A Dual-Adversarial Model for Cross-Time and Cross-Subject Cognitive Workload Decoding

Electroencephalogram (EEG) signals are widely utilized in the field of cognitive workload decoding (CWD). However, when the recognition scenario is shifted from subject-dependent to subject-independent or spans a long period, the accuracy of CWD deteriorates significantly. Current solutions are eith...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 2324 - 2335
Main Authors Shao, Yang, Zhou, Yueying, Gong, Peiliang, Sun, Qianru, Zhang, Daoqiang
Format Journal Article
LanguageEnglish
Published United States IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalogram (EEG) signals are widely utilized in the field of cognitive workload decoding (CWD). However, when the recognition scenario is shifted from subject-dependent to subject-independent or spans a long period, the accuracy of CWD deteriorates significantly. Current solutions are either dependent on extensive training datasets or fail to maintain clear distinctions between categories, additionally lacking a robust feature extraction mechanism. In this paper, we tackle these issues by proposing a Bi-Classifier Joint Domain Adaptation (BCJDA) model for EEG-based cross-time and cross-subject CWD. Specifically, the model consists of a feature extractor, a domain discriminator, and a Bi-Classifier, containing two sets of adversarial processes for domain-wise alignment and class-wise alignment. In the adversarial domain adaptation, the feature extractor is forced to learn the common domain features deliberately. The Bi-Classifier also fosters the feature extractor to retain the category discrepancies of the unlabeled domain, so that its classification boundary is consistent with the labeled domain. Furthermore, different adversarial distance functions of the Bi-Classifier are adopted and evaluated in this model. We conduct classification experiments on a publicly available BCI competition dataset for recognizing low, medium, and high cognitive workload levels. The experimental results demonstrate that our proposed BCJDA model based on cross-gradient difference maximization achieves the best performance.
AbstractList Electroencephalogram (EEG) signals are widely utilized in the field of cognitive workload decoding (CWD). However, when the recognition scenario is shifted from subject-dependent to subject-independent or spans a long period, the accuracy of CWD deteriorates significantly. Current solutions are either dependent on extensive training datasets or fail to maintain clear distinctions between categories, additionally lacking a robust feature extraction mechanism. In this paper, we tackle these issues by proposing a Bi-Classifier Joint Domain Adaptation (BCJDA) model for EEG-based cross-time and cross-subject CWD. Specifically, the model consists of a feature extractor, a domain discriminator, and a Bi-Classifier, containing two sets of adversarial processes for domain-wise alignment and class-wise alignment. In the adversarial domain adaptation, the feature extractor is forced to learn the common domain features deliberately. The Bi-Classifier also fosters the feature extractor to retain the category discrepancies of the unlabeled domain, so that its classification boundary is consistent with the labeled domain. Furthermore, different adversarial distance functions of the Bi-Classifier are adopted and evaluated in this model. We conduct classification experiments on a publicly available BCI competition dataset for recognizing low, medium, and high cognitive workload levels. The experimental results demonstrate that our proposed BCJDA model based on cross-gradient difference maximization achieves the best performance.
Electroencephalogram (EEG) signals are widely utilized in the field of cognitive workload decoding (CWD). However, when the recognition scenario is shifted from subject-dependent to subject-independent or spans a long period, the accuracy of CWD deteriorates significantly. Current solutions are either dependent on extensive training datasets or fail to maintain clear distinctions between categories, additionally lacking a robust feature extraction mechanism. In this paper, we tackle these issues by proposing a Bi-Classifier Joint Domain Adaptation (BCJDA) model for EEG-based cross-time and cross-subject CWD. Specifically, the model consists of a feature extractor, a domain discriminator, and a Bi-Classifier, containing two sets of adversarial processes for domain-wise alignment and class-wise alignment. In the adversarial domain adaptation, the feature extractor is forced to learn the common domain features deliberately. The Bi-Classifier also fosters the feature extractor to retain the category discrepancies of the unlabeled domain, so that its classification boundary is consistent with the labeled domain. Furthermore, different adversarial distance functions of the Bi-Classifier are adopted and evaluated in this model. We conduct classification experiments on a publicly available BCI competition dataset for recognizing low, medium, and high cognitive workload levels. The experimental results demonstrate that our proposed BCJDA model based on cross-gradient difference maximization achieves the best performance.Electroencephalogram (EEG) signals are widely utilized in the field of cognitive workload decoding (CWD). However, when the recognition scenario is shifted from subject-dependent to subject-independent or spans a long period, the accuracy of CWD deteriorates significantly. Current solutions are either dependent on extensive training datasets or fail to maintain clear distinctions between categories, additionally lacking a robust feature extraction mechanism. In this paper, we tackle these issues by proposing a Bi-Classifier Joint Domain Adaptation (BCJDA) model for EEG-based cross-time and cross-subject CWD. Specifically, the model consists of a feature extractor, a domain discriminator, and a Bi-Classifier, containing two sets of adversarial processes for domain-wise alignment and class-wise alignment. In the adversarial domain adaptation, the feature extractor is forced to learn the common domain features deliberately. The Bi-Classifier also fosters the feature extractor to retain the category discrepancies of the unlabeled domain, so that its classification boundary is consistent with the labeled domain. Furthermore, different adversarial distance functions of the Bi-Classifier are adopted and evaluated in this model. We conduct classification experiments on a publicly available BCI competition dataset for recognizing low, medium, and high cognitive workload levels. The experimental results demonstrate that our proposed BCJDA model based on cross-gradient difference maximization achieves the best performance.
Author Zhang, Daoqiang
Gong, Peiliang
Shao, Yang
Zhou, Yueying
Sun, Qianru
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0009-0005-8024-2521
  surname: Shao
  fullname: Shao, Yang
  email: shaoyang@nuaa.edu.cn
  organization: College of Artificial Intelligence and the Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 2
  givenname: Yueying
  orcidid: 0000-0003-0971-9428
  surname: Zhou
  fullname: Zhou, Yueying
  organization: School of Mathematics Science, Liaocheng University, Liaocheng, China
– sequence: 3
  givenname: Peiliang
  orcidid: 0000-0003-2611-3145
  surname: Gong
  fullname: Gong, Peiliang
  organization: College of Artificial Intelligence and the Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 4
  givenname: Qianru
  surname: Sun
  fullname: Sun, Qianru
  organization: College of Artificial Intelligence and the Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 5
  givenname: Daoqiang
  orcidid: 0000-0002-5658-7643
  surname: Zhang
  fullname: Zhang, Daoqiang
  email: dqzhang@nuaa.edu.cn
  organization: College of Artificial Intelligence and the Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38885097$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URP_AF0AIReLSSxbHjhP7uNq2UKmARLfiaI3tycqLNy52UolvT9JdKtQDp_FYv_c8nndKjvrYIyFvK7qoKqo-rr_efr9cMMrqBa8rwZv6BTmphJAlZRU9ms-8LmvO6DE5zXlLadU2on1FjrmUUlDVnpC7ZXExQiiX7gFThuQhFF-iw1B0MRWrFHMu136HBfTu0N6OZot2KFZx0_vBP2DxI6afIYIrLtBG5_vNa_Kyg5DxzaGekbury_Xqc3nz7dP1anlT2rphQ-ksM0KYxtKOGwCLtVPCVlwpgciok7JrO3Cqaa1FIWrBrTCOC-wYQ4OSn5Hrva-LsNX3ye8g_dYRvH68iGmjIQ3eBtRoKENHqeWK19A54zrXoJGNAASUavI633vdp_hrxDzonc8WQ4Ae45g1py1tFWuUmNAPz9BtHFM__XSmOKeMs5l6f6BGs0P3NN7f5U8A2wN23mvC7gmpqJ4T1o8J6zlhfUh4EslnIusHGHzshwQ-_F_6bi_1iPjPW0KoZhr7D3vgs4Y
CODEN ITNSB3
CitedBy_id crossref_primary_10_3389_fnhum_2025_1542774
crossref_primary_10_1016_j_inffus_2025_103022
crossref_primary_10_1109_ACCESS_2025_3530091
Cites_doi 10.1109/CVPR46437.2021.00393
10.1109/ACCESS.2017.2731784
10.1109/GCCE53005.2021.9621793
10.1109/CVPR.2018.00392
10.23919/ICACT.2018.8323716
10.1109/BHI56158.2022.9926942
10.3389/fnins.2021.778488
10.1109/ICAS49788.2021.9551143
10.1109/ICICS.2015.7459834
10.1109/GCCE56475.2022.10014236
10.3389/fnhum.2019.00401
10.1016/j.neuroimage.2018.03.032
10.1109/PROC.1982.12433
10.1080/14639220210123806
10.1109/TNSRE.2023.3275172
10.1109/TCDS.2022.3163020
10.1109/TNSRE.2023.3246989
10.1109/ICMA54519.2022.9856376
10.1016/j.bspc.2024.106046
10.1109/ACCESS.2021.3115263
10.1109/TNSRE.2022.3150007
10.1109/PRNI.2018.8423957
10.1109/ICASSP.2018.8462243
10.1088/1741-2552/aace8c
10.1016/B978-0-12-821413-8.00009-9
10.1080/00140137808931710
10.1109/SAS58821.2023.10254130
10.1016/j.bspc.2023.105662
10.1109/TIM.2023.3276515
10.1109/TNSRE.2023.3238852
10.1109/TNSRE.2022.3233109
10.1109/TCDS.2019.2949306
10.1109/TNSRE.2019.2913400
10.1109/TBME.2021.3092206
10.1109/TAMD.2015.2431497
10.1080/00140139.2014.956151
10.1002/hbm.23730
10.1080/00140130701318855
10.1109/TNSRE.2022.3140456
10.1109/IEMBS.2010.5627126
10.3389/fnhum.2019.00295
10.1109/TNSRE.2019.2938295
10.1609/aaai.v35i10.17027
10.1109/TCDS.2021.3090217
10.1109/BigDataService58306.2023.00051
10.3390/s21206710
10.1109/CICT56698.2022.9997949
10.1109/TCSS.2022.3176656
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2024.3415364
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 2335
ExternalDocumentID oai_doaj_org_article_eb02ed00c3934afdbdfd6eb865aeae89
38885097
10_1109_TNSRE_2024_3415364
10559607
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2023YFF1204803
  funderid: 10.13039/501100012166
– fundername: Key Research and Development Plan of Jiangsu Province
  grantid: BE2022842
– fundername: National Natural Science Foundation of China
  grantid: 62276130; 62136004
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c462t-dc2b55b6c0f3baace4d95c13995ee20d88f7fad967cce55453c5bd35ef22ebe83
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:05:58 EDT 2025
Fri Jul 11 17:02:15 EDT 2025
Sun Jul 13 03:49:41 EDT 2025
Wed Feb 19 01:58:15 EST 2025
Thu Apr 24 23:09:35 EDT 2025
Tue Jul 01 00:14:59 EDT 2025
Wed Aug 27 02:03:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-dc2b55b6c0f3baace4d95c13995ee20d88f7fad967cce55453c5bd35ef22ebe83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0971-9428
0009-0005-8024-2521
0000-0002-5658-7643
0000-0003-2611-3145
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10559607
PMID 38885097
PQID 3073302325
PQPubID 85423
PageCount 12
ParticipantIDs proquest_journals_3073302325
crossref_primary_10_1109_TNSRE_2024_3415364
crossref_citationtrail_10_1109_TNSRE_2024_3415364
doaj_primary_oai_doaj_org_article_eb02ed00c3934afdbdfd6eb865aeae89
pubmed_primary_38885097
proquest_miscellaneous_3070792695
ieee_primary_10559607
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref48
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref39
  doi: 10.1109/CVPR46437.2021.00393
– ident: ref12
  doi: 10.1109/ACCESS.2017.2731784
– ident: ref32
  doi: 10.1109/GCCE53005.2021.9621793
– ident: ref37
  doi: 10.1109/CVPR.2018.00392
– ident: ref8
  doi: 10.23919/ICACT.2018.8323716
– ident: ref36
  doi: 10.1109/BHI56158.2022.9926942
– ident: ref21
  doi: 10.3389/fnins.2021.778488
– ident: ref30
  doi: 10.1109/ICAS49788.2021.9551143
– ident: ref25
  doi: 10.1109/ICICS.2015.7459834
– ident: ref33
  doi: 10.1109/GCCE56475.2022.10014236
– ident: ref26
  doi: 10.3389/fnhum.2019.00401
– ident: ref20
  doi: 10.1016/j.neuroimage.2018.03.032
– ident: ref40
  doi: 10.1109/PROC.1982.12433
– ident: ref5
  doi: 10.1080/14639220210123806
– ident: ref48
  doi: 10.1109/TNSRE.2023.3275172
– ident: ref7
  doi: 10.1109/TCDS.2022.3163020
– ident: ref47
  doi: 10.1109/TNSRE.2023.3246989
– ident: ref10
  doi: 10.1109/ICMA54519.2022.9856376
– ident: ref14
  doi: 10.1016/j.bspc.2024.106046
– ident: ref19
  doi: 10.1109/ACCESS.2021.3115263
– ident: ref29
  doi: 10.1109/TNSRE.2022.3150007
– ident: ref35
  doi: 10.1109/PRNI.2018.8423957
– ident: ref28
  doi: 10.1109/ICASSP.2018.8462243
– ident: ref41
  doi: 10.1088/1741-2552/aace8c
– ident: ref1
  doi: 10.1016/B978-0-12-821413-8.00009-9
– ident: ref4
  doi: 10.1080/00140137808931710
– ident: ref2
  doi: 10.1109/SAS58821.2023.10254130
– ident: ref27
  doi: 10.1016/j.bspc.2023.105662
– ident: ref22
  doi: 10.1109/TIM.2023.3276515
– ident: ref46
  doi: 10.1109/TNSRE.2023.3238852
– ident: ref18
  doi: 10.1109/TNSRE.2022.3233109
– ident: ref44
  doi: 10.1109/TCDS.2019.2949306
– ident: ref24
  doi: 10.1109/TNSRE.2019.2913400
– ident: ref16
  doi: 10.1109/TBME.2021.3092206
– ident: ref45
  doi: 10.1109/TAMD.2015.2431497
– ident: ref3
  doi: 10.1080/00140139.2014.956151
– ident: ref43
  doi: 10.1002/hbm.23730
– ident: ref6
  doi: 10.1080/00140130701318855
– ident: ref15
  doi: 10.1109/TNSRE.2022.3140456
– ident: ref13
  doi: 10.1109/IEMBS.2010.5627126
– ident: ref9
  doi: 10.3389/fnhum.2019.00295
– ident: ref42
  doi: 10.1109/TNSRE.2019.2938295
– ident: ref38
  doi: 10.1609/aaai.v35i10.17027
– ident: ref17
  doi: 10.1109/TCDS.2021.3090217
– ident: ref31
  doi: 10.1109/BigDataService58306.2023.00051
– ident: ref11
  doi: 10.3390/s21206710
– ident: ref23
  doi: 10.1109/CICT56698.2022.9997949
– ident: ref34
  doi: 10.1109/TCSS.2022.3176656
SSID ssj0017657
Score 2.4473011
Snippet Electroencephalogram (EEG) signals are widely utilized in the field of cognitive workload decoding (CWD). However, when the recognition scenario is shifted...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2324
SubjectTerms Adaptation
Adaptation models
adversarial learning
Algorithms
Alignment
Brain modeling
Brain-Computer Interfaces
Classification
Classifiers
Cognition - physiology
Cognitive workload decoding
cross-subject
cross-time
Datasets
Decoding
Domains
EEG
electroencephalogram (EEG)
Electroencephalography
Feature extraction
Humans
joint domain adaptation
Machine learning
Reproducibility of Results
Task analysis
Workload
Workloads
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQjwKBgowEXJCp47ePZduqQqKHsiv1ZvmV0ypb0d3_j8dxVtsDcOGYZJw4nhnPjO35BqGPLBomNI_EMy1LgKIzMUJ6kmMfDeCj9BaSk39cq6uV-H4rbw9KfcGZsAkeeBq40xwoy4nSyC0XfkghDUnlYJT02WdTU_eKzZuDqbZ_oFXF-CzqLIjgjM7pMtSeLq9_3lyUwJCJr2UGl1yJByapIve3Uit_9jqr9bl8ip40txGfTd19hh7l8Tn6dAgRjJcTPgD-jG8eoG-_QKszfL7za1KLL997EDkMNdDWuHiseAGdIpAKgv2Y2mWZT2CBBi_m00UYVtXXG5_weQlYweAdo9XlxXJxRVo5BRKFYluSIgtSBhXpwIP3MYtkZewhtzVnRpMxgx58skrHmIuXIXmUIXGZB8YKqw1_iY7GzZhfIxxMUn0QLCThxTBo6_vSPpYG0igvc4f6eURdbH8LJS_WrsYc1LrKBQdccI0LHfqyb3M3IW38lfobMGpPCSjZ9UaRHddkx_1Ldjp0DGw--FyJrxTVHTqZ-e6aSt87mAyhwhKTHfqwf1yUEXZY_Jg3u0pDtWXKFppXk7zsX86NMcU702_-R8_foscwGtNa0Ak62v7a5XfFO9qG91URfgNGsgri
  priority: 102
  providerName: Directory of Open Access Journals
Title A Dual-Adversarial Model for Cross-Time and Cross-Subject Cognitive Workload Decoding
URI https://ieeexplore.ieee.org/document/10559607
https://www.ncbi.nlm.nih.gov/pubmed/38885097
https://www.proquest.com/docview/3073302325
https://www.proquest.com/docview/3070792695
https://doaj.org/article/eb02ed00c3934afdbdfd6eb865aeae89
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT1yglAIppXIl4IKyTfyKfSzbVhUSeyi7Um-RH5MLqyyim0t_fT3OQwtSEbc8xnGsmbFnxp5vCPnIvGai4j63rJLRQakg10LaHHzpNeKjlAaTk78v1M1KfLuTd0OyesqFAYB0-AxmeJn28sPGdxgqO8dijtHirvbIXvTc-mStacugUgnWM2qwyAVnxZghU5jz5eLH7VX0BZmYxUlbcoXVeHj0_WQCe9pZkBJu_1Bo5WmbM6091y_JYvzr_sjJz1m3dTP_8Beg438P64C8GKxQetGLzSvyDNpD8mkXcZgue7gB-pne_gHm_ZqsLuhlZ9d5quV8b1GCKZZUW9NoANM5jjLHzBJq2zDcxukJ4z10Ph5WohikX29soJfR_8X184isrq-W85t8qM6Qe6HYNg-eOSmd8kXDnbUeRDDSl5gqC8CKoHVTNTYYVXkP0WiR3EsXuISGsSg5mr8h--2mhXeEOh1U6QRzQVjRNJWxZWzvYwOplZWQkXJkUe2H0WIFjXWdXJjC1InDNXK4HjickS9Tm189cMc_qb8i5ydKBN1ODyKj6kGHa3AFg1AUnhsubBNcaIICp5W0YEGbjBwhc3e66_makZNRkOphhrivcW7Fgk1MZuRseh11GzdsbAubLtEUlWHKRJq3vQBOHx_F9_iJTt-T5zjAPlp0Qva3vzv4EO2nrTtNcYfTpD2PHI0VWg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHODCs0CggJGAC8o28SvxsWxbLdDuoexKvVl-TC6sslW7ufDr8TjJakEq4pbHOI41M_bM2PMNIR-Yr5mouM8tq2R0UCrIayFtDr70NeKjlBqTk8_narYU3y7l5ZCsnnJhACAdPoMJXqa9_LD2HYbKDrGYY7S4q7vkXlz4Zdmna203DSqVgD2jDotccFaMOTKFPlzMf1ycRG-QiUmctiVXWI-HR-9PJrinnSUpIfcPpVZutzrT6nP6iMzH_-4PnfycdBs38b_-gnT874E9Jg8HO5Qe9YLzhNyB9in5uIs5TBc94AD9RC_-gPN-RpZH9LizqzxVc76xKMMUi6qtaDSB6RRHmWNuCbVtGG7jBIURHzodjytRDNOv1jbQ4-gB4wq6T5anJ4vpLB_qM-ReKLbJg2dOSqd80XBnrQcRtPQlJssCsCLUdVM1NmhVeQ_RbJHcSxe4hIaxKDs1f0722nULLwl1dVClE8wFYUXTVNqWsb2PDWStrISMlCOLjB9GizU0ViY5MYU2icMGOWwGDmfk87bNVQ_d8U_qL8j5LSXCbqcHkVFm0GIDrmAQisJzzYVtggtNUOBqJS1YqHVG9pG5O931fM3IwShIZpgjbgzOrliyicmMvN--jtqNWza2hXWXaIpKM6UjzYteALcfH8X31S2dviP3Z4vzM3P2df79NXmAg8XYUckOyN7muoM30ZrauLdJh34DJ50XsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dual-Adversarial+Model+for+Cross-Time+and+Cross-Subject+Cognitive+Workload+Decoding&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Shao%2C+Yang&rft.au=Zhou%2C+Yueying&rft.au=Gong%2C+Peiliang&rft.au=Sun%2C+Qianru&rft.date=2024&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=32&rft.spage=2324&rft.epage=2335&rft_id=info:doi/10.1109%2FTNSRE.2024.3415364&rft_id=info%3Apmid%2F38885097&rft.externalDocID=10559607
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon