Circular RNAs: Biogenesis, Function and Role in Human Diseases
Circular RNAs (circRNAs) are currently classed as non-coding RNA (ncRNA) that, unlike linear RNAs, form covalently closed continuous loops and act as gene regulators in mammals. They were originally thought to represent errors in splicing and considered to be of low abundance, however, there is now...
Saved in:
Published in | Frontiers in molecular biosciences Vol. 4; p. 38 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
06.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Circular RNAs (circRNAs) are currently classed as non-coding RNA (ncRNA) that, unlike linear RNAs, form covalently closed continuous loops and act as gene regulators in mammals. They were originally thought to represent errors in splicing and considered to be of low abundance, however, there is now an increased appreciation of their important function in gene regulation. circRNAs are differentially generated by backsplicing of exons or from lariat introns. Unlike linear RNA, the 3' and 5' ends normally present in an RNA molecule have been joined together by covalent bonds leading to circularization. Interestingly, they have been found to be abundant, evolutionally conserved and relatively stable in the cytoplasm. These features confer numerous potential functions to circRNAs, such as acting as miRNA sponges, or binding to RNA-associated proteins to form RNA-protein complexes that regulate gene transcription. It has been proposed that circRNA regulate gene expression at the transcriptional or post-transcriptional level by interacting with miRNAs and that circRNAs may have a role in regulating miRNA function in cancer initiation and progression. circRNAs appear to be more often downregulated in tumor tissue compared to normal tissue and this may be due to (i) errors in the back-splice machinery in malignant tissues, (ii) degradation of circRNAs by deregulated miRNAs in tumor tissue, or (iii) increasing cell proliferation leading to a reduction of circRNAs. circRNAs have been identified in exosomes and more recently, chromosomal translocations in cancer have been shown to generate aberrant fusion-circRNAs associated with resistance to drug treatments. In addition, though originally thought to be non-coding, there is now increasing evidence to suggest that select circRNAs can be translated into functional proteins. Although much remains to be elucidated about circRNA biology and mechanisms of gene regulation, these ncRNAs are quickly emerging as potential disease biomarkers and therapeutic targets in cancer. |
---|---|
AbstractList | Circular RNAs (circRNAs) are currently classed as non-coding RNA (ncRNA) that, unlike linear RNAs, form covalently closed continuous loops and act as gene regulators in mammals. They were originally thought to represent errors in splicing and considered to be of low abundance, however, there is now an increased appreciation of their important function in gene regulation. circRNAs are differentially generated by backsplicing of exons or from lariat introns. Unlike linear RNA, the 3′ and 5′ ends normally present in an RNA molecule have been joined together by covalent bonds leading to circularization. Interestingly, they have been found to be abundant, evolutionally conserved and relatively stable in the cytoplasm. These features confer numerous potential functions to circRNAs, such as acting as miRNA sponges, or binding to RNA-associated proteins to form RNA-protein complexes that regulate gene transcription. It has been proposed that circRNA regulate gene expression at the transcriptional or post-transcriptional level by interacting with miRNAs and that circRNAs may have a role in regulating miRNA function in cancer initiation and progression. circRNAs appear to be more often downregulated in tumor tissue compared to normal tissue and this may be due to (i) errors in the back-splice machinery in malignant tissues, (ii) degradation of circRNAs by deregulated miRNAs in tumor tissue, or (iii) increasing cell proliferation leading to a reduction of circRNAs. circRNAs have been identified in exosomes and more recently, chromosomal translocations in cancer have been shown to generate aberrant fusion-circRNAs associated with resistance to drug treatments. In addition, though originally thought to be non-coding, there is now increasing evidence to suggest that select circRNAs can be translated into functional proteins. Although much remains to be elucidated about circRNA biology and mechanisms of gene regulation, these ncRNAs are quickly emerging as potential disease biomarkers and therapeutic targets in cancer. Circular RNAs (circRNAs) are currently classed as non-coding RNA (ncRNA) that, unlike linear RNAs, form covalently closed continuous loops and act as gene regulators in mammals. They were originally thought to represent errors in splicing and considered to be of low abundance, however, there is now an increased appreciation of their important function in gene regulation. circRNAs are differentially generated by backsplicing of exons or from lariat introns. Unlike linear RNA, the 3' and 5' ends normally present in an RNA molecule have been joined together by covalent bonds leading to circularization. Interestingly, they have been found to be abundant, evolutionally conserved and relatively stable in the cytoplasm. These features confer numerous potential functions to circRNAs, such as acting as miRNA sponges, or binding to RNA-associated proteins to form RNA-protein complexes that regulate gene transcription. It has been proposed that circRNA regulate gene expression at the transcriptional or post-transcriptional level by interacting with miRNAs and that circRNAs may have a role in regulating miRNA function in cancer initiation and progression. circRNAs appear to be more often downregulated in tumor tissue compared to normal tissue and this may be due to (i) errors in the back-splice machinery in malignant tissues, (ii) degradation of circRNAs by deregulated miRNAs in tumor tissue, or (iii) increasing cell proliferation leading to a reduction of circRNAs. circRNAs have been identified in exosomes and more recently, chromosomal translocations in cancer have been shown to generate aberrant fusion-circRNAs associated with resistance to drug treatments. In addition, though originally thought to be non-coding, there is now increasing evidence to suggest that select circRNAs can be translated into functional proteins. Although much remains to be elucidated about circRNA biology and mechanisms of gene regulation, these ncRNAs are quickly emerging as potential disease biomarkers and therapeutic targets in cancer.Circular RNAs (circRNAs) are currently classed as non-coding RNA (ncRNA) that, unlike linear RNAs, form covalently closed continuous loops and act as gene regulators in mammals. They were originally thought to represent errors in splicing and considered to be of low abundance, however, there is now an increased appreciation of their important function in gene regulation. circRNAs are differentially generated by backsplicing of exons or from lariat introns. Unlike linear RNA, the 3' and 5' ends normally present in an RNA molecule have been joined together by covalent bonds leading to circularization. Interestingly, they have been found to be abundant, evolutionally conserved and relatively stable in the cytoplasm. These features confer numerous potential functions to circRNAs, such as acting as miRNA sponges, or binding to RNA-associated proteins to form RNA-protein complexes that regulate gene transcription. It has been proposed that circRNA regulate gene expression at the transcriptional or post-transcriptional level by interacting with miRNAs and that circRNAs may have a role in regulating miRNA function in cancer initiation and progression. circRNAs appear to be more often downregulated in tumor tissue compared to normal tissue and this may be due to (i) errors in the back-splice machinery in malignant tissues, (ii) degradation of circRNAs by deregulated miRNAs in tumor tissue, or (iii) increasing cell proliferation leading to a reduction of circRNAs. circRNAs have been identified in exosomes and more recently, chromosomal translocations in cancer have been shown to generate aberrant fusion-circRNAs associated with resistance to drug treatments. In addition, though originally thought to be non-coding, there is now increasing evidence to suggest that select circRNAs can be translated into functional proteins. Although much remains to be elucidated about circRNA biology and mechanisms of gene regulation, these ncRNAs are quickly emerging as potential disease biomarkers and therapeutic targets in cancer. |
Author | Lim, Marvin Finn, Stephen P. Gray, Steven G. Baird, Anne-Marie Greene, John Brady, Lauren McDermott, Raymond |
AuthorAffiliation | 8 Labmed Directorate, St. James's Hospital Dublin, Ireland 4 Department of Clinical Medicine, Trinity College Dublin Dublin, Ireland 7 HOPE Directorate, St. James's Hospital Dublin, Ireland 1 Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin Dublin, Ireland 9 Department of Histopathology, St. James's Hospital Dublin, Ireland 2 Department of Medical Oncology, Tallaght Hospital Dublin, Ireland 6 Department of Medical Oncology, St. Vincent's University Hospital Dublin, Ireland 3 Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital Dublin, Ireland 5 Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology Brisbane, QLD, Australia |
AuthorAffiliation_xml | – name: 3 Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital Dublin, Ireland – name: 4 Department of Clinical Medicine, Trinity College Dublin Dublin, Ireland – name: 5 Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology Brisbane, QLD, Australia – name: 9 Department of Histopathology, St. James's Hospital Dublin, Ireland – name: 8 Labmed Directorate, St. James's Hospital Dublin, Ireland – name: 7 HOPE Directorate, St. James's Hospital Dublin, Ireland – name: 1 Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin Dublin, Ireland – name: 2 Department of Medical Oncology, Tallaght Hospital Dublin, Ireland – name: 6 Department of Medical Oncology, St. Vincent's University Hospital Dublin, Ireland |
Author_xml | – sequence: 1 givenname: John surname: Greene fullname: Greene, John – sequence: 2 givenname: Anne-Marie surname: Baird fullname: Baird, Anne-Marie – sequence: 3 givenname: Lauren surname: Brady fullname: Brady, Lauren – sequence: 4 givenname: Marvin surname: Lim fullname: Lim, Marvin – sequence: 5 givenname: Steven G. surname: Gray fullname: Gray, Steven G. – sequence: 6 givenname: Raymond surname: McDermott fullname: McDermott, Raymond – sequence: 7 givenname: Stephen P. surname: Finn fullname: Finn, Stephen P. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28634583$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9rFDEYhoO02Fp79yRz9NBd82OSyXgo1NXaQlEoCt7CN8k3a0omqclMwf_e2d1a2oKnhOT9nveD5xXZiykiIW8YXQqh2_f9kEK35JQ1S0qp0C_IIeetWmjd_tx7dD8gx6XczBEmqWhU_ZIccK1ELbU4JKcrn-0UIFfXX8_Kh-qjT2uMWHw5qc6naEefYgXRVdcpYOVjdTENEKtPviAULK_Jfg-h4PH9eUR-nH_-vrpYXH37crk6u1rYWvFx4azkklFlKXOaadmzDkTn6obXHTSAzlJRC9EBtY42PZOOKYVOouWgneDiiFzuuC7BjbnNfoD8xyTwZvuQ8tpAHr0NaKgCyqmWDqGtJW_ajkuFVjdacgSnZ9bpjnU7dcNcjXHMEJ5An_5E_8us052RtWy13gDe3QNy-j1hGc3gi8UQIGKaimEt46yVjWBz9O3jroeSfwLmAN0FbE6lZOwfIoyajWaz1Ww2ms1W8zyino1YP8JG1LytD_8f_AvehKxq |
CitedBy_id | crossref_primary_10_1038_s41388_019_1030_0 crossref_primary_10_3233_CBM_182293 crossref_primary_10_1016_j_tranon_2022_101611 crossref_primary_10_1155_2021_8800657 crossref_primary_10_1186_s12958_022_01011_3 crossref_primary_10_1016_j_ncrna_2024_03_007 crossref_primary_10_1016_j_neuroscience_2021_12_037 crossref_primary_10_1080_07391102_2023_2241535 crossref_primary_10_3892_ijo_2018_4371 crossref_primary_10_1146_annurev_nutr_122319_035633 crossref_primary_10_3390_diagnostics11101739 crossref_primary_10_5114_aoms_163530 crossref_primary_10_1016_j_bbrc_2018_02_036 crossref_primary_10_3892_ijo_2020_5066 crossref_primary_10_1016_j_bbagrm_2019_194420 crossref_primary_10_1007_s10555_024_10182_x crossref_primary_10_1186_s13048_019_0558_5 crossref_primary_10_3390_ani14050733 crossref_primary_10_1038_s41419_020_03276_1 crossref_primary_10_1155_2019_9673129 crossref_primary_10_3390_biom14080952 crossref_primary_10_1002_1878_0261_12420 crossref_primary_10_1177_19476035211044826 crossref_primary_10_1042_BST20170469 crossref_primary_10_1039_D1FO02797B crossref_primary_10_1080_17501911_2025_2467021 crossref_primary_10_1016_j_biopha_2017_09_064 crossref_primary_10_1186_s40659_024_00497_y crossref_primary_10_1016_j_trim_2022_101653 crossref_primary_10_3389_fcell_2020_593007 crossref_primary_10_1007_s10266_020_00538_4 crossref_primary_10_3390_ijms19030675 crossref_primary_10_3390_ijms21010258 crossref_primary_10_3892_ijo_2020_5047 crossref_primary_10_1007_s00018_017_2688_5 crossref_primary_10_1016_j_ygeno_2021_03_026 crossref_primary_10_61186_umj_35_7_586 crossref_primary_10_1016_j_scienta_2023_112174 crossref_primary_10_1155_2022_8950130 crossref_primary_10_1007_s12672_024_00941_1 crossref_primary_10_1016_j_ncrna_2018_05_002 crossref_primary_10_1186_s12864_019_6154_7 crossref_primary_10_1111_iep_12457 crossref_primary_10_3389_fonc_2022_967625 crossref_primary_10_1016_j_omtn_2021_01_007 crossref_primary_10_1080_21655979_2022_2074106 crossref_primary_10_1016_j_neures_2018_11_005 crossref_primary_10_1096_fba_2024_00080 crossref_primary_10_3389_fcell_2021_651803 crossref_primary_10_3389_fcell_2021_703583 crossref_primary_10_1080_21655979_2022_2063664 crossref_primary_10_1016_j_gene_2023_147568 crossref_primary_10_3389_fonc_2024_1468363 crossref_primary_10_18632_aging_101541 crossref_primary_10_1016_j_ygeno_2019_06_030 crossref_primary_10_1002_mrd_23262 crossref_primary_10_1002_iid3_453 crossref_primary_10_1093_bib_bbab444 crossref_primary_10_1002_biof_1715 crossref_primary_10_1016_j_gene_2023_147323 crossref_primary_10_1186_s10020_023_00747_x crossref_primary_10_2147_OTT_S253936 crossref_primary_10_1016_j_intimp_2023_110157 crossref_primary_10_1002_jcp_28156 crossref_primary_10_1111_jcmm_13789 crossref_primary_10_1371_journal_pone_0269554 crossref_primary_10_1016_j_omtn_2018_09_022 crossref_primary_10_1002_cbin_11303 crossref_primary_10_1186_s12935_020_01521_3 crossref_primary_10_2174_0929867329666211230104955 crossref_primary_10_1002_path_5097 crossref_primary_10_4103_aja2021131 crossref_primary_10_3390_genes13071145 crossref_primary_10_1007_s13105_017_0598_5 crossref_primary_10_1093_nar_gkz141 crossref_primary_10_1080_21655979_2022_2084484 crossref_primary_10_1177_0267659120979472 crossref_primary_10_1016_j_gene_2020_145040 crossref_primary_10_1089_dna_2020_6412 crossref_primary_10_1016_j_jconrel_2023_02_044 crossref_primary_10_1016_j_lfs_2019_117179 crossref_primary_10_3390_antiox11020182 crossref_primary_10_3390_v15081697 crossref_primary_10_1007_s12265_019_09912_2 crossref_primary_10_3389_fgene_2018_00647 crossref_primary_10_3390_cells12081160 crossref_primary_10_1007_s40291_018_0348_6 crossref_primary_10_2174_1574892818666221207115016 crossref_primary_10_1007_s10792_023_02636_y crossref_primary_10_1016_j_genrep_2022_101556 crossref_primary_10_1155_ijog_4668425 crossref_primary_10_1016_j_ncrna_2018_04_002 crossref_primary_10_1016_j_jss_2022_04_006 crossref_primary_10_1111_jcmm_15943 crossref_primary_10_18632_aging_102761 crossref_primary_10_1007_s11010_021_04083_8 crossref_primary_10_1016_j_exer_2022_109179 crossref_primary_10_1134_S0026893320060096 crossref_primary_10_1094_PHYTO_09_20_0398_R crossref_primary_10_1109_TCBB_2021_3111607 crossref_primary_10_3390_gidisord2030022 crossref_primary_10_1101_gr_275348_121 crossref_primary_10_3390_biomedicines9121934 crossref_primary_10_3390_cells9061544 crossref_primary_10_1002_jcla_24401 crossref_primary_10_1016_j_yexcr_2024_114390 crossref_primary_10_30683_1929_2279_2022_11_04 crossref_primary_10_1038_s41419_020_02769_3 crossref_primary_10_1016_j_canlet_2023_216247 crossref_primary_10_1097_FJC_0000000000001124 crossref_primary_10_1038_s41598_020_59040_0 crossref_primary_10_1002_jcb_28863 crossref_primary_10_1093_gigascience_giac093 crossref_primary_10_3390_biom13071046 crossref_primary_10_1016_j_exphem_2018_10_011 crossref_primary_10_1186_s12943_022_01514_y crossref_primary_10_3390_cells9081841 crossref_primary_10_1016_j_fsi_2023_109113 crossref_primary_10_1016_j_clinre_2021_101671 crossref_primary_10_3390_ijms21197001 crossref_primary_10_3389_fonc_2024_1275009 crossref_primary_10_1016_j_gene_2022_146950 crossref_primary_10_2147_OTT_S319300 crossref_primary_10_3389_fgene_2019_00431 crossref_primary_10_1002_rmv_2530 crossref_primary_10_1002_iub_2346 crossref_primary_10_1159_000511612 crossref_primary_10_1007_s12010_023_04645_0 crossref_primary_10_1080_21655979_2021_1964891 crossref_primary_10_1016_j_biopha_2024_117306 crossref_primary_10_3389_fimmu_2018_00009 crossref_primary_10_1016_j_ncrna_2024_01_013 crossref_primary_10_1093_database_baaa019 crossref_primary_10_1016_j_ijcard_2023_131419 crossref_primary_10_1038_s41581_022_00631_7 crossref_primary_10_1111_jcmm_14550 crossref_primary_10_1007_s43032_022_00885_3 crossref_primary_10_2147_IJGM_S290440 crossref_primary_10_3389_fonc_2021_706415 crossref_primary_10_1134_S0006350921010036 crossref_primary_10_1016_j_microc_2024_110310 crossref_primary_10_1016_j_gene_2024_148442 crossref_primary_10_3389_fncel_2024_1470641 crossref_primary_10_1177_0963689720983786 crossref_primary_10_3389_fphys_2021_760223 crossref_primary_10_1042_CS20180403 crossref_primary_10_1080_08916934_2021_1894417 crossref_primary_10_2147_CMAR_S289775 crossref_primary_10_1186_s40478_023_01521_0 crossref_primary_10_1016_j_canlet_2024_216623 crossref_primary_10_3390_ijms18081668 crossref_primary_10_1002_mgg3_756 crossref_primary_10_1016_j_ncrna_2019_02_002 crossref_primary_10_1002_jemt_24147 crossref_primary_10_1016_j_mvr_2020_103983 crossref_primary_10_1038_s41419_022_05451_y crossref_primary_10_2217_epi_2020_0074 crossref_primary_10_3389_fcell_2021_605686 crossref_primary_10_1111_pin_13353 crossref_primary_10_1177_1758835919831902 crossref_primary_10_3892_mmr_2017_7718 crossref_primary_10_1016_j_ncrna_2022_09_011 crossref_primary_10_1016_j_jtbi_2018_03_021 crossref_primary_10_12701_jyms_2023_01186 crossref_primary_10_3390_ijms25116190 crossref_primary_10_1111_jcmm_15987 crossref_primary_10_3390_molecules26123715 crossref_primary_10_2217_epi_2017_0173 crossref_primary_10_1186_s12935_021_01984_y crossref_primary_10_1080_14737159_2018_1415757 crossref_primary_10_1186_s13046_023_02657_6 crossref_primary_10_1016_j_omtn_2019_12_031 crossref_primary_10_1016_j_ygeno_2023_110761 crossref_primary_10_3390_cancers16010059 crossref_primary_10_1016_j_genrep_2022_101516 crossref_primary_10_1097_MD_0000000000033064 crossref_primary_10_1097_FJC_0000000000001203 crossref_primary_10_1261_rna_071654_119 crossref_primary_10_1186_s12929_019_0595_9 crossref_primary_10_1007_s11010_022_04509_x crossref_primary_10_1016_j_biopha_2021_111351 crossref_primary_10_3390_diagnostics8030060 crossref_primary_10_1016_j_omtn_2021_07_026 crossref_primary_10_1111_1759_7714_14300 crossref_primary_10_1186_s12920_023_01464_4 crossref_primary_10_1186_s12935_020_1120_7 crossref_primary_10_1002_prp2_812 crossref_primary_10_1016_j_fsi_2021_09_027 crossref_primary_10_1111_jcmm_16419 crossref_primary_10_1186_s12931_022_02069_8 crossref_primary_10_3390_cells9081758 crossref_primary_10_3390_cancers12071740 crossref_primary_10_3892_etm_2021_10714 crossref_primary_10_5009_gnl210542 crossref_primary_10_3390_ijms241411861 crossref_primary_10_1177_0963689720925751 crossref_primary_10_1016_j_ncrna_2018_02_002 crossref_primary_10_1007_s00018_019_03016_5 crossref_primary_10_3390_ijms23062963 crossref_primary_10_2147_OTT_S290270 crossref_primary_10_3389_fphys_2020_00738 crossref_primary_10_3389_fgene_2022_925564 crossref_primary_10_3389_fmed_2021_766208 crossref_primary_10_1155_2019_7237495 crossref_primary_10_1097_MD_0000000000025415 crossref_primary_10_1002_macp_202300131 crossref_primary_10_1038_s41388_021_01867_6 crossref_primary_10_1080_21691401_2019_1652623 crossref_primary_10_1002_jbt_23759 crossref_primary_10_1016_j_cellsig_2020_109784 crossref_primary_10_1186_s12929_024_01049_y crossref_primary_10_3390_ijms19092475 crossref_primary_10_3892_ol_2018_9357 crossref_primary_10_1002_cbin_11253 crossref_primary_10_1002_jcla_22984 crossref_primary_10_1016_j_intimp_2022_108996 crossref_primary_10_3390_cancers10080258 crossref_primary_10_1080_02713683_2022_2143529 crossref_primary_10_1016_j_prp_2022_154265 crossref_primary_10_1007_s00432_017_2576_2 crossref_primary_10_1002_cbf_3543 crossref_primary_10_1016_j_vph_2018_03_003 crossref_primary_10_1016_j_omto_2021_12_015 crossref_primary_10_1002_hed_26549 crossref_primary_10_1002_jgm_3261 crossref_primary_10_3389_fonc_2021_705059 crossref_primary_10_12677_ACM_2022_1281134 crossref_primary_10_3892_etm_2018_7106 crossref_primary_10_2174_2211536612666230524153442 crossref_primary_10_3390_ijms20040919 crossref_primary_10_1002_jcla_23049 crossref_primary_10_2147_CMAR_S252679 crossref_primary_10_2217_epi_2019_0101 crossref_primary_10_1016_j_numecd_2021_04_005 crossref_primary_10_1186_s12935_020_01695_w crossref_primary_10_1080_21655979_2022_2033382 crossref_primary_10_1016_j_ijbiomac_2022_09_203 crossref_primary_10_1080_21655979_2022_2036898 crossref_primary_10_2174_1566524023666230110151155 crossref_primary_10_1002_cam4_2553 crossref_primary_10_1016_j_pbiomolbio_2019_11_009 crossref_primary_10_1186_s12943_021_01318_6 crossref_primary_10_2147_CMAR_S267927 crossref_primary_10_1186_s13018_021_02615_y crossref_primary_10_3389_fmolb_2022_925389 crossref_primary_10_1080_21655979_2021_1965695 crossref_primary_10_20900_mo_20190025 crossref_primary_10_1186_s13045_018_0569_5 crossref_primary_10_1016_j_ygeno_2020_12_013 crossref_primary_10_1002_jcb_27355 crossref_primary_10_1093_abbs_gmz116 crossref_primary_10_1016_j_gene_2020_144953 crossref_primary_10_2147_CMAR_S297123 crossref_primary_10_1182_bloodadvances_2019000568 crossref_primary_10_1080_1120009X_2023_2247202 crossref_primary_10_1093_cvr_cvx249 crossref_primary_10_1080_07853890_2024_2424515 crossref_primary_10_3390_cells14040312 crossref_primary_10_1080_21688370_2021_1895648 crossref_primary_10_1139_bcb_2019_0211 crossref_primary_10_1186_s12859_021_04287_1 crossref_primary_10_3389_fonc_2021_780744 crossref_primary_10_1038_s41598_019_45427_1 crossref_primary_10_2217_epi_2019_0352 crossref_primary_10_1002_wrna_1754 crossref_primary_10_1515_hsz_2018_0232 crossref_primary_10_1002_mc_23526 crossref_primary_10_3390_cells8010015 crossref_primary_10_1016_j_heliyon_2024_e37028 crossref_primary_10_1111_cpr_12614 crossref_primary_10_1038_s41419_021_03626_7 crossref_primary_10_1016_j_omtn_2021_11_005 crossref_primary_10_3390_cancers14246218 crossref_primary_10_1039_C9RA02230A crossref_primary_10_1007_s00221_023_06555_3 crossref_primary_10_1093_nar_gky721 crossref_primary_10_1111_jgh_15635 crossref_primary_10_1007_s12031_022_02018_6 crossref_primary_10_1007_s11033_020_05601_5 crossref_primary_10_1155_2021_9980459 crossref_primary_10_1136_jim_2019_001131 crossref_primary_10_3390_ijms242417224 crossref_primary_10_1016_j_cca_2024_120003 crossref_primary_10_1016_j_vph_2020_106782 crossref_primary_10_3389_fmicb_2018_02010 crossref_primary_10_1080_08916934_2022_2027918 crossref_primary_10_3389_fgene_2019_00860 crossref_primary_10_1080_21655979_2021_1967712 crossref_primary_10_26508_lsa_202302488 crossref_primary_10_1186_s12935_021_02181_7 crossref_primary_10_1002_tox_23500 crossref_primary_10_1007_s00109_017_1603_8 crossref_primary_10_3892_mmr_2019_10866 crossref_primary_10_1002_jbt_23470 crossref_primary_10_1515_med_2022_0417 crossref_primary_10_1016_j_biocel_2024_106548 crossref_primary_10_1038_s41419_021_04253_y crossref_primary_10_1016_j_ygeno_2023_110718 crossref_primary_10_3389_fphys_2022_969854 crossref_primary_10_1007_s10528_021_10092_5 crossref_primary_10_3389_fonc_2024_1430684 crossref_primary_10_1002_jcp_26612 crossref_primary_10_1016_j_ijbiomac_2023_123783 crossref_primary_10_3389_fbioe_2022_1022830 crossref_primary_10_3892_mmr_2019_10615 crossref_primary_10_1007_s10620_021_07055_6 crossref_primary_10_3390_mi14020459 crossref_primary_10_3390_ijms221910498 crossref_primary_10_3349_ymj_2018_59_3_349 crossref_primary_10_1016_j_omtn_2021_05_022 crossref_primary_10_1016_j_biopha_2018_01_015 crossref_primary_10_1007_s13534_021_00208_6 crossref_primary_10_1016_j_omtn_2024_102262 crossref_primary_10_1186_s13046_019_1136_9 crossref_primary_10_1016_j_reth_2020_12_003 crossref_primary_10_3390_ijms221910626 crossref_primary_10_1038_s41419_020_02784_4 crossref_primary_10_3389_fcell_2021_647736 crossref_primary_10_1186_s12943_019_1121_0 crossref_primary_10_18786_2072_0505_2024_52_016 crossref_primary_10_4330_wjc_v17_i1_102147 crossref_primary_10_1002_jcla_24533 crossref_primary_10_3390_ijms21020456 crossref_primary_10_1016_j_ebiom_2018_12_062 crossref_primary_10_1007_s12539_021_00455_2 crossref_primary_10_3390_ijms22063156 crossref_primary_10_1016_j_prp_2024_155402 crossref_primary_10_1016_j_cbd_2022_101052 crossref_primary_10_1186_s12885_021_08669_9 crossref_primary_10_1111_cpr_12521 crossref_primary_10_1186_s12943_022_01608_7 crossref_primary_10_1007_s12038_022_00288_1 crossref_primary_10_3389_fonc_2023_1224138 crossref_primary_10_1186_s40001_025_02356_2 crossref_primary_10_1007_s00018_023_04842_4 crossref_primary_10_1038_s41374_020_00483_4 crossref_primary_10_1002_jcla_24304 crossref_primary_10_4103_ejdv_ejdv_36_21 crossref_primary_10_1039_D4NR02795G crossref_primary_10_1039_C9CC04872C crossref_primary_10_1111_srt_13248 crossref_primary_10_1007_s11033_022_07472_4 crossref_primary_10_2217_epi_2023_0322 crossref_primary_10_1038_s41420_024_01964_x crossref_primary_10_18632_aging_102576 crossref_primary_10_3389_fonc_2019_01105 crossref_primary_10_1016_j_vetmic_2019_03_012 crossref_primary_10_1186_s13578_019_0355_2 crossref_primary_10_7717_peerj_6831 crossref_primary_10_1016_j_cellsig_2022_110413 crossref_primary_10_1186_s41065_024_00346_8 crossref_primary_10_3389_fmolb_2024_1504876 crossref_primary_10_18632_oncotarget_21257 crossref_primary_10_1002_cam4_3703 crossref_primary_10_7717_peerj_14759 crossref_primary_10_1016_j_prp_2021_153618 crossref_primary_10_3389_fonc_2022_949656 crossref_primary_10_1016_j_leukres_2019_106198 crossref_primary_10_1007_s00395_024_01048_y crossref_primary_10_1111_cpr_12981 crossref_primary_10_3389_fnagi_2021_691512 crossref_primary_10_1038_s41419_021_03866_7 crossref_primary_10_1002_wrna_1592 crossref_primary_10_1007_s12282_020_01140_w crossref_primary_10_3390_biomedicines9060693 crossref_primary_10_3390_biology11060824 crossref_primary_10_18632_aging_101387 crossref_primary_10_3390_ijms21239285 crossref_primary_10_1038_s41598_022_10554_9 crossref_primary_10_3389_fonc_2019_00398 crossref_primary_10_3892_br_2018_1178 crossref_primary_10_1080_15476286_2019_1600395 crossref_primary_10_1080_15384101_2018_1480210 crossref_primary_10_1111_aji_13640 crossref_primary_10_1007_s12672_024_01003_2 crossref_primary_10_1038_s41598_020_76438_y crossref_primary_10_3390_cancers13215352 crossref_primary_10_1097_CAD_0000000000001103 crossref_primary_10_3390_v10050260 crossref_primary_10_1038_s41598_019_47189_2 crossref_primary_10_1186_s13287_021_02224_w crossref_primary_10_1016_j_bbrc_2017_11_028 crossref_primary_10_3390_biophysica3030031 crossref_primary_10_1080_15384101_2021_1909885 crossref_primary_10_1186_s12864_024_10420_0 crossref_primary_10_1002_jcla_23260 crossref_primary_10_1186_s12935_020_01235_6 crossref_primary_10_1142_S0219720024500185 crossref_primary_10_1186_s12935_021_02196_0 crossref_primary_10_1007_s40256_023_00609_1 crossref_primary_10_2147_OTT_S284032 crossref_primary_10_3390_ijms19072072 crossref_primary_10_7124_bc_000A23 crossref_primary_10_3389_fcimb_2020_00097 crossref_primary_10_1007_s00774_021_01308_0 crossref_primary_10_3390_cells13120999 crossref_primary_10_1002_jcla_24247 crossref_primary_10_1039_D1MO00060H crossref_primary_10_1007_s11033_023_08729_2 crossref_primary_10_1097_CAD_0000000000001007 |
Cites_doi | 10.1080/15476286.2015.1128065 10.1016/j.gdata.2015.07.017 10.4161/15384047.2014.955442 10.1016/S0968-0004(99)01460-7 10.1016/0092-8674(91)90244-S 10.1016/j.tig.2016.03.002 10.1186/s12935-015-0259-0 10.1016/j.molcel.2017.02.021 10.1038/sj.onc.1209913 10.1261/rna.035667.112 10.3389/fgene.2013.00307 10.1101/gad.2017311 10.1038/srep12453 10.1016/j.biocel.2014.05.040 10.1242/jcs.055210 10.1093/nar/gkq622 10.1038/348450a0 10.1186/s12885-016-2862-4 10.1038/srep39918 10.1016/j.molcel.2015.03.027 10.1016/j.canlet.2016.12.036 10.1158/0008-5472.CAN-10-0638 10.1155/2016/1579490 10.1038/nsmb.2959 10.1097/md.0000000000003811 10.1093/cvr/cvw250 10.1093/nar/gkw1201 10.1093/carcin/bgv003 10.1002/jnr.21485 10.1158/0008-5472.CAN-13-1568 10.1186/s13059-014-0571-3 10.1016/j.bbrc.2012.11.086 10.1007/978-1-4939-6670-7_7 10.1093/annonc/mdt412 10.1016/j.molcel.2017.02.017 10.1038/srep08057 10.1038/nrg2841 10.1038/nsmb.2580 10.3233/CBM-150552 10.1016/j.gpb.2016.02.003 10.1038/nature11928 10.1016/j.cell.2015.02.014 10.1038/nrg3074 10.1016/j.cell.2014.09.005 10.1038/mt.2013.101 10.1038/nn.3975 10.1261/rna.043687.113 10.1016/j.canlet.2016.12.006 10.1158/1078-0432.CCR-16-2541 10.1038/nbt.2890 10.1016/j.celrep.2014.12.002 10.1161/CIRCRESAHA.115.306319 10.1186/s13045-016-0370-2 10.1371/journal.pgen.1001233 10.1038/onc.2012.425 10.1371/journal.pone.0047067 10.1016/j.cca.2015.02.018 10.1038/nrc3563 10.1038/cr.2015.82 10.1016/j.molcel.2014.08.019 10.1080/15476286.2015.1020271 10.1016/j.canlet.2017.03.027 10.1038/srep30919 10.1038/nature11993 10.1002/hep.27177 10.1261/rna.048272.114 10.1373/clinchem.2014.230433 10.1038/srep37982 10.1186/gb-2014-15-2-r34 10.1038/nrg.2016.114 10.1677/ERC-09-0184 10.1073/pnas.73.11.3852 10.1038/sigtrans.2015.4 10.1186/s13059-014-0409-z 10.1093/bib/bbw045 10.1038/nrg.2016.20 10.1038/ncomms11215 10.1096/fasebj.7.1.7678559 10.1038/nature22364 10.1038/nrd4359 10.1158/0008-5472.CAN-08-2103 10.1038/srep31313 10.7554/eLife.07540 10.3389/fgene.2013.00283 10.1371/journal.pone.0030733 10.1016/j.bbagrm.2016.07.009 10.1371/journal.pgen.1003777 10.1186/s12979-015-0042-z 10.1261/rna.7154104 10.18632/oncotarget.3469 10.1038/srep34985 10.1016/0092-8674(93)90279-Y 10.1371/journal.pone.0158347 10.1038/ncomms12060 10.1371/journal.pone.0131225 10.1146/annurev-physiol-030212-183653 10.1038/323558a0 10.1158/0008-5472.CAN-07-6639 10.1371/journal.pone.0148407 10.1038/ncomms5640 10.1038/srep16435 10.1039/C6MB00786D 10.1093/nar/gkr1009 10.1093/nar/gkl151 10.1038/nrg.2015.3 10.1038/nn.3113 10.1016/j.cell.2016.03.020 |
ContentType | Journal Article |
Copyright | Copyright © 2017 Greene, Baird, Brady, Lim, Gray, McDermott and Finn. 2017 Greene, Baird, Brady, Lim, Gray, McDermott and Finn |
Copyright_xml | – notice: Copyright © 2017 Greene, Baird, Brady, Lim, Gray, McDermott and Finn. 2017 Greene, Baird, Brady, Lim, Gray, McDermott and Finn |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmolb.2017.00038 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2296-889X |
ExternalDocumentID | oai_doaj_org_article_06a02085dea945279b256ec87852ead8 PMC5459888 28634583 10_3389_fmolb_2017_00038 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Prostate Cancer Foundation – fundername: Irish Cancer Society |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION GROUPED_DOAJ HYE KQ8 M48 M~E OK1 PGMZT RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c462t-dc525106c01d8185f1ba3bd4724ba7aedc03433ba0cd07f15d166ed5ec2a8d323 |
IEDL.DBID | M48 |
ISSN | 2296-889X |
IngestDate | Wed Aug 27 01:16:16 EDT 2025 Thu Aug 21 18:31:26 EDT 2025 Thu Jul 10 23:55:48 EDT 2025 Thu Apr 03 07:08:12 EDT 2025 Tue Jul 01 03:27:55 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | circRNAs diseases miRNA cancer non-coding RNA |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-dc525106c01d8185f1ba3bd4724ba7aedc03433ba0cd07f15d166ed5ec2a8d323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 This article was submitted to RNA, a section of the journal Frontiers in Molecular Biosciences Edited by: Florent Hubé, UMR7216 Epigenetics and Cell Fate, France Reviewed by: Jeroen Pasterkamp, Utrecht University, Netherlands; Walter J. Lukiw, LSU Health Sciences Center New Orleans, United States |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmolb.2017.00038 |
PMID | 28634583 |
PQID | 1912195731 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_06a02085dea945279b256ec87852ead8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5459888 proquest_miscellaneous_1912195731 pubmed_primary_28634583 crossref_primary_10_3389_fmolb_2017_00038 crossref_citationtrail_10_3389_fmolb_2017_00038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-06 |
PublicationDateYYYYMMDD | 2017-06-06 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in molecular biosciences |
PublicationTitleAlternate | Front Mol Biosci |
PublicationYear | 2017 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Kent (B49) 2006; 25 Esteller (B26) 2011; 12 Memczak (B62) 2013; 495 Kalinowski (B47) 2012; 7 Gao (B28) 2015; 16 Abbosh (B1) 2017; 545 Liu (B60) 2016; 8 Thomson (B92) 2016; 17 Wang (B97) 2010; 38 Zhao (B110) 2017; 7 Glazar (B32) 2014; 20 Rybak-Wolf (B78) 2015; 58 Zhang (B108) 2013; 51 Danan (B21) 2012; 40 Li (B58) 2015; 22 Weng (B103) 2017 Hoffmann (B41) 2014; 15 Kos (B51) 1986; 323 Wang (B99) 2016; 16 Reid (B76) 2013; 24 Huang (B42) 2015; 10 Ender (B25) 2010; 123 Schneider (B83) 2016; 6 Burd (B10) 2010; 6 Campisi (B11) 2013; 75 Greuber (B34) 2013; 13 Cocquerelle (B19) 1993; 7 Boyerinas (B9) 2010; 17 Szabo (B89) 2016; 17 Starke (B87) 2015; 10 Nigro (B65) 1991; 64 Li (B57) 2015; 25 Valdmanis (B93) 2013; 21 Qu (B74) 2015; 5 Peng (B71) 2016; 1 Ye (B105) 2015; 36 Salzman (B79) 2016; 32 Boeckel (B8) 2015; 117 Wang (B101) 2015; 21 Vicens (B94) 2014; 159 Lukiw (B61) 2013; 4 Panda (B70) 2016; 45 Scotti (B84) 2016; 17 Dou (B23) 2016; 6 Wang (B100) 2015; 12 Jakobi (B43) 2016; 14 Granados-Riveron (B33) 2016; 1859 Lasda (B52) 2016; 11 Warner (B102) 1999; 24 Yu (B107) 2016; 11 Chin (B17) 2011; 25 Kefas (B48) 2008; 68 Zhong (B112) 2016; 6 Bachmayr-Heyda (B4) 2015; 5 Shang (B85) 2016; 95 Conn (B20) 2015; 160 Chenard (B16) 2008; 86 Hernandez (B40) 2004; 10 Zheng (B111) 2016; 7 Qin (B73) 2016; 16 Ghosal (B30) 2013; 4 Meng (B63) 2016 He (B39) 2017; 396 Chou (B18) 2010; 70 Hansen (B37); 495 Taulli (B91) 2013; 20 Li (B59) 2014; 13 Li (B55) 2015; 6 Li (B56) 2015; 444 Padala (B67) 2017; 13 Barrett (B6) 2015; 4 Pamudurti (B68) 2017; 66 Suzuki (B88) 2006; 34 Hansen (B38); 73 Zhao (B109) 2015; 15 Abe (B2) 2015; 5 Gao (B29) 2016; 7 Meyerson (B64) 2010; 11 Legnini (B53) 2017 Lehmann (B54) 2012; 15 Koopman (B50) 1990; 348 Wang (B98) 2017; 394 Bassett (B7) 2014; 5 Dudekula (B24) 2016; 13 Ning (B66) 2014; 60 Romero-Cordoba (B77) 2014; 15 Dong (B22) 2017; 10 Sanger (B82) 1976; 73 Wang (B96) 2016; 6 Jeck (B44) 2014; 32 Tan (B90) 2017; 113 Guo (B36) 2014; 15 Kalinowski (B46) 2014; 54 Xu (B104) 2015; 5 Chen (B15) 2016; 6 Felekkis (B27) 2010; 14 Ashwal-Fluss (B3) 2014; 56 Shi (B86) 2013; 32 Salzman (B80) 2013; 9 Bahn (B5) 2015; 61 Salzman (B81) 2012; 7 You (B106) 2015; 18 Chen (B13) 2017; 388 Giles (B31) 2013; 430 Panda (B69) 2017; 1534 Capel (B12) 1993; 73 Wan (B95) 2016; 2016 Guarnerio (B35) 2016; 165 Chen (B14) 2015; 12 Pesta (B72) 2010; 30 Jeck (B45) 2013; 19 Reddy (B75) 2008; 68 |
References_xml | – volume: 13 start-page: 34 year: 2016 ident: B24 article-title: CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs publication-title: RNA Biol. doi: 10.1080/15476286.2015.1128065 – volume: 5 start-page: 385 year: 2015 ident: B74 article-title: Microarray expression profile of circular RNAs in human pancreatic ductal adenocarcinoma publication-title: Genomics Data doi: 10.1016/j.gdata.2015.07.017 – volume: 15 start-page: 1444 year: 2014 ident: B77 article-title: miRNA biogenesis: biological impact in the development of cancer publication-title: Cancer Biol. Ther. doi: 10.4161/15384047.2014.955442 – volume: 24 start-page: 437 year: 1999 ident: B102 article-title: The economics of ribosome biosynthesis in yeast publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(99)01460-7 – volume: 64 start-page: 607 year: 1991 ident: B65 article-title: Scrambled exons publication-title: Cell doi: 10.1016/0092-8674(91)90244-S – volume: 32 start-page: 309 year: 2016 ident: B79 article-title: Circular RNA expression: its potential regulation and function publication-title: Trends Genet. doi: 10.1016/j.tig.2016.03.002 – volume: 15 start-page: 103 year: 2015 ident: B109 article-title: MicroRNA-7: a promising new target in cancer therapy publication-title: Cancer Cell Int. doi: 10.1186/s12935-015-0259-0 – volume: 66 start-page: 9 year: 2017 ident: B68 article-title: Translation of circRNAs publication-title: Mol. Cell. doi: 10.1016/j.molcel.2017.02.021 – volume: 25 start-page: 6188 year: 2006 ident: B49 article-title: A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes publication-title: Oncogene doi: 10.1038/sj.onc.1209913 – volume: 19 start-page: 141 year: 2013 ident: B45 article-title: Circular RNAs are abundant, conserved, and associated with ALU repeats publication-title: RNA doi: 10.1261/rna.035667.112 – volume: 4 start-page: 307 year: 2013 ident: B61 article-title: Circular RNA (circRNA) in Alzheimer's disease (AD) publication-title: Front. Genet. doi: 10.3389/fgene.2013.00307 – volume: 25 start-page: 534 year: 2011 ident: B17 article-title: Making sense of cancer genomic data publication-title: Genes Dev. doi: 10.1101/gad.2017311 – volume: 30 start-page: 3579 year: 2010 ident: B72 article-title: Importance of miR-20a expression in prostate cancer tissue publication-title: Anticancer Res. – volume: 5 start-page: 12453 year: 2015 ident: B104 article-title: The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells publication-title: Sci. Rep. doi: 10.1038/srep12453 – volume: 54 start-page: 312 year: 2014 ident: B46 article-title: microRNA-7: a tumor suppressor miRNA with therapeutic potential publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2014.05.040 – volume: 123 start-page: 1819 year: 2010 ident: B25 article-title: Argonaute proteins at a glance publication-title: J. Cell Sci. doi: 10.1242/jcs.055210 – volume: 38 start-page: e178 year: 2010 ident: B97 article-title: MapSplice: accurate mapping of RNA-seq reads for splice junction discovery publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq622 – volume: 348 start-page: 450 year: 1990 ident: B50 article-title: Expression of a candidate sex-determining gene during mouse testis differentiation publication-title: Nature doi: 10.1038/348450a0 – volume: 16 start-page: 826 year: 2016 ident: B99 article-title: miR-124-3p functions as a tumor suppressor in breast cancer by targeting CBL publication-title: BMC Cancer doi: 10.1186/s12885-016-2862-4 – volume: 7 start-page: 39918 year: 2017 ident: B110 article-title: Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease publication-title: Sci. Rep. doi: 10.1038/srep39918 – volume: 58 start-page: 870 year: 2015 ident: B78 article-title: Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.03.027 – volume: 394 start-page: 1 year: 2017 ident: B98 article-title: Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals publication-title: Cancer Lett. doi: 10.1016/j.canlet.2016.12.036 – volume: 70 start-page: 8822 year: 2010 ident: B18 article-title: EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-0638 – volume: 2016 start-page: 1579490 year: 2016 ident: B95 article-title: Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the Wnt/beta-catenin pathway publication-title: Biomed Res. Int. doi: 10.1155/2016/1579490 – volume: 22 start-page: 256 year: 2015 ident: B58 article-title: Exon-intron circular RNAs regulate transcription in the nucleus publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2959 – volume: 95 start-page: e3811 year: 2016 ident: B85 article-title: Comprehensive circular RNA profiling reveals that hsa_circ_0005075, a new circular RNA biomarker, is involved in hepatocellular crcinoma development publication-title: Medicine doi: 10.1097/md.0000000000003811 – volume: 113 start-page: 298 year: 2017 ident: B90 article-title: A landscape of circular RNA expression in the human heart publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvw250 – volume: 45 start-page: 4021 year: 2016 ident: B70 article-title: Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1201 – volume: 36 start-page: 318 year: 2015 ident: B105 article-title: A novel ent-kaurane diterpenoid executes antitumor function in colorectal cancer cells by inhibiting Wnt/beta-catenin signaling publication-title: Carcinogenesis doi: 10.1093/carcin/bgv003 – volume: 86 start-page: 233 year: 2008 ident: B16 article-title: New implications for the QUAKING RNA binding protein in human disease publication-title: J. Neurosci. Res. doi: 10.1002/jnr.21485 – volume: 73 start-page: 5609 ident: B38 article-title: Circular RNA and miR-7 in cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-1568 – volume: 16 start-page: 4 year: 2015 ident: B28 article-title: CIRI: an efficient and unbiased algorithm for de novo circular RNA identification publication-title: Genome Biol. doi: 10.1186/s13059-014-0571-3 – volume: 430 start-page: 706 year: 2013 ident: B31 article-title: miRNA-7-5p inhibits melanoma cell migration and invasion publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2012.11.086 – volume: 1534 start-page: 79 year: 2017 ident: B69 article-title: RT-qPCR detection of senescence-associated circular RNAs publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-6670-7_7 – volume: 24 start-page: 3128 year: 2013 ident: B76 article-title: Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma publication-title: Ann. Oncol. doi: 10.1093/annonc/mdt412 – year: 2017 ident: B53 article-title: Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis publication-title: Mol. Cell. doi: 10.1016/j.molcel.2017.02.017 – volume: 5 start-page: 8057 year: 2015 ident: B4 article-title: Correlation of circular RNA abundance with proliferation - exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues publication-title: Sci. Rep. doi: 10.1038/srep08057 – volume: 11 start-page: 685 year: 2010 ident: B64 article-title: Advances in understanding cancer genomes through second-generation sequencing publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2841 – volume: 20 start-page: 541 year: 2013 ident: B91 article-title: From pseudo-ceRNAs to circ-ceRNAs: a tale of cross-talk and competition publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2580 – volume: 16 start-page: 161 year: 2016 ident: B73 article-title: Hsa_circ_0001649: a circular RNA and potential novel biomarker for hepatocellular carcinoma publication-title: Cancer Biomark. doi: 10.3233/CBM-150552 – volume: 14 start-page: 216 year: 2016 ident: B43 article-title: Profiling and validation of the circular RNA repertoire in adult murine hearts publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/j.gpb.2016.02.003 – volume: 495 start-page: 333 year: 2013 ident: B62 article-title: Circular RNAs are a large class of animal RNAs with regulatory potency publication-title: Nature doi: 10.1038/nature11928 – volume: 160 start-page: 1125 year: 2015 ident: B20 article-title: The RNA binding protein quaking regulates formation of circRNAs publication-title: Cell doi: 10.1016/j.cell.2015.02.014 – volume: 8 start-page: 2159 year: 2016 ident: B60 article-title: miR-138 suppresses cell proliferation and invasion by inhibiting SOX9 in hepatocellular carcinoma publication-title: Am. J. Transl. Res. – volume: 12 start-page: 861 year: 2011 ident: B26 article-title: Non-coding RNAs in human disease publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3074 – volume: 51 start-page: 792 year: 2013 ident: B108 article-title: Circular intronic long noncoding RNAs publication-title: Mol. Cell doi: 10.1016/j.cell.2014.09.005 – volume: 21 start-page: 1112 year: 2013 ident: B93 article-title: The expanding repertoire of circular RNAs publication-title: Mol. Ther. doi: 10.1038/mt.2013.101 – volume: 6 start-page: 1167 year: 2016 ident: B96 article-title: Circular RNAs as potential biomarkers for cancer diagnosis and therapy publication-title: Am. J. Cancer Res. – volume: 18 start-page: 603 year: 2015 ident: B106 article-title: Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity publication-title: Nat. Neurosci. doi: 10.1038/nn.3975 – volume: 20 start-page: 1666 year: 2014 ident: B32 article-title: circBase: a database for circular RNAs publication-title: RNA doi: 10.1261/rna.043687.113 – volume: 388 start-page: 208 year: 2017 ident: B13 article-title: Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer publication-title: Cancer Lett. doi: 10.1016/j.canlet.2016.12.006 – year: 2017 ident: B103 article-title: Circular RNA ciRS-7 − a promising prognostic biomarker and a potential therapeutic target in colorectal cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-2541 – volume: 32 start-page: 453 year: 2014 ident: B44 article-title: Detecting and characterizing circular RNAs publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2890 – volume: 10 start-page: 103 year: 2015 ident: B87 article-title: Exon circularization requires canonical splice signals publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.12.002 – volume: 117 start-page: 884 year: 2015 ident: B8 article-title: Identification and characterization of hypoxia-regulated endothelial circular RNA publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.115.306319 – volume: 10 start-page: 2 year: 2017 ident: B22 article-title: Circular RNAs in cancer: an emerging key player publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-016-0370-2 – volume: 6 start-page: e1001233 year: 2010 ident: B10 article-title: Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001233 – volume: 32 start-page: 4130 year: 2013 ident: B86 article-title: Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells publication-title: Oncogene doi: 10.1038/onc.2012.425 – volume: 7 start-page: e47067 year: 2012 ident: B47 article-title: Regulation of epidermal growth factor receptor signaling and erlotinib sensitivity in head and neck cancer cells by miR-7 publication-title: PLoS ONE doi: 10.1371/journal.pone.0047067 – volume: 444 start-page: 132 year: 2015 ident: B56 article-title: Using circular RNA as a novel type of biomarker in the screening of gastric cancer publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2015.02.018 – volume: 13 start-page: 559 year: 2013 ident: B34 article-title: Role of ABL family kinases in cancer: from leukaemia to solid tumours publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3563 – volume: 25 start-page: 981 year: 2015 ident: B57 article-title: Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis publication-title: Cell Res. doi: 10.1038/cr.2015.82 – volume: 56 start-page: 55 year: 2014 ident: B3 article-title: circRNA biogenesis competes with pre-mRNA splicing publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.08.019 – volume: 12 start-page: 381 year: 2015 ident: B14 article-title: Regulation of circRNA biogenesis publication-title: RNA Biol. doi: 10.1080/15476286.2015.1020271 – volume: 396 start-page: 138 year: 2017 ident: B39 article-title: Circular RNAs and cancer publication-title: Cancer Lett. doi: 10.1016/j.canlet.2017.03.027 – volume: 6 start-page: 30919 year: 2016 ident: B112 article-title: Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma publication-title: Sci. Rep. doi: 10.1038/srep30919 – volume: 14 start-page: 236 year: 2010 ident: B27 article-title: microRNAs: a newly described class of encoded molecules that play a role in health and disease publication-title: Hippokratia – volume: 495 start-page: 384 ident: B37 article-title: Natural RNA circles function as efficient microRNA sponges publication-title: Nature doi: 10.1038/nature11993 – volume: 60 start-page: 1607 year: 2014 ident: B66 article-title: Hepatocyte nuclear factor 4alpha-nuclear factor-kappaB feedback circuit modulates liver cancer progression publication-title: Hepatology doi: 10.1002/hep.27177 – volume: 21 start-page: 172 year: 2015 ident: B101 article-title: Efficient backsplicing produces translatable circular mRNAs publication-title: RNA doi: 10.1261/rna.048272.114 – volume: 61 start-page: 221 year: 2015 ident: B5 article-title: The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva publication-title: Clin. Chem. doi: 10.1373/clinchem.2014.230433 – volume: 6 start-page: 37982 year: 2016 ident: B23 article-title: Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes publication-title: Sci. Rep. doi: 10.1038/srep37982 – volume: 15 start-page: R34 year: 2014 ident: B41 article-title: A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection publication-title: Genome Biol. doi: 10.1186/gb-2014-15-2-r34 – volume: 17 start-page: 679 year: 2016 ident: B89 article-title: Detecting circular RNAs: bioinformatic and experimental challenges publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.114 – volume: 17 start-page: F19 year: 2010 ident: B9 article-title: The role of let-7 in cell differentiation and cancer publication-title: Endocr. Relat. Cancer doi: 10.1677/ERC-09-0184 – volume: 73 start-page: 3852 year: 1976 ident: B82 article-title: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.73.11.3852 – volume: 1 start-page: 15004 year: 2016 ident: B71 article-title: The role of MicroRNAs in human cancer publication-title: Signal Trans. Target. Ther. doi: 10.1038/sigtrans.2015.4 – volume: 15 start-page: 409 year: 2014 ident: B36 article-title: Expanded identification and characterization of mammalian circular RNAs publication-title: Genome Biol. doi: 10.1186/s13059-014-0409-z – year: 2016 ident: B63 article-title: Circular RNA: an emerging key player in RNA world publication-title: Brief. Bioinformatics. doi: 10.1093/bib/bbw045 – volume: 17 start-page: 272 year: 2016 ident: B92 article-title: Endogenous microRNA sponges: evidence and controversy publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.20 – volume: 7 start-page: 11215 year: 2016 ident: B111 article-title: Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs publication-title: Nat. Commun. doi: 10.1038/ncomms11215 – volume: 7 start-page: 155 year: 1993 ident: B19 article-title: Mis-splicing yields circular RNA molecules publication-title: FASEB J. doi: 10.1096/fasebj.7.1.7678559 – volume: 545 start-page: 446 year: 2017 ident: B1 article-title: Phylogenetic ctDNA analysis depicts early stage lung cancer evolution publication-title: Nat. Adv. doi: 10.1038/nature22364 – volume: 13 start-page: 622 year: 2014 ident: B59 article-title: Therapeutic targeting of microRNAs: current status and future challenges publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4359 – volume: 68 start-page: 8195 year: 2008 ident: B75 article-title: MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-2103 – volume: 6 start-page: 31313 year: 2016 ident: B83 article-title: CircRNA-protein complexes: IMP3 protein component defines subfamily of circRNPs publication-title: Sci. Rep. doi: 10.1038/srep31313 – volume: 4 start-page: e07540 year: 2015 ident: B6 article-title: Circular RNA biogenesis can proceed through an exon-containing lariat precursor publication-title: Elife doi: 10.7554/eLife.07540 – volume: 4 start-page: 283 year: 2013 ident: B30 article-title: Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits publication-title: Front. Genet. doi: 10.3389/fgene.2013.00283 – volume: 7 start-page: e30733 year: 2012 ident: B81 article-title: Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types publication-title: PLoS ONE doi: 10.1371/journal.pone.0030733 – volume: 1859 start-page: 1245 year: 2016 ident: B33 article-title: The complexity of the translation ability of circRNAs publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2016.07.009 – volume: 9 start-page: e1003777 year: 2013 ident: B80 article-title: Cell-type specific features of circular RNA expression publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003777 – volume: 12 start-page: 17 year: 2015 ident: B100 article-title: Comprehensive circular RNA profiling reveals that circular RNA100783 is involved in chronic CD28-associated CD8(+)T cell ageing publication-title: Immun. Ageing: doi: 10.1186/s12979-015-0042-z – volume: 10 start-page: 1783 year: 2004 ident: B40 article-title: Internal ribosome entry site drives cap-independent translation of reaper and heat shock protein 70 mRNAs in Drosophila embryos publication-title: RNA doi: 10.1261/rna.7154104 – volume: 6 start-page: 6001 year: 2015 ident: B55 article-title: Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway publication-title: Oncotarget doi: 10.18632/oncotarget.3469 – volume: 6 start-page: 34985 year: 2016 ident: B15 article-title: circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations publication-title: Sci. Rep. doi: 10.1038/srep34985 – volume: 73 start-page: 1019 year: 1993 ident: B12 article-title: Circular transcripts of the testis-determining gene Sry in adult mouse testis publication-title: Cell doi: 10.1016/0092-8674(93)90279-Y – volume: 11 start-page: e0158347 year: 2016 ident: B107 article-title: The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 EXPRESSION publication-title: PLoS ONE doi: 10.1371/journal.pone.0158347 – volume: 7 start-page: 12060 year: 2016 ident: B29 article-title: Comprehensive identification of internal structure and alternative splicing events in circular RNAs publication-title: Nat. Commun. doi: 10.1038/ncomms12060 – volume: 10 start-page: e0131225 year: 2015 ident: B42 article-title: cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/beta-catenin pathway publication-title: PLoS ONE doi: 10.1371/journal.pone.0131225 – volume: 75 start-page: 685 year: 2013 ident: B11 article-title: Aging, cellular senescence, and cancer publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-030212-183653 – volume: 323 start-page: 558 year: 1986 ident: B51 article-title: The hepatitis delta (delta) virus possesses a circular RNA publication-title: Nature doi: 10.1038/323558a0 – volume: 68 start-page: 3566 year: 2008 ident: B48 article-title: microRNA-7 inhibits the epidermal growth factor receptor and the akt pathway and is down-regulated in glioblastoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-6639 – volume: 11 start-page: e0148407 year: 2016 ident: B52 article-title: Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circRNA clearance publication-title: PLoS ONE doi: 10.1371/journal.pone.0148407 – volume: 5 start-page: 4640 year: 2014 ident: B7 article-title: Understanding functional miRNA–target interactions in vivo by site-specific genome engineering publication-title: Nat. Commun. doi: 10.1038/ncomms5640 – volume: 5 start-page: 16435 year: 2015 ident: B2 article-title: Rolling circle translation of circular RNA in living human cells publication-title: Sci. Rep. doi: 10.1038/srep16435 – volume: 13 start-page: 830 year: 2017 ident: B67 article-title: Cancerous perturbations within the ERK, PI3K/Akt, and Wnt/beta-catenin signaling network constitutively activate inter-pathway positive feedback loops publication-title: Mol. Biosyst. doi: 10.1039/C6MB00786D – volume: 40 start-page: 3131 year: 2012 ident: B21 article-title: Transcriptome-wide discovery of circular RNAs in Archaea publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1009 – volume: 159 start-page: 13 year: 2014 ident: B94 article-title: Biogenesis of circular RNAs publication-title: Cell doi: 10.1016/j.cell.2014.09.005 – volume: 34 start-page: e63 year: 2006 ident: B88 article-title: Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl151 – volume: 17 start-page: 19 year: 2016 ident: B84 article-title: RNA mis-splicing in disease publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2015.3 – volume: 15 start-page: 827 year: 2012 ident: B54 article-title: An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration publication-title: Nat. Neurosci. doi: 10.1038/nn.3113 – volume: 165 start-page: 289 year: 2016 ident: B35 article-title: Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations publication-title: Cell doi: 10.1016/j.cell.2016.03.020 |
SSID | ssj0001503764 |
Score | 2.5413315 |
SecondaryResourceType | review_article |
Snippet | Circular RNAs (circRNAs) are currently classed as non-coding RNA (ncRNA) that, unlike linear RNAs, form covalently closed continuous loops and act as gene... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 38 |
SubjectTerms | cancer circRNAs diseases miRNA Molecular Biosciences non-coding RNA |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et_VFBC-CxTZpXh4EX4sIehAFbyFpUl1YurK7Hvz3TpJ12RXRi9cmTYdvJpmZzmQGoUMmiGuMqHNjDMlB48vcNpbmShGhPLFcxR5Ld_f85qm6fWbPU62-Qk5YKg-cgDspuIl9JJ03qmKwgAUl7WspJCOAQrzmCzpvyplK94ML2DlVikuCF6aATf2eDalcsWRhuI4ypYdiuf6fbMzvqZJTuqezjJbGRiM-T8SuoDnfrqKF1EbyYw2dXXYHMZ0UP9yfD08xDLyEI6w7PMYd0FsBe2xahx_6PY-7LY5_7vFVis0M19FT5_rx8iYf90XI64qTUe5qBlZJweuidEHfNqU11LpKkMoaYYDYglaUWlPUrhBNyVzJuXfM18RIRwndQPNtv_VbCDMrQo8-q5ghFahqA6s21npV-kZayTN08oWSrsdFw0Pvip4G5yHgqiOuOuCqI64ZOpq88ZYKZvwy9yIAP5kXSl3HByAAeiwA-i8ByNDBF9s0bI0Q7zCt778PNbiicB4zQcsMbSY2Tj5FJKchZJwhMcPgGVpmR9ruayy_DTanklJu_wfxO2gxwBFzz_gumh8N3v0eWDkjux8F-hOievk4 priority: 102 providerName: Directory of Open Access Journals |
Title | Circular RNAs: Biogenesis, Function and Role in Human Diseases |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28634583 https://www.proquest.com/docview/1912195731 https://pubmed.ncbi.nlm.nih.gov/PMC5459888 https://doaj.org/article/06a02085dea945279b256ec87852ead8 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA9aEXwRtX6c1hLBl4Kru8nmS6hS2x6l0D4UD-4tJJtse3Ds6u0V7H_vTHZ79eQQXze7SXYmk99MZjJDyHuhWKidqjLnHMsA8XXma88zY5gykXlpUo2ls3N5MilPp2J6dz16IGC30bTDelKTxfzjr583X0Hg99HiBLwFDrRzj1FaKRsh1_fJA8AlhfUMzgZlv78znIM0oZuZMSMzrc2091tu7GQNp1I6_0066N-hlH9g0_gJeTwolfSgXwVPyb3YPCMP-zKTN9vky-FskcJN6cX5QfeZQsMlbnGz7gMdA64hb6hrAr1o55HOGppO9ulR77vpnpPJ-Pj74Uk21E3IqlKyZRYqAVpLLqu8CIjHdeEd96FUrPROOZhszkvOvcurkKu6EKGQMgYRK-Z04Iy_IFtN28RXhAqvsIafN8KxEqDcQa-199EUsdZeyxH5dEslWw1JxbG2xdyCcYF0tYmuFulqE11HZG_1xY8-ocY_3v2GhF-9h6mw04N2cWkHybK5dKnQaIjOlAJWmActLlZaacFATKCTd7dssyA66A9xTWyvOwumKuzXQvFiRF72bFwNxbTk6FIeEbXG4LW5rLc0s6uUnht0UqO1fv0f474hj_BvU-iZ3CFby8V1fAtKztLvpsOB3bSCfwNsaPn1 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circular+RNAs%3A+Biogenesis%2C+Function+and+Role+in+Human+Diseases&rft.jtitle=Frontiers+in+molecular+biosciences&rft.au=Greene%2C+John&rft.au=Baird%2C+Anne-Marie&rft.au=Brady%2C+Lauren&rft.au=Lim%2C+Marvin&rft.date=2017-06-06&rft.issn=2296-889X&rft.eissn=2296-889X&rft.volume=4&rft.spage=38&rft_id=info:doi/10.3389%2Ffmolb.2017.00038&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-889X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-889X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-889X&client=summon |