Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3
PP2C family serine/threonine phosphatase WIP1 acts as a negative regulator of the tumor suppressor p53 and is implicated in silencing of cellular responses to genotoxic stress. Chromosomal locus 17q23 carrying the PPM1D (coding for WIP1) is commonly amplified in breast carcinomas and WIP1 was propos...
Saved in:
Published in | Oncotarget Vol. 7; no. 12; pp. 14458 - 14475 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Impact Journals LLC
22.03.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | PP2C family serine/threonine phosphatase WIP1 acts as a negative regulator of the tumor suppressor p53 and is implicated in silencing of cellular responses to genotoxic stress. Chromosomal locus 17q23 carrying the PPM1D (coding for WIP1) is commonly amplified in breast carcinomas and WIP1 was proposed as potential pharmacological target. Here we employed a cellular model with knocked out PPM1D to validate the specificity and efficiency of GSK2830371, novel small molecule inhibitor of WIP1. We have found that GSK2830371 increased activation of the DNA damage response pathway to a comparable level as the loss of PPM1D. In addition, GSK2830371 did not affect proliferation of cells lacking PPM1D but significantly supressed proliferation of breast cancer cells with amplified PPM1D. Over time cells treated with GSK2830371 accumulated in G1 and G2 phases of the cell cycle in a p21-dependent manner and were prone to induction of senescence by a low dose of MDM2 antagonist nutlin-3. In addition, combined treatment with GSK2830371 and doxorubicin or nutlin-3 potentiated cell death through a strong induction of p53 pathway and activation of caspase 9. We conclude that efficient inhibition of WIP1 by GSK2830371 sensitizes breast cancer cells with amplified PPM1D and wild type p53 to chemotherapy. |
---|---|
AbstractList | PP2C family serine/threonine phosphatase WIP1 acts as a negative regulator of the tumor suppressor p53 and is implicated in silencing of cellular responses to genotoxic stress. Chromosomal locus 17q23 carrying the PPM1D (coding for WIP1) is commonly amplified in breast carcinomas and WIP1 was proposed as potential pharmacological target. Here we employed a cellular model with knocked out PPM1D to validate the specificity and efficiency of GSK2830371, novel small molecule inhibitor of WIP1. We have found that GSK2830371 increased activation of the DNA damage response pathway to a comparable level as the loss of PPM1D. In addition, GSK2830371 did not affect proliferation of cells lacking PPM1D but significantly supressed proliferation of breast cancer cells with amplified PPM1D. Over time cells treated with GSK2830371 accumulated in G1 and G2 phases of the cell cycle in a p21-dependent manner and were prone to induction of senescence by a low dose of MDM2 antagonist nutlin-3. In addition, combined treatment with GSK2830371 and doxorubicin or nutlin-3 potentiated cell death through a strong induction of p53 pathway and activation of caspase 9. We conclude that efficient inhibition of WIP1 by GSK2830371 sensitizes breast cancer cells with amplified PPM1D and wild type p53 to chemotherapy.PP2C family serine/threonine phosphatase WIP1 acts as a negative regulator of the tumor suppressor p53 and is implicated in silencing of cellular responses to genotoxic stress. Chromosomal locus 17q23 carrying the PPM1D (coding for WIP1) is commonly amplified in breast carcinomas and WIP1 was proposed as potential pharmacological target. Here we employed a cellular model with knocked out PPM1D to validate the specificity and efficiency of GSK2830371, novel small molecule inhibitor of WIP1. We have found that GSK2830371 increased activation of the DNA damage response pathway to a comparable level as the loss of PPM1D. In addition, GSK2830371 did not affect proliferation of cells lacking PPM1D but significantly supressed proliferation of breast cancer cells with amplified PPM1D. Over time cells treated with GSK2830371 accumulated in G1 and G2 phases of the cell cycle in a p21-dependent manner and were prone to induction of senescence by a low dose of MDM2 antagonist nutlin-3. In addition, combined treatment with GSK2830371 and doxorubicin or nutlin-3 potentiated cell death through a strong induction of p53 pathway and activation of caspase 9. We conclude that efficient inhibition of WIP1 by GSK2830371 sensitizes breast cancer cells with amplified PPM1D and wild type p53 to chemotherapy. PP2C family serine/threonine phosphatase WIP1 acts as a negative regulator of the tumor suppressor p53 and is implicated in silencing of cellular responses to genotoxic stress. Chromosomal locus 17q23 carrying the PPM1D (coding for WIP1) is commonly amplified in breast carcinomas and WIP1 was proposed as potential pharmacological target. Here we employed a cellular model with knocked out PPM1D to validate the specificity and efficiency of GSK2830371, novel small molecule inhibitor of WIP1. We have found that GSK2830371 increased activation of the DNA damage response pathway to a comparable level as the loss of PPM1D. In addition, GSK2830371 did not affect proliferation of cells lacking PPM1D but significantly supressed proliferation of breast cancer cells with amplified PPM1D. Over time cells treated with GSK2830371 accumulated in G1 and G2 phases of the cell cycle in a p21-dependent manner and were prone to induction of senescence by a low dose of MDM2 antagonist nutlin-3. In addition, combined treatment with GSK2830371 and doxorubicin or nutlin-3 potentiated cell death through a strong induction of p53 pathway and activation of caspase 9. We conclude that efficient inhibition of WIP1 by GSK2830371 sensitizes breast cancer cells with amplified PPM1D and wild type p53 to chemotherapy. PP2C family serine/threonine phosphatase WIP1 acts as a negative regulator of the tumor suppressor p53 and is implicated in silencing of cellular responses to genotoxic stress. Chromosomal locus 17q23 carrying the PPM1D (coding for WIP1) is commonly amplified in breast carcinomas and WIP1 was proposed as potential pharmacological target. Here we employed a cellular model with knocked out PPM1D to validate the specificity and efficiency of GSK2830371, novel small molecule inhibitor of WIP1. We have found that GSK2830371 increased activation of the DNA damage response pathway to a comparable level as the loss of PPM1D . In addition, GSK2830371 did not affect proliferation of cells lacking PPM1D but significantly supressed proliferation of breast cancer cells with amplified PPM1D . Over time cells treated with GSK2830371 accumulated in G1 and G2 phases of the cell cycle in a p21-dependent manner and were prone to induction of senescence by a low dose of MDM2 antagonist nutlin-3. In addition, combined treatment with GSK2830371 and doxorubicin or nutlin-3 potentiated cell death through a strong induction of p53 pathway and activation of caspase 9. We conclude that efficient inhibition of WIP1 by GSK2830371 sensitizes breast cancer cells with amplified PPM1D and wild type p53 to chemotherapy. |
Author | Macurek, Libor Benada, Jan Jenikova, Gabriela Pechackova, Sona Burdova, Kamila Kleiblova, Petra |
AuthorAffiliation | 1 Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic 2 Institute of Biochemistry and Experimental Oncology, Charles University in Prague, CZ-12853 Prague, Czech Republic |
AuthorAffiliation_xml | – name: 1 Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic – name: 2 Institute of Biochemistry and Experimental Oncology, Charles University in Prague, CZ-12853 Prague, Czech Republic |
Author_xml | – sequence: 1 givenname: Sona surname: Pechackova fullname: Pechackova, Sona organization: Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic – sequence: 2 givenname: Kamila surname: Burdova fullname: Burdova, Kamila organization: Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic – sequence: 3 givenname: Jan surname: Benada fullname: Benada, Jan organization: Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic – sequence: 4 givenname: Petra surname: Kleiblova fullname: Kleiblova, Petra organization: Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic, Institute of Biochemistry and Experimental Oncology, Charles University in Prague, CZ-12853 Prague, Czech Republic – sequence: 5 givenname: Gabriela surname: Jenikova fullname: Jenikova, Gabriela organization: Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic – sequence: 6 givenname: Libor surname: Macurek fullname: Macurek, Libor organization: Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26883108$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UTtvFDEQtlAiEkJ6KuSSZoNf60eDhBICJyUKBYjS8npn74z27IvtQ5Bfj488QcKNRzPfY-zvBdqLKQJCryg5oVpy9jZFn6rLS6gnikv-DB1SI0zH-p7vPakP0HEp30k7vVCamefogEmtOSX6EF0v4ioMoYYUcZrwt8VnijerVDYrV10BXCCWNr2BgocMrlTsXfSQsYd5LrgmvISYavoZPC41QynYxXHXvzy7ZK2ubpliaLy4rXOIHX-J9ic3Fzi-u4_Q1_MPX04_dRdXHxen7y86LySr3TgYaTT3SplJO8rFyIkex0EAGcFr1RM6qKlXzvRO8smYAQSTkgimGQUH_Ai9u9XdbIc1jB5izW62mxzWLv-yyQX79ySGlV2mH1YYJhTTTeDNnUBO11so1a5D2T3bRUjbYqkyRPRGC9mgr596PZjc_3MDkFuAz6mUDNMDhBL7J037mKbdpdko8h-KD9Xtgmrbhvn_xN8-_aoc |
CitedBy_id | crossref_primary_10_1093_jmcb_mjx001 crossref_primary_10_1016_j_bbrc_2019_07_106 crossref_primary_10_1016_j_genrep_2021_101144 crossref_primary_10_26508_lsa_202000980 crossref_primary_10_18632_oncotarget_18074 crossref_primary_10_3390_biom10111474 crossref_primary_10_1002_ctm2_1179 crossref_primary_10_1084_jem_20171066 crossref_primary_10_1038_s41598_019_55455_6 crossref_primary_10_1111_bjh_17120 crossref_primary_10_3390_cells8101258 crossref_primary_10_1038_s41419_019_2057_4 crossref_primary_10_1111_febs_15965 crossref_primary_10_1016_j_biopha_2020_109956 crossref_primary_10_3892_mmr_2017_7774 crossref_primary_10_3892_mmr_2017_8346 crossref_primary_10_3390_cancers14010014 crossref_primary_10_1007_s00109_017_1536_2 crossref_primary_10_18632_oncotarget_11904 crossref_primary_10_1016_j_bcp_2020_114362 crossref_primary_10_1038_s41388_024_03149_3 crossref_primary_10_1038_s41423_023_01057_2 crossref_primary_10_1038_srep38011 crossref_primary_10_1002_jcb_29324 crossref_primary_10_3390_ijms241210212 crossref_primary_10_1016_j_biopha_2018_01_075 crossref_primary_10_1080_08830185_2020_1795153 crossref_primary_10_1038_s41388_020_01437_2 crossref_primary_10_3390_biomedicines9040388 crossref_primary_10_1134_S1990519X23030045 crossref_primary_10_1186_s11658_021_00293_6 crossref_primary_10_1093_nar_gkac1269 crossref_primary_10_18632_oncotarget_9302 crossref_primary_10_3390_cancers14215176 crossref_primary_10_3390_jcm7040064 crossref_primary_10_1158_1541_7786_MCR_21_1018 crossref_primary_10_1038_s41467_022_35089_5 crossref_primary_10_1002_jcb_28840 crossref_primary_10_1038_s41392_020_0126_x crossref_primary_10_1007_s11033_024_10029_2 crossref_primary_10_1016_j_apsb_2019_08_001 crossref_primary_10_1038_s41598_019_53636_x crossref_primary_10_1016_j_isci_2025_112069 crossref_primary_10_1016_j_rbmo_2021_05_007 crossref_primary_10_1038_s41598_020_69380_6 crossref_primary_10_18632_aging_101073 crossref_primary_10_1080_14756366_2020_1871336 crossref_primary_10_1080_21541264_2025_2452711 crossref_primary_10_31857_S0041377123010030 crossref_primary_10_1016_j_heliyon_2024_e26260 crossref_primary_10_1071_RD20215 crossref_primary_10_1002_1878_0261_13433 crossref_primary_10_18632_oncotarget_13475 crossref_primary_10_1002_jcp_27798 crossref_primary_10_3390_cells9092068 crossref_primary_10_1038_bjc_2017_433 crossref_primary_10_3390_cancers13153876 |
Cites_doi | 10.1093/emboj/19.23.6517 10.1073/pnas.0813088106 10.1093/carcin/bgs145 10.1158/1078-0432.CCR-10-1688 10.1083/jcb.201210031 10.1016/j.bmcl.2014.10.093 10.4161/cc.23057 10.1158/0008-5472.CAN-09-0634 10.1128/MCB.22.4.1094-1105.2002 10.1016/j.molcel.2006.07.010 10.1038/ng1317 10.4161/cbt.8.6.7742 10.1016/j.molmed.2004.06.010 10.1038/nrc2763 10.1016/j.stem.2007.05.020 10.1038/nprot.2007.296 10.1073/pnas.1107017108 10.1038/cdd.2012.155 10.1016/j.brainres.2011.12.052 10.1016/j.cancergencyto.2007.12.013 10.1038/sj.onc.1205353 10.1038/onc.2014.375 10.18632/oncotarget.443 10.1016/j.ccr.2012.04.027 10.1126/science.1092472 10.1111/j.1349-7006.2011.01898.x 10.1021/jm400487c 10.1038/cddis.2013.252 10.1021/bi101949t 10.1007/s11596-011-0157-1 10.1038/ng888 10.1371/journal.pone.0115635 10.1038/emboj.2009.246 10.1002/stem.121 10.1007/s10549-005-9017-7 10.1093/nar/gku1075 10.1038/nchembio.1427 10.1016/j.cell.2013.08.062 10.4161/cc.7.11.5929 10.1038/nature11725 10.1016/j.bbamcr.2013.05.022 10.1038/onc.2009.522 10.1021/bi061356b 10.18632/oncotarget.3098 10.1073/pnas.94.12.6048 10.1038/nprot.2009.191 10.1016/S0092-8674(00)80416-X 10.1073/pnas.1322021111 10.1038/sj.cdd.4401801 10.1016/j.molcel.2014.05.007 10.18632/oncotarget.4847 10.1158/1078-0432.CCR-08-2403 10.1074/jbc.C600147200 10.1038/nrd4236 10.1182/blood-2005-08-3273 10.1038/cdd.2012.57 10.1074/jbc.M106643200 10.4161/15384101.2015.945831 10.4161/cc.7.2.5299 10.1074/jbc.M109.056747 10.4161/cc.6.19.4740 10.1126/science.1140735 10.4161/cc.4.9.1981 10.1038/ng894 10.1016/j.ccr.2007.08.033 10.1023/B:APPT.0000031457.90890.13 10.1101/gad.1291305 10.1084/jem.20061563 10.1073/pnas.1409797111 10.1016/j.jdermsci.2013.09.003 10.1016/j.bmc.2015.08.042 10.1016/j.ab.2005.06.003 10.1038/nature08467 10.4161/cc.9.21.13584 10.1016/j.bmcl.2011.10.084 10.4161/cc.27920 10.4161/cc.19901 10.1038/nature11412 10.1016/j.cell.2009.04.050 10.1016/j.tibs.2009.09.005 10.4161/cc.25694 10.1101/gad.13.2.152 10.1007/s11060-007-9470-8 10.1016/j.tips.2015.03.005 |
ContentType | Journal Article |
Copyright | Copyright: © 2016 Pechackova et al. 2016 |
Copyright_xml | – notice: Copyright: © 2016 Pechackova et al. 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.18632/oncotarget.7363 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1949-2553 |
EndPage | 14475 |
ExternalDocumentID | PMC4924728 26883108 10_18632_oncotarget_7363 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Worldwide Cancer Research grantid: 14-1176 |
GroupedDBID | --- 53G AAYXX ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CITATION DIK FRJ GX1 HYE KQ8 M48 OK1 PGMZT RPM CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c462t-db96983c779f8a134d308ddb4e0dec87501b7f57a95a63f99be4266042821eae3 |
IEDL.DBID | M48 |
ISSN | 1949-2553 |
IngestDate | Thu Aug 21 14:00:41 EDT 2025 Thu Jul 10 20:46:07 EDT 2025 Sat May 31 02:12:59 EDT 2025 Tue Jul 01 01:26:51 EDT 2025 Thu Apr 24 23:08:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 12 |
Keywords | checkpoint breast cancer nutlin-3 WIP1 inhibitor p53 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-db96983c779f8a134d308ddb4e0dec87501b7f57a95a63f99be4266042821eae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.18632/oncotarget.7363 |
PMID | 26883108 |
PQID | 1790459846 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4924728 proquest_miscellaneous_1790459846 pubmed_primary_26883108 crossref_primary_10_18632_oncotarget_7363 crossref_citationtrail_10_18632_oncotarget_7363 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-22 |
PublicationDateYYYYMMDD | 2016-03-22 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Oncotarget |
PublicationTitleAlternate | Oncotarget |
PublicationYear | 2016 |
Publisher | Impact Journals LLC |
Publisher_xml | – name: Impact Journals LLC |
References | Lane (42) 2009; 9 Gu (68) 2009; 137 Appella (12) 1997; 94 Sakaguchi (60) 2012; 22 Wang (5) 2009; 106 Vousden (67) 2014; 1843 Kallioniemi (34) 2006; 95 Macurek (39) 2013; 201 De (65) 2015; 43 Bulavin (19) 2006; 23 Bartek (66) 2013; 12 Medema (20) 2010; 15 Hayashi (27) 2011; 102 Lozano (82) 2012; 21 Gil (80) 2006; 107 Bruinsma (17) 2009; 28 Jochemsen (45) 2010; 285 Appella (31) 2002; 31 Donehower (13) 2005; 19 Cha (25) 2009; 27 Demidov (86) 2012; 11 Schaber (63) 2014; 10 Yang (55) 2011; 31 Holak (7) 2007; 6 Inazawa (30) 2003; 63 Meyer (75) 2013; 155 Brayton (74) 2002; 22 Jochemsen (71) 2010; 29 Bulavin (50) 2006; 203 Sakaguchi (62) 2015; 23 Donehower (15) 2008; 7 Powers (29) 2002; 31 Jarvis (72) 2004; 9 Bulavin (52) 2012; 19 Imai (23) 2000; 19 Bulavin (51) 2007; 1 Abraham (10) 1999; 13 Savage (32) 2011; 17 Prives (9) 1997; 91 Sakuragi (43) 2015; 6 Mercer (79) 2009; 8 Kindell (90) 2005; 343 Higgins (47) 2013; 56 Powers (48) 2004; 10 Liu (69) 2002; 21 Ashworth (58) 2007; 27 Bulavin (40) 2013; 12 Appella (26) 2014; 13 Chen (87) 2006; 281 Appella (57) 2011; 50 Cha (59) 2014; 73 Warren-Perry (38) 2013; 493 LA (22) 2010; 23 Toussaint (73) 2009; 4 Vassilev (88) 2008; 7 Lu (16) 2009; 69 Bulavin (36) 2015; 34 Appella (56) 2006; 45 Choi (84) 2013; 4 Bartek (2) 2008; 319 Vergely (83) 2015; 36 Appella (11) 2012; 33 Lindqvist (78) 2014; 13 Donehower (14) 2007; 12 Sakaguchi (61) 2014; 24 Bulavin (21) 2010; 35 Bulavin (37) 2006; 26 Kim (28) 2008; 86 Fornace (49) 2004; 36 Kosugi (24) 2006; 13 Murphy (70) 2002; 277 Bartek (1) 2009; 461 The Cancer Genome Atlas N (35) 2012; 490 Jiao (33) 2012; 1444 Kumar (64) 2015; 10 Demidov (85) 2012; 109 Jochemsen (8) 2005; 4 Parish (89) 2007; 2 Medema (18) 2014; 111 Mackay (54) 2009; 15 Blagosklonny (3) 2010; 9 Lane (41) 2014; 13 Aaronson (4) 2013; 20 Medema René (77) 2014; 55 Zheng (6) 2012; 3 Zhang (44) 2015; 6 Wang (76) 2014; 111 Kallioniemi (53) 2008; 182 Liu (46) 2004; 303 Giacchetti (81) 2013; 22 |
References_xml | – volume: 19 start-page: 6517 year: 2000 ident: 23 article-title: p53-inducible Wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation publication-title: EMBO J doi: 10.1093/emboj/19.23.6517 – volume: 106 start-page: 12245 year: 2009 ident: 5 article-title: Cell fate decision mediated by p53 pulses publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0813088106 – volume: 33 start-page: 1441 year: 2012 ident: 11 article-title: p53 N-terminal phosphorylation: a defining layer of complex regulation publication-title: Carcinogenesis doi: 10.1093/carcin/bgs145 – volume: 17 start-page: 1521 year: 2011 ident: 32 article-title: Genomic Analysis Reveals the Molecular Heterogeneity of Ovarian Clear Cell Carcinomas publication-title: Clinical Cancer Research doi: 10.1158/1078-0432.CCR-10-1688 – volume: 201 start-page: 511 year: 2013 ident: 39 article-title: Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint publication-title: The Journal of Cell Biology doi: 10.1083/jcb.201210031 – volume: 24 start-page: 5593 year: 2014 ident: 61 article-title: Inhibition of C-terminal truncated PPM1D enhances the effect of doxorubicin on cell viability in human colorectal carcinoma cell line publication-title: Bioorganic & Med. Chem. Lett doi: 10.1016/j.bmcl.2014.10.093 – volume: 12 start-page: 251 year: 2013 ident: 66 article-title: Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis publication-title: Cell Cycle doi: 10.4161/cc.23057 – volume: 69 start-page: 7960 year: 2009 ident: 16 article-title: Phosphorylation and Degradation of MdmX Is Inhibited by Wip1 Phosphatase in the DNA Damage Response publication-title: Cancer Research doi: 10.1158/0008-5472.CAN-09-0634 – volume: 22 start-page: 1094 year: 2002 ident: 74 article-title: Mice deficient for the wild-type p53-induced phosphatase gene (Wip1) exhibit defects in reproductive organs, immune function, and cell cycle control publication-title: Mol Cell Biol doi: 10.1128/MCB.22.4.1094-1105.2002 – volume: 23 start-page: 757 year: 2006 ident: 19 article-title: Wip1 Phosphatase Modulates ATM-Dependent Signaling Pathways publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.07.010 – volume: 36 start-page: 343 year: 2004 ident: 49 article-title: Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16Ink4a-p19Arf pathway publication-title: Nat Genet doi: 10.1038/ng1317 – volume: 8 start-page: 555 year: 2009 ident: 79 article-title: Downregulation of Wip-1 phosphatase expression in MCF-7 breast cancer cells enhances doxorubicin-induced apoptosis through p53-mediated transcriptional activation of Bax publication-title: Cancer Biol Ther doi: 10.4161/cbt.8.6.7742 – volume: 10 start-page: 359 year: 2004 ident: 48 article-title: Wip1-deficient mice are resistant to common cancer genes publication-title: Trends Mol Med doi: 10.1016/j.molmed.2004.06.010 – volume: 9 start-page: 862 year: 2009 ident: 42 article-title: Awakening guardian angels: drugging the p53 pathway publication-title: Nat Rev Cancer doi: 10.1038/nrc2763 – volume: 1 start-page: 180 year: 2007 ident: 51 article-title: Wip1 Phosphatase Regulates p53-Dependent Apoptosis of Stem Cells and Tumorigenesis in the Mouse Intestine publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.05.020 – volume: 2 start-page: 2049 year: 2007 ident: 89 article-title: Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat publication-title: Protocols doi: 10.1038/nprot.2007.296 – volume: 22 start-page: S27 issue: Supplement 2 year: 2013 ident: 81 article-title: p53 in breast cancer subtypes and new insights into response to chemotherapy publication-title: The Breast – volume: 109 start-page: E68 year: 2012 ident: 85 article-title: Wip1 promotes RUNX2-dependent apoptosis in p53-negative tumors and protects normal tissues during treatment with anticancer agents publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1107017108 – volume: 20 start-page: 576 year: 2013 ident: 4 article-title: A threshold mechanism mediates p53 cell fate decision between growth arrest and apoptosis publication-title: Cell Death and Differentiation doi: 10.1038/cdd.2012.155 – volume: 1444 start-page: 65 year: 2012 ident: 33 article-title: Over-expression of Wild-type p53-induced phosphatase 1 confers poor prognosis of patients with gliomas publication-title: Brain Research doi: 10.1016/j.brainres.2011.12.052 – volume: 182 start-page: 33 year: 2008 ident: 53 article-title: PPM1D silencing by RNA interference inhibits proliferation and induces apoptosis in breast cancer cell lines with wild-type p53 publication-title: Cancer Genetics and Cytogenetics doi: 10.1016/j.cancergencyto.2007.12.013 – volume: 21 start-page: 2613 year: 2002 ident: 69 article-title: Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway publication-title: Oncogene doi: 10.1038/sj.onc.1205353 – volume: 34 start-page: 4429 year: 2015 ident: 36 article-title: Wip1 phosphatase in breast cancer publication-title: Oncogene doi: 10.1038/onc.2014.375 – volume: 3 start-page: 228 year: 2012 ident: 6 article-title: Regulation of p53: a collaboration between Mdm2 and MdmX publication-title: Oncotarget doi: 10.18632/oncotarget.443 – volume: 21 start-page: 793 year: 2012 ident: 82 article-title: p53 mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.04.027 – volume: 303 start-page: 844 year: 2004 ident: 46 article-title: In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2 publication-title: Science doi: 10.1126/science.1092472 – volume: 102 start-page: 1101 year: 2011 ident: 27 article-title: Oncogenic phosphatase Wip1 is a novel prognostic marker for lung adenocarcinoma patient survival publication-title: Cancer Science doi: 10.1111/j.1349-7006.2011.01898.x – volume: 56 start-page: 5979 year: 2013 ident: 47 article-title: Discovery of RG7388, a Potent and Selective p53-MDM2 Inhibitor in Clinical Development publication-title: Journal of Medicinal Chemistry doi: 10.1021/jm400487c – volume: 4 start-page: e744 year: 2013 ident: 84 article-title: Wip1 suppresses apoptotic cell death through direct dephosphorylation of BAX in response to γ-radiation publication-title: Cell Death & Disease doi: 10.1038/cddis.2013.252 – volume: 15 start-page: 2281 issue: 29 year: 2010 ident: 20 article-title: Wip1 phosphatase is associated with chromatin and dephosphorylates gammaH2AX to promote checkpoint inhibition publication-title: Oncogene – volume: 50 start-page: 4537 year: 2011 ident: 57 article-title: Optimization of a Cyclic Peptide Inhibitor of Ser/Thr Phosphatase PPM1D (Wip1) publication-title: Biochemistry doi: 10.1021/bi101949t – volume: 31 start-page: 94 year: 2011 ident: 55 article-title: PPM1D silencing by lentiviral-mediated RNA interference inhibits proliferation and invasion of human glioma cells publication-title: Journal of Huazhong University of Science and Technology doi: 10.1007/s11596-011-0157-1 – volume: 31 start-page: 133 year: 2002 ident: 29 article-title: Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23 publication-title: Nat Genet doi: 10.1038/ng888 – volume: 10 start-page: e0115635 year: 2015 ident: 64 article-title: WIP1 Phosphatase as a Potential Therapeutic Target in Neuroblastoma publication-title: PLoS ONE doi: 10.1371/journal.pone.0115635 – volume: 28 start-page: 3196 year: 2009 ident: 17 article-title: Wip1 confers G2 checkpoint recovery competence by counteracting p53-dependent transcriptional repression publication-title: EMBO J doi: 10.1038/emboj.2009.246 – volume: 27 start-page: 1963 year: 2009 ident: 25 article-title: Senescent Growth Arrest in Mesenchymal Stem Cells Is Bypassed by Wip1-Mediated Downregulation of Intrinsic Stress Signaling Pathways publication-title: STEM CELLS doi: 10.1002/stem.121 – volume: 95 start-page: 257 year: 2006 ident: 34 article-title: The serine-threonine protein phosphatase PPM1D is frequently activated through amplification in aggressive primary breast tumours publication-title: Breast Cancer Research and Treatment doi: 10.1007/s10549-005-9017-7 – volume: 43 start-page: D805 year: 2015 ident: 65 article-title: COSMIC: exploring the world's knowledge of somatic mutations in human cancer publication-title: Nucleic Acids Research doi: 10.1093/nar/gku1075 – volume: 26 start-page: 2502 year: 2006 ident: 37 article-title: The role of the MKK6//p38 MAPK pathway in Wip1-dependent regulation of ErbB2-driven mammary gland tumorigenesis publication-title: Oncogene – volume: 10 start-page: 181 year: 2014 ident: 63 article-title: Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction publication-title: Nat Chem Biol doi: 10.1038/nchembio.1427 – volume: 155 start-page: 369 year: 2013 ident: 75 article-title: The Proliferation-Quiescence Decision Is Controlled by a Bifurcation in CDK2 Activity at Mitotic Exit publication-title: Cell doi: 10.1016/j.cell.2013.08.062 – volume: 7 start-page: 1604 year: 2008 ident: 88 article-title: Elevated MDM2 boosts the apoptotic activity of p53-MDM2 binding inhibitors by facilitating MDMX degradation publication-title: Cell Cycle doi: 10.4161/cc.7.11.5929 – volume: 493 start-page: 406 year: 2013 ident: 38 article-title: Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer publication-title: Nature doi: 10.1038/nature11725 – volume: 1843 start-page: 137 year: 2014 ident: 67 article-title: The role of ubiquitin modification in the regulation of p53 publication-title: Biochimica et Biophysica Acta (BBA) - Molecular Cell Research doi: 10.1016/j.bbamcr.2013.05.022 – volume: 29 start-page: 2415 year: 2010 ident: 71 article-title: Role of Mdm4 in drug sensitivity of breast cancer cells publication-title: Oncogene doi: 10.1038/onc.2009.522 – volume: 45 start-page: 13193 year: 2006 ident: 56 article-title: Development of a Substrate-Based Cyclic Phosphopeptide Inhibitor of Protein Phosphatase 2Cδ, Wip1† publication-title: Biochemistry doi: 10.1021/bi061356b – volume: 6 start-page: 2623 year: 2015 ident: 44 article-title: Identification of a new class of natural product MDM2 inhibitor: In vitro and in vivo anti-breast cancer activities and target validation publication-title: Oncotarget doi: 10.18632/oncotarget.3098 – volume: 63 start-page: 1876 year: 2003 ident: 30 article-title: PPM1D Is a Potential Target for 17q Gain in Neuroblastoma publication-title: Cancer Res – volume: 94 start-page: 6048 year: 1997 ident: 12 article-title: Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.12.6048 – volume: 23 start-page: 12935 issue: 285 year: 2010 ident: 22 article-title: Wildtype p53-induced phosphatase 1 dephosphorylates histone variant gamma-H2AX and suppresses DNA double strand break repair publication-title: J Biol Chem – volume: 4 start-page: 1798 year: 2009 ident: 73 article-title: Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo publication-title: Nat. Protocols doi: 10.1038/nprot.2009.191 – volume: 91 start-page: 325 year: 1997 ident: 9 article-title: DNA Damage-Induced Phosphorylation of p53 Alleviates Inhibition by MDM2 publication-title: Cell doi: 10.1016/S0092-8674(00)80416-X – volume: 111 start-page: 7313 year: 2014 ident: 18 article-title: Distinct phosphatases antagonize the p53 response in different phases of the cell cycle publication-title: PNAS doi: 10.1073/pnas.1322021111 – volume: 13 start-page: 1170 year: 2006 ident: 24 article-title: Regulation of the antioncogenic Chk2 kinase by the oncogenic Wip1 phosphatase publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4401801 – volume: 55 start-page: 59 year: 2014 ident: 77 article-title: Transient Activation of p53 in G2 Phase Is Sufficient to Induce Senescence publication-title: Molecular Cell doi: 10.1016/j.molcel.2014.05.007 – volume: 6 start-page: 19968 year: 2015 ident: 43 article-title: Reactivating p53 functions by suppressing its novel inhibitor iASPP: a potential therapeutic opportunity in p53 wild-type tumors publication-title: Oncotarget doi: 10.18632/oncotarget.4847 – volume: 15 start-page: 2269 year: 2009 ident: 54 article-title: PPM1D Is a Potential Therapeutic Target in Ovarian Clear Cell Carcinomas publication-title: Clinical Cancer Research doi: 10.1158/1078-0432.CCR-08-2403 – volume: 281 start-page: 33030 year: 2006 ident: 87 article-title: MDMX Overexpression Prevents p53 Activation by the MDM2 Inhibitor Nutlin publication-title: J Biol Chem doi: 10.1074/jbc.C600147200 – volume: 13 start-page: 217 year: 2014 ident: 41 article-title: Drugging the p53 pathway: understanding the route to clinical efficacy publication-title: Nat Rev Drug Discov doi: 10.1038/nrd4236 – volume: 107 start-page: 4109 year: 2006 ident: 80 article-title: MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells publication-title: Blood doi: 10.1182/blood-2005-08-3273 – volume: 19 start-page: 1761 year: 2012 ident: 52 article-title: Role of Gadd45a in Wip1-dependent regulation of intestinal tumorigenesis publication-title: Cell Death and Differentiation doi: 10.1038/cdd.2012.57 – volume: 277 start-page: 3247 year: 2002 ident: 70 article-title: Transcriptional Repression of the Anti-apoptoticsurvivin Gene by Wild Type p53 publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M106643200 – volume: 13 start-page: 2733 year: 2014 ident: 78 article-title: Nuclear translocation of Cyclin B1 marks the restriction point for terminal cell cycle exit in G2 phase publication-title: Cell Cycle doi: 10.4161/15384101.2015.945831 – volume: 7 start-page: 164 year: 2008 ident: 15 article-title: The Wip1 phosphatase and Mdm2: cracking the “Wip” on p53 stability publication-title: Cell Cycle doi: 10.4161/cc.7.2.5299 – volume: 285 start-page: 10786 year: 2010 ident: 45 article-title: Identification and Characterization of the First Small Molecule Inhibitor of MDMX publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M109.056747 – volume: 6 start-page: 2386 year: 2007 ident: 7 article-title: Molecular basis for the inhibition of p53 by Mdmx publication-title: Cell Cycle doi: 10.4161/cc.6.19.4740 – volume: 319 start-page: 1352 year: 2008 ident: 2 article-title: An Oncogene-Induced DNA Damage Model for Cancer Development publication-title: Science doi: 10.1126/science.1140735 – volume: 4 start-page: 1166 year: 2005 ident: 8 article-title: ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation publication-title: Cell Cycle doi: 10.4161/cc.4.9.1981 – volume: 31 start-page: 210 year: 2002 ident: 31 article-title: Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity publication-title: Nat Genet doi: 10.1038/ng894 – volume: 27 start-page: 1036 year: 2007 ident: 58 article-title: A chemical inhibitor of PPM1D that selectively kills cells overexpressing PPM1D publication-title: Oncogene – volume: 12 start-page: 342 year: 2007 ident: 14 article-title: The Wip1 Phosphatase Acts as a Gatekeeper in the p53-Mdm2 Autoregulatory Loop publication-title: Cancer Cell doi: 10.1016/j.ccr.2007.08.033 – volume: 9 start-page: 423 year: 2004 ident: 72 article-title: Caspase-9 regulation: an update publication-title: Apoptosis doi: 10.1023/B:APPT.0000031457.90890.13 – volume: 19 start-page: 1162 year: 2005 ident: 13 article-title: PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints publication-title: Genes & Development doi: 10.1101/gad.1291305 – volume: 203 start-page: 2793 year: 2006 ident: 50 article-title: Regulation of ATM/p53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase publication-title: J. Exp. Med doi: 10.1084/jem.20061563 – volume: 111 start-page: E4386 year: 2014 ident: 76 article-title: Basal p21 controls population heterogeneity in cycling and quiescent cell cycle states publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1409797111 – volume: 73 start-page: 125 year: 2014 ident: 59 article-title: Off-target response of a Wip1 chemical inhibitor in skin keratinocytes publication-title: Journal of Dermatological Science doi: 10.1016/j.jdermsci.2013.09.003 – volume: 23 start-page: 6246 year: 2015 ident: 62 article-title: Novel inhibitors targeting PPM1D phosphatase potently suppress cancer cell proliferation publication-title: Bioorganic & Medicinal Chemistry doi: 10.1016/j.bmc.2015.08.042 – volume: 343 start-page: 329 year: 2005 ident: 90 article-title: Quantitative assay of senescence-associated β-galactosidase activity in mammalian cell extracts publication-title: Analytical Biochemistry doi: 10.1016/j.ab.2005.06.003 – volume: 461 start-page: 1071 year: 2009 ident: 1 article-title: The DNA-damage response in human biology and disease publication-title: Nature doi: 10.1038/nature08467 – volume: 9 start-page: 4323 year: 2010 ident: 3 article-title: Weak p53 permits senescence during cell cycle arrest publication-title: Cell Cycle doi: 10.4161/cc.9.21.13584 – volume: 22 start-page: 729 year: 2012 ident: 60 article-title: A small molecule inhibitor of p53-inducible protein phosphatase PPM1D publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2011.10.084 – volume: 13 start-page: 1015 year: 2014 ident: 26 article-title: Wild-type p53-induced phosphatase 1 (Wip1) forestalls cellular premature senescence at physiological oxygen levels by regulating DNA damage response signaling during DNA replication publication-title: Cell Cycle doi: 10.4161/cc.27920 – volume: 11 start-page: 1883 year: 2012 ident: 86 article-title: Wip1 sensitizes p53-negative tumors to apoptosis by regulating the Bax/Bcl-xL ratio publication-title: Cell Cycle doi: 10.4161/cc.19901 – volume: 490 start-page: 61 year: 2012 ident: 35 article-title: Comprehensive molecular portraits of human breast tumors publication-title: Nature doi: 10.1038/nature11412 – volume: 137 start-page: 609 year: 2009 ident: 68 article-title: Modes of p53 Regulation publication-title: Cell doi: 10.1016/j.cell.2009.04.050 – volume: 35 start-page: 109 year: 2010 ident: 21 article-title: WIP1 phosphatase at the crossroads of cancer and aging publication-title: Trends in Biochemical Sciences doi: 10.1016/j.tibs.2009.09.005 – volume: 12 start-page: 2656 year: 2013 ident: 40 article-title: Genetic variants and mutations of PPM1D control the response to DNA damage publication-title: Cell Cycle doi: 10.4161/cc.25694 – volume: 13 start-page: 152 year: 1999 ident: 10 article-title: A role for ATR in the DNA damage-induced phosphorylation of p53 publication-title: Genes & Development doi: 10.1101/gad.13.2.152 – volume: 86 start-page: 245 year: 2008 ident: 28 article-title: Medulloblastomas overexpress the p53-inactivating oncogene WIP1/PPM1D publication-title: J. Neurooncol doi: 10.1007/s11060-007-9470-8 – volume: 36 start-page: 326 year: 2015 ident: 83 article-title: Anthracyclines/trastuzumab: new aspects of cardiotoxicity and molecular mechanisms publication-title: Trends in Pharmacological Sciences doi: 10.1016/j.tips.2015.03.005 |
SSID | ssj0000547829 |
Score | 2.3619182 |
Snippet | PP2C family serine/threonine phosphatase WIP1 acts as a negative regulator of the tumor suppressor p53 and is implicated in silencing of cellular responses to... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 14458 |
SubjectTerms | Aminopyridines - pharmacology Apoptosis - drug effects Breast Neoplasms - drug therapy Breast Neoplasms - enzymology Breast Neoplasms - pathology Cell Cycle - drug effects Cell Proliferation - drug effects Dipeptides - pharmacology DNA Damage - drug effects Drug Resistance, Neoplasm Female Humans Imidazoles - pharmacology Piperazines - pharmacology Protein Phosphatase 2C - antagonists & inhibitors Protein Phosphatase 2C - genetics Protein Phosphatase 2C - metabolism Proto-Oncogene Proteins c-mdm2 - antagonists & inhibitors Proto-Oncogene Proteins c-mdm2 - genetics Proto-Oncogene Proteins c-mdm2 - metabolism Research Paper Tumor Cells, Cultured Tumor Suppressor Protein p53 - metabolism |
Title | Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26883108 https://www.proquest.com/docview/1790459846 https://pubmed.ncbi.nlm.nih.gov/PMC4924728 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLYGu3BBoG1QYMiTduFgaGznhw9oQrCOTirisIreIttx1EooKY0rAX897yWhXVmFtFuUOFb0np_e9-LP3yPkexgaKGWDkGkAG0zawDCV84wZofJMOYAgeU2QvYmuh_L3KBwtj0e3BqzWlnbYT2o4uz99fHj6AQF_jgGfRIKflahjUBOnT2MRiQ3yEfJSjP0MBi3Yb5S-JaRDVW8zS8UAS4t233LdJKt56h_w-ZZD-VdS6u2Q7RZN0ovG_bvkgys-kYd-MZ6YmopFy5ze9W8DOh2X1XSsPeQsWiFn3U-eXUUNUtI9tej6GcWf-BX1JUXhVl8-TixtjpJQXWR4f3A14HCNG1kouEuLuQeUysRnMuz9_HN5zdrOCszKiHuWGRWpRNg4VnmiAyEz0U2yzEjXzZyFEqYbmDgPY61CHYlcKeMwk2N9xQOnnfhCNouycPuEBnhY3EAatFpK4SDcVcJzwHUWSlwjRYecvdoxta3sOHa_uE-x_EDLp0vLp2j5DjlZvDFtJDfeGfvt1TUpxAXaSReunFcpKo_JUAG86pC9xlWL2XiUYH-1pEPiFScuBqDm9uqTYjKutbcl1KsxTw7-4xsPyRagrAiJa5wfkU0_m7uvgGS8OSYbv0bBcb1MXwA40PgC |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+WIP1+phosphatase+sensitizes+breast+cancer+cells+to+genotoxic+stress+and+to+MDM2+antagonist+nutlin-3&rft.jtitle=Oncotarget&rft.au=Pechackova%2C+Sona&rft.au=Burdova%2C+Kamila&rft.au=Benada%2C+Jan&rft.au=Kleiblova%2C+Petra&rft.date=2016-03-22&rft.issn=1949-2553&rft.eissn=1949-2553&rft.volume=7&rft.issue=12&rft.spage=14458&rft.epage=14475&rft_id=info:doi/10.18632%2Foncotarget.7363&rft.externalDBID=n%2Fa&rft.externalDocID=10_18632_oncotarget_7363 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-2553&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-2553&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-2553&client=summon |