Propensity score analysis with partially observed covariates: How should multiple imputation be used?

Inverse probability of treatment weighting is a popular propensity score-based approach to estimate marginal treatment effects in observational studies at risk of confounding bias. A major issue when estimating the propensity score is the presence of partially observed covariates. Multiple imputatio...

Full description

Saved in:
Bibliographic Details
Published inStatistical methods in medical research Vol. 28; no. 1; pp. 3 - 19
Main Authors Leyrat, Clémence, Seaman, Shaun R, White, Ian R, Douglas, Ian, Smeeth, Liam, Kim, Joseph, Resche-Rigon, Matthieu, Carpenter, James R, Williamson, Elizabeth J
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inverse probability of treatment weighting is a popular propensity score-based approach to estimate marginal treatment effects in observational studies at risk of confounding bias. A major issue when estimating the propensity score is the presence of partially observed covariates. Multiple imputation is a natural approach to handle missing data on covariates: covariates are imputed and a propensity score analysis is performed in each imputed dataset to estimate the treatment effect. The treatment effect estimates from each imputed dataset are then combined to obtain an overall estimate. We call this method MIte. However, an alternative approach has been proposed, in which the propensity scores are combined across the imputed datasets (MIps). Therefore, there are remaining uncertainties about how to implement multiple imputation for propensity score analysis: (a) should we apply Rubin’s rules to the inverse probability of treatment weighting treatment effect estimates or to the propensity score estimates themselves? (b) does the outcome have to be included in the imputation model? (c) how should we estimate the variance of the inverse probability of treatment weighting estimator after multiple imputation? We studied the consistency and balancing properties of the MIte and MIps estimators and performed a simulation study to empirically assess their performance for the analysis of a binary outcome. We also compared the performance of these methods to complete case analysis and the missingness pattern approach, which uses a different propensity score model for each pattern of missingness, and a third multiple imputation approach in which the propensity score parameters are combined rather than the propensity scores themselves (MIpar). Under a missing at random mechanism, complete case and missingness pattern analyses were biased in most cases for estimating the marginal treatment effect, whereas multiple imputation approaches were approximately unbiased as long as the outcome was included in the imputation model. Only MIte was unbiased in all the studied scenarios and Rubin’s rules provided good variance estimates for MIte. The propensity score estimated in the MIte approach showed good balancing properties. In conclusion, when using multiple imputation in the inverse probability of treatment weighting context, MIte with the outcome included in the imputation model is the preferred approach.
AbstractList Inverse probability of treatment weighting is a popular propensity score-based approach to estimate marginal treatment effects in observational studies at risk of confounding bias. A major issue when estimating the propensity score is the presence of partially observed covariates. Multiple imputation is a natural approach to handle missing data on covariates: covariates are imputed and a propensity score analysis is performed in each imputed dataset to estimate the treatment effect. The treatment effect estimates from each imputed dataset are then combined to obtain an overall estimate. We call this method MIte. However, an alternative approach has been proposed, in which the propensity scores are combined across the imputed datasets (MIps). Therefore, there are remaining uncertainties about how to implement multiple imputation for propensity score analysis: (a) should we apply Rubin's rules to the inverse probability of treatment weighting treatment effect estimates or to the propensity score estimates themselves? (b) does the outcome have to be included in the imputation model? (c) how should we estimate the variance of the inverse probability of treatment weighting estimator after multiple imputation? We studied the consistency and balancing properties of the MIte and MIps estimators and performed a simulation study to empirically assess their performance for the analysis of a binary outcome. We also compared the performance of these methods to complete case analysis and the missingness pattern approach, which uses a different propensity score model for each pattern of missingness, and a third multiple imputation approach in which the propensity score parameters are combined rather than the propensity scores themselves (MIpar). Under a missing at random mechanism, complete case and missingness pattern analyses were biased in most cases for estimating the marginal treatment effect, whereas multiple imputation approaches were approximately unbiased as long as the outcome was included in the imputation model. Only MIte was unbiased in all the studied scenarios and Rubin's rules provided good variance estimates for MIte. The propensity score estimated in the MIte approach showed good balancing properties. In conclusion, when using multiple imputation in the inverse probability of treatment weighting context, MIte with the outcome included in the imputation model is the preferred approach.
Author Leyrat, Clémence
Carpenter, James R
White, Ian R
Kim, Joseph
Smeeth, Liam
Resche-Rigon, Matthieu
Douglas, Ian
Williamson, Elizabeth J
Seaman, Shaun R
Author_xml – sequence: 1
  givenname: Clémence
  surname: Leyrat
  fullname: Leyrat, Clémence
  email: clemence.leyrat@lshtm.ac.uk
– sequence: 2
  givenname: Shaun R
  surname: Seaman
  fullname: Seaman, Shaun R
– sequence: 3
  givenname: Ian R
  surname: White
  fullname: White, Ian R
– sequence: 4
  givenname: Ian
  surname: Douglas
  fullname: Douglas, Ian
– sequence: 5
  givenname: Liam
  surname: Smeeth
  fullname: Smeeth, Liam
– sequence: 6
  givenname: Joseph
  surname: Kim
  fullname: Kim, Joseph
– sequence: 7
  givenname: Matthieu
  surname: Resche-Rigon
  fullname: Resche-Rigon, Matthieu
– sequence: 8
  givenname: James R
  surname: Carpenter
  fullname: Carpenter, James R
– sequence: 9
  givenname: Elizabeth J
  surname: Williamson
  fullname: Williamson, Elizabeth J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28573919$$D View this record in MEDLINE/PubMed
BookMark eNpdkM9LwzAcxYNM3A-9e5L8A9X8aJvWi8iYThjoQc8lWb51GWlTknSj_70d04un9-A9HrzPHE1a1wJCt5TcUyrEAylzxgrCRk854ewCzWgqREI4TydodoqTUz5F8xD2hBBB0vIKTVmRCV7Scobgw7sO2mDigMPWecCylXYIJuCjiTvcSR-NtHbATgXwB9B46w7SGxkhPOK1O-Kwc73VuOltNJ0FbJqujzIa12IFuA-gn67RZS1tgJtfXaCvl9Xncp1s3l_fls-bZJvmLCZaEeCK1qLQ-ehzXiqh01TIDGpQOYdSZjUTWcEy4JIJqkClwOt6pJBTmfEFujvvdr1qQFedN430Q_X3dywk50KQ31DtXe_Ht6GipDrxrP7z5D_UKWkB
CitedBy_id crossref_primary_10_1002_rrq_281
crossref_primary_10_2147_CLEP_S354733
crossref_primary_10_1177_0193841X211020245
crossref_primary_10_1080_24709360_2022_2069457
crossref_primary_10_1111_biom_13918
crossref_primary_10_1212_WNL_0000000000200756
crossref_primary_10_1016_j_esmogo_2024_100087
crossref_primary_10_1161_JAHA_120_019240
crossref_primary_10_3390_jcm11237066
crossref_primary_10_1002_sim_9706
crossref_primary_10_1016_j_jns_2022_120280
crossref_primary_10_1016_j_reprotox_2018_05_003
crossref_primary_10_1016_S1473_3099_22_00507_2
crossref_primary_10_1093_ije_dyaa057
crossref_primary_10_1182_bloodadvances_2022007265
crossref_primary_10_3390_jcm12247598
crossref_primary_10_1186_s12916_021_02182_3
crossref_primary_10_1161_CIRCULATIONAHA_124_072855
crossref_primary_10_3389_fresc_2022_1045231
crossref_primary_10_3802_jgo_2025_36_e16
crossref_primary_10_1038_s41598_019_50129_9
crossref_primary_10_3389_fphar_2022_866441
crossref_primary_10_1080_00220973_2023_2287447
crossref_primary_10_1093_biomtc_ujae167
crossref_primary_10_1002_ajh_26991
crossref_primary_10_1093_aje_kwab299
crossref_primary_10_1111_hepr_13486
crossref_primary_10_2196_52447
crossref_primary_10_1093_cid_ciz206
crossref_primary_10_1001_jamaophthalmol_2024_1712
crossref_primary_10_1001_jamanetworkopen_2023_9694
crossref_primary_10_3390_ijerph18136694
crossref_primary_10_1002_sim_8503
crossref_primary_10_1186_s12874_024_02319_x
crossref_primary_10_1016_j_jad_2025_01_145
crossref_primary_10_1007_s10654_018_0447_z
crossref_primary_10_1186_s12874_023_01843_6
crossref_primary_10_1371_journal_pmed_1004465
crossref_primary_10_1002_sim_8581
crossref_primary_10_1080_19466315_2023_2190931
crossref_primary_10_1111_1475_6773_14376
crossref_primary_10_3390_cancers16142573
crossref_primary_10_1016_j_rbmo_2024_103861
crossref_primary_10_1053_j_ajkd_2023_05_010
crossref_primary_10_1007_s40471_018_0164_x
crossref_primary_10_1016_j_carrev_2021_04_005
crossref_primary_10_1093_epirev_mxac006
crossref_primary_10_1093_aje_kwae137
crossref_primary_10_1093_neuros_nyaa473
crossref_primary_10_1080_08856257_2023_2195073
crossref_primary_10_1097_MAT_0000000000001288
crossref_primary_10_1002_sim_8355
crossref_primary_10_1177_14773708211003011
crossref_primary_10_3310_hta25170
crossref_primary_10_1016_j_hrthm_2025_01_007
crossref_primary_10_1016_j_jtho_2021_05_010
crossref_primary_10_1007_s40261_022_01208_9
crossref_primary_10_1136_bmjdrc_2020_001346
crossref_primary_10_1161_JAHA_121_023489
crossref_primary_10_1111_jomf_12841
crossref_primary_10_1007_s10648_023_09724_6
crossref_primary_10_1186_s12874_021_01454_z
crossref_primary_10_3389_fpsyg_2017_01413
crossref_primary_10_1515_em_2017_0020
crossref_primary_10_1001_jamanetworkopen_2019_12424
crossref_primary_10_1007_s11162_023_09772_5
crossref_primary_10_3310_ABUT7744
crossref_primary_10_1093_aje_kwaa225
crossref_primary_10_1097_HEP_0000000000000404
crossref_primary_10_15406_ppij_2020_08_00284
crossref_primary_10_1080_09286586_2023_2235001
crossref_primary_10_1111_cts_70004
crossref_primary_10_1536_ihj_20_671
crossref_primary_10_1016_j_ejso_2024_108746
crossref_primary_10_1080_00273171_2021_1925521
crossref_primary_10_1177_20543581241228731
crossref_primary_10_1016_j_giq_2022_101753
crossref_primary_10_1016_j_jclinepi_2025_111709
crossref_primary_10_1161_CIRCINTERVENTIONS_119_008325
crossref_primary_10_1136_spcare_2023_004356
crossref_primary_10_1002_pds_5130
crossref_primary_10_1007_s00134_023_07211_8
crossref_primary_10_1111_jdi_13510
crossref_primary_10_1007_s10742_018_0191_6
crossref_primary_10_1002_sim_8489
crossref_primary_10_1002_sim_8764
crossref_primary_10_1001_jamanetworkopen_2024_42602
crossref_primary_10_1093_cid_ciab728
crossref_primary_10_1002_bimj_202100294
crossref_primary_10_1093_brain_awaa262
crossref_primary_10_1111_dme_15170
crossref_primary_10_1016_j_ahjo_2021_100053
crossref_primary_10_1016_j_jaci_2024_05_023
crossref_primary_10_1001_jamanetworkopen_2022_46889
crossref_primary_10_1515_mks_2023_0047
crossref_primary_10_1016_j_eclinm_2022_101510
crossref_primary_10_2215_CJN_15360920
crossref_primary_10_1136_bmjopen_2021_051907
crossref_primary_10_1080_14737167_2021_1936501
crossref_primary_10_1001_jamaneurol_2024_1312
crossref_primary_10_1002_pst_2041
crossref_primary_10_1214_20_AOAS1356
crossref_primary_10_1002_bimj_202000196
crossref_primary_10_1007_s10654_019_00538_x
crossref_primary_10_1302_0301_620X_102B10_BJJ_2020_0038_R1
crossref_primary_10_1371_journal_pmed_1002999
crossref_primary_10_1016_j_schres_2020_11_021
crossref_primary_10_1136_bmj_m4080
crossref_primary_10_1097_EDE_0000000000001618
crossref_primary_10_1002_ehf2_13200
crossref_primary_10_1016_j_jclinepi_2021_12_008
crossref_primary_10_1093_ije_dyae170
crossref_primary_10_3390_curroncol30070478
crossref_primary_10_1177_09622802211037075
crossref_primary_10_1177_25152459241236149
crossref_primary_10_1007_s40264_022_01206_y
crossref_primary_10_1093_aje_kwab136
crossref_primary_10_1038_s41598_024_65237_4
crossref_primary_10_5897_ERR2021_4137
crossref_primary_10_1016_j_jcin_2022_09_022
crossref_primary_10_1186_s12874_020_01053_4
crossref_primary_10_1080_00273171_2024_2307529
crossref_primary_10_3389_fneur_2020_610192
crossref_primary_10_3390_jcm11092423
crossref_primary_10_1016_j_hrthm_2024_06_033
crossref_primary_10_3390_jcm12062301
crossref_primary_10_3389_fmed_2023_1177636
crossref_primary_10_1016_j_lanepe_2021_100301
crossref_primary_10_1515_em_2023_0005
crossref_primary_10_1002_sim_10078
crossref_primary_10_1097_EDE_0000000000001633
crossref_primary_10_1177_10983007241275691
crossref_primary_10_1515_em_2019_0003
crossref_primary_10_1111_aogs_14569
crossref_primary_10_1097_MLR_0000000000001457
crossref_primary_10_3389_fendo_2023_1100985
crossref_primary_10_1136_bmjgast_2024_001373
crossref_primary_10_22237_jmasm_1608552120
crossref_primary_10_1177_13524585221085733
crossref_primary_10_1002_pst_2266
crossref_primary_10_1002_pst_2389
crossref_primary_10_1002_pds_5500
crossref_primary_10_1371_journal_pone_0278842
crossref_primary_10_1016_j_diabet_2020_09_005
crossref_primary_10_1186_s13075_024_03285_x
crossref_primary_10_1007_s00277_020_04045_y
crossref_primary_10_1002_mdc3_13894
crossref_primary_10_1007_s10742_019_00205_4
crossref_primary_10_1002_ejhf_1698
crossref_primary_10_1016_j_xjon_2024_08_020
crossref_primary_10_1161_CIRCINTERVENTIONS_121_010641
crossref_primary_10_1002_acr_24987
crossref_primary_10_1016_j_apmr_2019_06_007
crossref_primary_10_3390_cancers14061410
crossref_primary_10_1002_pds_4808
crossref_primary_10_3389_fphar_2019_00973
crossref_primary_10_1001_jamanetworkopen_2022_34258
crossref_primary_10_1097_NHH_0000000000000980
crossref_primary_10_1111_jep_13211
crossref_primary_10_1093_aje_kwae105
crossref_primary_10_1002_jrsm_1660
crossref_primary_10_1097_AS9_0000000000000159
crossref_primary_10_1186_s12911_023_02345_7
crossref_primary_10_1080_09286586_2024_2399764
crossref_primary_10_1002_sim_9899
crossref_primary_10_1053_j_jrn_2021_05_008
crossref_primary_10_1002_sim_9658
crossref_primary_10_1002_14651858_CD013793
crossref_primary_10_1080_00949655_2022_2089672
crossref_primary_10_1002_ehf2_13790
crossref_primary_10_1016_j_spl_2018_02_044
ContentType Journal Article
Copyright The Author(s) 2017
Copyright_xml – notice: The Author(s) 2017
DBID AFRWT
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1177/0962280217713032
DatabaseName Sage Journals GOLD Open Access 2024
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: AFRWT
  name: Sage Journals GOLD Open Access 2024
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Mathematics
EISSN 1477-0334
EndPage 19
ExternalDocumentID 28573919
10.1177_0962280217713032
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: G0802403
– fundername: Medical Research Council
  grantid: MC_UU_12023/21
– fundername: Medical Research Council
  grantid: MR/M013278/1
GroupedDBID ---
-TM
.2G
.2J
.2N
0-V
01A
0R~
123
1~K
29Q
31S
31U
31X
31Y
31Z
36B
4.4
53G
54M
5RE
5VS
6PF
7X7
88E
88I
8C1
8FE
8FG
8FI
8FJ
8R4
8R5
AABMB
AABOD
AACKU
AACMV
AACTG
AADUE
AAEWN
AAGGD
AAGLT
AAJIQ
AAJOX
AAJPV
AANSI
AAPEO
AAQDB
AAQXH
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAWTL
AAYTG
ABAWP
ABCCA
ABCJG
ABDLQ
ABDWY
ABEIX
ABFWQ
ABHKI
ABHQH
ABIDT
ABJCF
ABJIS
ABKRH
ABLUO
ABPGX
ABPNF
ABQKF
ABQXT
ABRHV
ABTDE
ABUJY
ABUWG
ABVFX
ABVVC
ABYTW
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACGBL
ACGFS
ACGOD
ACGZU
ACIWK
ACJER
ACLHI
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADDLC
ADEBD
ADEIA
ADNMO
ADNON
ADRRZ
ADSTG
ADTBJ
ADUKL
ADVBO
ADYCS
AECGH
AECVZ
AEDTQ
AENEX
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEWDL
AEWHI
AEXNY
AFEET
AFKBI
AFKRA
AFKRG
AFMOU
AFQAA
AFRWT
AFUIA
AFWMB
AGKLV
AGNHF
AGQPQ
AGWFA
AGWNL
AHDMH
AHHFK
AHMBA
AJEFB
AJMMQ
AJUZI
AJXAJ
ALIPV
ALKWR
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMCVQ
AMVHM
ANDLU
ARALO
ARTOV
ASOEW
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
AZQEC
B8O
B8R
B8Z
B93
B94
BBRGL
BDDNI
BENPR
BGLVJ
BKIIM
BPACV
BPHCQ
BSEHC
BVXVI
BYIEH
C45
CAG
CBRKF
CCPQU
CFDXU
COF
CORYS
CQQTX
CS3
DC-
DD-
DD0
DE-
DF0
DO-
DOPDO
DU5
DV7
DWQXO
D~Y
EBS
EJD
EMOBN
F5P
FEDTE
FHBDP
FYUFA
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HCIFZ
HEHIP
HF~
HMCUK
HVGLF
HZ~
J8X
K.F
K.J
L6V
M1P
M2P
M2S
M7S
N9A
O9-
OVD
P.B
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PTHSS
Q1R
Q2X
Q7K
Q7L
Q7X
Q82
Q83
RIG
ROL
S01
SASJQ
SAUOL
SCNPE
SDB
SFB
SFC
SFK
SFN
SFT
SGA
SGP
SGR
SGV
SGX
SGZ
SHG
SNB
SPJ
SPV
SQCSI
STM
TEORI
TN5
UKHRP
YHZ
ZONMY
ZPPRI
ZRKOI
AAEJI
AAPII
AJGYC
AJVBE
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
POGQB
PPXIY
PQGLB
PRQQA
ID FETCH-LOGICAL-c462t-db0e3b1f78d6db0639b7d447a5efeb63e9a5f275825e3a271beb4e3ff62261a53
IEDL.DBID AFRWT
ISSN 0962-2802
IngestDate Mon Jul 21 05:50:30 EDT 2025
Tue Jun 17 22:31:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Missing covariates
inverse probability of treatment weighting
chained equations
missingness pattern
Rubin’s rules
Language English
License This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-db0e3b1f78d6db0639b7d447a5efeb63e9a5f275825e3a271beb4e3ff62261a53
OpenAccessLink https://journals.sagepub.com/doi/full/10.1177/0962280217713032?utm_source=summon&utm_medium=discovery-provider
PMID 28573919
PageCount 17
ParticipantIDs pubmed_primary_28573919
sage_journals_10_1177_0962280217713032
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: England
PublicationTitle Statistical methods in medical research
PublicationTitleAlternate Stat Methods Med Res
PublicationYear 2019
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Lewis, Schinnar, Bilker 2007; 16
de Groot, Redekop, Sleijfer 2016; 95
Lunceford, Davidian 2004; 23
Blak, Thompson, Dattani 2011; 19
Williamson, Forbes, White 2014; 33
Sulkowski, Cooper, Duggan 2015; 50
Imbens 2000; 87
Penning de Vries, Groenwold 2016; 25
Gelman, Hill 2011; 40
Mitra, Reiter 2012; 0
Neuderth, Schwarz, Gerlich 2016; 16
Bartlett, Seaman, White 2015; 24
Moons, Donders, Stijnen 2006; 59
Rubin 1986; 81
Weber-Schoendorfer, Hoeltzenbein, Wacker 2014; 53
Cole, Hernán 2008; 168
Austin 2007; 26
Rosenbaum, Rubin 1983; 70
Azur, Stuart, Frangakis 2011; 20
Austin 2014; 33
Rubin 1974; 66
An 2010; 40
Gutman, Rubin 2015
Jobarteh, Shiraishi, Malimane 2016; 11
Seaman, White 2014; 43
Rubin 2008; 2
Hayes, Groner 2008; 43
Goel, Aksoy, Gupta 2014; 161
D’Agostino 1998; 17
Franklin, Eddings, Schneeweiss 2015; 38
Cochran, Rubin 1973; 35
Douglas, Evans, Smeeth 2011; 342
Concato, Shah, Horwitz 2000; 342
D’Agostino, Rubin 2000; 95
Hade, Lu 2014; 33
Rosenbaum 1987; 82
Rosenbaum, Rubin 1984; 79
White, Carlin 2010; 29
Hirano, Imbens 2001; 2
Qu, Lipkovich 2009; 28
References_xml – volume: 342
  start-page: 1887
  year: 2000
  end-page: 1892
  article-title: Randomized, controlled trials, observational studies, and the hierarchy of research designs
  publication-title: New Engl J Med
– volume: 0
  start-page: 1
  year: 2012
  end-page: 17
  article-title: A comparison of two methods of estimating propensity scores after multiple imputation
  publication-title: Stat Methods Med Res
– volume: 43
  start-page: 3499
  year: 2014
  end-page: 3515
  article-title: Inverse probability weighting with missing predictors of treatment assignment or missingness
  publication-title: Commun Stat - Theory Methods
– volume: 342
  start-page: d1642
  year: 2011
  end-page: d1642
  article-title: Effect of statin treatment on short term mortality after pneumonia episode: cohort study
  publication-title: BMJ
– volume: 23
  start-page: 2937
  year: 2004
  end-page: 2960
  article-title: Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study
  publication-title: Stat Med
– volume: 17
  start-page: 2265
  year: 1998
  end-page: 2281
  article-title: Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group
  publication-title: Stat Med
– volume: 20
  start-page: 40
  year: 2011
  end-page: 49
  article-title: Multiple imputation by chained equations: What is it and how does it work?
  publication-title: Int J Methods Psychiatr Res
– volume: 95
  start-page: 121
  year: 2016
  end-page: 127
  article-title: Survival in patients with primary metastatic renal cell carcinoma treated with sunitinib with or without previous cytoreductive nephrectomy: Results from a population-based registry
  publication-title: Urology
– volume: 38
  start-page: 589
  year: 2015
  end-page: 600
  article-title: Incorporating linked healthcare claims to improve confounding control in a study of in-hospital medication use
  publication-title: Drug Saf
– volume: 16
  start-page: 804
  year: 2016
  end-page: 804
  article-title: Work-related medical rehabilitation in patients with musculoskeletal disorders: the protocol of a propensity score matched effectiveness study (EVA-WMR, DRKS00009780)
  publication-title: BMC Publ Health
– volume: 66
  start-page: 688
  year: 1974
  end-page: 701
  article-title: Estimating causal effects of treatments in randomized and nonrandomized studies
  publication-title: J Educ Psychol
– volume: 33
  start-page: 74
  year: 2014
  end-page: 87
  article-title: Bias associated with using the estimated propensity score as a regression covariate
  publication-title: Stat Med
– volume: 40
  start-page: 1
  year: 2011
  end-page: 31
  article-title: Multiple imputation with diagnostics (mi) in r: Opening windows to the black box
  publication-title: J Stat Softw
– volume: 29
  start-page: 2920
  year: 2010
  end-page: 2931
  article-title: Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values
  publication-title: Stat Med
– volume: 43
  start-page: 924
  year: 2008
  end-page: 927
  article-title: Using multiple imputation and propensity scores to test the effect of car seats and seat belt usage on injury severity from trauma registry data
  publication-title: J Pediatr Surg
– volume: 81
  start-page: 961
  year: 1986
  end-page: 962
  article-title: Comment: Which ifs have causal answers
  publication-title: J Am Stat Assoc
– volume: 79
  start-page: 516
  year: 1984
  end-page: 524
  article-title: Reducing bias in observational studies using subclassification on the propensity score
  publication-title: J Am Stat Assoc
– volume: 2
  start-page: 259
  year: 2001
  end-page: 278
  article-title: Estimation of causal effects using propensity score weighting: An application to data on right heart catheterization
  publication-title: Health Serv Outcome Res Methodol
– year: 2015
  article-title: Estimation of causal effects of binary treatments in unconfounded studies with one continuous covariate
  publication-title: Stat Methods Med Res
– volume: 11
  start-page: e0166444
  year: 2016
  end-page: e0166444
  article-title: Community ART support groups in mozambique: The potential of patients as partners in care
  publication-title: PloS One
– volume: 35
  start-page: 417
  year: 1973
  end-page: 446
  article-title: Controlling bias in observational studies: A review
  publication-title: Sankhyā: Indian J Stat Ser A (1961-2002)
– volume: 19
  start-page: 251
  year: 2011
  end-page: 255
  article-title: Generalisability of The Health Improvement Network (THIN) database: demographics, chronic disease prevalence and mortality rates
  publication-title: Inform Prim Care
– volume: 40
  start-page: 151
  year: 2010
  end-page: 189
  article-title: Bayesian propensity score estimators: incorporating uncertainties in propensity scores into causal inference
  publication-title: Sociol Methodol
– volume: 87
  start-page: 706
  year: 2000
  end-page: 710
  article-title: The role of the propensity score in estimating dose-response functions
  publication-title: Biometrika
– volume: 59
  start-page: 1092
  year: 2006
  end-page: 1101
  article-title: Using the outcome for imputation of missing predictor values was preferred
  publication-title: J Clin Epidemiol
– volume: 161
  start-page: 699
  year: 2014
  end-page: 710
  article-title: Renin-angiotensin system blockade therapy after surgical aortic valve replacement for severe aortic stenosis: a cohort study
  publication-title: Ann Int Med
– volume: 50
  start-page: 171
  year: 2015
  end-page: 176
  article-title: Does timing of neonatal inguinal hernia repair affect outcomes?
  publication-title: J Pediatr Surg
– volume: 26
  start-page: 3078
  year: 2007
  end-page: 3094
  article-title: The performance of different propensity score methods for estimating marginal odds ratios
  publication-title: Stat Med
– volume: 168
  start-page: 656
  year: 2008
  end-page: 664
  article-title: Constructing inverse probability weights for marginal structural models
  publication-title: Am J Epidemiol
– volume: 16
  start-page: 393
  year: 2007
  end-page: 401
  article-title: Validation studies of the health improvement network (THIN) database for pharmacoepidemiology research
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 2
  start-page: 808
  year: 2008
  end-page: 840
  article-title: For objective causal inference, design trumps analysis
  publication-title: Ann Appl Stat
– volume: 28
  start-page: 1402
  year: 2009
  end-page: 1414
  article-title: Propensity score estimation with missing values using a multiple imputation missingness pattern (MIMP) approach
  publication-title: Stat Med
– volume: 24
  start-page: 462
  year: 2015
  end-page: 487
  article-title: Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model
  publication-title: Stat Methods Med Res
– volume: 82
  start-page: 387
  year: 1987
  end-page: 394
  article-title: Model-based direct adjustment
  publication-title: J Am Stat Assoc
– volume: 33
  start-page: 1057
  year: 2014
  end-page: 1069
  article-title: A comparison of 12 algorithms for matching on the propensity score
  publication-title: Stat Med
– volume: 53
  start-page: 757
  year: 2014
  end-page: 763
  article-title: No evidence for an increased risk of adverse pregnancy outcome after paternal low-dose methotrexate: an observational cohort study
  publication-title: Rheumatology (Oxford, England)
– volume: 70
  start-page: 41
  year: 1983
  end-page: 55
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
– volume: 95
  start-page: 749
  year: 2000
  end-page: 759
  article-title: Estimating and using propensity scores with partially missing data
  publication-title: J Am Stat Assoc
– volume: 25
  start-page: 3066
  year: 2016
  end-page: 3068
  article-title: Comments on propensity score matching following multiple imputation
  publication-title: Stat Methods Med Res
– volume: 33
  start-page: 721
  year: 2014
  end-page: 737
  article-title: Variance reduction in randomised trials by inverse probability weighting using the propensity score
  publication-title: Stat Med
SSID ssj0007049
Score 2.5826807
Snippet Inverse probability of treatment weighting is a popular propensity score-based approach to estimate marginal treatment effects in observational studies at risk...
SourceID pubmed
sage
SourceType Index Database
Publisher
StartPage 3
SubjectTerms Bias
Data Interpretation, Statistical
Humans
Hydroxymethylglutaryl-CoA Reductase Inhibitors - therapeutic use
Models, Statistical
Observational Studies as Topic
Pneumonia - mortality
Probability
Propensity Score
Treatment Outcome
Title Propensity score analysis with partially observed covariates: How should multiple imputation be used?
URI https://journals.sagepub.com/doi/full/10.1177/0962280217713032
https://www.ncbi.nlm.nih.gov/pubmed/28573919
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7sAjIfROdtXkYexLe6Nm2a1ZcxxDGEjiEb7q00bYrC1g3bIvv35vQyh774WkqTnpwkX845-T6AO6FHoWSW0CwfJcwirmuOEzANU17q0MK5mas1uBN7PLdeFmxRg7i6C1NaMHnAsirVo3yxxtmN0ehemWTsKdyNNC4KTnNcg-kgS1deEe2uRDXwCaansxVmtgOsh9xq1e22OjQpt5mayM3h6PVttlu7eQmY1fc1bOAnsfmnzb0ta68GLN-WRsdwVOJJMiwc4ARqMm7DobsjY03acOCW-fM2tBBbFtTMpyCnGIiPsSiDJMhmSfySoYRgdJZs0Kv85XJL1gJjtzIk6gfV2Rrh6SMZr79I8o4K2aSqSiQfKBGRjzURkmSJDAdnMB89z57GWqm6oAWWTVMtFLo0hRHxPmpNIYIRPLQs7jMZSWGb0vFZRNUxgzJp-pQbQgpLmlGkzGMbPjPPoRGvY3kJhPYDJpjCcAYiAT3wA90JnCjE-0V6GIgOXBQm9DYFtYZH-4ybjuF04B5t6lXu4BkVLfmvUbj674vX0FJYxymiJzfQSD8zeavwRCq6pRN0oT6Zut9qHMdQ
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6kBa0H0fqqzz2It0geu9muFyliidoWkRZ7C7vJBoWSFNMq_nt3krQWvXjfhDCzmflmdvb7AC6UncSaUWVRiRJmCbctISJm4ZGXKVo49wq1hv7AD0b0YczGK1JflQXzKxyrMl9UBOvl341MScJHBheDpDmGXxN96xSTVg3qne7zy3AZhnmFfc16Cx_4OaP8846V7LMyzlVkmO42bFXQkHRKX-7Amk6bsNlf8qrmTVjvV0fhTWggTCxZlndBP2FPPcX5CpIjMSWRFdkIwUYrmeIGkZPJF8kUtmF1TKLsw5TJiDSvSZB9kvwVxa7JYsCQvKHaQ-E2ojSZ5zq-2YNR9254G1iVgIIVUd-dWbGytaechLdRNgrBiOIxpVwynWjle1pIlrimYnCZ9qTLHaUV1V6SGPP4jmTePtTSLNWHQNx2xBQzcMzBpG5HMrJFJJIYrwrZcaRacFCaMJyWLBmh22bcE45owSXaNFx4NnQWDOO_vHD034XnsBEM-72wdz94PIaGgTCibIqcQG32PtenBibM1Fm1Ib4B8-CzrQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6khVIPovVVn3sQb7F5bbbxIkUt9dFSpEVvIZvdRaEkxbSK_96dZFuLXrxvQpjZzHw7M_t9AGfcVkJSn1t-jBJmitlWGCbUwpaXPrQw5hVqDf1B0Bv79y_0xczm4F0YY8H8Aseq9BcVwRr_7qlQLdNjbGnYjSwuGk0zDME6Ald9X6fGClQ73afn0TIUM4N_9XoLH_jpU_55x0oGWhnpKrJMdxM2DDwkndKfW7Am0was95fcqnkDan3TDm9AHaFiybS8DXKIdfUUZyxIjuSUJDaEIwSLrWSKmySeTL5IxrEUKwVJsg99VEa0eUl62SfJX1HwmiyGDMkbKj4UriNcknkuxdUOjLu3o-ueZUQUrMQP3JkluC097ijWRukoBCScCW2tmEoleeDJMKbK1acGl0ovdpnDJfelp5Q2T-DE1NuFSpqlch-I204opxqSOZjY7SRO7DAJlcDrQrZIeBP2ShNG05IpI3LblHmhEzbhHG0aLbwbOQuW8V9eOPjvwlOoDW-60ePd4OEQ6hrFhGVd5Agqs_e5PNZIYcZPzH74BsiKtL0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Propensity+score+analysis+with+partially+observed+covariates%3A+How+should+multiple+imputation+be+used%3F&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Leyrat%2C+Cl%C3%A9mence&rft.au=Seaman%2C+Shaun+R&rft.au=White%2C+Ian+R&rft.au=Douglas%2C+Ian&rft.date=2019-01-01&rft.pub=SAGE+Publications&rft.issn=0962-2802&rft.eissn=1477-0334&rft.volume=28&rft.issue=1&rft.spage=3&rft.epage=19&rft_id=info:doi/10.1177%2F0962280217713032&rft.externalDocID=10.1177_0962280217713032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-2802&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-2802&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-2802&client=summon