A Novel CNN-BiLSTM Ensemble Model With Attention Mechanism for Sit-to-Stand Phase Identification Using Wearable Inertial Sensors

Sit-to-stand transition phase identification is vital in the control of a wearable exoskeleton robot for assisting patients to stand stably. In this study, we aim to propose a method for segmenting and identifying the sit-to-stand phase using two inertial sensors. First, we defined the sit-to-stand...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 1068 - 1077
Main Authors Chen, Xin, Cai, Shibo, Yu, Longjie, Li, Xiaoling, Fan, Bingfei, Du, Mingyu, Liu, Tao, Bao, Guanjun
Format Journal Article
LanguageEnglish
Published United States IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sit-to-stand transition phase identification is vital in the control of a wearable exoskeleton robot for assisting patients to stand stably. In this study, we aim to propose a method for segmenting and identifying the sit-to-stand phase using two inertial sensors. First, we defined the sit-to-stand transition into five phases, namely, the initial sitting phase, the flexion momentum phase, the momentum transfer phase, the extension phase, and the stable standing phase based on the preprocessed acceleration and angular velocity data. We then employed a threshold method to recognize the initial sitting and the stable standing phases. Finally, we designed a novel CNN-BiLSTM-Attention algorithm to identify the three transition phases, namely, the flexion momentum phase, the momentum transfer phase, and the extension phase. Fifteen subjects were recruited to perform sit-to-stand transition experiments under a specific paradigm. A combination of the acceleration and angular velocity data features for the sit-to-stand transition phase identification were validated for the model performance improvements. The integration of the CNN, Bi-LSTM, and Attention modules demonstrated the reasonableness of the proposed algorithms. The experimental results showed that the proposed CNN-BiLSTM-Attention algorithm achieved the highest average classification accuracy of 99.5% for all five phases when compared to both traditional machine learning algorithms and deep learning algorithms on our customized dataset (STS-PD). The proposed sit-to-stand phase recognition algorithm could serve as a foundation for the control of wearable exoskeletons and is important for the further development of intelligent wearable exoskeleton rehabilitation robots.
AbstractList Sit-to-stand transition phase identification is vital in the control of a wearable exoskeleton robot for assisting patients to stand stably. In this study, we aim to propose a method for segmenting and identifying the sit-to-stand phase using two inertial sensors. First, we defined the sit-to-stand transition into five phases, namely, the initial sitting phase, the flexion momentum phase, the momentum transfer phase, the extension phase, and the stable standing phase based on the preprocessed acceleration and angular velocity data. We then employed a threshold method to recognize the initial sitting and the stable standing phases. Finally, we designed a novel CNN-BiLSTM-Attention algorithm to identify the three transition phases, namely, the flexion momentum phase, the momentum transfer phase, and the extension phase. Fifteen subjects were recruited to perform sit-to-stand transition experiments under a specific paradigm. A combination of the acceleration and angular velocity data features for the sit-to-stand transition phase identification were validated for the model performance improvements. The integration of the CNN, Bi-LSTM, and Attention modules demonstrated the reasonableness of the proposed algorithms. The experimental results showed that the proposed CNN-BiLSTM-Attention algorithm achieved the highest average classification accuracy of 99.5% for all five phases when compared to both traditional machine learning algorithms and deep learning algorithms on our customized dataset (STS-PD). The proposed sit-to-stand phase recognition algorithm could serve as a foundation for the control of wearable exoskeletons and is important for the further development of intelligent wearable exoskeleton rehabilitation robots.
Sit-to-stand transition phase identification is vital in the control of a wearable exoskeleton robot for assisting patients to stand stably. In this study, we aim to propose a method for segmenting and identifying the sit-to-stand phase using two inertial sensors. First, we defined the sit-to-stand transition into five phases, namely, the initial sitting phase, the flexion momentum phase, the momentum transfer phase, the extension phase, and the stable standing phase based on the preprocessed acceleration and angular velocity data. We then employed a threshold method to recognize the initial sitting and the stable standing phases. Finally, we designed a novel CNN-BiLSTM-Attention algorithm to identify the three transition phases, namely, the flexion momentum phase, the momentum transfer phase, and the extension phase. Fifteen subjects were recruited to perform sit-to-stand transition experiments under a specific paradigm. A combination of the acceleration and angular velocity data features for the sit-to-stand transition phase identification were validated for the model performance improvements. The integration of the CNN, Bi-LSTM, and Attention modules demonstrated the reasonableness of the proposed algorithms. The experimental results showed that the proposed CNN-BiLSTM-Attention algorithm achieved the highest average classification accuracy of 99.5% for all five phases when compared to both traditional machine learning algorithms and deep learning algorithms on our customized dataset (STS-PD). The proposed sit-to-stand phase recognition algorithm could serve as a foundation for the control of wearable exoskeletons and is important for the further development of intelligent wearable exoskeleton rehabilitation robots.Sit-to-stand transition phase identification is vital in the control of a wearable exoskeleton robot for assisting patients to stand stably. In this study, we aim to propose a method for segmenting and identifying the sit-to-stand phase using two inertial sensors. First, we defined the sit-to-stand transition into five phases, namely, the initial sitting phase, the flexion momentum phase, the momentum transfer phase, the extension phase, and the stable standing phase based on the preprocessed acceleration and angular velocity data. We then employed a threshold method to recognize the initial sitting and the stable standing phases. Finally, we designed a novel CNN-BiLSTM-Attention algorithm to identify the three transition phases, namely, the flexion momentum phase, the momentum transfer phase, and the extension phase. Fifteen subjects were recruited to perform sit-to-stand transition experiments under a specific paradigm. A combination of the acceleration and angular velocity data features for the sit-to-stand transition phase identification were validated for the model performance improvements. The integration of the CNN, Bi-LSTM, and Attention modules demonstrated the reasonableness of the proposed algorithms. The experimental results showed that the proposed CNN-BiLSTM-Attention algorithm achieved the highest average classification accuracy of 99.5% for all five phases when compared to both traditional machine learning algorithms and deep learning algorithms on our customized dataset (STS-PD). The proposed sit-to-stand phase recognition algorithm could serve as a foundation for the control of wearable exoskeletons and is important for the further development of intelligent wearable exoskeleton rehabilitation robots.
Author Chen, Xin
Du, Mingyu
Cai, Shibo
Li, Xiaoling
Bao, Guanjun
Yu, Longjie
Fan, Bingfei
Liu, Tao
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0009-0004-8879-4219
  surname: Chen
  fullname: Chen, Xin
  email: chenxin@zjut.edu.cn
  organization: College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
– sequence: 2
  givenname: Shibo
  orcidid: 0000-0003-0174-3300
  surname: Cai
  fullname: Cai, Shibo
  email: ccc@zjut.edu.cn
  organization: College of Mechanical Engineering and the Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
– sequence: 3
  givenname: Longjie
  surname: Yu
  fullname: Yu, Longjie
  email: yulongjie0404@163.com
  organization: College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
– sequence: 4
  givenname: Xiaoling
  orcidid: 0009-0001-0037-1085
  surname: Li
  fullname: Li, Xiaoling
  email: 18379438503@163.com
  organization: College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
– sequence: 5
  givenname: Bingfei
  orcidid: 0000-0002-9531-3549
  surname: Fan
  fullname: Fan, Bingfei
  email: bingfeifan@zjut.edu.cn
  organization: College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
– sequence: 6
  givenname: Mingyu
  surname: Du
  fullname: Du, Mingyu
  email: dumingyu@zjut.edu.cn
  organization: College of Mechanical Engineering and the Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
– sequence: 7
  givenname: Tao
  orcidid: 0000-0002-2797-0264
  surname: Liu
  fullname: Liu, Tao
  email: liutao@zju.edu.cn
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
– sequence: 8
  givenname: Guanjun
  orcidid: 0000-0002-7184-3510
  surname: Bao
  fullname: Bao, Guanjun
  email: gjbao@zjut.edu.cn
  organization: College of Mechanical Engineering and the Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38373135$$D View this record in MEDLINE/PubMed
BookMark eNp9kkuP0zAUhSM0iHnAH0AIWWLDJsWvOPGyVAUqtQWRjmZpOc7N1FViD7aLxI6fTvoYhGbBytb1d47u9T3X2YXzDrLsNcETQrD8sFnX3-cTiimfMCaExOWz7IoURZVjSvDF4c54zhnFl9l1jDuMSSmK8kV2ySpWMsKKq-z3FK39T-jRbL3OP9plvVmhuYswND2glW_HlzubtmiaErhkvUMrMFvtbBxQ5wOqbcqTz-ukXYu-bXUEtGgPZGeNPvK30bp7dAc66IPnwkFIVveoBhd9iC-z553uI7w6nzfZ7af5ZvYlX379vJhNl7nhgqYcmDGSEzBdyTBrmgoaqbnudKMl7qSEUna4E7qhuMUUBLC2PFahBKqJZDfZ4uTber1TD8EOOvxSXlt1LPhwr_TYmOlBFbRsK5CF5Jhz3eLKCNLIRgiODcOkG73en7wegv-xh5jUYKOBvtcO_D4qKmlVFQLzYkTfPUF3fh_cOOlIFWJchBTVSL09U_tmgPZve497GoHqBJjgYwzQKWPT8X9T0LZXBKtDJNQxEuoQCXWOxCilT6SP7v8VvTmJLAD8I-BM0kKyP1kUwOo
CODEN ITNSB3
CitedBy_id crossref_primary_10_1088_2057_1976_ad992c
crossref_primary_10_1109_JBHI_2024_3488528
crossref_primary_10_1016_j_enconman_2025_119485
crossref_primary_10_3390_agriculture14091556
crossref_primary_10_1016_j_measurement_2024_115981
crossref_primary_10_1109_JBHI_2024_3510860
crossref_primary_10_1016_j_sna_2024_116178
crossref_primary_10_1080_1206212X_2024_2426501
crossref_primary_10_1123_jmpb_2024_0046
crossref_primary_10_1109_LRA_2024_3506220
Cites_doi 10.1016/j.gaitpost.2023.07.283
10.2522/ptj.20060378
10.1109/TNSRE.2023.3297737
10.1109/ACCESS.2020.3025938
10.1093/comjnl/bxad035
10.1007/978-3-642-35395-6_30
10.1007/s42235-022-00289-8
10.1109/ACCESS.2020.2982225
10.1145/1964897.1964918
10.1016/j.jbiomech.2020.110046
10.1016/j.patrec.2018.03.020
10.1007/978-3-030-59830-3_52
10.1186/s12984-020-00692-4
10.48550/ARXIV.1706.03762
10.1111/ggi.13874
10.1093/ptj/70.10.638
10.1109/TNSRE.2022.3169962
10.1109/TSMC.2016.2562509
10.1016/0268-0033(94)90004-3
10.1016/0021-9290(90)90005-N
10.1007/s11042-020-10447-x
10.1016/j.jbiomech.2021.110323
10.1016/j.bspc.2021.103364
10.1007/s11042-022-13716-z
10.1109/LRA.2022.3181351
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2024.3366907
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1077
ExternalDocumentID oai_doaj_org_article_527d8e9594044ad08c61b9b6640c301f
38373135
10_1109_TNSRE_2024_3366907
10439259
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Key Research and Development Program of Zhejiang Province
  grantid: 2023C03159
  funderid: 10.13039/100022963
– fundername: National Natural Science Foundation of China
  grantid: 62373326; 52305038
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2022YFC3601702
  funderid: 10.13039/501100012166
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LQ23E050019
  funderid: 10.13039/501100004731
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c462t-e3cc941ecf7303bb8eb9a4afaba90f99e79f0f6ab20d02e6e3d799e79e7e2a193
IEDL.DBID DOA
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:30:24 EDT 2025
Fri Jul 11 09:50:35 EDT 2025
Fri Jul 25 05:06:32 EDT 2025
Wed Feb 19 01:58:14 EST 2025
Thu Apr 24 23:01:25 EDT 2025
Tue Jul 01 00:43:30 EDT 2025
Wed Aug 27 02:11:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-e3cc941ecf7303bb8eb9a4afaba90f99e79f0f6ab20d02e6e3d799e79e7e2a193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9531-3549
0009-0004-8879-4219
0000-0002-2797-0264
0009-0001-0037-1085
0000-0002-7184-3510
0000-0003-0174-3300
OpenAccessLink https://doaj.org/article/527d8e9594044ad08c61b9b6640c301f
PMID 38373135
PQID 2956383968
PQPubID 85423
PageCount 10
ParticipantIDs ieee_primary_10439259
doaj_primary_oai_doaj_org_article_527d8e9594044ad08c61b9b6640c301f
crossref_citationtrail_10_1109_TNSRE_2024_3366907
proquest_miscellaneous_2928856045
pubmed_primary_38373135
proquest_journals_2956383968
crossref_primary_10_1109_TNSRE_2024_3366907
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Roggen (ref27) 2012
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Liu (ref28) 2021
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Marco (ref13) 2019
References_xml – ident: ref2
  doi: 10.1016/j.gaitpost.2023.07.283
– ident: ref10
  doi: 10.2522/ptj.20060378
– ident: ref4
  doi: 10.1109/TNSRE.2023.3297737
– ident: ref18
  doi: 10.1109/ACCESS.2020.3025938
– ident: ref23
  doi: 10.1093/comjnl/bxad035
– ident: ref25
  doi: 10.1007/978-3-642-35395-6_30
– ident: ref5
  doi: 10.1007/s42235-022-00289-8
– ident: ref19
  doi: 10.1109/ACCESS.2020.2982225
– ident: ref26
  doi: 10.1145/1964897.1964918
– ident: ref11
  doi: 10.1016/j.jbiomech.2020.110046
– ident: ref16
  doi: 10.1016/j.patrec.2018.03.020
– ident: ref12
  doi: 10.1007/978-3-030-59830-3_52
– ident: ref14
  doi: 10.1186/s12984-020-00692-4
– ident: ref24
  doi: 10.48550/ARXIV.1706.03762
– ident: ref6
  doi: 10.1111/ggi.13874
– ident: ref7
  doi: 10.1093/ptj/70.10.638
– ident: ref1
  doi: 10.1109/TNSRE.2022.3169962
– ident: ref17
  doi: 10.1109/TSMC.2016.2562509
– year: 2021
  ident: ref28
  article-title: Gated transformer networks for multivariate time series classification
  publication-title: arXiv:2103.14438
– ident: ref8
  doi: 10.1016/0268-0033(94)90004-3
– ident: ref9
  doi: 10.1016/0021-9290(90)90005-N
– ident: ref15
  doi: 10.1007/s11042-020-10447-x
– ident: ref21
  doi: 10.1016/j.jbiomech.2021.110323
– ident: ref22
  doi: 10.1016/j.bspc.2021.103364
– volume-title: Opportunity Activity Recognition
  year: 2012
  ident: ref27
– year: 2019
  ident: ref13
  article-title: Sit-to-stand phases detection by inertial sensors
– ident: ref20
  doi: 10.1007/s11042-022-13716-z
– ident: ref3
  doi: 10.1109/LRA.2022.3181351
SSID ssj0017657
Score 2.483751
Snippet Sit-to-stand transition phase identification is vital in the control of a wearable exoskeleton robot for assisting patients to stand stably. In this study, we...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1068
SubjectTerms Acceleration
Algorithms
Angular velocity
attention mechanism
bidirectional long short-term memory (Bi-LSTM)
Classification algorithms
convolutional neural network (CNN)
Convolutional neural networks
Deep learning
Exoskeleton
Exoskeleton Device
Exoskeletons
Feature extraction
Force
Humans
inertial measurement unit (IMU)
Inertial sensing devices
Learning algorithms
Legged locomotion
Machine learning
Machine learning algorithms
Momentum transfer
Movement
phase identification
Phases
Rehabilitation robots
Sensors
Sit-to-stand transition
Sitting Position
Standing Position
Velocity
Wearable Electronic Devices
Wearable technology
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoD6gXngUCBRkJuKAsjuM48XFbbVUQG6HuVu0tsp2JumKboG6WAyd-OmPnQUEq4hZlvXEe38x8Y8-DkDdGWNSLOgmTKhGhiG0Wal7aUBg0LsCsSkuX7zzP5cmZ-HSRXPTJ6j4XBgB88BlM3KHfyy8bu3VLZSjhaD6Rr--QHfTcumStccsglb6sJ0qwm5OzIUOGqQ_LfHE6Q1-Qi0kcS-cP7pG7zjWLI9_m7bdB8nX7-0Yrt3NOb3uO75N8uOsu5OTrZNuaif3xV0HH_36sB-Rez0LptIPNQ3IH6kfk7c2Kw3TZlRug7-jpH8W8H5OfU5o332FNj_I8PFx9XizndFZv4Mqsgbreamt6vmov6bRtu1hKOgeXX7zaXFGkyHSxasO2CV3_4pJ-uUQzSrt04apfP6Q-joGeoxC6xC76sXbB33hPC_S5m-vNPjk7ni2PTsK-kUNoheRtCLG1SkRgK9QnsTEZGKWFrrTRilVKQaoqVkltOCsZBwlxmfqzkALXSDGfkN26qeEZoZEyhkmtsrJCx1IjWZGpwYukSDNiPApINHzNwvYvxjXbWBfe22Gq8GAoHBiKHgwBeT_-51tX4-Ofow8dSMaRrj63P4HftOjFvUh4WmagEiWYELpkmZWRUUZKwSyq1Cog-w4HN6brIBCQgwFzRa9MNgVHHxbRqmQWkNfjz6gG3N6OrqHZujE8y5C9iiQgTzusjhcfkP78lklfkD33gN3C0gHZba-38BKpVmteeRH7BUhXIag
  priority: 102
  providerName: IEEE
Title A Novel CNN-BiLSTM Ensemble Model With Attention Mechanism for Sit-to-Stand Phase Identification Using Wearable Inertial Sensors
URI https://ieeexplore.ieee.org/document/10439259
https://www.ncbi.nlm.nih.gov/pubmed/38373135
https://www.proquest.com/docview/2956383968
https://www.proquest.com/docview/2928856045
https://doaj.org/article/527d8e9594044ad08c61b9b6640c301f
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQHwVCSzVIwAWZOontxMdttVVBbIS6W7W3yHZsdaVtgropZ3464zi72h6AC7fIcRzLnvG8Z3tmCHlvuMV1UQsqvOCU57akOmss5QaNi2NWFU3wd55V8vySf70W1zupvsKdsBgeOA7csciKpnRKKM441w0rrUyNMlJyZlE4fVh90eZtyNR4flBIUWxcZJg6XlTziymSwYx_znMZCOEDMzRE6x_Tq_wZaQ4W5-wpeTJCRZjELj4jj1z7nHzYDQsMixgTAD7CxYOI2y_IrwlU3U-3gtOqoifLb_PFDKbt2t2alYOQAG0FV8v-BiZ9Hy88wswFJ-Dl-hYQx8J82dO-oyHJcAPfb9DWQfTp9eMmHwyXDeAKNSV4X8GXNtzQxj7NkRh3d-t9cnk2XZye0zHbArVcZj11ubWKp856VPrcmNIZpbn22mjFvFKuUJ55qU3GGpY56fKmGEpd4TKNOPAl2Wu71r0mkCpjmNSqbDyyP42IQhYGGykQC-T4lJB0M_i1HQcmZMRY1QMlYaoeJqwOE1aPE5aQT9tvfsRAHH-tfRLmdFszBNEeClC06lG06n-JVkL2g0Ts_A7RG9LFhBxuRKQeNX5dZ0g0ke0rWSbk3fY16mo4gNGt6-5DnawsEWJykZBXUbS2jYedgjzNxZv_0fMD8jiMRtwqOiR7_d29e4vgqTdHg54cDX6OvwEM6BQJ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1bb9MwFLamIcFeuA4IDDAS4wWlOI7jxA88dKNTy9YKrZ22t2A7jlbRJWhJQfDEH-Gv8Ns4dtIwkMbbJN6ixLn45Ds3-1wQeqGYBrkoIz_KI-azUCe-pJn2mQLlYogWcWbznccTPjxi706ikzX0o8uFMca44DPTs4duLz8r9dIulQGHg_oEe72Nodw3X7-Ah1a9Gb2F37lN6d5gtjv02yYCvmac1r4JtRYsMDoHLIdKJUYJyWQulRQkF8LEIic5l4qSjFDDTZjF7qyJDZWBrbUEEv4aGBoRbdLDuk2KmLtCoiAz7CwpWeXkEPF6NpkeDsD7pKwXhtx6oBvounUGw8A1lvutAl2ngLa1y-VWrtN2e7fQzxWdmiCXj71lrXr6218lJP9bQt5GN1s7G_cbxriD1kxxF21frKmMZ01BBfwSH_5Rrvwe-t7Hk_KzWeDdycTfmR9MZ2M8KCpzphYG2-5xC3w8r09xv66baFE8NjaDel6dYXAC8HRe-3Xp2w7NGX5_CoYCbhKi83aFFLtIDXwMdLGpa3hU2PB2-KapKaryvNpER1dCnPtovSgL8xDhQChFuBRJloPrLMEc47GCh8RgSIVw5KFghZ5Ut4Sx7UQWqfPniEgd-FILvrQFn4dedfd8aqqY_HP0jgVlN9JWIHcnAENpK9DSiMZZYkQkGGFMZiTRPFBCcc6IBqWRe2jT4u7C6xrIeWhrhfG0FZdVSsFLB-4QPPHQ8-4yCDq7eyULUy7tGJokYJ-zyEMPGt7oHr7irEeXvPQZujGcjQ_Sg9Fk_zHasJNtltG20Hp9vjRPwLCs1VPH3hh9uGo2-AUWt4Jv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+CNN-BiLSTM+Ensemble+Model+With+Attention+Mechanism+for+Sit-to-Stand+Phase+Identification+Using+Wearable+Inertial+Sensors&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Chen%2C+Xin&rft.au=Cai%2C+Shibo&rft.au=Yu%2C+Longjie&rft.au=Li%2C+Xiaoling&rft.date=2024&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=32&rft.spage=1068&rft.epage=1077&rft_id=info:doi/10.1109%2FTNSRE.2024.3366907&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2024_3366907
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon