Probing Functional Changes in Exocyst Configuration with Monoclonal Antibodies

Spatial regulation of exocytosis relies on the exocyst, a hetero-octameric protein complex that tethers vesicles to fusion sites at the plasma membrane. Nevertheless, our understanding of mechanisms regulating exocyst assembly/disassembly, localization, and function are incomplete. Here, we have exp...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in cell and developmental biology Vol. 4; p. 51
Main Authors Inamdar, Shivangi M, Hsu, Shu-Chan, Yeaman, Charles
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 03.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spatial regulation of exocytosis relies on the exocyst, a hetero-octameric protein complex that tethers vesicles to fusion sites at the plasma membrane. Nevertheless, our understanding of mechanisms regulating exocyst assembly/disassembly, localization, and function are incomplete. Here, we have exploited a panel of anti-Sec6 monoclonal antibodies (mAbs) to probe possible configurational changes accompanying transitions in exocyst function in epithelial MDCK cells. Sec6 is quantitatively associated with Sec8 in high molecular weight complexes, as shown by gel filtration and co-immunoprecipitation studies. We mapped epitopes recognized by more than 20 distinct mAbs to one of six Sec6 segments. Surprisingly, mAbs that bound epitopes in each segment labeled distinct subcellular structures. In general, antibodies to epitopes in N-terminal domains labeled Sec6 in either cytosolic or nuclear pools, whereas those that bound epitopes in C-terminal domains labeled membrane-associated Sec6. In this latter group, we identified antibodies that labeled distinct Sec6 populations at the apical junctional complex, desmosomes, endoplasmic reticulum and vimentin-type intermediate filaments. That each antibody was specific was verified by both Sec6 RNAi and competition with fusion proteins containing each domain. Comparison of non-polarized and polarized cells revealed that many Sec6 epitopes either redistribute or become concealed during epithelial polarization. Transitions in exocyst configurations may be regulated in part by the actions of Ral GTPases, because the exposure of Sec6 C-terminal domain epitopes at the plasma membrane is significantly reduced upon RalA RNAi. To determine whether spatio-temporal changes in epitope accessibility was correlated with differential stability of interactions between Sec6 and other exocyst subunits, we quantified relative amounts of each subunit that co-immunoprecipitated with Sec6 when antibodies to N-terminal or C-terminal epitopes were used. Antibodies to Sec6NT co-precipitated substantially more Sec5, -10, -15, Exo70 and -84 than did those to Sec6CT. In contrast, antibodies to Sec6CT co-precipitated more Sec3 and Sec8 than did those to Sec6NT. These results are consistent with a model in which exocyst activation during periods of rapid membrane expansion is accompanied by molecular rearrangements within the holocomplex or association with accessory proteins, which expose the Sec6 C-terminal domain when the complex is membrane-bound and conceal it when the complex is cytoplasmic.
AbstractList Spatial regulation of exocytosis relies on the exocyst, a hetero-octameric protein complex that tethers vesicles to fusion sites at the plasma membrane. Nevertheless, our understanding of mechanisms regulating exocyst assembly/disassembly, localization and function are incomplete. Here, we have exploited a panel of anti-Sec6 monoclonal antibodies (mAbs) to probe possible configurational changes accompanying transitions in exocyst function in epithelial MDCK cells. Sec6 is quantitatively associated with Sec8 in high molecular weight complexes, as shown by gel filtration and co-immunoprecipitation studies. We mapped epitopes recognized by more than twenty distinct mAbs to one of six Sec6 segments. Surprisingly, mAbs that bound epitopes in each segment labeled distinct subcellular structures. Antibodies to epitopes in N-terminal domains labeled Sec6 in either cytosolic or nuclear pools, whereas those that bound epitopes in C-terminal domains labeled membrane-associated Sec6. In this latter group, we identified antibodies that labeled distinct Sec6 populations at the apical junctional complex, desmosomes, endoplasmic reticulum and vimentin-type intermediate filaments. That each antibody was specific was verified by both Sec6 RNAi and competition with fusion proteins containing each domain. Comparison of non-polarized and polarized cells revealed that many Sec6 epitopes either redistribute or become concealed during epithelial polarization. Transitions in exocyst configurations may be regulated in part by the actions of Ral GTPases, because the exposure of Sec6 C-terminal domain epitopes at the plasma membrane is significantly reduced upon RalA RNAi. To determine whether spatio-temporal changes in epitope accessibility was correlated with differential stability of interactions between Sec6 and other exocyst subunits, we quantified relative amounts of each subunit that co-immunoprecipitated with Sec6 when antibodies to N-terminal or C-terminal epitopes were used. Antibodies to Sec6NT co-precipitated substantially more Sec5, -10, -15, Exo70 and -84 than did those to Sec6CT. In contrast, antibodies to Sec6CT co-precipitated more Sec3 and Sec8 than did those to Sec6NT. These results are consistent with a model in which exocyst activation during periods of rapid membrane expansion is accompanied by molecular rearrangements within the holocomplex or association with accessory proteins, which expose the Sec6 C-terminal domain when the complex is membrane-bound and conceal it when the complex is cytoplasmic.
Spatial regulation of exocytosis relies on the exocyst, a hetero-octameric protein complex that tethers vesicles to fusion sites at the plasma membrane. Nevertheless, our understanding of mechanisms regulating exocyst assembly/disassembly, localization, and function are incomplete. Here, we have exploited a panel of anti-Sec6 monoclonal antibodies (mAbs) to probe possible configurational changes accompanying transitions in exocyst function in epithelial MDCK cells. Sec6 is quantitatively associated with Sec8 in high molecular weight complexes, as shown by gel filtration and co-immunoprecipitation studies. We mapped epitopes recognized by more than 20 distinct mAbs to one of six Sec6 segments. Surprisingly, mAbs that bound epitopes in each segment labeled distinct subcellular structures. In general, antibodies to epitopes in N-terminal domains labeled Sec6 in either cytosolic or nuclear pools, whereas those that bound epitopes in C-terminal domains labeled membrane-associated Sec6. In this latter group, we identified antibodies that labeled distinct Sec6 populations at the apical junctional complex, desmosomes, endoplasmic reticulum and vimentin-type intermediate filaments. That each antibody was specific was verified by both Sec6 RNAi and competition with fusion proteins containing each domain. Comparison of non-polarized and polarized cells revealed that many Sec6 epitopes either redistribute or become concealed during epithelial polarization. Transitions in exocyst configurations may be regulated in part by the actions of Ral GTPases, because the exposure of Sec6 C-terminal domain epitopes at the plasma membrane is significantly reduced upon RalA RNAi. To determine whether spatio-temporal changes in epitope accessibility was correlated with differential stability of interactions between Sec6 and other exocyst subunits, we quantified relative amounts of each subunit that co-immunoprecipitated with Sec6 when antibodies to N-terminal or C-terminal epitopes were used. Antibodies to Sec6NT co-precipitated substantially more Sec5, -10, -15, Exo70 and -84 than did those to Sec6CT. In contrast, antibodies to Sec6CT co-precipitated more Sec3 and Sec8 than did those to Sec6NT. These results are consistent with a model in which exocyst activation during periods of rapid membrane expansion is accompanied by molecular rearrangements within the holocomplex or association with accessory proteins, which expose the Sec6 C-terminal domain when the complex is membrane-bound and conceal it when the complex is cytoplasmic.
Author Hsu, Shu-Chan
Yeaman, Charles
Inamdar, Shivangi M
AuthorAffiliation 2 Department of Anatomy and Cell Biology, University of Iowa Iowa City, IA, USA
3 Department of Cell Biology and Neuroscience, Rutgers University Piscataway, NJ, USA
1 Molecular and Cellular Biology Program, University of Iowa Iowa City, IA, USA
AuthorAffiliation_xml – name: 2 Department of Anatomy and Cell Biology, University of Iowa Iowa City, IA, USA
– name: 3 Department of Cell Biology and Neuroscience, Rutgers University Piscataway, NJ, USA
– name: 1 Molecular and Cellular Biology Program, University of Iowa Iowa City, IA, USA
Author_xml – sequence: 1
  givenname: Shivangi M
  surname: Inamdar
  fullname: Inamdar, Shivangi M
  organization: Molecular and Cellular Biology Program, University of IowaIowa City, IA, USA; Department of Anatomy and Cell Biology, University of IowaIowa City, IA, USA
– sequence: 2
  givenname: Shu-Chan
  surname: Hsu
  fullname: Hsu, Shu-Chan
  organization: Department of Cell Biology and Neuroscience, Rutgers University Piscataway, NJ, USA
– sequence: 3
  givenname: Charles
  surname: Yeaman
  fullname: Yeaman, Charles
  organization: Molecular and Cellular Biology Program, University of IowaIowa City, IA, USA; Department of Anatomy and Cell Biology, University of IowaIowa City, IA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27376061$$D View this record in MEDLINE/PubMed
BookMark eNpVkUtP3DAURq0KVCiw7wplyWamfsfZIKERtEi0sACpO8uxrzNGGRvshMe_b2aGIlj5yvf7ji2db2gnpggIfSd4zphqfngLfT-nmMg5xliQL2if0kbOJON_dz7Me-iolPspQqiohWJf0R6tWS2xJPvoz01ObYhddTFGO4QUTV8tliZ2UKoQq_OXZF_LUC1S9KEbs1lHqucwLKvfKSbbbwpncQhtcgHKIdr1pi9w9HYeoLuL89vFr9nV9c_LxdnVzHJJh5nzrZICi4YSIx3U1IBitXKOt8oqK5mytZCEOksIpcbaGhwGXjPZiinh2QG63HJdMvf6IYeVya86maA3Fyl32uQh2B40tJ4SJo0DA5x732AHjnrXOi6xE25inW5ZD2O7AmchDtn0n6CfNzEsdZeeNFcNabiaACdvgJweRyiDXoWylmMipLFoojBRkggppyjeRm1OpWTw788QrNdW9caqXlvVG6tT5fjj994L_x2yf3kYozY
CitedBy_id crossref_primary_10_1016_j_celrep_2021_109491
crossref_primary_10_1016_j_tibs_2018_06_012
crossref_primary_10_1083_jcb_202205137
crossref_primary_10_1002_pro_3863
crossref_primary_10_1111_jipb_13486
Cites_doi 10.1074/jbc.M115.673806
10.1091/mbc.E08-09-0967
10.1242/jcs.016881
10.1016/S0306-4522(03)00065-4
10.1083/jcb.200107088
10.1242/jcs.02849
10.1038/ncb2226
10.1242/jcs.00893
10.1091/mbc.E14-04-0907
10.1016/S0092-8674(00)81435-X
10.1089/153685903322286575
10.1016/j.devcel.2012.06.014
10.1091/mbc.E15-09-0651
10.1016/j.cell.2010.12.018
10.1038/nsmb1097
10.1016/j.devcel.2005.06.010
10.1091/mbc.E08-07-0741
10.1083/jcb.201204090
10.1091/mbc.E09-06-0459
10.1038/emboj.2008.166
10.1016/j.cell.2005.07.027
10.1016/S1046-2023(03)00026-4
10.1038/ncb1505
10.1523/JNEUROSCI.21-11-03839.2001
10.1091/mbc.E08-07-0772
10.1242/jcs.107.3.367
10.1083/jcb.200305029
10.1074/jbc.272.47.29652
10.1038/nature08476
10.1016/j.devcel.2011.10.009
10.1091/mbc.11.12.4259
10.1091/mbc.E11-08-0670
10.1038/ncb1990
10.1074/jbc.M705167200
10.1016/S0896-6273(00)80493-6
10.1083/jcb.200309020
10.1016/j.bbrc.2004.04.165
10.1083/jcb.116.1.85
10.1242/jcs.145037
10.1242/jcs.044339
10.1083/jcb.200410081
10.1038/nsmb.3146
10.1091/mbc.E08-09-0968
10.1016/j.cell.2006.08.034
10.1016/S0896-6273(00)80251-2
10.1038/sj.emboj.7600803
10.1016/j.neuron.2005.02.029
10.1016/j.cub.2010.05.065
10.1091/mbc.E05-10-0917
10.1091/mbc.E07-02-0097
10.1016/j.molcel.2011.03.032
10.1242/jcs.031641
10.1038/ncb2106
10.1016/j.tcb.2011.03.006
10.1091/mbc.E11-07-0657
10.1038/ncb2847
10.1083/jcb.200709076
10.1128/MCB.26.2.727-734.2006
10.1128/MCB.00768-15
10.1073/pnas.94.26.14438
10.1021/bi048008z
ContentType Journal Article
Copyright Copyright © 2016 Inamdar, Hsu and Yeaman. 2016 Inamdar, Hsu and Yeaman
Copyright_xml – notice: Copyright © 2016 Inamdar, Hsu and Yeaman. 2016 Inamdar, Hsu and Yeaman
DBID NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fcell.2016.00051
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2296-634X
EndPage 51
ExternalDocumentID oai_doaj_org_article_ebf2136adeae44ff90ded2fdbd460d5d
10_3389_fcell_2016_00051
27376061
Genre Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  grantid: GM067002
GroupedDBID 53G
5VS
9T4
AAFWJ
ACGFS
ACXDI
ADBBV
ADRAZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IHR
IHW
IPNFZ
ISR
KQ8
M48
M~E
NPM
OK1
PGMZT
RIG
RPM
AAYXX
CITATION
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c462t-dfb86505921a6de72ae8378dd4b8c8c638c75612dc1122acc7ed0e4736b5b8cf3
IEDL.DBID RPM
ISSN 2296-634X
IngestDate Tue Oct 22 14:48:02 EDT 2024
Tue Sep 17 21:08:38 EDT 2024
Fri Oct 25 00:26:04 EDT 2024
Thu Nov 21 23:22:41 EST 2024
Tue Oct 15 23:56:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords epithelium
cell polarity
mammals
monoclonal antibody
exocyst
membrane trafficking
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-dfb86505921a6de72ae8378dd4b8c8c638c75612dc1122acc7ed0e4736b5b8cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Gwyn W. Gould, University of Glasgow, UK; Wei Guo, University of Pennsylvania, USA
This article was submitted to Membrane Traffic, a section of the journal Frontiers in Cell and Developmental Biology
Edited by: Mary Munson, University of Massachusetts Medical School, USA
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4891948/
PMID 27376061
PQID 1801861566
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_ebf2136adeae44ff90ded2fdbd460d5d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4891948
proquest_miscellaneous_1801861566
crossref_primary_10_3389_fcell_2016_00051
pubmed_primary_27376061
PublicationCentury 2000
PublicationDate 2016-06-03
PublicationDateYYYYMMDD 2016-06-03
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-03
  day: 03
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in cell and developmental biology
PublicationTitleAlternate Front Cell Dev Biol
PublicationYear 2016
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References 9630218 - Cell. 1998 May 29;93(5):731-40
22172676 - Dev Cell. 2011 Dec 13;21(6):1156-70
18216334 - J Cell Sci. 2008 Feb 1;121(Pt 3):391-403
19383721 - J Cell Sci. 2009 May 15;122(Pt 10):1499-506
18697830 - J Cell Sci. 2008 Sep 1;121(Pt 17):2880-91
24284074 - J Cell Sci. 2014 Feb 1;127(Pt 3):686-99
21241894 - Cell. 2011 Jan 21;144(2):253-67
11102522 - Mol Biol Cell. 2000 Dec;11(12):4259-75
9368032 - J Biol Chem. 1997 Nov 21;272(47):29652-62
21550243 - Trends Cell Biol. 2011 Jul;21(7):383-6
26446795 - J Biol Chem. 2015 Nov 20;290(47):28245-56
14709721 - J Cell Sci. 2004 Feb 1;117(Pt 4):559-70
16213214 - Cell. 2005 Oct 7;123(1):75-87
22114349 - Mol Biol Cell. 2012 Jan;23(2):337-46
19073882 - Mol Biol Cell. 2009 Feb;20(3):973-82
18541705 - J Cell Biol. 2008 Jun 16;181(6):985-98
19005211 - Mol Biol Cell. 2009 Jan;20(1):102-13
9405631 - Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14438-43
19535457 - Mol Biol Cell. 2009 Aug;20(16):3763-71
8006058 - J Cell Sci. 1994 Mar;107 ( Pt 3):367-75
19889837 - Mol Biol Cell. 2010 Jan 1;21(1):152-64
15848801 - Neuron. 2005 Apr 21;46(2):219-32
20890297 - Nat Cell Biol. 2010 Nov;12 (11):1035-45
26700316 - Mol Biol Cell. 2016 Feb 15;27(4):686-701
22013078 - Mol Biol Cell. 2011 Dec;22(24):4787-800
15158452 - Biochem Biophys Res Commun. 2004 Jun 18;319(1):138-43
19935652 - Nat Cell Biol. 2009 Dec;11(12):1427-32
16148947 - EMBO J. 2005 Oct 5;24(19):3389-99
19297529 - Mol Biol Cell. 2009 May;20(10):2522-9
26656853 - Nat Struct Mol Biol. 2016 Jan;23(1):59-66
12954101 - Hybrid Hybridomics. 2003 Jun;22(3):159-64
21516108 - Nat Cell Biol. 2011 May;13(5):580-8
17086175 - Nat Cell Biol. 2006 Dec;8(12):1383-8
11356872 - J Neurosci. 2001 Jun 1;21(11):3839-48
9655500 - Neuron. 1998 Jun;20(6):1111-22
16137928 - Dev Cell. 2005 Sep;9(3):351-63
16826234 - Nat Struct Mol Biol. 2006 Jul;13(7):577-81
14662749 - J Cell Biol. 2003 Dec 8;163(5):1111-21
1730751 - J Cell Biol. 1992 Jan;116(1):85-94
8982167 - Neuron. 1996 Dec;17(6):1209-19
17686995 - Mol Biol Cell. 2007 Oct;18(10 ):3978-92
12763070 - Neuroscience. 2003;119(1):73-85
17018283 - Cell. 2006 Oct 6;127(1):157-70
15835919 - Biochemistry. 2005 Apr 26;44(16):6302-11
15897260 - J Cell Biol. 2005 May 23;169(4):635-46
19776740 - Nature. 2009 Oct 8;461(7265):788-92
16478783 - J Cell Sci. 2006 Mar 1;119(Pt 5):876-88
18756269 - EMBO J. 2008 Sep 17;27(18):2375-87
25232005 - Mol Biol Cell. 2014 Nov 15;25(23 ):3813-22
17827149 - J Biol Chem. 2007 Nov 9;282(45):33155-67
24056301 - Nat Cell Biol. 2013 Oct;15(10 ):1220-30
23295348 - J Cell Biol. 2013 Jan 7;200(1):81-93
20579884 - Curr Biol. 2010 Jul 27;20(14):1316-20
14581457 - J Cell Biol. 2003 Oct 27;163(2):351-62
26283729 - Mol Cell Biol. 2015 Nov;35(21):3633-45
11696560 - J Cell Biol. 2001 Nov 12;155(4):593-604
21658605 - Mol Cell. 2011 Jun 10;42(5):650-61
16382162 - Mol Cell Biol. 2006 Jan;26(2):727-34
16611746 - Mol Biol Cell. 2006 Jun;17(6):2757-69
12798134 - Methods. 2003 Jul;30(3):198-206
22898781 - Dev Cell. 2012 Aug 14;23(2):397-411
Stevenson (B51) 1994; 107 (Pt 3)
Torres (B53) 2015; 35
Munson (B34) 2006; 13
Vega (B54) 2001; 21
Chien (B7) 2006; 127
Hsu (B21) 1996; 17
Jin (B24) 2011; 21
Fielding (B11) 2005; 24
Jafar-Nejad (B23) 2005; 9
Stalder (B50) 2016; 27
Grindstaff (B15) 1998; 93
Gromley (B16) 2005; 123
Lalli (B26) 2009; 122
Oztan (B37) 2007; 18
Reaves (B41) 1992; 116
Zuo (B60) 2009; 20
Rosse (B44) 2006; 26
Yeaman (B59) 2001; 155
Medkova (B30) 2006; 17
Goehring (B14) 2007; 282
Vik-Mo (B55) 2003; 119
Rogers (B43) 2004; 319
Wang (B56) 2003; 22
Folsch (B12) 2003; 163
Spiczka (B49) 2008; 121
Andersen (B1) 2010; 21
Dubuke (B10) 2015; 290
Mohammadi (B32) 2013; 200
Hsu (B20) 1998; 20
Yeaman (B57) 2003; 30
Rittmeyer (B42) 2008; 121
Songer (B48) 2009; 20
Yeaman (B58) 2004; 117
Parrini (B38) 2011; 42
Pathak (B39) 2012; 23
France (B13) 2006; 119
Ishikawa (B22) 2009; 461
Bryant (B4) 2010; 12
Hazelett (B18) 2011; 22
Morgera (B33) 2012; 23
Bodemann (B3) 2011; 144
Chen (B6) 2011; 13
Kee (B25) 1997; 94
Cascone (B5) 2008; 27
Sakurai-Yageta (B45) 2008; 181
Luo (B29) 2014; 25
Prigent (B40) 2003; 163
Das (B9) 2011; 21
Lipschutz (B27) 2000; 11
Mehta (B31) 2005; 46
Liu (B28) 2009; 20
Hase (B17) 2009; 11
Simicek (B46) 2013; 15
Beronja (B2) 2005; 169
Nichols (B35) 2010; 20
Sivaram (B47) 2005; 44
Das (B8) 2014; 127
Heider (B19) 2016; 23
Zuo (B61) 2006; 8
Overgaard (B36) 2009; 20
Stewart (B52) 1997; 272
References_xml – volume: 290
  start-page: 28245
  year: 2015
  ident: B10
  article-title: The Exocyst Subunit Sec6 Interacts with Assembled Exocytic SNARE Complexes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.673806
  contributor:
    fullname: Dubuke
– volume: 20
  start-page: 3763
  year: 2009
  ident: B28
  article-title: The role of the exocyst in matrix metalloproteinase secretion and actin dynamics during tumor cell invadopodia formation
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E08-09-0967
  contributor:
    fullname: Liu
– volume: 121
  start-page: 391
  year: 2008
  ident: B42
  article-title: A dual role for IQGAP1 in regulating exocytosis
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.016881
  contributor:
    fullname: Rittmeyer
– volume: 119
  start-page: 73
  year: 2003
  ident: B55
  article-title: Sec6 is localized to the plasma membrane of mature synaptic terminals and is transported with secretogranin II-containing vesicles
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(03)00065-4
  contributor:
    fullname: Vik-Mo
– volume: 155
  start-page: 593
  year: 2001
  ident: B59
  article-title: Sec6/8 complexes on trans-Golgi network and plasma membrane regulate late stages of exocytosis in mammalian cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200107088
  contributor:
    fullname: Yeaman
– volume: 119
  start-page: 876
  year: 2006
  ident: B13
  article-title: The polarity-establishment component Bem1p interacts with the exocyst complex through the Sec15p subunit
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.02849
  contributor:
    fullname: France
– volume: 13
  start-page: 580
  year: 2011
  ident: B6
  article-title: Exocyst function is regulated by effector phosphorylation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2226
  contributor:
    fullname: Chen
– volume: 117
  start-page: 559
  year: 2004
  ident: B58
  article-title: Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.00893
  contributor:
    fullname: Yeaman
– volume: 25
  start-page: 3813
  year: 2014
  ident: B29
  article-title: The role of Sec3p in secretory vesicle targeting and exocyst complex assembly
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E14-04-0907
  contributor:
    fullname: Luo
– volume: 93
  start-page: 731
  year: 1998
  ident: B15
  article-title: Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81435-X
  contributor:
    fullname: Grindstaff
– volume: 22
  start-page: 159
  year: 2003
  ident: B56
  article-title: Immunological characterization of exocyst complex subunits in cell differentiation
  publication-title: Hybrid. Hybridomics
  doi: 10.1089/153685903322286575
  contributor:
    fullname: Wang
– volume: 23
  start-page: 397
  year: 2012
  ident: B39
  article-title: The microtubule-associated Rho activating factor GEF-H1 interacts with exocyst complex to regulate vesicle traffic
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2012.06.014
  contributor:
    fullname: Pathak
– volume: 27
  start-page: 686
  year: 2016
  ident: B50
  article-title: The casein kinases Yck1p and Yck2p act in the secretory pathway, in part, by regulating the Rab exchange factor Sec2p
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E15-09-0651
  contributor:
    fullname: Stalder
– volume: 144
  start-page: 253
  year: 2011
  ident: B3
  article-title: RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly
  publication-title: Cell
  doi: 10.1016/j.cell.2010.12.018
  contributor:
    fullname: Bodemann
– volume: 13
  start-page: 577
  year: 2006
  ident: B34
  article-title: The exocyst defrocked, a framework of rods revealed
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1097
  contributor:
    fullname: Munson
– volume: 9
  start-page: 351
  year: 2005
  ident: B23
  article-title: Sec15, a component of the exocyst, promotes notch signaling during the asymmetric division of Drosophila sensory organ precursors
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2005.06.010
  contributor:
    fullname: Jafar-Nejad
– volume: 20
  start-page: 102
  year: 2009
  ident: B36
  article-title: Deciliation is associated with dramatic remodeling of epithelial cell junctions and surface domains
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E08-07-0741
  contributor:
    fullname: Overgaard
– volume: 200
  start-page: 81
  year: 2013
  ident: B32
  article-title: Cdc42 interacts with the exocyst complex to promote phagocytosis
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201204090
  contributor:
    fullname: Mohammadi
– volume: 21
  start-page: 152
  year: 2010
  ident: B1
  article-title: Sec3-containing exocyst complex is required for desmosome assembly in mammalian epithelial cells
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E09-06-0459
  contributor:
    fullname: Andersen
– volume: 27
  start-page: 2375
  year: 2008
  ident: B5
  article-title: Distinct roles of RalA and RalB in the progression of cytokinesis are supported by distinct RalGEFs
  publication-title: EMBO J.
  doi: 10.1038/emboj.2008.166
  contributor:
    fullname: Cascone
– volume: 123
  start-page: 75
  year: 2005
  ident: B16
  article-title: Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission
  publication-title: Cell
  doi: 10.1016/j.cell.2005.07.027
  contributor:
    fullname: Gromley
– volume: 30
  start-page: 198
  year: 2003
  ident: B57
  article-title: Ultracentrifugation-based approaches to study regulation of Sec6/8 (exocyst) complex function during development of epithelial cell polarity
  publication-title: Methods
  doi: 10.1016/S1046-2023(03)00026-4
  contributor:
    fullname: Yeaman
– volume: 8
  start-page: 1383
  year: 2006
  ident: B61
  article-title: Exo70 interacts with the Arp2/3 complex and regulates cell migration
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1505
  contributor:
    fullname: Zuo
– volume: 21
  start-page: 3839
  year: 2001
  ident: B54
  article-title: The exocyst complex associates with microtubules to mediate vesicle targeting and neurite outgrowth
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-11-03839.2001
  contributor:
    fullname: Vega
– volume: 20
  start-page: 2522
  year: 2009
  ident: B60
  article-title: The exocyst protein Sec10 is necessary for primary ciliogenesis and cystogenesis in vitro
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E08-07-0772
  contributor:
    fullname: Zuo
– volume: 107 (Pt 3)
  start-page: 367
  year: 1994
  ident: B51
  article-title: Concentration-dependent effects of cytochalasin D on tight junctions and actin filaments in MDCK epithelial cells
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.107.3.367
  contributor:
    fullname: Stevenson
– volume: 163
  start-page: 1111
  year: 2003
  ident: B40
  article-title: ARF6 controls post-endocytic recycling through its downstream exocyst complex effector
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200305029
  contributor:
    fullname: Prigent
– volume: 272
  start-page: 29652
  year: 1997
  ident: B52
  article-title: Identification of four distinct pools of catenins in mammalian cells and transformation-dependent changes in catenin distributions among these pools
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.47.29652
  contributor:
    fullname: Stewart
– volume: 461
  start-page: 788
  year: 2009
  ident: B22
  article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity
  publication-title: Nature
  doi: 10.1038/nature08476
  contributor:
    fullname: Ishikawa
– volume: 21
  start-page: 1156
  year: 2011
  ident: B24
  article-title: Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2011.10.009
  contributor:
    fullname: Jin
– volume: 11
  start-page: 4259
  year: 2000
  ident: B27
  article-title: Exocyst is involved in cystogenesis and tubulogenesis and acts by modulating synthesis and delivery of basolateral plasma membrane and secretory proteins
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.11.12.4259
  contributor:
    fullname: Lipschutz
– volume: 23
  start-page: 337
  year: 2012
  ident: B33
  article-title: Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E11-08-0670
  contributor:
    fullname: Morgera
– volume: 11
  start-page: 1427
  year: 2009
  ident: B17
  article-title: M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1990
  contributor:
    fullname: Hase
– volume: 282
  start-page: 33155
  year: 2007
  ident: B14
  article-title: MyRIP anchors protein kinase A to the exocyst complex
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M705167200
  contributor:
    fullname: Goehring
– volume: 20
  start-page: 1111
  year: 1998
  ident: B20
  article-title: Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80493-6
  contributor:
    fullname: Hsu
– volume: 163
  start-page: 351
  year: 2003
  ident: B12
  article-title: The AP-1A and AP-1B clathrin adaptor complexes define biochemically and functionally distinct membrane domains
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200309020
  contributor:
    fullname: Folsch
– volume: 319
  start-page: 138
  year: 2004
  ident: B43
  article-title: The exocyst localizes to the primary cilium in MDCK cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2004.04.165
  contributor:
    fullname: Rogers
– volume: 116
  start-page: 85
  year: 1992
  ident: B41
  article-title: Perturbation of the morphology of the trans-Golgi network following Brefeldin A treatment: redistribution of a TGN-specific integral membrane protein, TGN38
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.116.1.85
  contributor:
    fullname: Reaves
– volume: 127
  start-page: 686
  year: 2014
  ident: B8
  article-title: RalA promotes a direct exocyst-Par6 interaction to regulate polarity in neuronal development
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.145037
  contributor:
    fullname: Das
– volume: 122
  start-page: 1499
  year: 2009
  ident: B26
  article-title: RalA and the exocyst complex influence neuronal polarity through PAR-3 and aPKC
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.044339
  contributor:
    fullname: Lalli
– volume: 169
  start-page: 635
  year: 2005
  ident: B2
  article-title: Essential function of Drosophila Sec6 in apical exocytosis of epithelial photoreceptor cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200410081
  contributor:
    fullname: Beronja
– volume: 23
  start-page: 59
  year: 2016
  ident: B19
  article-title: Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3146
  contributor:
    fullname: Heider
– volume: 20
  start-page: 973
  year: 2009
  ident: B48
  article-title: Sec6p anchors the assembled exocyst complex at sites of secretion
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E08-09-0968
  contributor:
    fullname: Songer
– volume: 127
  start-page: 157
  year: 2006
  ident: B7
  article-title: RalB GTPase-mediated activation of the IkappaB family kinase TBK1 couples innate immune signaling to tumor cell survival
  publication-title: Cell
  doi: 10.1016/j.cell.2006.08.034
  contributor:
    fullname: Chien
– volume: 17
  start-page: 1209
  year: 1996
  ident: B21
  article-title: The mammalian brain rsec6/8 complex
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80251-2
  contributor:
    fullname: Hsu
– volume: 24
  start-page: 3389
  year: 2005
  ident: B11
  article-title: Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600803
  contributor:
    fullname: Fielding
– volume: 46
  start-page: 219
  year: 2005
  ident: B31
  article-title: Mutations in Drosophila sec15 reveal a function in neuronal targeting for a subset of exocyst components
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.02.029
  contributor:
    fullname: Mehta
– volume: 20
  start-page: 1316
  year: 2010
  ident: B35
  article-title: Salmonella-directed recruitment of new membrane to invasion foci via the host exocyst complex
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2010.05.065
  contributor:
    fullname: Nichols
– volume: 17
  start-page: 2757
  year: 2006
  ident: B30
  article-title: The rab exchange factor Sec2p reversibly associates with the exocyst
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E05-10-0917
  contributor:
    fullname: Medkova
– volume: 18
  start-page: 3978
  year: 2007
  ident: B37
  article-title: Exocyst requirement for endocytic traffic directed toward the apical and basolateral poles of polarized MDCK cells
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E07-02-0097
  contributor:
    fullname: Oztan
– volume: 42
  start-page: 650
  year: 2011
  ident: B38
  article-title: SH3BP1, an exocyst-associated RhoGAP, inactivates Rac1 at the front to drive cell motility
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.03.032
  contributor:
    fullname: Parrini
– volume: 121
  start-page: 2880
  year: 2008
  ident: B49
  article-title: Ral-regulated interaction between Sec5 and paxillin targets Exocyst to focal complexes during cell migration
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.031641
  contributor:
    fullname: Spiczka
– volume: 12
  start-page: 1035
  year: 2010
  ident: B4
  article-title: A molecular network for de novo generation of the apical surface and lumen
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2106
  contributor:
    fullname: Bryant
– volume: 21
  start-page: 383
  year: 2011
  ident: B9
  article-title: Rabs and the exocyst in ciliogenesis, tubulogenesis and beyond
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2011.03.006
  contributor:
    fullname: Das
– volume: 22
  start-page: 4787
  year: 2011
  ident: B18
  article-title: RalA and RalB differentially regulate development of epithelial tight junctions
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E11-07-0657
  contributor:
    fullname: Hazelett
– volume: 15
  start-page: 1220
  year: 2013
  ident: B46
  article-title: The deubiquitylase USP33 discriminates between RALB functions in autophagy and innate immune response
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2847
  contributor:
    fullname: Simicek
– volume: 181
  start-page: 985
  year: 2008
  ident: B45
  article-title: The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200709076
  contributor:
    fullname: Sakurai-Yageta
– volume: 26
  start-page: 727
  year: 2006
  ident: B44
  article-title: RalB mobilizes the exocyst to drive cell migration
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.26.2.727-734.2006
  contributor:
    fullname: Rosse
– volume: 35
  start-page: 3633
  year: 2015
  ident: B53
  article-title: Role of the Exocyst Complex Component Sec6/8 in Genomic Stability
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00768-15
  contributor:
    fullname: Torres
– volume: 94
  start-page: 14438
  year: 1997
  ident: B25
  article-title: Subunit structure of the mammalian exocyst complex
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.94.26.14438
  contributor:
    fullname: Kee
– volume: 44
  start-page: 6302
  year: 2005
  ident: B47
  article-title: Dimerization of the exocyst protein Sec6p and its interaction with the t-SNARE Sec9p
  publication-title: Biochemistry
  doi: 10.1021/bi048008z
  contributor:
    fullname: Sivaram
SSID ssj0001257583
Score 2.0479617
Snippet Spatial regulation of exocytosis relies on the exocyst, a hetero-octameric protein complex that tethers vesicles to fusion sites at the plasma membrane....
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 51
SubjectTerms Cell and Developmental Biology
Cell Polarity
Epithelium
exocyst
Mammals
Membrane trafficking
Monoclonal antibody
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-UwEA-LIOxlWXU_nh9LhL3soZimaZoeVXzIguJhBW8hyaTuA2kXXx_of-9M8pT3FsGL17Yhw2-Szm8mkxnGfkIdkUSXUAjf1oUyUhWm9qHoROejjsIpRRecLy71-bX6fVPfrLT6opywXB44A3cUfSfLSjuILuK4rhUQQXbgQWkBNaS_r5ArzlSOriANMVU-l0QvrD3qKBBOqVx0-CDqcs0OpXL9r3HM_1MlV2zP9DP7tCSN_DgLu8U-xH6bbeY2ko877PKKiin1t3yKRirH9ni-NTDns56fPQzhcT5yutw3u11klXMKwHLc0UO4SwOO-3HmB8op_MKup2d_Ts-LZZ-EIigtxwI6b5Bo1a0snYbYSBepTDyA8iaYgDssNNQEEwKSK-lCaCKIqJpK-xq_6KqvbKMf-vid8RKClsFD5SqhAKRvNXqxrVYBmY9T5YT9ekbN_svlMCy6EYSwTQhbQtgmhCfshGB9-Y4KWacHqF67VK99S70TdvisFIsLn6ZwfRwWc1uibTWa3M8J-5aV9DIVcrIGPTMUoVlT35os62_62d9UXFuZtmyV2X0P4ffYR4IjZZZV-2xjvF_EA-Qwo_-RlusTOgz1Ag
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhJdBLaZt-uGmKArn04NaWZVk-lJKULCGQ0EMXchOSRt4uBLvd9UL232fG8qbdsqdebQmZNzPMm_HMiLFTKAOS6BzSzNVlKrWQqS6dT5uscUGFzEpJDc7XN-pyKq9uy9s_7dEjgMudoR3dJzVd3H26_73-igb_hSJO9LefG8pxU5UW_VfIqJ_6iUC_SAVe1yPZjxkXpCa6iP8qd26kycAVVYmofMtNDdP8d1HQfysp_3JNk-fs2cgp-VlUghdsL7Qv2UG8ZXJ9yG6-06yldsYn6MNi6o_HpoIln7f84r7z62XPqfdvPltFjeCUn-Vo8J2_Gzactf3cdVRy-IpNJxc_vl2m4zUKqZdK9Ck0TiMPK2uRWwWhEjbQFHkA6bTXHg3QV3RHJnjkXsJ6XwXIgqwK5Upc0RSv2X7bteEt4zl4JbyDwhaZBBCuVhjk1kp6JEZW5gn7uEHN_IrTMgxGGQS2GcA2BLYZwE7YOcH6uI7mXA8PusXMjGZjgmtEXigLwQbUmqbOIIBowIFUGZSQsJONUAzaBR1h29CtliZH16sVRacJexOF9HjURsgJq7bEt_Ut22_a-c9h9rbUdV5L_e6_dx6xp4TBUG1WvGf7_WIVjpHX9O7DoK4PuPv6xg
  priority: 102
  providerName: Scholars Portal
Title Probing Functional Changes in Exocyst Configuration with Monoclonal Antibodies
URI https://www.ncbi.nlm.nih.gov/pubmed/27376061
https://search.proquest.com/docview/1801861566
https://pubmed.ncbi.nlm.nih.gov/PMC4891948
https://doaj.org/article/ebf2136adeae44ff90ded2fdbd460d5d
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJINBLaZM-3EdQoZcenPVDluVjGrKEwoYcGshNSBp5a0jskPVC8u87I61DtvSUiw-2hMzMiPlm9M2Ise9QeQTROaSZbapUqEKkqrIubbPWeukzIwQVOC8u5PmV-HVdXe-waqqFCaR9Z7vj_ub2uO_-BG7l3a2bTTyx2eXiVKgGY28122W76H6fhegxsYIIRJXxSBIDsGbWUg6cWFx07oBGSA2AayKDyHzLG4Wm_f9Dmv8SJp95oPkb9noDHflJ_MW3bMf3B2w_Xib5eMguLqmlUr_kc3RVMcPHY-3Ainc9P3sY3ONq5FTi1y3XUfGc0rAc9_XgbsKEk37s7EDMwnfsan72-_Q83dyWkDohizGF1iqEW1VT5EaCrwvjqVk8gLDKKYf7zNV0FSY4hFiFca72kHlRl9JWOKIt37O9fuj9R8ZzcLJwFkpTZgKgsI3EWLaRwiH-MSJP2I9JavouNsXQGEyQsHUQtiZh6yDshP0ksT6No3bW4cVwv9QbpWpv2yIvpQFvPBpH22TgoWjBgpAZVJCwb5NSNJo_LWF6P6xXOkcPqyQFoQn7EJX0tNSk5ITVW-rb-pftL2hxocX2xsI-vXjmZ_aKZBBIZeUXtjfer_1XhC-jPQphPz4XQh0F0_0LYcf0uQ
link.rule.ids 230,314,727,780,784,864,885,2102,24318,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6DsN2Gfaeu5cG7LKDGz9k2T52RYNsa4IeWqA3wRLl1EBrF40DrP--pBwXzbDTrrYECSQFfqQ-UgDfMHMEomMMI1NmoSwSGRaZsWEd1cYpF1VScoHzfKFmZ_LXeXa-A9lYC-NJ-9Y0--3l1X7bXHhu5fWVnYw8scnJ_FAWJcXexeQRPM7SvIwfBOlDaoUwSJEOl5IUgpWTmrPgzOPimwcyQ24BnDMdRMVb_si37f8X1vybMvnAB01fwPMNeBQHwyZfwo5rX8GT4TnJ29ewOOGmSu1STMlZDTk-MVQPrETTiqM_nb1d9YKL_JrlelC94ESsoJPd2Us_4aDtG9Mxt_ANnE2PTg9n4ea9hNBKlfQh1qYgwJWVSVwpdHlSOW4XjyhNYQtLJ83m_BgmWgJZSWVt7jByMk-VyWhEnb6F3bZr3XsQMVqVWINplUYSMTGlomi2VNISAqpkHMD3UWr6emiLoSmcYGFrL2zNwtZe2AH8YLHej-OG1v5Dd7PUG7VqZ-okTlWFrnJkHnUZocOkRoNSRZhhAF9HpWg6ALxE1bpuvdIx-dhCcRgawLtBSfdLjUoOIN9S39Zetv-Qzfkm2xsb2_vvmV_g6ex0fqyPfy5-f4BnLA9PMUs_wm5_s3afCMz05rM33TvflPY_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa2Dht2Kfaeu5cH7LKD65cs28eua9A9GuSwAr0JkiinBlo5aBxg_fcjpaRIhp12tSVIICnwI_WJZOwTVBZBdA5Jptsq4U3Bk6bSJumyTlthM8U5PXA-m4rTc_79orrYavXlSftG94fu6vrQ9ZeeW7m4NumGJ5bOzo5502Ls3aQL6NL77EFVopFtBeohvYI4pCnDxSSGYW3aUSacuFx0-4CmSGWAa6KEiHzHJ_nS_f_Cm3_TJrf80OQJ218DyPgobPQpu2fdM_YwtJS8fc6mMyqs5ObxBB1WyPPF4QXBMu5dfPJ7MLfLMaaHfv18FdQfUzI2xtM9mCs_4ciNvR6IX_iCnU9Ofh2fJuueCYnhohgT6HSDoKtqi1wJsHWhLJWMB-C6MY3B02ZqaogJBoFWoYypLWSW16XQFY7oypdszw3OvmZxDkYURkOpyowDFLoVGNG2ghtEQYrnEfu8kZpchNIYEkMKErb0wpYkbOmFHbEvJNa7cVTU2n8YbuZyrVppdVfkpVBglUUT6doMLBQdaOAigwoi9nGjFImHgJZQzg6rpczRzzaCQtGIvQpKultqo-SI1Tvq29nL7h-0O19oe21nB_898wN7NPs6kT-_TX-8YY9JHJ5lVr5le-PNyr5DPDPq995y_wBhSPdS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+Functional+Changes+in+Exocyst+Configuration+with+Monoclonal+Antibodies&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Inamdar%2C+Shivangi+M.&rft.au=Hsu%2C+Shu-Chan&rft.au=Yeaman%2C+Charles&rft.date=2016-06-03&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-634X&rft.volume=4&rft_id=info:doi/10.3389%2Ffcell.2016.00051&rft_id=info%3Apmid%2F27376061&rft.externalDBID=PMC4891948
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon