Circular RNAs: Biogenesis, Function and Role in Human Diseases

Circular RNAs (circRNAs) are currently classed as non-coding RNA (ncRNA) that, unlike linear RNAs, form covalently closed continuous loops and act as gene regulators in mammals. They were originally thought to represent errors in splicing and considered to be of low abundance, however, there is now...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in molecular biosciences Vol. 4; p. 38
Main Authors Greene, John, Baird, Anne-Marie, Brady, Lauren, Lim, Marvin, Gray, Steven G., McDermott, Raymond, Finn, Stephen P.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 06.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Circular RNAs (circRNAs) are currently classed as non-coding RNA (ncRNA) that, unlike linear RNAs, form covalently closed continuous loops and act as gene regulators in mammals. They were originally thought to represent errors in splicing and considered to be of low abundance, however, there is now an increased appreciation of their important function in gene regulation. circRNAs are differentially generated by backsplicing of exons or from lariat introns. Unlike linear RNA, the 3' and 5' ends normally present in an RNA molecule have been joined together by covalent bonds leading to circularization. Interestingly, they have been found to be abundant, evolutionally conserved and relatively stable in the cytoplasm. These features confer numerous potential functions to circRNAs, such as acting as miRNA sponges, or binding to RNA-associated proteins to form RNA-protein complexes that regulate gene transcription. It has been proposed that circRNA regulate gene expression at the transcriptional or post-transcriptional level by interacting with miRNAs and that circRNAs may have a role in regulating miRNA function in cancer initiation and progression. circRNAs appear to be more often downregulated in tumor tissue compared to normal tissue and this may be due to (i) errors in the back-splice machinery in malignant tissues, (ii) degradation of circRNAs by deregulated miRNAs in tumor tissue, or (iii) increasing cell proliferation leading to a reduction of circRNAs. circRNAs have been identified in exosomes and more recently, chromosomal translocations in cancer have been shown to generate aberrant fusion-circRNAs associated with resistance to drug treatments. In addition, though originally thought to be non-coding, there is now increasing evidence to suggest that select circRNAs can be translated into functional proteins. Although much remains to be elucidated about circRNA biology and mechanisms of gene regulation, these ncRNAs are quickly emerging as potential disease biomarkers and therapeutic targets in cancer.
AbstractList Circular RNAs (circRNAs) are currently classed as non-coding RNA (ncRNA) that, unlike linear RNAs, form covalently closed continuous loops and act as gene regulators in mammals. They were originally thought to represent errors in splicing and considered to be of low abundance, however, there is now an increased appreciation of their important function in gene regulation. circRNAs are differentially generated by backsplicing of exons or from lariat introns. Unlike linear RNA, the 3′ and 5′ ends normally present in an RNA molecule have been joined together by covalent bonds leading to circularization. Interestingly, they have been found to be abundant, evolutionally conserved and relatively stable in the cytoplasm. These features confer numerous potential functions to circRNAs, such as acting as miRNA sponges, or binding to RNA-associated proteins to form RNA-protein complexes that regulate gene transcription. It has been proposed that circRNA regulate gene expression at the transcriptional or post-transcriptional level by interacting with miRNAs and that circRNAs may have a role in regulating miRNA function in cancer initiation and progression. circRNAs appear to be more often downregulated in tumor tissue compared to normal tissue and this may be due to (i) errors in the back-splice machinery in malignant tissues, (ii) degradation of circRNAs by deregulated miRNAs in tumor tissue, or (iii) increasing cell proliferation leading to a reduction of circRNAs. circRNAs have been identified in exosomes and more recently, chromosomal translocations in cancer have been shown to generate aberrant fusion-circRNAs associated with resistance to drug treatments. In addition, though originally thought to be non-coding, there is now increasing evidence to suggest that select circRNAs can be translated into functional proteins. Although much remains to be elucidated about circRNA biology and mechanisms of gene regulation, these ncRNAs are quickly emerging as potential disease biomarkers and therapeutic targets in cancer.
Circular RNAs (circRNAs) are currently classed as non-coding RNA (ncRNA) that, unlike linear RNAs, form covalently closed continuous loops and act as gene regulators in mammals. They were originally thought to represent errors in splicing and considered to be of low abundance, however, there is now an increased appreciation of their important function in gene regulation. circRNAs are differentially generated by backsplicing of exons or from lariat introns. Unlike linear RNA, the 3' and 5' ends normally present in an RNA molecule have been joined together by covalent bonds leading to circularization. Interestingly, they have been found to be abundant, evolutionally conserved and relatively stable in the cytoplasm. These features confer numerous potential functions to circRNAs, such as acting as miRNA sponges, or binding to RNA-associated proteins to form RNA-protein complexes that regulate gene transcription. It has been proposed that circRNA regulate gene expression at the transcriptional or post-transcriptional level by interacting with miRNAs and that circRNAs may have a role in regulating miRNA function in cancer initiation and progression. circRNAs appear to be more often downregulated in tumor tissue compared to normal tissue and this may be due to (i) errors in the back-splice machinery in malignant tissues, (ii) degradation of circRNAs by deregulated miRNAs in tumor tissue, or (iii) increasing cell proliferation leading to a reduction of circRNAs. circRNAs have been identified in exosomes and more recently, chromosomal translocations in cancer have been shown to generate aberrant fusion-circRNAs associated with resistance to drug treatments. In addition, though originally thought to be non-coding, there is now increasing evidence to suggest that select circRNAs can be translated into functional proteins. Although much remains to be elucidated about circRNA biology and mechanisms of gene regulation, these ncRNAs are quickly emerging as potential disease biomarkers and therapeutic targets in cancer.Circular RNAs (circRNAs) are currently classed as non-coding RNA (ncRNA) that, unlike linear RNAs, form covalently closed continuous loops and act as gene regulators in mammals. They were originally thought to represent errors in splicing and considered to be of low abundance, however, there is now an increased appreciation of their important function in gene regulation. circRNAs are differentially generated by backsplicing of exons or from lariat introns. Unlike linear RNA, the 3' and 5' ends normally present in an RNA molecule have been joined together by covalent bonds leading to circularization. Interestingly, they have been found to be abundant, evolutionally conserved and relatively stable in the cytoplasm. These features confer numerous potential functions to circRNAs, such as acting as miRNA sponges, or binding to RNA-associated proteins to form RNA-protein complexes that regulate gene transcription. It has been proposed that circRNA regulate gene expression at the transcriptional or post-transcriptional level by interacting with miRNAs and that circRNAs may have a role in regulating miRNA function in cancer initiation and progression. circRNAs appear to be more often downregulated in tumor tissue compared to normal tissue and this may be due to (i) errors in the back-splice machinery in malignant tissues, (ii) degradation of circRNAs by deregulated miRNAs in tumor tissue, or (iii) increasing cell proliferation leading to a reduction of circRNAs. circRNAs have been identified in exosomes and more recently, chromosomal translocations in cancer have been shown to generate aberrant fusion-circRNAs associated with resistance to drug treatments. In addition, though originally thought to be non-coding, there is now increasing evidence to suggest that select circRNAs can be translated into functional proteins. Although much remains to be elucidated about circRNA biology and mechanisms of gene regulation, these ncRNAs are quickly emerging as potential disease biomarkers and therapeutic targets in cancer.
Author Lim, Marvin
Finn, Stephen P.
Gray, Steven G.
Baird, Anne-Marie
Greene, John
Brady, Lauren
McDermott, Raymond
AuthorAffiliation 8 Labmed Directorate, St. James's Hospital Dublin, Ireland
4 Department of Clinical Medicine, Trinity College Dublin Dublin, Ireland
7 HOPE Directorate, St. James's Hospital Dublin, Ireland
1 Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin Dublin, Ireland
9 Department of Histopathology, St. James's Hospital Dublin, Ireland
2 Department of Medical Oncology, Tallaght Hospital Dublin, Ireland
6 Department of Medical Oncology, St. Vincent's University Hospital Dublin, Ireland
3 Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital Dublin, Ireland
5 Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology Brisbane, QLD, Australia
AuthorAffiliation_xml – name: 3 Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital Dublin, Ireland
– name: 4 Department of Clinical Medicine, Trinity College Dublin Dublin, Ireland
– name: 5 Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology Brisbane, QLD, Australia
– name: 9 Department of Histopathology, St. James's Hospital Dublin, Ireland
– name: 8 Labmed Directorate, St. James's Hospital Dublin, Ireland
– name: 7 HOPE Directorate, St. James's Hospital Dublin, Ireland
– name: 1 Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin Dublin, Ireland
– name: 2 Department of Medical Oncology, Tallaght Hospital Dublin, Ireland
– name: 6 Department of Medical Oncology, St. Vincent's University Hospital Dublin, Ireland
Author_xml – sequence: 1
  givenname: John
  surname: Greene
  fullname: Greene, John
– sequence: 2
  givenname: Anne-Marie
  surname: Baird
  fullname: Baird, Anne-Marie
– sequence: 3
  givenname: Lauren
  surname: Brady
  fullname: Brady, Lauren
– sequence: 4
  givenname: Marvin
  surname: Lim
  fullname: Lim, Marvin
– sequence: 5
  givenname: Steven G.
  surname: Gray
  fullname: Gray, Steven G.
– sequence: 6
  givenname: Raymond
  surname: McDermott
  fullname: McDermott, Raymond
– sequence: 7
  givenname: Stephen P.
  surname: Finn
  fullname: Finn, Stephen P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28634583$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9rFDEYhoO02Fp79yRz9NBd82OSyXgo1NXaQlEoCt7CN8k3a0omqclMwf_e2d1a2oKnhOT9nveD5xXZiykiIW8YXQqh2_f9kEK35JQ1S0qp0C_IIeetWmjd_tx7dD8gx6XczBEmqWhU_ZIccK1ELbU4JKcrn-0UIFfXX8_Kh-qjT2uMWHw5qc6naEefYgXRVdcpYOVjdTENEKtPviAULK_Jfg-h4PH9eUR-nH_-vrpYXH37crk6u1rYWvFx4azkklFlKXOaadmzDkTn6obXHTSAzlJRC9EBtY42PZOOKYVOouWgneDiiFzuuC7BjbnNfoD8xyTwZvuQ8tpAHr0NaKgCyqmWDqGtJW_ajkuFVjdacgSnZ9bpjnU7dcNcjXHMEJ5An_5E_8us052RtWy13gDe3QNy-j1hGc3gi8UQIGKaimEt46yVjWBz9O3jroeSfwLmAN0FbE6lZOwfIoyajWaz1Ww2ms1W8zyino1YP8JG1LytD_8f_AvehKxq
CitedBy_id crossref_primary_10_1038_s41388_019_1030_0
crossref_primary_10_3233_CBM_182293
crossref_primary_10_1016_j_tranon_2022_101611
crossref_primary_10_1155_2021_8800657
crossref_primary_10_1186_s12958_022_01011_3
crossref_primary_10_1016_j_ncrna_2024_03_007
crossref_primary_10_1016_j_neuroscience_2021_12_037
crossref_primary_10_1080_07391102_2023_2241535
crossref_primary_10_3892_ijo_2018_4371
crossref_primary_10_1146_annurev_nutr_122319_035633
crossref_primary_10_3390_diagnostics11101739
crossref_primary_10_5114_aoms_163530
crossref_primary_10_1016_j_bbrc_2018_02_036
crossref_primary_10_3892_ijo_2020_5066
crossref_primary_10_1016_j_bbagrm_2019_194420
crossref_primary_10_1007_s10555_024_10182_x
crossref_primary_10_1186_s13048_019_0558_5
crossref_primary_10_3390_ani14050733
crossref_primary_10_1038_s41419_020_03276_1
crossref_primary_10_1155_2019_9673129
crossref_primary_10_3390_biom14080952
crossref_primary_10_1002_1878_0261_12420
crossref_primary_10_1177_19476035211044826
crossref_primary_10_1042_BST20170469
crossref_primary_10_1039_D1FO02797B
crossref_primary_10_1080_17501911_2025_2467021
crossref_primary_10_1016_j_biopha_2017_09_064
crossref_primary_10_1186_s40659_024_00497_y
crossref_primary_10_1016_j_trim_2022_101653
crossref_primary_10_3389_fcell_2020_593007
crossref_primary_10_1007_s10266_020_00538_4
crossref_primary_10_3390_ijms19030675
crossref_primary_10_3390_ijms21010258
crossref_primary_10_3892_ijo_2020_5047
crossref_primary_10_1007_s00018_017_2688_5
crossref_primary_10_1016_j_ygeno_2021_03_026
crossref_primary_10_61186_umj_35_7_586
crossref_primary_10_1016_j_scienta_2023_112174
crossref_primary_10_1155_2022_8950130
crossref_primary_10_1007_s12672_024_00941_1
crossref_primary_10_1016_j_ncrna_2018_05_002
crossref_primary_10_1186_s12864_019_6154_7
crossref_primary_10_1111_iep_12457
crossref_primary_10_3389_fonc_2022_967625
crossref_primary_10_1016_j_omtn_2021_01_007
crossref_primary_10_1080_21655979_2022_2074106
crossref_primary_10_1016_j_neures_2018_11_005
crossref_primary_10_1096_fba_2024_00080
crossref_primary_10_3389_fcell_2021_651803
crossref_primary_10_3389_fcell_2021_703583
crossref_primary_10_1080_21655979_2022_2063664
crossref_primary_10_1016_j_gene_2023_147568
crossref_primary_10_3389_fonc_2024_1468363
crossref_primary_10_18632_aging_101541
crossref_primary_10_1016_j_ygeno_2019_06_030
crossref_primary_10_1002_mrd_23262
crossref_primary_10_1002_iid3_453
crossref_primary_10_1093_bib_bbab444
crossref_primary_10_1002_biof_1715
crossref_primary_10_1016_j_gene_2023_147323
crossref_primary_10_1186_s10020_023_00747_x
crossref_primary_10_2147_OTT_S253936
crossref_primary_10_1016_j_intimp_2023_110157
crossref_primary_10_1002_jcp_28156
crossref_primary_10_1111_jcmm_13789
crossref_primary_10_1371_journal_pone_0269554
crossref_primary_10_1016_j_omtn_2018_09_022
crossref_primary_10_1002_cbin_11303
crossref_primary_10_1186_s12935_020_01521_3
crossref_primary_10_2174_0929867329666211230104955
crossref_primary_10_1002_path_5097
crossref_primary_10_4103_aja2021131
crossref_primary_10_3390_genes13071145
crossref_primary_10_1007_s13105_017_0598_5
crossref_primary_10_1093_nar_gkz141
crossref_primary_10_1080_21655979_2022_2084484
crossref_primary_10_1177_0267659120979472
crossref_primary_10_1016_j_gene_2020_145040
crossref_primary_10_1089_dna_2020_6412
crossref_primary_10_1016_j_jconrel_2023_02_044
crossref_primary_10_1016_j_lfs_2019_117179
crossref_primary_10_3390_antiox11020182
crossref_primary_10_3390_v15081697
crossref_primary_10_1007_s12265_019_09912_2
crossref_primary_10_3389_fgene_2018_00647
crossref_primary_10_3390_cells12081160
crossref_primary_10_1007_s40291_018_0348_6
crossref_primary_10_2174_1574892818666221207115016
crossref_primary_10_1007_s10792_023_02636_y
crossref_primary_10_1016_j_genrep_2022_101556
crossref_primary_10_1155_ijog_4668425
crossref_primary_10_1016_j_ncrna_2018_04_002
crossref_primary_10_1016_j_jss_2022_04_006
crossref_primary_10_1111_jcmm_15943
crossref_primary_10_18632_aging_102761
crossref_primary_10_1007_s11010_021_04083_8
crossref_primary_10_1016_j_exer_2022_109179
crossref_primary_10_1134_S0026893320060096
crossref_primary_10_1094_PHYTO_09_20_0398_R
crossref_primary_10_1109_TCBB_2021_3111607
crossref_primary_10_3390_gidisord2030022
crossref_primary_10_1101_gr_275348_121
crossref_primary_10_3390_biomedicines9121934
crossref_primary_10_3390_cells9061544
crossref_primary_10_1002_jcla_24401
crossref_primary_10_1016_j_yexcr_2024_114390
crossref_primary_10_30683_1929_2279_2022_11_04
crossref_primary_10_1038_s41419_020_02769_3
crossref_primary_10_1016_j_canlet_2023_216247
crossref_primary_10_1097_FJC_0000000000001124
crossref_primary_10_1038_s41598_020_59040_0
crossref_primary_10_1002_jcb_28863
crossref_primary_10_1093_gigascience_giac093
crossref_primary_10_3390_biom13071046
crossref_primary_10_1016_j_exphem_2018_10_011
crossref_primary_10_1186_s12943_022_01514_y
crossref_primary_10_3390_cells9081841
crossref_primary_10_1016_j_fsi_2023_109113
crossref_primary_10_1016_j_clinre_2021_101671
crossref_primary_10_3390_ijms21197001
crossref_primary_10_3389_fonc_2024_1275009
crossref_primary_10_1016_j_gene_2022_146950
crossref_primary_10_2147_OTT_S319300
crossref_primary_10_3389_fgene_2019_00431
crossref_primary_10_1002_rmv_2530
crossref_primary_10_1002_iub_2346
crossref_primary_10_1159_000511612
crossref_primary_10_1007_s12010_023_04645_0
crossref_primary_10_1080_21655979_2021_1964891
crossref_primary_10_1016_j_biopha_2024_117306
crossref_primary_10_3389_fimmu_2018_00009
crossref_primary_10_1016_j_ncrna_2024_01_013
crossref_primary_10_1093_database_baaa019
crossref_primary_10_1016_j_ijcard_2023_131419
crossref_primary_10_1038_s41581_022_00631_7
crossref_primary_10_1111_jcmm_14550
crossref_primary_10_1007_s43032_022_00885_3
crossref_primary_10_2147_IJGM_S290440
crossref_primary_10_3389_fonc_2021_706415
crossref_primary_10_1134_S0006350921010036
crossref_primary_10_1016_j_microc_2024_110310
crossref_primary_10_1016_j_gene_2024_148442
crossref_primary_10_3389_fncel_2024_1470641
crossref_primary_10_1177_0963689720983786
crossref_primary_10_3389_fphys_2021_760223
crossref_primary_10_1042_CS20180403
crossref_primary_10_1080_08916934_2021_1894417
crossref_primary_10_2147_CMAR_S289775
crossref_primary_10_1186_s40478_023_01521_0
crossref_primary_10_1016_j_canlet_2024_216623
crossref_primary_10_3390_ijms18081668
crossref_primary_10_1002_mgg3_756
crossref_primary_10_1016_j_ncrna_2019_02_002
crossref_primary_10_1002_jemt_24147
crossref_primary_10_1016_j_mvr_2020_103983
crossref_primary_10_1038_s41419_022_05451_y
crossref_primary_10_2217_epi_2020_0074
crossref_primary_10_3389_fcell_2021_605686
crossref_primary_10_1111_pin_13353
crossref_primary_10_1177_1758835919831902
crossref_primary_10_3892_mmr_2017_7718
crossref_primary_10_1016_j_ncrna_2022_09_011
crossref_primary_10_1016_j_jtbi_2018_03_021
crossref_primary_10_12701_jyms_2023_01186
crossref_primary_10_3390_ijms25116190
crossref_primary_10_1111_jcmm_15987
crossref_primary_10_3390_molecules26123715
crossref_primary_10_2217_epi_2017_0173
crossref_primary_10_1186_s12935_021_01984_y
crossref_primary_10_1080_14737159_2018_1415757
crossref_primary_10_1186_s13046_023_02657_6
crossref_primary_10_1016_j_omtn_2019_12_031
crossref_primary_10_1016_j_ygeno_2023_110761
crossref_primary_10_3390_cancers16010059
crossref_primary_10_1016_j_genrep_2022_101516
crossref_primary_10_1097_MD_0000000000033064
crossref_primary_10_1097_FJC_0000000000001203
crossref_primary_10_1261_rna_071654_119
crossref_primary_10_1186_s12929_019_0595_9
crossref_primary_10_1007_s11010_022_04509_x
crossref_primary_10_1016_j_biopha_2021_111351
crossref_primary_10_3390_diagnostics8030060
crossref_primary_10_1016_j_omtn_2021_07_026
crossref_primary_10_1111_1759_7714_14300
crossref_primary_10_1186_s12920_023_01464_4
crossref_primary_10_1186_s12935_020_1120_7
crossref_primary_10_1002_prp2_812
crossref_primary_10_1016_j_fsi_2021_09_027
crossref_primary_10_1111_jcmm_16419
crossref_primary_10_1186_s12931_022_02069_8
crossref_primary_10_3390_cells9081758
crossref_primary_10_3390_cancers12071740
crossref_primary_10_3892_etm_2021_10714
crossref_primary_10_5009_gnl210542
crossref_primary_10_3390_ijms241411861
crossref_primary_10_1177_0963689720925751
crossref_primary_10_1016_j_ncrna_2018_02_002
crossref_primary_10_1007_s00018_019_03016_5
crossref_primary_10_3390_ijms23062963
crossref_primary_10_2147_OTT_S290270
crossref_primary_10_3389_fphys_2020_00738
crossref_primary_10_3389_fgene_2022_925564
crossref_primary_10_3389_fmed_2021_766208
crossref_primary_10_1155_2019_7237495
crossref_primary_10_1097_MD_0000000000025415
crossref_primary_10_1002_macp_202300131
crossref_primary_10_1038_s41388_021_01867_6
crossref_primary_10_1080_21691401_2019_1652623
crossref_primary_10_1002_jbt_23759
crossref_primary_10_1016_j_cellsig_2020_109784
crossref_primary_10_1186_s12929_024_01049_y
crossref_primary_10_3390_ijms19092475
crossref_primary_10_3892_ol_2018_9357
crossref_primary_10_1002_cbin_11253
crossref_primary_10_1002_jcla_22984
crossref_primary_10_1016_j_intimp_2022_108996
crossref_primary_10_3390_cancers10080258
crossref_primary_10_1080_02713683_2022_2143529
crossref_primary_10_1016_j_prp_2022_154265
crossref_primary_10_1007_s00432_017_2576_2
crossref_primary_10_1002_cbf_3543
crossref_primary_10_1016_j_vph_2018_03_003
crossref_primary_10_1016_j_omto_2021_12_015
crossref_primary_10_1002_hed_26549
crossref_primary_10_1002_jgm_3261
crossref_primary_10_3389_fonc_2021_705059
crossref_primary_10_12677_ACM_2022_1281134
crossref_primary_10_3892_etm_2018_7106
crossref_primary_10_2174_2211536612666230524153442
crossref_primary_10_3390_ijms20040919
crossref_primary_10_1002_jcla_23049
crossref_primary_10_2147_CMAR_S252679
crossref_primary_10_2217_epi_2019_0101
crossref_primary_10_1016_j_numecd_2021_04_005
crossref_primary_10_1186_s12935_020_01695_w
crossref_primary_10_1080_21655979_2022_2033382
crossref_primary_10_1016_j_ijbiomac_2022_09_203
crossref_primary_10_1080_21655979_2022_2036898
crossref_primary_10_2174_1566524023666230110151155
crossref_primary_10_1002_cam4_2553
crossref_primary_10_1016_j_pbiomolbio_2019_11_009
crossref_primary_10_1186_s12943_021_01318_6
crossref_primary_10_2147_CMAR_S267927
crossref_primary_10_1186_s13018_021_02615_y
crossref_primary_10_3389_fmolb_2022_925389
crossref_primary_10_1080_21655979_2021_1965695
crossref_primary_10_20900_mo_20190025
crossref_primary_10_1186_s13045_018_0569_5
crossref_primary_10_1016_j_ygeno_2020_12_013
crossref_primary_10_1002_jcb_27355
crossref_primary_10_1093_abbs_gmz116
crossref_primary_10_1016_j_gene_2020_144953
crossref_primary_10_2147_CMAR_S297123
crossref_primary_10_1182_bloodadvances_2019000568
crossref_primary_10_1080_1120009X_2023_2247202
crossref_primary_10_1093_cvr_cvx249
crossref_primary_10_1080_07853890_2024_2424515
crossref_primary_10_3390_cells14040312
crossref_primary_10_1080_21688370_2021_1895648
crossref_primary_10_1139_bcb_2019_0211
crossref_primary_10_1186_s12859_021_04287_1
crossref_primary_10_3389_fonc_2021_780744
crossref_primary_10_1038_s41598_019_45427_1
crossref_primary_10_2217_epi_2019_0352
crossref_primary_10_1002_wrna_1754
crossref_primary_10_1515_hsz_2018_0232
crossref_primary_10_1002_mc_23526
crossref_primary_10_3390_cells8010015
crossref_primary_10_1016_j_heliyon_2024_e37028
crossref_primary_10_1111_cpr_12614
crossref_primary_10_1038_s41419_021_03626_7
crossref_primary_10_1016_j_omtn_2021_11_005
crossref_primary_10_3390_cancers14246218
crossref_primary_10_1039_C9RA02230A
crossref_primary_10_1007_s00221_023_06555_3
crossref_primary_10_1093_nar_gky721
crossref_primary_10_1111_jgh_15635
crossref_primary_10_1007_s12031_022_02018_6
crossref_primary_10_1007_s11033_020_05601_5
crossref_primary_10_1155_2021_9980459
crossref_primary_10_1136_jim_2019_001131
crossref_primary_10_3390_ijms242417224
crossref_primary_10_1016_j_cca_2024_120003
crossref_primary_10_1016_j_vph_2020_106782
crossref_primary_10_3389_fmicb_2018_02010
crossref_primary_10_1080_08916934_2022_2027918
crossref_primary_10_3389_fgene_2019_00860
crossref_primary_10_1080_21655979_2021_1967712
crossref_primary_10_26508_lsa_202302488
crossref_primary_10_1186_s12935_021_02181_7
crossref_primary_10_1002_tox_23500
crossref_primary_10_1007_s00109_017_1603_8
crossref_primary_10_3892_mmr_2019_10866
crossref_primary_10_1002_jbt_23470
crossref_primary_10_1515_med_2022_0417
crossref_primary_10_1016_j_biocel_2024_106548
crossref_primary_10_1038_s41419_021_04253_y
crossref_primary_10_1016_j_ygeno_2023_110718
crossref_primary_10_3389_fphys_2022_969854
crossref_primary_10_1007_s10528_021_10092_5
crossref_primary_10_3389_fonc_2024_1430684
crossref_primary_10_1002_jcp_26612
crossref_primary_10_1016_j_ijbiomac_2023_123783
crossref_primary_10_3389_fbioe_2022_1022830
crossref_primary_10_3892_mmr_2019_10615
crossref_primary_10_1007_s10620_021_07055_6
crossref_primary_10_3390_mi14020459
crossref_primary_10_3390_ijms221910498
crossref_primary_10_3349_ymj_2018_59_3_349
crossref_primary_10_1016_j_omtn_2021_05_022
crossref_primary_10_1016_j_biopha_2018_01_015
crossref_primary_10_1007_s13534_021_00208_6
crossref_primary_10_1016_j_omtn_2024_102262
crossref_primary_10_1186_s13046_019_1136_9
crossref_primary_10_1016_j_reth_2020_12_003
crossref_primary_10_3390_ijms221910626
crossref_primary_10_1038_s41419_020_02784_4
crossref_primary_10_3389_fcell_2021_647736
crossref_primary_10_1186_s12943_019_1121_0
crossref_primary_10_18786_2072_0505_2024_52_016
crossref_primary_10_4330_wjc_v17_i1_102147
crossref_primary_10_1002_jcla_24533
crossref_primary_10_3390_ijms21020456
crossref_primary_10_1016_j_ebiom_2018_12_062
crossref_primary_10_1007_s12539_021_00455_2
crossref_primary_10_3390_ijms22063156
crossref_primary_10_1016_j_prp_2024_155402
crossref_primary_10_1016_j_cbd_2022_101052
crossref_primary_10_1186_s12885_021_08669_9
crossref_primary_10_1111_cpr_12521
crossref_primary_10_1186_s12943_022_01608_7
crossref_primary_10_1007_s12038_022_00288_1
crossref_primary_10_3389_fonc_2023_1224138
crossref_primary_10_1186_s40001_025_02356_2
crossref_primary_10_1007_s00018_023_04842_4
crossref_primary_10_1038_s41374_020_00483_4
crossref_primary_10_1002_jcla_24304
crossref_primary_10_4103_ejdv_ejdv_36_21
crossref_primary_10_1039_D4NR02795G
crossref_primary_10_1039_C9CC04872C
crossref_primary_10_1111_srt_13248
crossref_primary_10_1007_s11033_022_07472_4
crossref_primary_10_2217_epi_2023_0322
crossref_primary_10_1038_s41420_024_01964_x
crossref_primary_10_18632_aging_102576
crossref_primary_10_3389_fonc_2019_01105
crossref_primary_10_1016_j_vetmic_2019_03_012
crossref_primary_10_1186_s13578_019_0355_2
crossref_primary_10_7717_peerj_6831
crossref_primary_10_1016_j_cellsig_2022_110413
crossref_primary_10_1186_s41065_024_00346_8
crossref_primary_10_3389_fmolb_2024_1504876
crossref_primary_10_18632_oncotarget_21257
crossref_primary_10_1002_cam4_3703
crossref_primary_10_7717_peerj_14759
crossref_primary_10_1016_j_prp_2021_153618
crossref_primary_10_3389_fonc_2022_949656
crossref_primary_10_1016_j_leukres_2019_106198
crossref_primary_10_1007_s00395_024_01048_y
crossref_primary_10_1111_cpr_12981
crossref_primary_10_3389_fnagi_2021_691512
crossref_primary_10_1038_s41419_021_03866_7
crossref_primary_10_1002_wrna_1592
crossref_primary_10_1007_s12282_020_01140_w
crossref_primary_10_3390_biomedicines9060693
crossref_primary_10_3390_biology11060824
crossref_primary_10_18632_aging_101387
crossref_primary_10_3390_ijms21239285
crossref_primary_10_1038_s41598_022_10554_9
crossref_primary_10_3389_fonc_2019_00398
crossref_primary_10_3892_br_2018_1178
crossref_primary_10_1080_15476286_2019_1600395
crossref_primary_10_1080_15384101_2018_1480210
crossref_primary_10_1111_aji_13640
crossref_primary_10_1007_s12672_024_01003_2
crossref_primary_10_1038_s41598_020_76438_y
crossref_primary_10_3390_cancers13215352
crossref_primary_10_1097_CAD_0000000000001103
crossref_primary_10_3390_v10050260
crossref_primary_10_1038_s41598_019_47189_2
crossref_primary_10_1186_s13287_021_02224_w
crossref_primary_10_1016_j_bbrc_2017_11_028
crossref_primary_10_3390_biophysica3030031
crossref_primary_10_1080_15384101_2021_1909885
crossref_primary_10_1186_s12864_024_10420_0
crossref_primary_10_1002_jcla_23260
crossref_primary_10_1186_s12935_020_01235_6
crossref_primary_10_1142_S0219720024500185
crossref_primary_10_1186_s12935_021_02196_0
crossref_primary_10_1007_s40256_023_00609_1
crossref_primary_10_2147_OTT_S284032
crossref_primary_10_3390_ijms19072072
crossref_primary_10_7124_bc_000A23
crossref_primary_10_3389_fcimb_2020_00097
crossref_primary_10_1007_s00774_021_01308_0
crossref_primary_10_3390_cells13120999
crossref_primary_10_1002_jcla_24247
crossref_primary_10_1039_D1MO00060H
crossref_primary_10_1007_s11033_023_08729_2
crossref_primary_10_1097_CAD_0000000000001007
Cites_doi 10.1080/15476286.2015.1128065
10.1016/j.gdata.2015.07.017
10.4161/15384047.2014.955442
10.1016/S0968-0004(99)01460-7
10.1016/0092-8674(91)90244-S
10.1016/j.tig.2016.03.002
10.1186/s12935-015-0259-0
10.1016/j.molcel.2017.02.021
10.1038/sj.onc.1209913
10.1261/rna.035667.112
10.3389/fgene.2013.00307
10.1101/gad.2017311
10.1038/srep12453
10.1016/j.biocel.2014.05.040
10.1242/jcs.055210
10.1093/nar/gkq622
10.1038/348450a0
10.1186/s12885-016-2862-4
10.1038/srep39918
10.1016/j.molcel.2015.03.027
10.1016/j.canlet.2016.12.036
10.1158/0008-5472.CAN-10-0638
10.1155/2016/1579490
10.1038/nsmb.2959
10.1097/md.0000000000003811
10.1093/cvr/cvw250
10.1093/nar/gkw1201
10.1093/carcin/bgv003
10.1002/jnr.21485
10.1158/0008-5472.CAN-13-1568
10.1186/s13059-014-0571-3
10.1016/j.bbrc.2012.11.086
10.1007/978-1-4939-6670-7_7
10.1093/annonc/mdt412
10.1016/j.molcel.2017.02.017
10.1038/srep08057
10.1038/nrg2841
10.1038/nsmb.2580
10.3233/CBM-150552
10.1016/j.gpb.2016.02.003
10.1038/nature11928
10.1016/j.cell.2015.02.014
10.1038/nrg3074
10.1016/j.cell.2014.09.005
10.1038/mt.2013.101
10.1038/nn.3975
10.1261/rna.043687.113
10.1016/j.canlet.2016.12.006
10.1158/1078-0432.CCR-16-2541
10.1038/nbt.2890
10.1016/j.celrep.2014.12.002
10.1161/CIRCRESAHA.115.306319
10.1186/s13045-016-0370-2
10.1371/journal.pgen.1001233
10.1038/onc.2012.425
10.1371/journal.pone.0047067
10.1016/j.cca.2015.02.018
10.1038/nrc3563
10.1038/cr.2015.82
10.1016/j.molcel.2014.08.019
10.1080/15476286.2015.1020271
10.1016/j.canlet.2017.03.027
10.1038/srep30919
10.1038/nature11993
10.1002/hep.27177
10.1261/rna.048272.114
10.1373/clinchem.2014.230433
10.1038/srep37982
10.1186/gb-2014-15-2-r34
10.1038/nrg.2016.114
10.1677/ERC-09-0184
10.1073/pnas.73.11.3852
10.1038/sigtrans.2015.4
10.1186/s13059-014-0409-z
10.1093/bib/bbw045
10.1038/nrg.2016.20
10.1038/ncomms11215
10.1096/fasebj.7.1.7678559
10.1038/nature22364
10.1038/nrd4359
10.1158/0008-5472.CAN-08-2103
10.1038/srep31313
10.7554/eLife.07540
10.3389/fgene.2013.00283
10.1371/journal.pone.0030733
10.1016/j.bbagrm.2016.07.009
10.1371/journal.pgen.1003777
10.1186/s12979-015-0042-z
10.1261/rna.7154104
10.18632/oncotarget.3469
10.1038/srep34985
10.1016/0092-8674(93)90279-Y
10.1371/journal.pone.0158347
10.1038/ncomms12060
10.1371/journal.pone.0131225
10.1146/annurev-physiol-030212-183653
10.1038/323558a0
10.1158/0008-5472.CAN-07-6639
10.1371/journal.pone.0148407
10.1038/ncomms5640
10.1038/srep16435
10.1039/C6MB00786D
10.1093/nar/gkr1009
10.1093/nar/gkl151
10.1038/nrg.2015.3
10.1038/nn.3113
10.1016/j.cell.2016.03.020
ContentType Journal Article
Copyright Copyright © 2017 Greene, Baird, Brady, Lim, Gray, McDermott and Finn. 2017 Greene, Baird, Brady, Lim, Gray, McDermott and Finn
Copyright_xml – notice: Copyright © 2017 Greene, Baird, Brady, Lim, Gray, McDermott and Finn. 2017 Greene, Baird, Brady, Lim, Gray, McDermott and Finn
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmolb.2017.00038
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2296-889X
ExternalDocumentID oai_doaj_org_article_06a02085dea945279b256ec87852ead8
PMC5459888
28634583
10_3389_fmolb_2017_00038
Genre Journal Article
Review
GrantInformation_xml – fundername: Prostate Cancer Foundation
– fundername: Irish Cancer Society
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
GROUPED_DOAJ
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-dc525106c01d8185f1ba3bd4724ba7aedc03433ba0cd07f15d166ed5ec2a8d323
IEDL.DBID M48
ISSN 2296-889X
IngestDate Wed Aug 27 01:16:16 EDT 2025
Thu Aug 21 18:31:26 EDT 2025
Thu Jul 10 23:55:48 EDT 2025
Thu Apr 03 07:08:12 EDT 2025
Tue Jul 01 03:27:55 EDT 2025
Thu Apr 24 23:08:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords circRNAs
diseases
miRNA
cancer
non-coding RNA
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-dc525106c01d8185f1ba3bd4724ba7aedc03433ba0cd07f15d166ed5ec2a8d323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
This article was submitted to RNA, a section of the journal Frontiers in Molecular Biosciences
Edited by: Florent Hubé, UMR7216 Epigenetics and Cell Fate, France
Reviewed by: Jeroen Pasterkamp, Utrecht University, Netherlands; Walter J. Lukiw, LSU Health Sciences Center New Orleans, United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmolb.2017.00038
PMID 28634583
PQID 1912195731
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_06a02085dea945279b256ec87852ead8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5459888
proquest_miscellaneous_1912195731
pubmed_primary_28634583
crossref_primary_10_3389_fmolb_2017_00038
crossref_citationtrail_10_3389_fmolb_2017_00038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-06
PublicationDateYYYYMMDD 2017-06-06
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-06
  day: 06
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in molecular biosciences
PublicationTitleAlternate Front Mol Biosci
PublicationYear 2017
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Kent (B49) 2006; 25
Esteller (B26) 2011; 12
Memczak (B62) 2013; 495
Kalinowski (B47) 2012; 7
Gao (B28) 2015; 16
Abbosh (B1) 2017; 545
Liu (B60) 2016; 8
Thomson (B92) 2016; 17
Wang (B97) 2010; 38
Zhao (B110) 2017; 7
Glazar (B32) 2014; 20
Rybak-Wolf (B78) 2015; 58
Zhang (B108) 2013; 51
Danan (B21) 2012; 40
Li (B58) 2015; 22
Weng (B103) 2017
Hoffmann (B41) 2014; 15
Kos (B51) 1986; 323
Wang (B99) 2016; 16
Reid (B76) 2013; 24
Huang (B42) 2015; 10
Ender (B25) 2010; 123
Schneider (B83) 2016; 6
Burd (B10) 2010; 6
Campisi (B11) 2013; 75
Greuber (B34) 2013; 13
Cocquerelle (B19) 1993; 7
Boyerinas (B9) 2010; 17
Szabo (B89) 2016; 17
Starke (B87) 2015; 10
Nigro (B65) 1991; 64
Li (B57) 2015; 25
Valdmanis (B93) 2013; 21
Qu (B74) 2015; 5
Peng (B71) 2016; 1
Ye (B105) 2015; 36
Salzman (B79) 2016; 32
Boeckel (B8) 2015; 117
Wang (B101) 2015; 21
Vicens (B94) 2014; 159
Lukiw (B61) 2013; 4
Panda (B70) 2016; 45
Scotti (B84) 2016; 17
Dou (B23) 2016; 6
Wang (B100) 2015; 12
Jakobi (B43) 2016; 14
Granados-Riveron (B33) 2016; 1859
Lasda (B52) 2016; 11
Warner (B102) 1999; 24
Yu (B107) 2016; 11
Chin (B17) 2011; 25
Kefas (B48) 2008; 68
Zhong (B112) 2016; 6
Bachmayr-Heyda (B4) 2015; 5
Shang (B85) 2016; 95
Conn (B20) 2015; 160
Chenard (B16) 2008; 86
Hernandez (B40) 2004; 10
Zheng (B111) 2016; 7
Qin (B73) 2016; 16
Ghosal (B30) 2013; 4
Meng (B63) 2016
He (B39) 2017; 396
Chou (B18) 2010; 70
Hansen (B37); 495
Taulli (B91) 2013; 20
Li (B59) 2014; 13
Li (B55) 2015; 6
Li (B56) 2015; 444
Padala (B67) 2017; 13
Barrett (B6) 2015; 4
Pamudurti (B68) 2017; 66
Suzuki (B88) 2006; 34
Hansen (B38); 73
Zhao (B109) 2015; 15
Abe (B2) 2015; 5
Gao (B29) 2016; 7
Meyerson (B64) 2010; 11
Legnini (B53) 2017
Lehmann (B54) 2012; 15
Koopman (B50) 1990; 348
Wang (B98) 2017; 394
Bassett (B7) 2014; 5
Dudekula (B24) 2016; 13
Ning (B66) 2014; 60
Romero-Cordoba (B77) 2014; 15
Dong (B22) 2017; 10
Sanger (B82) 1976; 73
Wang (B96) 2016; 6
Jeck (B44) 2014; 32
Tan (B90) 2017; 113
Guo (B36) 2014; 15
Kalinowski (B46) 2014; 54
Xu (B104) 2015; 5
Chen (B15) 2016; 6
Felekkis (B27) 2010; 14
Ashwal-Fluss (B3) 2014; 56
Shi (B86) 2013; 32
Salzman (B80) 2013; 9
Bahn (B5) 2015; 61
Salzman (B81) 2012; 7
You (B106) 2015; 18
Chen (B13) 2017; 388
Giles (B31) 2013; 430
Panda (B69) 2017; 1534
Capel (B12) 1993; 73
Wan (B95) 2016; 2016
Guarnerio (B35) 2016; 165
Chen (B14) 2015; 12
Pesta (B72) 2010; 30
Jeck (B45) 2013; 19
Reddy (B75) 2008; 68
References_xml – volume: 13
  start-page: 34
  year: 2016
  ident: B24
  article-title: CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2015.1128065
– volume: 5
  start-page: 385
  year: 2015
  ident: B74
  article-title: Microarray expression profile of circular RNAs in human pancreatic ductal adenocarcinoma
  publication-title: Genomics Data
  doi: 10.1016/j.gdata.2015.07.017
– volume: 15
  start-page: 1444
  year: 2014
  ident: B77
  article-title: miRNA biogenesis: biological impact in the development of cancer
  publication-title: Cancer Biol. Ther.
  doi: 10.4161/15384047.2014.955442
– volume: 24
  start-page: 437
  year: 1999
  ident: B102
  article-title: The economics of ribosome biosynthesis in yeast
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(99)01460-7
– volume: 64
  start-page: 607
  year: 1991
  ident: B65
  article-title: Scrambled exons
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90244-S
– volume: 32
  start-page: 309
  year: 2016
  ident: B79
  article-title: Circular RNA expression: its potential regulation and function
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2016.03.002
– volume: 15
  start-page: 103
  year: 2015
  ident: B109
  article-title: MicroRNA-7: a promising new target in cancer therapy
  publication-title: Cancer Cell Int.
  doi: 10.1186/s12935-015-0259-0
– volume: 66
  start-page: 9
  year: 2017
  ident: B68
  article-title: Translation of circRNAs
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2017.02.021
– volume: 25
  start-page: 6188
  year: 2006
  ident: B49
  article-title: A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209913
– volume: 19
  start-page: 141
  year: 2013
  ident: B45
  article-title: Circular RNAs are abundant, conserved, and associated with ALU repeats
  publication-title: RNA
  doi: 10.1261/rna.035667.112
– volume: 4
  start-page: 307
  year: 2013
  ident: B61
  article-title: Circular RNA (circRNA) in Alzheimer's disease (AD)
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2013.00307
– volume: 25
  start-page: 534
  year: 2011
  ident: B17
  article-title: Making sense of cancer genomic data
  publication-title: Genes Dev.
  doi: 10.1101/gad.2017311
– volume: 30
  start-page: 3579
  year: 2010
  ident: B72
  article-title: Importance of miR-20a expression in prostate cancer tissue
  publication-title: Anticancer Res.
– volume: 5
  start-page: 12453
  year: 2015
  ident: B104
  article-title: The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep12453
– volume: 54
  start-page: 312
  year: 2014
  ident: B46
  article-title: microRNA-7: a tumor suppressor miRNA with therapeutic potential
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2014.05.040
– volume: 123
  start-page: 1819
  year: 2010
  ident: B25
  article-title: Argonaute proteins at a glance
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.055210
– volume: 38
  start-page: e178
  year: 2010
  ident: B97
  article-title: MapSplice: accurate mapping of RNA-seq reads for splice junction discovery
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq622
– volume: 348
  start-page: 450
  year: 1990
  ident: B50
  article-title: Expression of a candidate sex-determining gene during mouse testis differentiation
  publication-title: Nature
  doi: 10.1038/348450a0
– volume: 16
  start-page: 826
  year: 2016
  ident: B99
  article-title: miR-124-3p functions as a tumor suppressor in breast cancer by targeting CBL
  publication-title: BMC Cancer
  doi: 10.1186/s12885-016-2862-4
– volume: 7
  start-page: 39918
  year: 2017
  ident: B110
  article-title: Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease
  publication-title: Sci. Rep.
  doi: 10.1038/srep39918
– volume: 58
  start-page: 870
  year: 2015
  ident: B78
  article-title: Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.03.027
– volume: 394
  start-page: 1
  year: 2017
  ident: B98
  article-title: Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2016.12.036
– volume: 70
  start-page: 8822
  year: 2010
  ident: B18
  article-title: EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-0638
– volume: 2016
  start-page: 1579490
  year: 2016
  ident: B95
  article-title: Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the Wnt/beta-catenin pathway
  publication-title: Biomed Res. Int.
  doi: 10.1155/2016/1579490
– volume: 22
  start-page: 256
  year: 2015
  ident: B58
  article-title: Exon-intron circular RNAs regulate transcription in the nucleus
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2959
– volume: 95
  start-page: e3811
  year: 2016
  ident: B85
  article-title: Comprehensive circular RNA profiling reveals that hsa_circ_0005075, a new circular RNA biomarker, is involved in hepatocellular crcinoma development
  publication-title: Medicine
  doi: 10.1097/md.0000000000003811
– volume: 113
  start-page: 298
  year: 2017
  ident: B90
  article-title: A landscape of circular RNA expression in the human heart
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvw250
– volume: 45
  start-page: 4021
  year: 2016
  ident: B70
  article-title: Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1201
– volume: 36
  start-page: 318
  year: 2015
  ident: B105
  article-title: A novel ent-kaurane diterpenoid executes antitumor function in colorectal cancer cells by inhibiting Wnt/beta-catenin signaling
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgv003
– volume: 86
  start-page: 233
  year: 2008
  ident: B16
  article-title: New implications for the QUAKING RNA binding protein in human disease
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.21485
– volume: 73
  start-page: 5609
  ident: B38
  article-title: Circular RNA and miR-7 in cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-1568
– volume: 16
  start-page: 4
  year: 2015
  ident: B28
  article-title: CIRI: an efficient and unbiased algorithm for de novo circular RNA identification
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0571-3
– volume: 430
  start-page: 706
  year: 2013
  ident: B31
  article-title: miRNA-7-5p inhibits melanoma cell migration and invasion
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2012.11.086
– volume: 1534
  start-page: 79
  year: 2017
  ident: B69
  article-title: RT-qPCR detection of senescence-associated circular RNAs
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-6670-7_7
– volume: 24
  start-page: 3128
  year: 2013
  ident: B76
  article-title: Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdt412
– year: 2017
  ident: B53
  article-title: Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2017.02.017
– volume: 5
  start-page: 8057
  year: 2015
  ident: B4
  article-title: Correlation of circular RNA abundance with proliferation - exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues
  publication-title: Sci. Rep.
  doi: 10.1038/srep08057
– volume: 11
  start-page: 685
  year: 2010
  ident: B64
  article-title: Advances in understanding cancer genomes through second-generation sequencing
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2841
– volume: 20
  start-page: 541
  year: 2013
  ident: B91
  article-title: From pseudo-ceRNAs to circ-ceRNAs: a tale of cross-talk and competition
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2580
– volume: 16
  start-page: 161
  year: 2016
  ident: B73
  article-title: Hsa_circ_0001649: a circular RNA and potential novel biomarker for hepatocellular carcinoma
  publication-title: Cancer Biomark.
  doi: 10.3233/CBM-150552
– volume: 14
  start-page: 216
  year: 2016
  ident: B43
  article-title: Profiling and validation of the circular RNA repertoire in adult murine hearts
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/j.gpb.2016.02.003
– volume: 495
  start-page: 333
  year: 2013
  ident: B62
  article-title: Circular RNAs are a large class of animal RNAs with regulatory potency
  publication-title: Nature
  doi: 10.1038/nature11928
– volume: 160
  start-page: 1125
  year: 2015
  ident: B20
  article-title: The RNA binding protein quaking regulates formation of circRNAs
  publication-title: Cell
  doi: 10.1016/j.cell.2015.02.014
– volume: 8
  start-page: 2159
  year: 2016
  ident: B60
  article-title: miR-138 suppresses cell proliferation and invasion by inhibiting SOX9 in hepatocellular carcinoma
  publication-title: Am. J. Transl. Res.
– volume: 12
  start-page: 861
  year: 2011
  ident: B26
  article-title: Non-coding RNAs in human disease
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3074
– volume: 51
  start-page: 792
  year: 2013
  ident: B108
  article-title: Circular intronic long noncoding RNAs
  publication-title: Mol. Cell
  doi: 10.1016/j.cell.2014.09.005
– volume: 21
  start-page: 1112
  year: 2013
  ident: B93
  article-title: The expanding repertoire of circular RNAs
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2013.101
– volume: 6
  start-page: 1167
  year: 2016
  ident: B96
  article-title: Circular RNAs as potential biomarkers for cancer diagnosis and therapy
  publication-title: Am. J. Cancer Res.
– volume: 18
  start-page: 603
  year: 2015
  ident: B106
  article-title: Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3975
– volume: 20
  start-page: 1666
  year: 2014
  ident: B32
  article-title: circBase: a database for circular RNAs
  publication-title: RNA
  doi: 10.1261/rna.043687.113
– volume: 388
  start-page: 208
  year: 2017
  ident: B13
  article-title: Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2016.12.006
– year: 2017
  ident: B103
  article-title: Circular RNA ciRS-7 − a promising prognostic biomarker and a potential therapeutic target in colorectal cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-2541
– volume: 32
  start-page: 453
  year: 2014
  ident: B44
  article-title: Detecting and characterizing circular RNAs
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2890
– volume: 10
  start-page: 103
  year: 2015
  ident: B87
  article-title: Exon circularization requires canonical splice signals
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.12.002
– volume: 117
  start-page: 884
  year: 2015
  ident: B8
  article-title: Identification and characterization of hypoxia-regulated endothelial circular RNA
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.115.306319
– volume: 10
  start-page: 2
  year: 2017
  ident: B22
  article-title: Circular RNAs in cancer: an emerging key player
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-016-0370-2
– volume: 6
  start-page: e1001233
  year: 2010
  ident: B10
  article-title: Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001233
– volume: 32
  start-page: 4130
  year: 2013
  ident: B86
  article-title: Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells
  publication-title: Oncogene
  doi: 10.1038/onc.2012.425
– volume: 7
  start-page: e47067
  year: 2012
  ident: B47
  article-title: Regulation of epidermal growth factor receptor signaling and erlotinib sensitivity in head and neck cancer cells by miR-7
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0047067
– volume: 444
  start-page: 132
  year: 2015
  ident: B56
  article-title: Using circular RNA as a novel type of biomarker in the screening of gastric cancer
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2015.02.018
– volume: 13
  start-page: 559
  year: 2013
  ident: B34
  article-title: Role of ABL family kinases in cancer: from leukaemia to solid tumours
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3563
– volume: 25
  start-page: 981
  year: 2015
  ident: B57
  article-title: Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis
  publication-title: Cell Res.
  doi: 10.1038/cr.2015.82
– volume: 56
  start-page: 55
  year: 2014
  ident: B3
  article-title: circRNA biogenesis competes with pre-mRNA splicing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.08.019
– volume: 12
  start-page: 381
  year: 2015
  ident: B14
  article-title: Regulation of circRNA biogenesis
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2015.1020271
– volume: 396
  start-page: 138
  year: 2017
  ident: B39
  article-title: Circular RNAs and cancer
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2017.03.027
– volume: 6
  start-page: 30919
  year: 2016
  ident: B112
  article-title: Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma
  publication-title: Sci. Rep.
  doi: 10.1038/srep30919
– volume: 14
  start-page: 236
  year: 2010
  ident: B27
  article-title: microRNAs: a newly described class of encoded molecules that play a role in health and disease
  publication-title: Hippokratia
– volume: 495
  start-page: 384
  ident: B37
  article-title: Natural RNA circles function as efficient microRNA sponges
  publication-title: Nature
  doi: 10.1038/nature11993
– volume: 60
  start-page: 1607
  year: 2014
  ident: B66
  article-title: Hepatocyte nuclear factor 4alpha-nuclear factor-kappaB feedback circuit modulates liver cancer progression
  publication-title: Hepatology
  doi: 10.1002/hep.27177
– volume: 21
  start-page: 172
  year: 2015
  ident: B101
  article-title: Efficient backsplicing produces translatable circular mRNAs
  publication-title: RNA
  doi: 10.1261/rna.048272.114
– volume: 61
  start-page: 221
  year: 2015
  ident: B5
  article-title: The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2014.230433
– volume: 6
  start-page: 37982
  year: 2016
  ident: B23
  article-title: Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes
  publication-title: Sci. Rep.
  doi: 10.1038/srep37982
– volume: 15
  start-page: R34
  year: 2014
  ident: B41
  article-title: A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection
  publication-title: Genome Biol.
  doi: 10.1186/gb-2014-15-2-r34
– volume: 17
  start-page: 679
  year: 2016
  ident: B89
  article-title: Detecting circular RNAs: bioinformatic and experimental challenges
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2016.114
– volume: 17
  start-page: F19
  year: 2010
  ident: B9
  article-title: The role of let-7 in cell differentiation and cancer
  publication-title: Endocr. Relat. Cancer
  doi: 10.1677/ERC-09-0184
– volume: 73
  start-page: 3852
  year: 1976
  ident: B82
  article-title: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.73.11.3852
– volume: 1
  start-page: 15004
  year: 2016
  ident: B71
  article-title: The role of MicroRNAs in human cancer
  publication-title: Signal Trans. Target. Ther.
  doi: 10.1038/sigtrans.2015.4
– volume: 15
  start-page: 409
  year: 2014
  ident: B36
  article-title: Expanded identification and characterization of mammalian circular RNAs
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0409-z
– year: 2016
  ident: B63
  article-title: Circular RNA: an emerging key player in RNA world
  publication-title: Brief. Bioinformatics.
  doi: 10.1093/bib/bbw045
– volume: 17
  start-page: 272
  year: 2016
  ident: B92
  article-title: Endogenous microRNA sponges: evidence and controversy
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2016.20
– volume: 7
  start-page: 11215
  year: 2016
  ident: B111
  article-title: Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11215
– volume: 7
  start-page: 155
  year: 1993
  ident: B19
  article-title: Mis-splicing yields circular RNA molecules
  publication-title: FASEB J.
  doi: 10.1096/fasebj.7.1.7678559
– volume: 545
  start-page: 446
  year: 2017
  ident: B1
  article-title: Phylogenetic ctDNA analysis depicts early stage lung cancer evolution
  publication-title: Nat. Adv.
  doi: 10.1038/nature22364
– volume: 13
  start-page: 622
  year: 2014
  ident: B59
  article-title: Therapeutic targeting of microRNAs: current status and future challenges
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd4359
– volume: 68
  start-page: 8195
  year: 2008
  ident: B75
  article-title: MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-2103
– volume: 6
  start-page: 31313
  year: 2016
  ident: B83
  article-title: CircRNA-protein complexes: IMP3 protein component defines subfamily of circRNPs
  publication-title: Sci. Rep.
  doi: 10.1038/srep31313
– volume: 4
  start-page: e07540
  year: 2015
  ident: B6
  article-title: Circular RNA biogenesis can proceed through an exon-containing lariat precursor
  publication-title: Elife
  doi: 10.7554/eLife.07540
– volume: 4
  start-page: 283
  year: 2013
  ident: B30
  article-title: Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2013.00283
– volume: 7
  start-page: e30733
  year: 2012
  ident: B81
  article-title: Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030733
– volume: 1859
  start-page: 1245
  year: 2016
  ident: B33
  article-title: The complexity of the translation ability of circRNAs
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2016.07.009
– volume: 9
  start-page: e1003777
  year: 2013
  ident: B80
  article-title: Cell-type specific features of circular RNA expression
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003777
– volume: 12
  start-page: 17
  year: 2015
  ident: B100
  article-title: Comprehensive circular RNA profiling reveals that circular RNA100783 is involved in chronic CD28-associated CD8(+)T cell ageing
  publication-title: Immun. Ageing:
  doi: 10.1186/s12979-015-0042-z
– volume: 10
  start-page: 1783
  year: 2004
  ident: B40
  article-title: Internal ribosome entry site drives cap-independent translation of reaper and heat shock protein 70 mRNAs in Drosophila embryos
  publication-title: RNA
  doi: 10.1261/rna.7154104
– volume: 6
  start-page: 6001
  year: 2015
  ident: B55
  article-title: Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.3469
– volume: 6
  start-page: 34985
  year: 2016
  ident: B15
  article-title: circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations
  publication-title: Sci. Rep.
  doi: 10.1038/srep34985
– volume: 73
  start-page: 1019
  year: 1993
  ident: B12
  article-title: Circular transcripts of the testis-determining gene Sry in adult mouse testis
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90279-Y
– volume: 11
  start-page: e0158347
  year: 2016
  ident: B107
  article-title: The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 EXPRESSION
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0158347
– volume: 7
  start-page: 12060
  year: 2016
  ident: B29
  article-title: Comprehensive identification of internal structure and alternative splicing events in circular RNAs
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12060
– volume: 10
  start-page: e0131225
  year: 2015
  ident: B42
  article-title: cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/beta-catenin pathway
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0131225
– volume: 75
  start-page: 685
  year: 2013
  ident: B11
  article-title: Aging, cellular senescence, and cancer
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-030212-183653
– volume: 323
  start-page: 558
  year: 1986
  ident: B51
  article-title: The hepatitis delta (delta) virus possesses a circular RNA
  publication-title: Nature
  doi: 10.1038/323558a0
– volume: 68
  start-page: 3566
  year: 2008
  ident: B48
  article-title: microRNA-7 inhibits the epidermal growth factor receptor and the akt pathway and is down-regulated in glioblastoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-6639
– volume: 11
  start-page: e0148407
  year: 2016
  ident: B52
  article-title: Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circRNA clearance
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0148407
– volume: 5
  start-page: 4640
  year: 2014
  ident: B7
  article-title: Understanding functional miRNA–target interactions in vivo by site-specific genome engineering
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5640
– volume: 5
  start-page: 16435
  year: 2015
  ident: B2
  article-title: Rolling circle translation of circular RNA in living human cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep16435
– volume: 13
  start-page: 830
  year: 2017
  ident: B67
  article-title: Cancerous perturbations within the ERK, PI3K/Akt, and Wnt/beta-catenin signaling network constitutively activate inter-pathway positive feedback loops
  publication-title: Mol. Biosyst.
  doi: 10.1039/C6MB00786D
– volume: 40
  start-page: 3131
  year: 2012
  ident: B21
  article-title: Transcriptome-wide discovery of circular RNAs in Archaea
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1009
– volume: 159
  start-page: 13
  year: 2014
  ident: B94
  article-title: Biogenesis of circular RNAs
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.005
– volume: 34
  start-page: e63
  year: 2006
  ident: B88
  article-title: Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl151
– volume: 17
  start-page: 19
  year: 2016
  ident: B84
  article-title: RNA mis-splicing in disease
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2015.3
– volume: 15
  start-page: 827
  year: 2012
  ident: B54
  article-title: An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3113
– volume: 165
  start-page: 289
  year: 2016
  ident: B35
  article-title: Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations
  publication-title: Cell
  doi: 10.1016/j.cell.2016.03.020
SSID ssj0001503764
Score 2.5413315
SecondaryResourceType review_article
Snippet Circular RNAs (circRNAs) are currently classed as non-coding RNA (ncRNA) that, unlike linear RNAs, form covalently closed continuous loops and act as gene...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 38
SubjectTerms cancer
circRNAs
diseases
miRNA
Molecular Biosciences
non-coding RNA
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et_VFBC-CxTZpXh4EX4sIehAFbyFpUl1YurK7Hvz3TpJ12RXRi9cmTYdvJpmZzmQGoUMmiGuMqHNjDMlB48vcNpbmShGhPLFcxR5Ld_f85qm6fWbPU62-Qk5YKg-cgDspuIl9JJ03qmKwgAUl7WspJCOAQrzmCzpvyplK94ML2DlVikuCF6aATf2eDalcsWRhuI4ypYdiuf6fbMzvqZJTuqezjJbGRiM-T8SuoDnfrqKF1EbyYw2dXXYHMZ0UP9yfD08xDLyEI6w7PMYd0FsBe2xahx_6PY-7LY5_7vFVis0M19FT5_rx8iYf90XI64qTUe5qBlZJweuidEHfNqU11LpKkMoaYYDYglaUWlPUrhBNyVzJuXfM18RIRwndQPNtv_VbCDMrQo8-q5ghFahqA6s21npV-kZayTN08oWSrsdFw0Pvip4G5yHgqiOuOuCqI64ZOpq88ZYKZvwy9yIAP5kXSl3HByAAeiwA-i8ByNDBF9s0bI0Q7zCt778PNbiicB4zQcsMbSY2Tj5FJKchZJwhMcPgGVpmR9ruayy_DTanklJu_wfxO2gxwBFzz_gumh8N3v0eWDkjux8F-hOievk4
  priority: 102
  providerName: Directory of Open Access Journals
Title Circular RNAs: Biogenesis, Function and Role in Human Diseases
URI https://www.ncbi.nlm.nih.gov/pubmed/28634583
https://www.proquest.com/docview/1912195731
https://pubmed.ncbi.nlm.nih.gov/PMC5459888
https://doaj.org/article/06a02085dea945279b256ec87852ead8
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA9aEXwRtX6c1hLBl4Kru8nmS6hS2x6l0D4UD-4tJJtse3Ds6u0V7H_vTHZ79eQQXze7SXYmk99MZjJDyHuhWKidqjLnHMsA8XXma88zY5gykXlpUo2ls3N5MilPp2J6dz16IGC30bTDelKTxfzjr583X0Hg99HiBLwFDrRzj1FaKRsh1_fJA8AlhfUMzgZlv78znIM0oZuZMSMzrc2091tu7GQNp1I6_0066N-hlH9g0_gJeTwolfSgXwVPyb3YPCMP-zKTN9vky-FskcJN6cX5QfeZQsMlbnGz7gMdA64hb6hrAr1o55HOGppO9ulR77vpnpPJ-Pj74Uk21E3IqlKyZRYqAVpLLqu8CIjHdeEd96FUrPROOZhszkvOvcurkKu6EKGQMgYRK-Z04Iy_IFtN28RXhAqvsIafN8KxEqDcQa-199EUsdZeyxH5dEslWw1JxbG2xdyCcYF0tYmuFulqE11HZG_1xY8-ocY_3v2GhF-9h6mw04N2cWkHybK5dKnQaIjOlAJWmActLlZaacFATKCTd7dssyA66A9xTWyvOwumKuzXQvFiRF72bFwNxbTk6FIeEbXG4LW5rLc0s6uUnht0UqO1fv0f474hj_BvU-iZ3CFby8V1fAtKztLvpsOB3bSCfwNsaPn1
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circular+RNAs%3A+Biogenesis%2C+Function+and+Role+in+Human+Diseases&rft.jtitle=Frontiers+in+molecular+biosciences&rft.au=Greene%2C+John&rft.au=Baird%2C+Anne-Marie&rft.au=Brady%2C+Lauren&rft.au=Lim%2C+Marvin&rft.date=2017-06-06&rft.issn=2296-889X&rft.eissn=2296-889X&rft.volume=4&rft.spage=38&rft_id=info:doi/10.3389%2Ffmolb.2017.00038&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-889X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-889X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-889X&client=summon