A Dual-Adversarial Model for Cross-Time and Cross-Subject Cognitive Workload Decoding
Electroencephalogram (EEG) signals are widely utilized in the field of cognitive workload decoding (CWD). However, when the recognition scenario is shifted from subject-dependent to subject-independent or spans a long period, the accuracy of CWD deteriorates significantly. Current solutions are eith...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 2324 - 2335 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalogram (EEG) signals are widely utilized in the field of cognitive workload decoding (CWD). However, when the recognition scenario is shifted from subject-dependent to subject-independent or spans a long period, the accuracy of CWD deteriorates significantly. Current solutions are either dependent on extensive training datasets or fail to maintain clear distinctions between categories, additionally lacking a robust feature extraction mechanism. In this paper, we tackle these issues by proposing a Bi-Classifier Joint Domain Adaptation (BCJDA) model for EEG-based cross-time and cross-subject CWD. Specifically, the model consists of a feature extractor, a domain discriminator, and a Bi-Classifier, containing two sets of adversarial processes for domain-wise alignment and class-wise alignment. In the adversarial domain adaptation, the feature extractor is forced to learn the common domain features deliberately. The Bi-Classifier also fosters the feature extractor to retain the category discrepancies of the unlabeled domain, so that its classification boundary is consistent with the labeled domain. Furthermore, different adversarial distance functions of the Bi-Classifier are adopted and evaluated in this model. We conduct classification experiments on a publicly available BCI competition dataset for recognizing low, medium, and high cognitive workload levels. The experimental results demonstrate that our proposed BCJDA model based on cross-gradient difference maximization achieves the best performance. |
---|---|
AbstractList | Electroencephalogram (EEG) signals are widely utilized in the field of cognitive workload decoding (CWD). However, when the recognition scenario is shifted from subject-dependent to subject-independent or spans a long period, the accuracy of CWD deteriorates significantly. Current solutions are either dependent on extensive training datasets or fail to maintain clear distinctions between categories, additionally lacking a robust feature extraction mechanism. In this paper, we tackle these issues by proposing a Bi-Classifier Joint Domain Adaptation (BCJDA) model for EEG-based cross-time and cross-subject CWD. Specifically, the model consists of a feature extractor, a domain discriminator, and a Bi-Classifier, containing two sets of adversarial processes for domain-wise alignment and class-wise alignment. In the adversarial domain adaptation, the feature extractor is forced to learn the common domain features deliberately. The Bi-Classifier also fosters the feature extractor to retain the category discrepancies of the unlabeled domain, so that its classification boundary is consistent with the labeled domain. Furthermore, different adversarial distance functions of the Bi-Classifier are adopted and evaluated in this model. We conduct classification experiments on a publicly available BCI competition dataset for recognizing low, medium, and high cognitive workload levels. The experimental results demonstrate that our proposed BCJDA model based on cross-gradient difference maximization achieves the best performance. Electroencephalogram (EEG) signals are widely utilized in the field of cognitive workload decoding (CWD). However, when the recognition scenario is shifted from subject-dependent to subject-independent or spans a long period, the accuracy of CWD deteriorates significantly. Current solutions are either dependent on extensive training datasets or fail to maintain clear distinctions between categories, additionally lacking a robust feature extraction mechanism. In this paper, we tackle these issues by proposing a Bi-Classifier Joint Domain Adaptation (BCJDA) model for EEG-based cross-time and cross-subject CWD. Specifically, the model consists of a feature extractor, a domain discriminator, and a Bi-Classifier, containing two sets of adversarial processes for domain-wise alignment and class-wise alignment. In the adversarial domain adaptation, the feature extractor is forced to learn the common domain features deliberately. The Bi-Classifier also fosters the feature extractor to retain the category discrepancies of the unlabeled domain, so that its classification boundary is consistent with the labeled domain. Furthermore, different adversarial distance functions of the Bi-Classifier are adopted and evaluated in this model. We conduct classification experiments on a publicly available BCI competition dataset for recognizing low, medium, and high cognitive workload levels. The experimental results demonstrate that our proposed BCJDA model based on cross-gradient difference maximization achieves the best performance.Electroencephalogram (EEG) signals are widely utilized in the field of cognitive workload decoding (CWD). However, when the recognition scenario is shifted from subject-dependent to subject-independent or spans a long period, the accuracy of CWD deteriorates significantly. Current solutions are either dependent on extensive training datasets or fail to maintain clear distinctions between categories, additionally lacking a robust feature extraction mechanism. In this paper, we tackle these issues by proposing a Bi-Classifier Joint Domain Adaptation (BCJDA) model for EEG-based cross-time and cross-subject CWD. Specifically, the model consists of a feature extractor, a domain discriminator, and a Bi-Classifier, containing two sets of adversarial processes for domain-wise alignment and class-wise alignment. In the adversarial domain adaptation, the feature extractor is forced to learn the common domain features deliberately. The Bi-Classifier also fosters the feature extractor to retain the category discrepancies of the unlabeled domain, so that its classification boundary is consistent with the labeled domain. Furthermore, different adversarial distance functions of the Bi-Classifier are adopted and evaluated in this model. We conduct classification experiments on a publicly available BCI competition dataset for recognizing low, medium, and high cognitive workload levels. The experimental results demonstrate that our proposed BCJDA model based on cross-gradient difference maximization achieves the best performance. |
Author | Zhang, Daoqiang Gong, Peiliang Shao, Yang Zhou, Yueying Sun, Qianru |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0009-0005-8024-2521 surname: Shao fullname: Shao, Yang email: shaoyang@nuaa.edu.cn organization: College of Artificial Intelligence and the Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 2 givenname: Yueying orcidid: 0000-0003-0971-9428 surname: Zhou fullname: Zhou, Yueying organization: School of Mathematics Science, Liaocheng University, Liaocheng, China – sequence: 3 givenname: Peiliang orcidid: 0000-0003-2611-3145 surname: Gong fullname: Gong, Peiliang organization: College of Artificial Intelligence and the Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 4 givenname: Qianru surname: Sun fullname: Sun, Qianru organization: College of Artificial Intelligence and the Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 5 givenname: Daoqiang orcidid: 0000-0002-5658-7643 surname: Zhang fullname: Zhang, Daoqiang email: dqzhang@nuaa.edu.cn organization: College of Artificial Intelligence and the Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38885097$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS1URP_AF0AIReLSSxbHjhP7uNq2UKmARLfiaI3tycqLNy52UolvT9JdKtQDp_FYv_c8nndKjvrYIyFvK7qoKqo-rr_efr9cMMrqBa8rwZv6BTmphJAlZRU9ms-8LmvO6DE5zXlLadU2on1FjrmUUlDVnpC7ZXExQiiX7gFThuQhFF-iw1B0MRWrFHMu136HBfTu0N6OZot2KFZx0_vBP2DxI6afIYIrLtBG5_vNa_Kyg5DxzaGekbury_Xqc3nz7dP1anlT2rphQ-ksM0KYxtKOGwCLtVPCVlwpgciok7JrO3Cqaa1FIWrBrTCOC-wYQ4OSn5Hrva-LsNX3ye8g_dYRvH68iGmjIQ3eBtRoKENHqeWK19A54zrXoJGNAASUavI633vdp_hrxDzonc8WQ4Ae45g1py1tFWuUmNAPz9BtHFM__XSmOKeMs5l6f6BGs0P3NN7f5U8A2wN23mvC7gmpqJ4T1o8J6zlhfUh4EslnIusHGHzshwQ-_F_6bi_1iPjPW0KoZhr7D3vgs4Y |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_3389_fnhum_2025_1542774 crossref_primary_10_1016_j_inffus_2025_103022 crossref_primary_10_1109_ACCESS_2025_3530091 |
Cites_doi | 10.1109/CVPR46437.2021.00393 10.1109/ACCESS.2017.2731784 10.1109/GCCE53005.2021.9621793 10.1109/CVPR.2018.00392 10.23919/ICACT.2018.8323716 10.1109/BHI56158.2022.9926942 10.3389/fnins.2021.778488 10.1109/ICAS49788.2021.9551143 10.1109/ICICS.2015.7459834 10.1109/GCCE56475.2022.10014236 10.3389/fnhum.2019.00401 10.1016/j.neuroimage.2018.03.032 10.1109/PROC.1982.12433 10.1080/14639220210123806 10.1109/TNSRE.2023.3275172 10.1109/TCDS.2022.3163020 10.1109/TNSRE.2023.3246989 10.1109/ICMA54519.2022.9856376 10.1016/j.bspc.2024.106046 10.1109/ACCESS.2021.3115263 10.1109/TNSRE.2022.3150007 10.1109/PRNI.2018.8423957 10.1109/ICASSP.2018.8462243 10.1088/1741-2552/aace8c 10.1016/B978-0-12-821413-8.00009-9 10.1080/00140137808931710 10.1109/SAS58821.2023.10254130 10.1016/j.bspc.2023.105662 10.1109/TIM.2023.3276515 10.1109/TNSRE.2023.3238852 10.1109/TNSRE.2022.3233109 10.1109/TCDS.2019.2949306 10.1109/TNSRE.2019.2913400 10.1109/TBME.2021.3092206 10.1109/TAMD.2015.2431497 10.1080/00140139.2014.956151 10.1002/hbm.23730 10.1080/00140130701318855 10.1109/TNSRE.2022.3140456 10.1109/IEMBS.2010.5627126 10.3389/fnhum.2019.00295 10.1109/TNSRE.2019.2938295 10.1609/aaai.v35i10.17027 10.1109/TCDS.2021.3090217 10.1109/BigDataService58306.2023.00051 10.3390/s21206710 10.1109/CICT56698.2022.9997949 10.1109/TCSS.2022.3176656 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 DOA |
DOI | 10.1109/TNSRE.2024.3415364 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 2335 |
ExternalDocumentID | oai_doaj_org_article_eb02ed00c3934afdbdfd6eb865aeae89 38885097 10_1109_TNSRE_2024_3415364 10559607 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2023YFF1204803 funderid: 10.13039/501100012166 – fundername: Key Research and Development Plan of Jiangsu Province grantid: BE2022842 – fundername: National Natural Science Foundation of China grantid: 62276130; 62136004 funderid: 10.13039/501100001809 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c462t-dc2b55b6c0f3baace4d95c13995ee20d88f7fad967cce55453c5bd35ef22ebe83 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:05:58 EDT 2025 Fri Jul 11 17:02:15 EDT 2025 Sun Jul 13 03:49:41 EDT 2025 Wed Feb 19 01:58:15 EST 2025 Thu Apr 24 23:09:35 EDT 2025 Tue Jul 01 00:14:59 EDT 2025 Wed Aug 27 02:03:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-dc2b55b6c0f3baace4d95c13995ee20d88f7fad967cce55453c5bd35ef22ebe83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0971-9428 0009-0005-8024-2521 0000-0002-5658-7643 0000-0003-2611-3145 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10559607 |
PMID | 38885097 |
PQID | 3073302325 |
PQPubID | 85423 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3073302325 crossref_primary_10_1109_TNSRE_2024_3415364 crossref_citationtrail_10_1109_TNSRE_2024_3415364 doaj_primary_oai_doaj_org_article_eb02ed00c3934afdbdfd6eb865aeae89 pubmed_primary_38885097 proquest_miscellaneous_3070792695 ieee_primary_10559607 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref48 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref39 doi: 10.1109/CVPR46437.2021.00393 – ident: ref12 doi: 10.1109/ACCESS.2017.2731784 – ident: ref32 doi: 10.1109/GCCE53005.2021.9621793 – ident: ref37 doi: 10.1109/CVPR.2018.00392 – ident: ref8 doi: 10.23919/ICACT.2018.8323716 – ident: ref36 doi: 10.1109/BHI56158.2022.9926942 – ident: ref21 doi: 10.3389/fnins.2021.778488 – ident: ref30 doi: 10.1109/ICAS49788.2021.9551143 – ident: ref25 doi: 10.1109/ICICS.2015.7459834 – ident: ref33 doi: 10.1109/GCCE56475.2022.10014236 – ident: ref26 doi: 10.3389/fnhum.2019.00401 – ident: ref20 doi: 10.1016/j.neuroimage.2018.03.032 – ident: ref40 doi: 10.1109/PROC.1982.12433 – ident: ref5 doi: 10.1080/14639220210123806 – ident: ref48 doi: 10.1109/TNSRE.2023.3275172 – ident: ref7 doi: 10.1109/TCDS.2022.3163020 – ident: ref47 doi: 10.1109/TNSRE.2023.3246989 – ident: ref10 doi: 10.1109/ICMA54519.2022.9856376 – ident: ref14 doi: 10.1016/j.bspc.2024.106046 – ident: ref19 doi: 10.1109/ACCESS.2021.3115263 – ident: ref29 doi: 10.1109/TNSRE.2022.3150007 – ident: ref35 doi: 10.1109/PRNI.2018.8423957 – ident: ref28 doi: 10.1109/ICASSP.2018.8462243 – ident: ref41 doi: 10.1088/1741-2552/aace8c – ident: ref1 doi: 10.1016/B978-0-12-821413-8.00009-9 – ident: ref4 doi: 10.1080/00140137808931710 – ident: ref2 doi: 10.1109/SAS58821.2023.10254130 – ident: ref27 doi: 10.1016/j.bspc.2023.105662 – ident: ref22 doi: 10.1109/TIM.2023.3276515 – ident: ref46 doi: 10.1109/TNSRE.2023.3238852 – ident: ref18 doi: 10.1109/TNSRE.2022.3233109 – ident: ref44 doi: 10.1109/TCDS.2019.2949306 – ident: ref24 doi: 10.1109/TNSRE.2019.2913400 – ident: ref16 doi: 10.1109/TBME.2021.3092206 – ident: ref45 doi: 10.1109/TAMD.2015.2431497 – ident: ref3 doi: 10.1080/00140139.2014.956151 – ident: ref43 doi: 10.1002/hbm.23730 – ident: ref6 doi: 10.1080/00140130701318855 – ident: ref15 doi: 10.1109/TNSRE.2022.3140456 – ident: ref13 doi: 10.1109/IEMBS.2010.5627126 – ident: ref9 doi: 10.3389/fnhum.2019.00295 – ident: ref42 doi: 10.1109/TNSRE.2019.2938295 – ident: ref38 doi: 10.1609/aaai.v35i10.17027 – ident: ref17 doi: 10.1109/TCDS.2021.3090217 – ident: ref31 doi: 10.1109/BigDataService58306.2023.00051 – ident: ref11 doi: 10.3390/s21206710 – ident: ref23 doi: 10.1109/CICT56698.2022.9997949 – ident: ref34 doi: 10.1109/TCSS.2022.3176656 |
SSID | ssj0017657 |
Score | 2.4473011 |
Snippet | Electroencephalogram (EEG) signals are widely utilized in the field of cognitive workload decoding (CWD). However, when the recognition scenario is shifted... |
SourceID | doaj proquest pubmed crossref ieee |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2324 |
SubjectTerms | Adaptation Adaptation models adversarial learning Algorithms Alignment Brain modeling Brain-Computer Interfaces Classification Classifiers Cognition - physiology Cognitive workload decoding cross-subject cross-time Datasets Decoding Domains EEG electroencephalogram (EEG) Electroencephalography Feature extraction Humans joint domain adaptation Machine learning Reproducibility of Results Task analysis Workload Workloads |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQjwKBgowEXJCp47ePZduqQqKHsiv1ZvmV0ypb0d3_j8dxVtsDcOGYZJw4nhnPjO35BqGPLBomNI_EMy1LgKIzMUJ6kmMfDeCj9BaSk39cq6uV-H4rbw9KfcGZsAkeeBq40xwoy4nSyC0XfkghDUnlYJT02WdTU_eKzZuDqbZ_oFXF-CzqLIjgjM7pMtSeLq9_3lyUwJCJr2UGl1yJByapIve3Uit_9jqr9bl8ip40txGfTd19hh7l8Tn6dAgRjJcTPgD-jG8eoG-_QKszfL7za1KLL997EDkMNdDWuHiseAGdIpAKgv2Y2mWZT2CBBi_m00UYVtXXG5_weQlYweAdo9XlxXJxRVo5BRKFYluSIgtSBhXpwIP3MYtkZewhtzVnRpMxgx58skrHmIuXIXmUIXGZB8YKqw1_iY7GzZhfIxxMUn0QLCThxTBo6_vSPpYG0igvc4f6eURdbH8LJS_WrsYc1LrKBQdccI0LHfqyb3M3IW38lfobMGpPCSjZ9UaRHddkx_1Ldjp0DGw--FyJrxTVHTqZ-e6aSt87mAyhwhKTHfqwf1yUEXZY_Jg3u0pDtWXKFppXk7zsX86NMcU702_-R8_foscwGtNa0Ak62v7a5XfFO9qG91URfgNGsgri priority: 102 providerName: Directory of Open Access Journals |
Title | A Dual-Adversarial Model for Cross-Time and Cross-Subject Cognitive Workload Decoding |
URI | https://ieeexplore.ieee.org/document/10559607 https://www.ncbi.nlm.nih.gov/pubmed/38885097 https://www.proquest.com/docview/3073302325 https://www.proquest.com/docview/3070792695 https://doaj.org/article/eb02ed00c3934afdbdfd6eb865aeae89 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT1yglAIppXIl4IKyTfyKfSzbVhUSeyi7Um-RH5MLqyyim0t_fT3OQwtSEbc8xnGsmbFnxp5vCPnIvGai4j63rJLRQakg10LaHHzpNeKjlAaTk78v1M1KfLuTd0OyesqFAYB0-AxmeJn28sPGdxgqO8dijtHirvbIXvTc-mStacugUgnWM2qwyAVnxZghU5jz5eLH7VX0BZmYxUlbcoXVeHj0_WQCe9pZkBJu_1Bo5WmbM6091y_JYvzr_sjJz1m3dTP_8Beg438P64C8GKxQetGLzSvyDNpD8mkXcZgue7gB-pne_gHm_ZqsLuhlZ9d5quV8b1GCKZZUW9NoANM5jjLHzBJq2zDcxukJ4z10Ph5WohikX29soJfR_8X184isrq-W85t8qM6Qe6HYNg-eOSmd8kXDnbUeRDDSl5gqC8CKoHVTNTYYVXkP0WiR3EsXuISGsSg5mr8h--2mhXeEOh1U6QRzQVjRNJWxZWzvYwOplZWQkXJkUe2H0WIFjXWdXJjC1InDNXK4HjickS9Tm189cMc_qb8i5ydKBN1ODyKj6kGHa3AFg1AUnhsubBNcaIICp5W0YEGbjBwhc3e66_makZNRkOphhrivcW7Fgk1MZuRseh11GzdsbAubLtEUlWHKRJq3vQBOHx_F9_iJTt-T5zjAPlp0Qva3vzv4EO2nrTtNcYfTpD2PHI0VWg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHODCs0CggJGAC8o28SvxsWxbLdDuoexKvVl-TC6sslW7ufDr8TjJakEq4pbHOI41M_bM2PMNIR-Yr5mouM8tq2R0UCrIayFtDr70NeKjlBqTk8_narYU3y7l5ZCsnnJhACAdPoMJXqa9_LD2HYbKDrGYY7S4q7vkXlz4Zdmna203DSqVgD2jDotccFaMOTKFPlzMf1ycRG-QiUmctiVXWI-HR-9PJrinnSUpIfcPpVZutzrT6nP6iMzH_-4PnfycdBs38b_-gnT874E9Jg8HO5Qe9YLzhNyB9in5uIs5TBc94AD9RC_-gPN-RpZH9LizqzxVc76xKMMUi6qtaDSB6RRHmWNuCbVtGG7jBIURHzodjytRDNOv1jbQ4-gB4wq6T5anJ4vpLB_qM-ReKLbJg2dOSqd80XBnrQcRtPQlJssCsCLUdVM1NmhVeQ_RbJHcSxe4hIaxKDs1f0722nULLwl1dVClE8wFYUXTVNqWsb2PDWStrISMlCOLjB9GizU0ViY5MYU2icMGOWwGDmfk87bNVQ_d8U_qL8j5LSXCbqcHkVFm0GIDrmAQisJzzYVtggtNUOBqJS1YqHVG9pG5O931fM3IwShIZpgjbgzOrliyicmMvN--jtqNWza2hXWXaIpKM6UjzYteALcfH8X31S2dviP3Z4vzM3P2df79NXmAg8XYUckOyN7muoM30ZrauLdJh34DJ50XsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dual-Adversarial+Model+for+Cross-Time+and+Cross-Subject+Cognitive+Workload+Decoding&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Shao%2C+Yang&rft.au=Zhou%2C+Yueying&rft.au=Gong%2C+Peiliang&rft.au=Sun%2C+Qianru&rft.date=2024&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=32&rft.spage=2324&rft.epage=2335&rft_id=info:doi/10.1109%2FTNSRE.2024.3415364&rft_id=info%3Apmid%2F38885097&rft.externalDocID=10559607 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |