A Dual-Adversarial Model for Cross-Time and Cross-Subject Cognitive Workload Decoding
Electroencephalogram (EEG) signals are widely utilized in the field of cognitive workload decoding (CWD). However, when the recognition scenario is shifted from subject-dependent to subject-independent or spans a long period, the accuracy of CWD deteriorates significantly. Current solutions are eith...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 2324 - 2335 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Electroencephalogram (EEG) signals are widely utilized in the field of cognitive workload decoding (CWD). However, when the recognition scenario is shifted from subject-dependent to subject-independent or spans a long period, the accuracy of CWD deteriorates significantly. Current solutions are either dependent on extensive training datasets or fail to maintain clear distinctions between categories, additionally lacking a robust feature extraction mechanism. In this paper, we tackle these issues by proposing a Bi-Classifier Joint Domain Adaptation (BCJDA) model for EEG-based cross-time and cross-subject CWD. Specifically, the model consists of a feature extractor, a domain discriminator, and a Bi-Classifier, containing two sets of adversarial processes for domain-wise alignment and class-wise alignment. In the adversarial domain adaptation, the feature extractor is forced to learn the common domain features deliberately. The Bi-Classifier also fosters the feature extractor to retain the category discrepancies of the unlabeled domain, so that its classification boundary is consistent with the labeled domain. Furthermore, different adversarial distance functions of the Bi-Classifier are adopted and evaluated in this model. We conduct classification experiments on a publicly available BCI competition dataset for recognizing low, medium, and high cognitive workload levels. The experimental results demonstrate that our proposed BCJDA model based on cross-gradient difference maximization achieves the best performance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1534-4320 1558-0210 1558-0210 |
DOI: | 10.1109/TNSRE.2024.3415364 |