh_cOOlIFWJchBTVSL09U_tmgPZve497GoHqBJjgYwzQKWPT8X9T0LZXBKtDJNQxEuoQCXWOxCilT6SP7v8VvTmJLAD8I-BM0kKyP1kUwOo |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1088_2057_1976_ad992c crossref_primary_10_1109_JBHI_2024_3488528 crossref_primary_10_1016_j_enconman_2025_119485 crossref_primary_10_3390_agriculture14091556 crossref_primary_10_1016_j_measurement_2024_115981 crossref_primary_10_1109_JBHI_2024_3510860 crossref_primary_10_1016_j_sna_2024_116178 crossref_primary_10_1080_1206212X_2024_2426501 crossref_primary_10_1123_jmpb_2024_0046 crossref_primary_10_1109_LRA_2024_3506220 |
Cites_doi | 10.1016/j.gaitpost.2023.07.283 10.2522/ptj.20060378 10.1109/TNSRE.2023.3297737 10.1109/ACCESS.2020.3025938 10.1093/comjnl/bxad035 10.1007/978-3-642-35395-6_30 10.1007/s42235-022-00289-8 10.1109/ACCESS.2020.2982225 10.1145/1964897.1964918 10.1016/j.jbiomech.2020.110046 10.1016/j.patrec.2018.03.020 10.1007/978-3-030-59830-3_52 10.1186/s12984-020-00692-4 10.48550/ARXIV.1706.03762 10.1111/ggi.13874 10.1093/ptj/70.10.638 10.1109/TNSRE.2022.3169962 10.1109/TSMC.2016.2562509 10.1016/0268-0033(94)90004-3 10.1016/0021-9290(90)90005-N 10.1007/s11042-020-10447-x 10.1016/j.jbiomech.2021.110323 10.1016/j.bspc.2021.103364 10.1007/s11042-022-13716-z 10.1109/LRA.2022.3181351 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 DOA |
DOI | 10.1109/TNSRE.2024.3366907 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1077 |
ExternalDocumentID | oai_doaj_org_article_527d8e9594044ad08c61b9b6640c301f 38373135 10_1109_TNSRE_2024_3366907 10439259 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Key Research and Development Program of Zhejiang Province grantid: 2023C03159 funderid: 10.13039/100022963 – fundername: National Natural Science Foundation of China grantid: 62373326; 52305038 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2022YFC3601702 funderid: 10.13039/501100012166 – fundername: Natural Science Foundation of Zhejiang Province grantid: LQ23E050019 funderid: 10.13039/501100004731 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c462t-e3cc941ecf7303bb8eb9a4afaba90f99e79f0f6ab20d02e6e3d799e79e7e2a193 |
IEDL.DBID | DOA |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:30:24 EDT 2025 Fri Jul 11 09:50:35 EDT 2025 Fri Jul 25 05:06:32 EDT 2025 Wed Feb 19 01:58:14 EST 2025 Thu Apr 24 23:01:25 EDT 2025 Tue Jul 01 00:43:30 EDT 2025 Wed Aug 27 02:11:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-e3cc941ecf7303bb8eb9a4afaba90f99e79f0f6ab20d02e6e3d799e79e7e2a193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9531-3549 0009-0004-8879-4219 0000-0002-2797-0264 0009-0001-0037-1085 0000-0002-7184-3510 0000-0003-0174-3300 |
OpenAccessLink | https://doaj.org/article/527d8e9594044ad08c61b9b6640c301f |
PMID | 38373135 |
PQID | 2956383968 |
PQPubID | 85423 |
PageCount | 10 |
ParticipantIDs | ieee_primary_10439259 doaj_primary_oai_doaj_org_article_527d8e9594044ad08c61b9b6640c301f crossref_citationtrail_10_1109_TNSRE_2024_3366907 proquest_miscellaneous_2928856045 pubmed_primary_38373135 proquest_journals_2956383968 crossref_primary_10_1109_TNSRE_2024_3366907 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Roggen (ref27) 2012 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Liu (ref28) 2021 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Marco (ref13) 2019 |
References_xml | – ident: ref2 doi: 10.1016/j.gaitpost.2023.07.283 – ident: ref10 doi: 10.2522/ptj.20060378 – ident: ref4 doi: 10.1109/TNSRE.2023.3297737 – ident: ref18 doi: 10.1109/ACCESS.2020.3025938 – ident: ref23 doi: 10.1093/comjnl/bxad035 – ident: ref25 doi: 10.1007/978-3-642-35395-6_30 – ident: ref5 doi: 10.1007/s42235-022-00289-8 – ident: ref19 doi: 10.1109/ACCESS.2020.2982225 – ident: ref26 doi: 10.1145/1964897.1964918 – ident: ref11 doi: 10.1016/j.jbiomech.2020.110046 – ident: ref16 doi: 10.1016/j.patrec.2018.03.020 – ident: ref12 doi: 10.1007/978-3-030-59830-3_52 – ident: ref14 doi: 10.1186/s12984-020-00692-4 – ident: ref24 doi: 10.48550/ARXIV.1706.03762 – ident: ref6 doi: 10.1111/ggi.13874 – ident: ref7 doi: 10.1093/ptj/70.10.638 – ident: ref1 doi: 10.1109/TNSRE.2022.3169962 – ident: ref17 doi: 10.1109/TSMC.2016.2562509 – year: 2021 ident: ref28 article-title: Gated transformer networks for multivariate time series classification publication-title: arXiv:2103.14438 – ident: ref8 doi: 10.1016/0268-0033(94)90004-3 – ident: ref9 doi: 10.1016/0021-9290(90)90005-N – ident: ref15 doi: 10.1007/s11042-020-10447-x – ident: ref21 doi: 10.1016/j.jbiomech.2021.110323 – ident: ref22 doi: 10.1016/j.bspc.2021.103364 – volume-title: Opportunity Activity Recognition year: 2012 ident: ref27 – year: 2019 ident: ref13 article-title: Sit-to-stand phases detection by inertial sensors – ident: ref20 doi: 10.1007/s11042-022-13716-z – ident: ref3 doi: 10.1109/LRA.2022.3181351 |
SSID | ssj0017657 |
Score | 2.483751 |
Snippet | Sit-to-stand transition phase identification is vital in the control of a wearable exoskeleton robot for assisting patients to stand stably. In this study, we... |
SourceID | doaj proquest pubmed crossref ieee |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1068 |
SubjectTerms | Acceleration Algorithms Angular velocity attention mechanism bidirectional long short-term memory (Bi-LSTM) Classification algorithms convolutional neural network (CNN) Convolutional neural networks Deep learning Exoskeleton Exoskeleton Device Exoskeletons Feature extraction Force Humans inertial measurement unit (IMU) Inertial sensing devices Learning algorithms Legged locomotion Machine learning Machine learning algorithms Momentum transfer Movement phase identification Phases Rehabilitation robots Sensors Sit-to-stand transition Sitting Position Standing Position Velocity Wearable Electronic Devices Wearable technology |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoD6gXngUCBRkJuKAsjuM48XFbbVUQG6HuVu0tsp2JumKboG6WAyd-OmPnQUEq4hZlvXEe38x8Y8-DkDdGWNSLOgmTKhGhiG0Wal7aUBg0LsCsSkuX7zzP5cmZ-HSRXPTJ6j4XBgB88BlM3KHfyy8bu3VLZSjhaD6Rr--QHfTcumStccsglb6sJ0qwm5OzIUOGqQ_LfHE6Q1-Qi0kcS-cP7pG7zjWLI9_m7bdB8nX7-0Yrt3NOb3uO75N8uOsu5OTrZNuaif3xV0HH_36sB-Rez0LptIPNQ3IH6kfk7c2Kw3TZlRug7-jpH8W8H5OfU5o332FNj_I8PFx9XizndFZv4Mqsgbreamt6vmov6bRtu1hKOgeXX7zaXFGkyHSxasO2CV3_4pJ-uUQzSrt04apfP6Q-joGeoxC6xC76sXbB33hPC_S5m-vNPjk7ni2PTsK-kUNoheRtCLG1SkRgK9QnsTEZGKWFrrTRilVKQaoqVkltOCsZBwlxmfqzkALXSDGfkN26qeEZoZEyhkmtsrJCx1IjWZGpwYukSDNiPApINHzNwvYvxjXbWBfe22Gq8GAoHBiKHgwBeT_-51tX4-Ofow8dSMaRrj63P4HftOjFvUh4WmagEiWYELpkmZWRUUZKwSyq1Cog-w4HN6brIBCQgwFzRa9MNgVHHxbRqmQWkNfjz6gG3N6OrqHZujE8y5C9iiQgTzusjhcfkP78lklfkD33gN3C0gHZba-38BKpVmteeRH7BUhXIag priority: 102 providerName: IEEE |
Title | A Novel CNN-BiLSTM Ensemble Model With Attention Mechanism for Sit-to-Stand Phase Identification Using Wearable Inertial Sensors |
URI | https://ieeexplore.ieee.org/document/10439259 https://www.ncbi.nlm.nih.gov/pubmed/38373135 https://www.proquest.com/docview/2956383968 https://www.proquest.com/docview/2928856045 https://doaj.org/article/527d8e9594044ad08c61b9b6640c301f |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQHwVCSzVIwAWZOontxMdttVVBbIS6W7W3yHZsdaVtgropZ3464zi72h6AC7fIcRzLnvG8Z3tmCHlvuMV1UQsqvOCU57akOmss5QaNi2NWFU3wd55V8vySf70W1zupvsKdsBgeOA7csciKpnRKKM441w0rrUyNMlJyZlE4fVh90eZtyNR4flBIUWxcZJg6XlTziymSwYx_znMZCOEDMzRE6x_Tq_wZaQ4W5-wpeTJCRZjELj4jj1z7nHzYDQsMixgTAD7CxYOI2y_IrwlU3U-3gtOqoifLb_PFDKbt2t2alYOQAG0FV8v-BiZ9Hy88wswFJ-Dl-hYQx8J82dO-oyHJcAPfb9DWQfTp9eMmHwyXDeAKNSV4X8GXNtzQxj7NkRh3d-t9cnk2XZye0zHbArVcZj11ubWKp856VPrcmNIZpbn22mjFvFKuUJ55qU3GGpY56fKmGEpd4TKNOPAl2Wu71r0mkCpjmNSqbDyyP42IQhYGGykQC-T4lJB0M_i1HQcmZMRY1QMlYaoeJqwOE1aPE5aQT9tvfsRAHH-tfRLmdFszBNEeClC06lG06n-JVkL2g0Ts_A7RG9LFhBxuRKQeNX5dZ0g0ke0rWSbk3fY16mo4gNGt6-5DnawsEWJykZBXUbS2jYedgjzNxZv_0fMD8jiMRtwqOiR7_d29e4vgqTdHg54cDX6OvwEM6BQJ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1bb9MwFLamIcFeuA4IDDAS4wWlOI7jxA88dKNTy9YKrZ22t2A7jlbRJWhJQfDEH-Gv8Ns4dtIwkMbbJN6ixLn45Ds3-1wQeqGYBrkoIz_KI-azUCe-pJn2mQLlYogWcWbznccTPjxi706ikzX0o8uFMca44DPTs4duLz8r9dIulQGHg_oEe72Nodw3X7-Ah1a9Gb2F37lN6d5gtjv02yYCvmac1r4JtRYsMDoHLIdKJUYJyWQulRQkF8LEIic5l4qSjFDDTZjF7qyJDZWBrbUEEv4aGBoRbdLDuk2KmLtCoiAz7CwpWeXkEPF6NpkeDsD7pKwXhtx6oBvounUGw8A1lvutAl2ngLa1y-VWrtN2e7fQzxWdmiCXj71lrXr6218lJP9bQt5GN1s7G_cbxriD1kxxF21frKmMZ01BBfwSH_5Rrvwe-t7Hk_KzWeDdycTfmR9MZ2M8KCpzphYG2-5xC3w8r09xv66baFE8NjaDel6dYXAC8HRe-3Xp2w7NGX5_CoYCbhKi83aFFLtIDXwMdLGpa3hU2PB2-KapKaryvNpER1dCnPtovSgL8xDhQChFuBRJloPrLMEc47GCh8RgSIVw5KFghZ5Ut4Sx7UQWqfPniEgd-FILvrQFn4dedfd8aqqY_HP0jgVlN9JWIHcnAENpK9DSiMZZYkQkGGFMZiTRPFBCcc6IBqWRe2jT4u7C6xrIeWhrhfG0FZdVSsFLB-4QPPHQ8-4yCDq7eyULUy7tGJokYJ-zyEMPGt7oHr7irEeXvPQZujGcjQ_Sg9Fk_zHasJNtltG20Hp9vjRPwLCs1VPH3hh9uGo2-AUWt4Jv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+CNN-BiLSTM+Ensemble+Model+With+Attention+Mechanism+for+Sit-to-Stand+Phase+Identification+Using+Wearable+Inertial+Sensors&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Chen%2C+Xin&rft.au=Cai%2C+Shibo&rft.au=Yu%2C+Longjie&rft.au=Li%2C+Xiaoling&rft.date=2024&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=32&rft.spage=1068&rft.epage=1077&rft_id=info:doi/10.1109%2FTNSRE.2024.3366907&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2024_3366907 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |