Probing Functional Changes in Exocyst Configuration with Monoclonal Antibodies
Spatial regulation of exocytosis relies on the exocyst, a hetero-octameric protein complex that tethers vesicles to fusion sites at the plasma membrane. Nevertheless, our understanding of mechanisms regulating exocyst assembly/disassembly, localization, and function are incomplete. Here, we have exp...
Saved in:
Published in | Frontiers in cell and developmental biology Vol. 4; p. 51 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
03.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spatial regulation of exocytosis relies on the exocyst, a hetero-octameric protein complex that tethers vesicles to fusion sites at the plasma membrane. Nevertheless, our understanding of mechanisms regulating exocyst assembly/disassembly, localization, and function are incomplete. Here, we have exploited a panel of anti-Sec6 monoclonal antibodies (mAbs) to probe possible configurational changes accompanying transitions in exocyst function in epithelial MDCK cells. Sec6 is quantitatively associated with Sec8 in high molecular weight complexes, as shown by gel filtration and co-immunoprecipitation studies. We mapped epitopes recognized by more than 20 distinct mAbs to one of six Sec6 segments. Surprisingly, mAbs that bound epitopes in each segment labeled distinct subcellular structures. In general, antibodies to epitopes in N-terminal domains labeled Sec6 in either cytosolic or nuclear pools, whereas those that bound epitopes in C-terminal domains labeled membrane-associated Sec6. In this latter group, we identified antibodies that labeled distinct Sec6 populations at the apical junctional complex, desmosomes, endoplasmic reticulum and vimentin-type intermediate filaments. That each antibody was specific was verified by both Sec6 RNAi and competition with fusion proteins containing each domain. Comparison of non-polarized and polarized cells revealed that many Sec6 epitopes either redistribute or become concealed during epithelial polarization. Transitions in exocyst configurations may be regulated in part by the actions of Ral GTPases, because the exposure of Sec6 C-terminal domain epitopes at the plasma membrane is significantly reduced upon RalA RNAi. To determine whether spatio-temporal changes in epitope accessibility was correlated with differential stability of interactions between Sec6 and other exocyst subunits, we quantified relative amounts of each subunit that co-immunoprecipitated with Sec6 when antibodies to N-terminal or C-terminal epitopes were used. Antibodies to Sec6NT co-precipitated substantially more Sec5, -10, -15, Exo70 and -84 than did those to Sec6CT. In contrast, antibodies to Sec6CT co-precipitated more Sec3 and Sec8 than did those to Sec6NT. These results are consistent with a model in which exocyst activation during periods of rapid membrane expansion is accompanied by molecular rearrangements within the holocomplex or association with accessory proteins, which expose the Sec6 C-terminal domain when the complex is membrane-bound and conceal it when the complex is cytoplasmic. |
---|---|
AbstractList | Spatial regulation of exocytosis relies on the exocyst, a hetero-octameric protein complex that tethers vesicles to fusion sites at the plasma membrane. Nevertheless, our understanding of mechanisms regulating exocyst assembly/disassembly, localization and function are incomplete. Here, we have exploited a panel of anti-Sec6 monoclonal antibodies (mAbs) to probe possible configurational changes accompanying transitions in exocyst function in epithelial MDCK cells. Sec6 is quantitatively associated with Sec8 in high molecular weight complexes, as shown by gel filtration and co-immunoprecipitation studies. We mapped epitopes recognized by more than twenty distinct mAbs to one of six Sec6 segments. Surprisingly, mAbs that bound epitopes in each segment labeled distinct subcellular structures. Antibodies to epitopes in N-terminal domains labeled Sec6 in either cytosolic or nuclear pools, whereas those that bound epitopes in C-terminal domains labeled membrane-associated Sec6. In this latter group, we identified antibodies that labeled distinct Sec6 populations at the apical junctional complex, desmosomes, endoplasmic reticulum and vimentin-type intermediate filaments. That each antibody was specific was verified by both Sec6 RNAi and competition with fusion proteins containing each domain. Comparison of non-polarized and polarized cells revealed that many Sec6 epitopes either redistribute or become concealed during epithelial polarization. Transitions in exocyst configurations may be regulated in part by the actions of Ral GTPases, because the exposure of Sec6 C-terminal domain epitopes at the plasma membrane is significantly reduced upon RalA RNAi. To determine whether spatio-temporal changes in epitope accessibility was correlated with differential stability of interactions between Sec6 and other exocyst subunits, we quantified relative amounts of each subunit that co-immunoprecipitated with Sec6 when antibodies to N-terminal or C-terminal epitopes were used. Antibodies to Sec6NT co-precipitated substantially more Sec5, -10, -15, Exo70 and -84 than did those to Sec6CT. In contrast, antibodies to Sec6CT co-precipitated more Sec3 and Sec8 than did those to Sec6NT. These results are consistent with a model in which exocyst activation during periods of rapid membrane expansion is accompanied by molecular rearrangements within the holocomplex or association with accessory proteins, which expose the Sec6 C-terminal domain when the complex is membrane-bound and conceal it when the complex is cytoplasmic. Spatial regulation of exocytosis relies on the exocyst, a hetero-octameric protein complex that tethers vesicles to fusion sites at the plasma membrane. Nevertheless, our understanding of mechanisms regulating exocyst assembly/disassembly, localization, and function are incomplete. Here, we have exploited a panel of anti-Sec6 monoclonal antibodies (mAbs) to probe possible configurational changes accompanying transitions in exocyst function in epithelial MDCK cells. Sec6 is quantitatively associated with Sec8 in high molecular weight complexes, as shown by gel filtration and co-immunoprecipitation studies. We mapped epitopes recognized by more than 20 distinct mAbs to one of six Sec6 segments. Surprisingly, mAbs that bound epitopes in each segment labeled distinct subcellular structures. In general, antibodies to epitopes in N-terminal domains labeled Sec6 in either cytosolic or nuclear pools, whereas those that bound epitopes in C-terminal domains labeled membrane-associated Sec6. In this latter group, we identified antibodies that labeled distinct Sec6 populations at the apical junctional complex, desmosomes, endoplasmic reticulum and vimentin-type intermediate filaments. That each antibody was specific was verified by both Sec6 RNAi and competition with fusion proteins containing each domain. Comparison of non-polarized and polarized cells revealed that many Sec6 epitopes either redistribute or become concealed during epithelial polarization. Transitions in exocyst configurations may be regulated in part by the actions of Ral GTPases, because the exposure of Sec6 C-terminal domain epitopes at the plasma membrane is significantly reduced upon RalA RNAi. To determine whether spatio-temporal changes in epitope accessibility was correlated with differential stability of interactions between Sec6 and other exocyst subunits, we quantified relative amounts of each subunit that co-immunoprecipitated with Sec6 when antibodies to N-terminal or C-terminal epitopes were used. Antibodies to Sec6NT co-precipitated substantially more Sec5, -10, -15, Exo70 and -84 than did those to Sec6CT. In contrast, antibodies to Sec6CT co-precipitated more Sec3 and Sec8 than did those to Sec6NT. These results are consistent with a model in which exocyst activation during periods of rapid membrane expansion is accompanied by molecular rearrangements within the holocomplex or association with accessory proteins, which expose the Sec6 C-terminal domain when the complex is membrane-bound and conceal it when the complex is cytoplasmic. |
Author | Hsu, Shu-Chan Yeaman, Charles Inamdar, Shivangi M |
AuthorAffiliation | 2 Department of Anatomy and Cell Biology, University of Iowa Iowa City, IA, USA 3 Department of Cell Biology and Neuroscience, Rutgers University Piscataway, NJ, USA 1 Molecular and Cellular Biology Program, University of Iowa Iowa City, IA, USA |
AuthorAffiliation_xml | – name: 2 Department of Anatomy and Cell Biology, University of Iowa Iowa City, IA, USA – name: 3 Department of Cell Biology and Neuroscience, Rutgers University Piscataway, NJ, USA – name: 1 Molecular and Cellular Biology Program, University of Iowa Iowa City, IA, USA |
Author_xml | – sequence: 1 givenname: Shivangi M surname: Inamdar fullname: Inamdar, Shivangi M organization: Molecular and Cellular Biology Program, University of IowaIowa City, IA, USA; Department of Anatomy and Cell Biology, University of IowaIowa City, IA, USA – sequence: 2 givenname: Shu-Chan surname: Hsu fullname: Hsu, Shu-Chan organization: Department of Cell Biology and Neuroscience, Rutgers University Piscataway, NJ, USA – sequence: 3 givenname: Charles surname: Yeaman fullname: Yeaman, Charles organization: Molecular and Cellular Biology Program, University of IowaIowa City, IA, USA; Department of Anatomy and Cell Biology, University of IowaIowa City, IA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27376061$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUtP3DAURq0KVCiw7wplyWamfsfZIKERtEi0sACpO8uxrzNGGRvshMe_b2aGIlj5yvf7ji2db2gnpggIfSd4zphqfngLfT-nmMg5xliQL2if0kbOJON_dz7Me-iolPspQqiohWJf0R6tWS2xJPvoz01ObYhddTFGO4QUTV8tliZ2UKoQq_OXZF_LUC1S9KEbs1lHqucwLKvfKSbbbwpncQhtcgHKIdr1pi9w9HYeoLuL89vFr9nV9c_LxdnVzHJJh5nzrZICi4YSIx3U1IBitXKOt8oqK5mytZCEOksIpcbaGhwGXjPZiinh2QG63HJdMvf6IYeVya86maA3Fyl32uQh2B40tJ4SJo0DA5x732AHjnrXOi6xE25inW5ZD2O7AmchDtn0n6CfNzEsdZeeNFcNabiaACdvgJweRyiDXoWylmMipLFoojBRkggppyjeRm1OpWTw788QrNdW9caqXlvVG6tT5fjj994L_x2yf3kYozY |
CitedBy_id | crossref_primary_10_1016_j_celrep_2021_109491 crossref_primary_10_1016_j_tibs_2018_06_012 crossref_primary_10_1083_jcb_202205137 crossref_primary_10_1002_pro_3863 crossref_primary_10_1111_jipb_13486 |
Cites_doi | 10.1074/jbc.M115.673806 10.1091/mbc.E08-09-0967 10.1242/jcs.016881 10.1016/S0306-4522(03)00065-4 10.1083/jcb.200107088 10.1242/jcs.02849 10.1038/ncb2226 10.1242/jcs.00893 10.1091/mbc.E14-04-0907 10.1016/S0092-8674(00)81435-X 10.1089/153685903322286575 10.1016/j.devcel.2012.06.014 10.1091/mbc.E15-09-0651 10.1016/j.cell.2010.12.018 10.1038/nsmb1097 10.1016/j.devcel.2005.06.010 10.1091/mbc.E08-07-0741 10.1083/jcb.201204090 10.1091/mbc.E09-06-0459 10.1038/emboj.2008.166 10.1016/j.cell.2005.07.027 10.1016/S1046-2023(03)00026-4 10.1038/ncb1505 10.1523/JNEUROSCI.21-11-03839.2001 10.1091/mbc.E08-07-0772 10.1242/jcs.107.3.367 10.1083/jcb.200305029 10.1074/jbc.272.47.29652 10.1038/nature08476 10.1016/j.devcel.2011.10.009 10.1091/mbc.11.12.4259 10.1091/mbc.E11-08-0670 10.1038/ncb1990 10.1074/jbc.M705167200 10.1016/S0896-6273(00)80493-6 10.1083/jcb.200309020 10.1016/j.bbrc.2004.04.165 10.1083/jcb.116.1.85 10.1242/jcs.145037 10.1242/jcs.044339 10.1083/jcb.200410081 10.1038/nsmb.3146 10.1091/mbc.E08-09-0968 10.1016/j.cell.2006.08.034 10.1016/S0896-6273(00)80251-2 10.1038/sj.emboj.7600803 10.1016/j.neuron.2005.02.029 10.1016/j.cub.2010.05.065 10.1091/mbc.E05-10-0917 10.1091/mbc.E07-02-0097 10.1016/j.molcel.2011.03.032 10.1242/jcs.031641 10.1038/ncb2106 10.1016/j.tcb.2011.03.006 10.1091/mbc.E11-07-0657 10.1038/ncb2847 10.1083/jcb.200709076 10.1128/MCB.26.2.727-734.2006 10.1128/MCB.00768-15 10.1073/pnas.94.26.14438 10.1021/bi048008z |
ContentType | Journal Article |
Copyright | Copyright © 2016 Inamdar, Hsu and Yeaman. 2016 Inamdar, Hsu and Yeaman |
Copyright_xml | – notice: Copyright © 2016 Inamdar, Hsu and Yeaman. 2016 Inamdar, Hsu and Yeaman |
DBID | NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fcell.2016.00051 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2296-634X |
EndPage | 51 |
ExternalDocumentID | oai_doaj_org_article_ebf2136adeae44ff90ded2fdbd460d5d 10_3389_fcell_2016_00051 27376061 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Institutes of Health grantid: GM067002 |
GroupedDBID | 53G 5VS 9T4 AAFWJ ACGFS ACXDI ADBBV ADRAZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV DIK EMOBN GROUPED_DOAJ GX1 HYE IAO IEA IHR IHW IPNFZ ISR KQ8 M48 M~E NPM OK1 PGMZT RIG RPM AAYXX CITATION 7X8 5PM AFPKN |
ID | FETCH-LOGICAL-c462t-dfb86505921a6de72ae8378dd4b8c8c638c75612dc1122acc7ed0e4736b5b8cf3 |
IEDL.DBID | RPM |
ISSN | 2296-634X |
IngestDate | Tue Oct 22 14:48:02 EDT 2024 Tue Sep 17 21:08:38 EDT 2024 Fri Oct 25 00:26:04 EDT 2024 Thu Nov 21 23:22:41 EST 2024 Tue Oct 15 23:56:53 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | epithelium cell polarity mammals monoclonal antibody exocyst membrane trafficking |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-dfb86505921a6de72ae8378dd4b8c8c638c75612dc1122acc7ed0e4736b5b8cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Gwyn W. Gould, University of Glasgow, UK; Wei Guo, University of Pennsylvania, USA This article was submitted to Membrane Traffic, a section of the journal Frontiers in Cell and Developmental Biology Edited by: Mary Munson, University of Massachusetts Medical School, USA |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4891948/ |
PMID | 27376061 |
PQID | 1801861566 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ebf2136adeae44ff90ded2fdbd460d5d pubmedcentral_primary_oai_pubmedcentral_nih_gov_4891948 proquest_miscellaneous_1801861566 crossref_primary_10_3389_fcell_2016_00051 pubmed_primary_27376061 |
PublicationCentury | 2000 |
PublicationDate | 2016-06-03 |
PublicationDateYYYYMMDD | 2016-06-03 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in cell and developmental biology |
PublicationTitleAlternate | Front Cell Dev Biol |
PublicationYear | 2016 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | 9630218 - Cell. 1998 May 29;93(5):731-40 22172676 - Dev Cell. 2011 Dec 13;21(6):1156-70 18216334 - J Cell Sci. 2008 Feb 1;121(Pt 3):391-403 19383721 - J Cell Sci. 2009 May 15;122(Pt 10):1499-506 18697830 - J Cell Sci. 2008 Sep 1;121(Pt 17):2880-91 24284074 - J Cell Sci. 2014 Feb 1;127(Pt 3):686-99 21241894 - Cell. 2011 Jan 21;144(2):253-67 11102522 - Mol Biol Cell. 2000 Dec;11(12):4259-75 9368032 - J Biol Chem. 1997 Nov 21;272(47):29652-62 21550243 - Trends Cell Biol. 2011 Jul;21(7):383-6 26446795 - J Biol Chem. 2015 Nov 20;290(47):28245-56 14709721 - J Cell Sci. 2004 Feb 1;117(Pt 4):559-70 16213214 - Cell. 2005 Oct 7;123(1):75-87 22114349 - Mol Biol Cell. 2012 Jan;23(2):337-46 19073882 - Mol Biol Cell. 2009 Feb;20(3):973-82 18541705 - J Cell Biol. 2008 Jun 16;181(6):985-98 19005211 - Mol Biol Cell. 2009 Jan;20(1):102-13 9405631 - Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14438-43 19535457 - Mol Biol Cell. 2009 Aug;20(16):3763-71 8006058 - J Cell Sci. 1994 Mar;107 ( Pt 3):367-75 19889837 - Mol Biol Cell. 2010 Jan 1;21(1):152-64 15848801 - Neuron. 2005 Apr 21;46(2):219-32 20890297 - Nat Cell Biol. 2010 Nov;12 (11):1035-45 26700316 - Mol Biol Cell. 2016 Feb 15;27(4):686-701 22013078 - Mol Biol Cell. 2011 Dec;22(24):4787-800 15158452 - Biochem Biophys Res Commun. 2004 Jun 18;319(1):138-43 19935652 - Nat Cell Biol. 2009 Dec;11(12):1427-32 16148947 - EMBO J. 2005 Oct 5;24(19):3389-99 19297529 - Mol Biol Cell. 2009 May;20(10):2522-9 26656853 - Nat Struct Mol Biol. 2016 Jan;23(1):59-66 12954101 - Hybrid Hybridomics. 2003 Jun;22(3):159-64 21516108 - Nat Cell Biol. 2011 May;13(5):580-8 17086175 - Nat Cell Biol. 2006 Dec;8(12):1383-8 11356872 - J Neurosci. 2001 Jun 1;21(11):3839-48 9655500 - Neuron. 1998 Jun;20(6):1111-22 16137928 - Dev Cell. 2005 Sep;9(3):351-63 16826234 - Nat Struct Mol Biol. 2006 Jul;13(7):577-81 14662749 - J Cell Biol. 2003 Dec 8;163(5):1111-21 1730751 - J Cell Biol. 1992 Jan;116(1):85-94 8982167 - Neuron. 1996 Dec;17(6):1209-19 17686995 - Mol Biol Cell. 2007 Oct;18(10 ):3978-92 12763070 - Neuroscience. 2003;119(1):73-85 17018283 - Cell. 2006 Oct 6;127(1):157-70 15835919 - Biochemistry. 2005 Apr 26;44(16):6302-11 15897260 - J Cell Biol. 2005 May 23;169(4):635-46 19776740 - Nature. 2009 Oct 8;461(7265):788-92 16478783 - J Cell Sci. 2006 Mar 1;119(Pt 5):876-88 18756269 - EMBO J. 2008 Sep 17;27(18):2375-87 25232005 - Mol Biol Cell. 2014 Nov 15;25(23 ):3813-22 17827149 - J Biol Chem. 2007 Nov 9;282(45):33155-67 24056301 - Nat Cell Biol. 2013 Oct;15(10 ):1220-30 23295348 - J Cell Biol. 2013 Jan 7;200(1):81-93 20579884 - Curr Biol. 2010 Jul 27;20(14):1316-20 14581457 - J Cell Biol. 2003 Oct 27;163(2):351-62 26283729 - Mol Cell Biol. 2015 Nov;35(21):3633-45 11696560 - J Cell Biol. 2001 Nov 12;155(4):593-604 21658605 - Mol Cell. 2011 Jun 10;42(5):650-61 16382162 - Mol Cell Biol. 2006 Jan;26(2):727-34 16611746 - Mol Biol Cell. 2006 Jun;17(6):2757-69 12798134 - Methods. 2003 Jul;30(3):198-206 22898781 - Dev Cell. 2012 Aug 14;23(2):397-411 Stevenson (B51) 1994; 107 (Pt 3) Torres (B53) 2015; 35 Munson (B34) 2006; 13 Vega (B54) 2001; 21 Chien (B7) 2006; 127 Hsu (B21) 1996; 17 Jin (B24) 2011; 21 Fielding (B11) 2005; 24 Jafar-Nejad (B23) 2005; 9 Stalder (B50) 2016; 27 Grindstaff (B15) 1998; 93 Gromley (B16) 2005; 123 Lalli (B26) 2009; 122 Oztan (B37) 2007; 18 Reaves (B41) 1992; 116 Zuo (B60) 2009; 20 Rosse (B44) 2006; 26 Yeaman (B59) 2001; 155 Medkova (B30) 2006; 17 Goehring (B14) 2007; 282 Vik-Mo (B55) 2003; 119 Rogers (B43) 2004; 319 Wang (B56) 2003; 22 Folsch (B12) 2003; 163 Spiczka (B49) 2008; 121 Andersen (B1) 2010; 21 Dubuke (B10) 2015; 290 Mohammadi (B32) 2013; 200 Hsu (B20) 1998; 20 Yeaman (B57) 2003; 30 Rittmeyer (B42) 2008; 121 Songer (B48) 2009; 20 Yeaman (B58) 2004; 117 Parrini (B38) 2011; 42 Pathak (B39) 2012; 23 France (B13) 2006; 119 Ishikawa (B22) 2009; 461 Bryant (B4) 2010; 12 Hazelett (B18) 2011; 22 Morgera (B33) 2012; 23 Bodemann (B3) 2011; 144 Chen (B6) 2011; 13 Kee (B25) 1997; 94 Cascone (B5) 2008; 27 Sakurai-Yageta (B45) 2008; 181 Luo (B29) 2014; 25 Prigent (B40) 2003; 163 Das (B9) 2011; 21 Lipschutz (B27) 2000; 11 Mehta (B31) 2005; 46 Liu (B28) 2009; 20 Hase (B17) 2009; 11 Simicek (B46) 2013; 15 Beronja (B2) 2005; 169 Nichols (B35) 2010; 20 Sivaram (B47) 2005; 44 Das (B8) 2014; 127 Heider (B19) 2016; 23 Zuo (B61) 2006; 8 Overgaard (B36) 2009; 20 Stewart (B52) 1997; 272 |
References_xml | – volume: 290 start-page: 28245 year: 2015 ident: B10 article-title: The Exocyst Subunit Sec6 Interacts with Assembled Exocytic SNARE Complexes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.673806 contributor: fullname: Dubuke – volume: 20 start-page: 3763 year: 2009 ident: B28 article-title: The role of the exocyst in matrix metalloproteinase secretion and actin dynamics during tumor cell invadopodia formation publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E08-09-0967 contributor: fullname: Liu – volume: 121 start-page: 391 year: 2008 ident: B42 article-title: A dual role for IQGAP1 in regulating exocytosis publication-title: J. Cell Sci. doi: 10.1242/jcs.016881 contributor: fullname: Rittmeyer – volume: 119 start-page: 73 year: 2003 ident: B55 article-title: Sec6 is localized to the plasma membrane of mature synaptic terminals and is transported with secretogranin II-containing vesicles publication-title: Neuroscience doi: 10.1016/S0306-4522(03)00065-4 contributor: fullname: Vik-Mo – volume: 155 start-page: 593 year: 2001 ident: B59 article-title: Sec6/8 complexes on trans-Golgi network and plasma membrane regulate late stages of exocytosis in mammalian cells publication-title: J. Cell Biol. doi: 10.1083/jcb.200107088 contributor: fullname: Yeaman – volume: 119 start-page: 876 year: 2006 ident: B13 article-title: The polarity-establishment component Bem1p interacts with the exocyst complex through the Sec15p subunit publication-title: J. Cell Sci. doi: 10.1242/jcs.02849 contributor: fullname: France – volume: 13 start-page: 580 year: 2011 ident: B6 article-title: Exocyst function is regulated by effector phosphorylation publication-title: Nat. Cell Biol. doi: 10.1038/ncb2226 contributor: fullname: Chen – volume: 117 start-page: 559 year: 2004 ident: B58 article-title: Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells publication-title: J. Cell Sci. doi: 10.1242/jcs.00893 contributor: fullname: Yeaman – volume: 25 start-page: 3813 year: 2014 ident: B29 article-title: The role of Sec3p in secretory vesicle targeting and exocyst complex assembly publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E14-04-0907 contributor: fullname: Luo – volume: 93 start-page: 731 year: 1998 ident: B15 article-title: Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells publication-title: Cell doi: 10.1016/S0092-8674(00)81435-X contributor: fullname: Grindstaff – volume: 22 start-page: 159 year: 2003 ident: B56 article-title: Immunological characterization of exocyst complex subunits in cell differentiation publication-title: Hybrid. Hybridomics doi: 10.1089/153685903322286575 contributor: fullname: Wang – volume: 23 start-page: 397 year: 2012 ident: B39 article-title: The microtubule-associated Rho activating factor GEF-H1 interacts with exocyst complex to regulate vesicle traffic publication-title: Dev. Cell doi: 10.1016/j.devcel.2012.06.014 contributor: fullname: Pathak – volume: 27 start-page: 686 year: 2016 ident: B50 article-title: The casein kinases Yck1p and Yck2p act in the secretory pathway, in part, by regulating the Rab exchange factor Sec2p publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E15-09-0651 contributor: fullname: Stalder – volume: 144 start-page: 253 year: 2011 ident: B3 article-title: RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly publication-title: Cell doi: 10.1016/j.cell.2010.12.018 contributor: fullname: Bodemann – volume: 13 start-page: 577 year: 2006 ident: B34 article-title: The exocyst defrocked, a framework of rods revealed publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1097 contributor: fullname: Munson – volume: 9 start-page: 351 year: 2005 ident: B23 article-title: Sec15, a component of the exocyst, promotes notch signaling during the asymmetric division of Drosophila sensory organ precursors publication-title: Dev. Cell doi: 10.1016/j.devcel.2005.06.010 contributor: fullname: Jafar-Nejad – volume: 20 start-page: 102 year: 2009 ident: B36 article-title: Deciliation is associated with dramatic remodeling of epithelial cell junctions and surface domains publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E08-07-0741 contributor: fullname: Overgaard – volume: 200 start-page: 81 year: 2013 ident: B32 article-title: Cdc42 interacts with the exocyst complex to promote phagocytosis publication-title: J. Cell Biol. doi: 10.1083/jcb.201204090 contributor: fullname: Mohammadi – volume: 21 start-page: 152 year: 2010 ident: B1 article-title: Sec3-containing exocyst complex is required for desmosome assembly in mammalian epithelial cells publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E09-06-0459 contributor: fullname: Andersen – volume: 27 start-page: 2375 year: 2008 ident: B5 article-title: Distinct roles of RalA and RalB in the progression of cytokinesis are supported by distinct RalGEFs publication-title: EMBO J. doi: 10.1038/emboj.2008.166 contributor: fullname: Cascone – volume: 123 start-page: 75 year: 2005 ident: B16 article-title: Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission publication-title: Cell doi: 10.1016/j.cell.2005.07.027 contributor: fullname: Gromley – volume: 30 start-page: 198 year: 2003 ident: B57 article-title: Ultracentrifugation-based approaches to study regulation of Sec6/8 (exocyst) complex function during development of epithelial cell polarity publication-title: Methods doi: 10.1016/S1046-2023(03)00026-4 contributor: fullname: Yeaman – volume: 8 start-page: 1383 year: 2006 ident: B61 article-title: Exo70 interacts with the Arp2/3 complex and regulates cell migration publication-title: Nat. Cell Biol. doi: 10.1038/ncb1505 contributor: fullname: Zuo – volume: 21 start-page: 3839 year: 2001 ident: B54 article-title: The exocyst complex associates with microtubules to mediate vesicle targeting and neurite outgrowth publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-11-03839.2001 contributor: fullname: Vega – volume: 20 start-page: 2522 year: 2009 ident: B60 article-title: The exocyst protein Sec10 is necessary for primary ciliogenesis and cystogenesis in vitro publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E08-07-0772 contributor: fullname: Zuo – volume: 107 (Pt 3) start-page: 367 year: 1994 ident: B51 article-title: Concentration-dependent effects of cytochalasin D on tight junctions and actin filaments in MDCK epithelial cells publication-title: J. Cell Sci. doi: 10.1242/jcs.107.3.367 contributor: fullname: Stevenson – volume: 163 start-page: 1111 year: 2003 ident: B40 article-title: ARF6 controls post-endocytic recycling through its downstream exocyst complex effector publication-title: J. Cell Biol. doi: 10.1083/jcb.200305029 contributor: fullname: Prigent – volume: 272 start-page: 29652 year: 1997 ident: B52 article-title: Identification of four distinct pools of catenins in mammalian cells and transformation-dependent changes in catenin distributions among these pools publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.47.29652 contributor: fullname: Stewart – volume: 461 start-page: 788 year: 2009 ident: B22 article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity publication-title: Nature doi: 10.1038/nature08476 contributor: fullname: Ishikawa – volume: 21 start-page: 1156 year: 2011 ident: B24 article-title: Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.10.009 contributor: fullname: Jin – volume: 11 start-page: 4259 year: 2000 ident: B27 article-title: Exocyst is involved in cystogenesis and tubulogenesis and acts by modulating synthesis and delivery of basolateral plasma membrane and secretory proteins publication-title: Mol. Biol. Cell doi: 10.1091/mbc.11.12.4259 contributor: fullname: Lipschutz – volume: 23 start-page: 337 year: 2012 ident: B33 article-title: Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E11-08-0670 contributor: fullname: Morgera – volume: 11 start-page: 1427 year: 2009 ident: B17 article-title: M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex publication-title: Nat. Cell Biol. doi: 10.1038/ncb1990 contributor: fullname: Hase – volume: 282 start-page: 33155 year: 2007 ident: B14 article-title: MyRIP anchors protein kinase A to the exocyst complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.M705167200 contributor: fullname: Goehring – volume: 20 start-page: 1111 year: 1998 ident: B20 article-title: Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments publication-title: Neuron doi: 10.1016/S0896-6273(00)80493-6 contributor: fullname: Hsu – volume: 163 start-page: 351 year: 2003 ident: B12 article-title: The AP-1A and AP-1B clathrin adaptor complexes define biochemically and functionally distinct membrane domains publication-title: J. Cell Biol. doi: 10.1083/jcb.200309020 contributor: fullname: Folsch – volume: 319 start-page: 138 year: 2004 ident: B43 article-title: The exocyst localizes to the primary cilium in MDCK cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2004.04.165 contributor: fullname: Rogers – volume: 116 start-page: 85 year: 1992 ident: B41 article-title: Perturbation of the morphology of the trans-Golgi network following Brefeldin A treatment: redistribution of a TGN-specific integral membrane protein, TGN38 publication-title: J. Cell Biol. doi: 10.1083/jcb.116.1.85 contributor: fullname: Reaves – volume: 127 start-page: 686 year: 2014 ident: B8 article-title: RalA promotes a direct exocyst-Par6 interaction to regulate polarity in neuronal development publication-title: J. Cell Sci. doi: 10.1242/jcs.145037 contributor: fullname: Das – volume: 122 start-page: 1499 year: 2009 ident: B26 article-title: RalA and the exocyst complex influence neuronal polarity through PAR-3 and aPKC publication-title: J. Cell Sci. doi: 10.1242/jcs.044339 contributor: fullname: Lalli – volume: 169 start-page: 635 year: 2005 ident: B2 article-title: Essential function of Drosophila Sec6 in apical exocytosis of epithelial photoreceptor cells publication-title: J. Cell Biol. doi: 10.1083/jcb.200410081 contributor: fullname: Beronja – volume: 23 start-page: 59 year: 2016 ident: B19 article-title: Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3146 contributor: fullname: Heider – volume: 20 start-page: 973 year: 2009 ident: B48 article-title: Sec6p anchors the assembled exocyst complex at sites of secretion publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E08-09-0968 contributor: fullname: Songer – volume: 127 start-page: 157 year: 2006 ident: B7 article-title: RalB GTPase-mediated activation of the IkappaB family kinase TBK1 couples innate immune signaling to tumor cell survival publication-title: Cell doi: 10.1016/j.cell.2006.08.034 contributor: fullname: Chien – volume: 17 start-page: 1209 year: 1996 ident: B21 article-title: The mammalian brain rsec6/8 complex publication-title: Neuron doi: 10.1016/S0896-6273(00)80251-2 contributor: fullname: Hsu – volume: 24 start-page: 3389 year: 2005 ident: B11 article-title: Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis publication-title: EMBO J. doi: 10.1038/sj.emboj.7600803 contributor: fullname: Fielding – volume: 46 start-page: 219 year: 2005 ident: B31 article-title: Mutations in Drosophila sec15 reveal a function in neuronal targeting for a subset of exocyst components publication-title: Neuron doi: 10.1016/j.neuron.2005.02.029 contributor: fullname: Mehta – volume: 20 start-page: 1316 year: 2010 ident: B35 article-title: Salmonella-directed recruitment of new membrane to invasion foci via the host exocyst complex publication-title: Curr. Biol. doi: 10.1016/j.cub.2010.05.065 contributor: fullname: Nichols – volume: 17 start-page: 2757 year: 2006 ident: B30 article-title: The rab exchange factor Sec2p reversibly associates with the exocyst publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E05-10-0917 contributor: fullname: Medkova – volume: 18 start-page: 3978 year: 2007 ident: B37 article-title: Exocyst requirement for endocytic traffic directed toward the apical and basolateral poles of polarized MDCK cells publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E07-02-0097 contributor: fullname: Oztan – volume: 42 start-page: 650 year: 2011 ident: B38 article-title: SH3BP1, an exocyst-associated RhoGAP, inactivates Rac1 at the front to drive cell motility publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.03.032 contributor: fullname: Parrini – volume: 121 start-page: 2880 year: 2008 ident: B49 article-title: Ral-regulated interaction between Sec5 and paxillin targets Exocyst to focal complexes during cell migration publication-title: J. Cell Sci. doi: 10.1242/jcs.031641 contributor: fullname: Spiczka – volume: 12 start-page: 1035 year: 2010 ident: B4 article-title: A molecular network for de novo generation of the apical surface and lumen publication-title: Nat. Cell Biol. doi: 10.1038/ncb2106 contributor: fullname: Bryant – volume: 21 start-page: 383 year: 2011 ident: B9 article-title: Rabs and the exocyst in ciliogenesis, tubulogenesis and beyond publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2011.03.006 contributor: fullname: Das – volume: 22 start-page: 4787 year: 2011 ident: B18 article-title: RalA and RalB differentially regulate development of epithelial tight junctions publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E11-07-0657 contributor: fullname: Hazelett – volume: 15 start-page: 1220 year: 2013 ident: B46 article-title: The deubiquitylase USP33 discriminates between RALB functions in autophagy and innate immune response publication-title: Nat. Cell Biol. doi: 10.1038/ncb2847 contributor: fullname: Simicek – volume: 181 start-page: 985 year: 2008 ident: B45 article-title: The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA publication-title: J. Cell Biol. doi: 10.1083/jcb.200709076 contributor: fullname: Sakurai-Yageta – volume: 26 start-page: 727 year: 2006 ident: B44 article-title: RalB mobilizes the exocyst to drive cell migration publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.26.2.727-734.2006 contributor: fullname: Rosse – volume: 35 start-page: 3633 year: 2015 ident: B53 article-title: Role of the Exocyst Complex Component Sec6/8 in Genomic Stability publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00768-15 contributor: fullname: Torres – volume: 94 start-page: 14438 year: 1997 ident: B25 article-title: Subunit structure of the mammalian exocyst complex publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.94.26.14438 contributor: fullname: Kee – volume: 44 start-page: 6302 year: 2005 ident: B47 article-title: Dimerization of the exocyst protein Sec6p and its interaction with the t-SNARE Sec9p publication-title: Biochemistry doi: 10.1021/bi048008z contributor: fullname: Sivaram |
SSID | ssj0001257583 |
Score | 2.0479617 |
Snippet | Spatial regulation of exocytosis relies on the exocyst, a hetero-octameric protein complex that tethers vesicles to fusion sites at the plasma membrane.... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 51 |
SubjectTerms | Cell and Developmental Biology Cell Polarity Epithelium exocyst Mammals Membrane trafficking Monoclonal antibody |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-UwEA-LIOxlWXU_nh9LhL3soZimaZoeVXzIguJhBW8hyaTuA2kXXx_of-9M8pT3FsGL17Yhw2-Szm8mkxnGfkIdkUSXUAjf1oUyUhWm9qHoROejjsIpRRecLy71-bX6fVPfrLT6opywXB44A3cUfSfLSjuILuK4rhUQQXbgQWkBNaS_r5ArzlSOriANMVU-l0QvrD3qKBBOqVx0-CDqcs0OpXL9r3HM_1MlV2zP9DP7tCSN_DgLu8U-xH6bbeY2ko877PKKiin1t3yKRirH9ni-NTDns56fPQzhcT5yutw3u11klXMKwHLc0UO4SwOO-3HmB8op_MKup2d_Ts-LZZ-EIigtxwI6b5Bo1a0snYbYSBepTDyA8iaYgDssNNQEEwKSK-lCaCKIqJpK-xq_6KqvbKMf-vid8RKClsFD5SqhAKRvNXqxrVYBmY9T5YT9ekbN_svlMCy6EYSwTQhbQtgmhCfshGB9-Y4KWacHqF67VK99S70TdvisFIsLn6ZwfRwWc1uibTWa3M8J-5aV9DIVcrIGPTMUoVlT35os62_62d9UXFuZtmyV2X0P4ffYR4IjZZZV-2xjvF_EA-Qwo_-RlusTOgz1Ag priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhJdBLaZt-uGmKArn04NaWZVk-lJKULCGQ0EMXchOSRt4uBLvd9UL232fG8qbdsqdebQmZNzPMm_HMiLFTKAOS6BzSzNVlKrWQqS6dT5uscUGFzEpJDc7XN-pyKq9uy9s_7dEjgMudoR3dJzVd3H26_73-igb_hSJO9LefG8pxU5UW_VfIqJ_6iUC_SAVe1yPZjxkXpCa6iP8qd26kycAVVYmofMtNDdP8d1HQfysp_3JNk-fs2cgp-VlUghdsL7Qv2UG8ZXJ9yG6-06yldsYn6MNi6o_HpoIln7f84r7z62XPqfdvPltFjeCUn-Vo8J2_Gzactf3cdVRy-IpNJxc_vl2m4zUKqZdK9Ck0TiMPK2uRWwWhEjbQFHkA6bTXHg3QV3RHJnjkXsJ6XwXIgqwK5Upc0RSv2X7bteEt4zl4JbyDwhaZBBCuVhjk1kp6JEZW5gn7uEHN_IrTMgxGGQS2GcA2BLYZwE7YOcH6uI7mXA8PusXMjGZjgmtEXigLwQbUmqbOIIBowIFUGZSQsJONUAzaBR1h29CtliZH16sVRacJexOF9HjURsgJq7bEt_Ut22_a-c9h9rbUdV5L_e6_dx6xp4TBUG1WvGf7_WIVjpHX9O7DoK4PuPv6xg priority: 102 providerName: Scholars Portal |
Title | Probing Functional Changes in Exocyst Configuration with Monoclonal Antibodies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27376061 https://search.proquest.com/docview/1801861566 https://pubmed.ncbi.nlm.nih.gov/PMC4891948 https://doaj.org/article/ebf2136adeae44ff90ded2fdbd460d5d |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJINBLaZM-3EdQoZcenPVDluVjGrKEwoYcGshNSBp5a0jskPVC8u87I61DtvSUiw-2hMzMiPlm9M2Ise9QeQTROaSZbapUqEKkqrIubbPWeukzIwQVOC8u5PmV-HVdXe-waqqFCaR9Z7vj_ub2uO_-BG7l3a2bTTyx2eXiVKgGY28122W76H6fhegxsYIIRJXxSBIDsGbWUg6cWFx07oBGSA2AayKDyHzLG4Wm_f9Dmv8SJp95oPkb9noDHflJ_MW3bMf3B2w_Xib5eMguLqmlUr_kc3RVMcPHY-3Ainc9P3sY3ONq5FTi1y3XUfGc0rAc9_XgbsKEk37s7EDMwnfsan72-_Q83dyWkDohizGF1iqEW1VT5EaCrwvjqVk8gLDKKYf7zNV0FSY4hFiFca72kHlRl9JWOKIt37O9fuj9R8ZzcLJwFkpTZgKgsI3EWLaRwiH-MSJP2I9JavouNsXQGEyQsHUQtiZh6yDshP0ksT6No3bW4cVwv9QbpWpv2yIvpQFvPBpH22TgoWjBgpAZVJCwb5NSNJo_LWF6P6xXOkcPqyQFoQn7EJX0tNSk5ITVW-rb-pftL2hxocX2xsI-vXjmZ_aKZBBIZeUXtjfer_1XhC-jPQphPz4XQh0F0_0LYcf0uQ |
link.rule.ids | 230,314,727,780,784,864,885,2102,24318,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6DsN2Gfaeu5cG7LKDGz9k2T52RYNsa4IeWqA3wRLl1EBrF40DrP--pBwXzbDTrrYECSQFfqQ-UgDfMHMEomMMI1NmoSwSGRaZsWEd1cYpF1VScoHzfKFmZ_LXeXa-A9lYC-NJ-9Y0--3l1X7bXHhu5fWVnYw8scnJ_FAWJcXexeQRPM7SvIwfBOlDaoUwSJEOl5IUgpWTmrPgzOPimwcyQ24BnDMdRMVb_si37f8X1vybMvnAB01fwPMNeBQHwyZfwo5rX8GT4TnJ29ewOOGmSu1STMlZDTk-MVQPrETTiqM_nb1d9YKL_JrlelC94ESsoJPd2Us_4aDtG9Mxt_ANnE2PTg9n4ea9hNBKlfQh1qYgwJWVSVwpdHlSOW4XjyhNYQtLJ83m_BgmWgJZSWVt7jByMk-VyWhEnb6F3bZr3XsQMVqVWINplUYSMTGlomi2VNISAqpkHMD3UWr6emiLoSmcYGFrL2zNwtZe2AH8YLHej-OG1v5Dd7PUG7VqZ-okTlWFrnJkHnUZocOkRoNSRZhhAF9HpWg6ALxE1bpuvdIx-dhCcRgawLtBSfdLjUoOIN9S39Zetv-Qzfkm2xsb2_vvmV_g6ex0fqyPfy5-f4BnLA9PMUs_wm5_s3afCMz05rM33TvflPY_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa2Dht2Kfaeu5cH7LKD65cs28eua9A9GuSwAr0JkiinBlo5aBxg_fcjpaRIhp12tSVIICnwI_WJZOwTVBZBdA5Jptsq4U3Bk6bSJumyTlthM8U5PXA-m4rTc_79orrYavXlSftG94fu6vrQ9ZeeW7m4NumGJ5bOzo5502Ls3aQL6NL77EFVopFtBeohvYI4pCnDxSSGYW3aUSacuFx0-4CmSGWAa6KEiHzHJ_nS_f_Cm3_TJrf80OQJ218DyPgobPQpu2fdM_YwtJS8fc6mMyqs5ObxBB1WyPPF4QXBMu5dfPJ7MLfLMaaHfv18FdQfUzI2xtM9mCs_4ciNvR6IX_iCnU9Ofh2fJuueCYnhohgT6HSDoKtqi1wJsHWhLJWMB-C6MY3B02ZqaogJBoFWoYypLWSW16XQFY7oypdszw3OvmZxDkYURkOpyowDFLoVGNG2ghtEQYrnEfu8kZpchNIYEkMKErb0wpYkbOmFHbEvJNa7cVTU2n8YbuZyrVppdVfkpVBglUUT6doMLBQdaOAigwoi9nGjFImHgJZQzg6rpczRzzaCQtGIvQpKultqo-SI1Tvq29nL7h-0O19oe21nB_898wN7NPs6kT-_TX-8YY9JHJ5lVr5le-PNyr5DPDPq995y_wBhSPdS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+Functional+Changes+in+Exocyst+Configuration+with+Monoclonal+Antibodies&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Inamdar%2C+Shivangi+M.&rft.au=Hsu%2C+Shu-Chan&rft.au=Yeaman%2C+Charles&rft.date=2016-06-03&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-634X&rft.volume=4&rft_id=info:doi/10.3389%2Ffcell.2016.00051&rft_id=info%3Apmid%2F27376061&rft.externalDBID=PMC4891948 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon |