Propensity score analysis with partially observed covariates: How should multiple imputation be used?
Inverse probability of treatment weighting is a popular propensity score-based approach to estimate marginal treatment effects in observational studies at risk of confounding bias. A major issue when estimating the propensity score is the presence of partially observed covariates. Multiple imputatio...
Saved in:
Published in | Statistical methods in medical research Vol. 28; no. 1; pp. 3 - 19 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inverse probability of treatment weighting is a popular propensity score-based approach to estimate marginal treatment effects in observational studies at risk of confounding bias. A major issue when estimating the propensity score is the presence of partially observed covariates. Multiple imputation is a natural approach to handle missing data on covariates: covariates are imputed and a propensity score analysis is performed in each imputed dataset to estimate the treatment effect. The treatment effect estimates from each imputed dataset are then combined to obtain an overall estimate. We call this method MIte. However, an alternative approach has been proposed, in which the propensity scores are combined across the imputed datasets (MIps). Therefore, there are remaining uncertainties about how to implement multiple imputation for propensity score analysis: (a) should we apply Rubin’s rules to the inverse probability of treatment weighting treatment effect estimates or to the propensity score estimates themselves? (b) does the outcome have to be included in the imputation model? (c) how should we estimate the variance of the inverse probability of treatment weighting estimator after multiple imputation? We studied the consistency and balancing properties of the MIte and MIps estimators and performed a simulation study to empirically assess their performance for the analysis of a binary outcome. We also compared the performance of these methods to complete case analysis and the missingness pattern approach, which uses a different propensity score model for each pattern of missingness, and a third multiple imputation approach in which the propensity score parameters are combined rather than the propensity scores themselves (MIpar). Under a missing at random mechanism, complete case and missingness pattern analyses were biased in most cases for estimating the marginal treatment effect, whereas multiple imputation approaches were approximately unbiased as long as the outcome was included in the imputation model. Only MIte was unbiased in all the studied scenarios and Rubin’s rules provided good variance estimates for MIte. The propensity score estimated in the MIte approach showed good balancing properties. In conclusion, when using multiple imputation in the inverse probability of treatment weighting context, MIte with the outcome included in the imputation model is the preferred approach. |
---|---|
AbstractList | Inverse probability of treatment weighting is a popular propensity score-based approach to estimate marginal treatment effects in observational studies at risk of confounding bias. A major issue when estimating the propensity score is the presence of partially observed covariates. Multiple imputation is a natural approach to handle missing data on covariates: covariates are imputed and a propensity score analysis is performed in each imputed dataset to estimate the treatment effect. The treatment effect estimates from each imputed dataset are then combined to obtain an overall estimate. We call this method MIte. However, an alternative approach has been proposed, in which the propensity scores are combined across the imputed datasets (MIps). Therefore, there are remaining uncertainties about how to implement multiple imputation for propensity score analysis: (a) should we apply Rubin's rules to the inverse probability of treatment weighting treatment effect estimates or to the propensity score estimates themselves? (b) does the outcome have to be included in the imputation model? (c) how should we estimate the variance of the inverse probability of treatment weighting estimator after multiple imputation? We studied the consistency and balancing properties of the MIte and MIps estimators and performed a simulation study to empirically assess their performance for the analysis of a binary outcome. We also compared the performance of these methods to complete case analysis and the missingness pattern approach, which uses a different propensity score model for each pattern of missingness, and a third multiple imputation approach in which the propensity score parameters are combined rather than the propensity scores themselves (MIpar). Under a missing at random mechanism, complete case and missingness pattern analyses were biased in most cases for estimating the marginal treatment effect, whereas multiple imputation approaches were approximately unbiased as long as the outcome was included in the imputation model. Only MIte was unbiased in all the studied scenarios and Rubin's rules provided good variance estimates for MIte. The propensity score estimated in the MIte approach showed good balancing properties. In conclusion, when using multiple imputation in the inverse probability of treatment weighting context, MIte with the outcome included in the imputation model is the preferred approach. |
Author | Leyrat, Clémence Carpenter, James R White, Ian R Kim, Joseph Smeeth, Liam Resche-Rigon, Matthieu Douglas, Ian Williamson, Elizabeth J Seaman, Shaun R |
Author_xml | – sequence: 1 givenname: Clémence surname: Leyrat fullname: Leyrat, Clémence email: clemence.leyrat@lshtm.ac.uk – sequence: 2 givenname: Shaun R surname: Seaman fullname: Seaman, Shaun R – sequence: 3 givenname: Ian R surname: White fullname: White, Ian R – sequence: 4 givenname: Ian surname: Douglas fullname: Douglas, Ian – sequence: 5 givenname: Liam surname: Smeeth fullname: Smeeth, Liam – sequence: 6 givenname: Joseph surname: Kim fullname: Kim, Joseph – sequence: 7 givenname: Matthieu surname: Resche-Rigon fullname: Resche-Rigon, Matthieu – sequence: 8 givenname: James R surname: Carpenter fullname: Carpenter, James R – sequence: 9 givenname: Elizabeth J surname: Williamson fullname: Williamson, Elizabeth J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28573919$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkM9LwzAcxYNM3A-9e5L8A9X8aJvWi8iYThjoQc8lWb51GWlTknSj_70d04un9-A9HrzPHE1a1wJCt5TcUyrEAylzxgrCRk854ewCzWgqREI4TydodoqTUz5F8xD2hBBB0vIKTVmRCV7Scobgw7sO2mDigMPWecCylXYIJuCjiTvcSR-NtHbATgXwB9B46w7SGxkhPOK1O-Kwc73VuOltNJ0FbJqujzIa12IFuA-gn67RZS1tgJtfXaCvl9Xncp1s3l_fls-bZJvmLCZaEeCK1qLQ-ehzXiqh01TIDGpQOYdSZjUTWcEy4JIJqkClwOt6pJBTmfEFujvvdr1qQFedN430Q_X3dywk50KQ31DtXe_Ht6GipDrxrP7z5D_UKWkB |
CitedBy_id | crossref_primary_10_1002_rrq_281 crossref_primary_10_2147_CLEP_S354733 crossref_primary_10_1177_0193841X211020245 crossref_primary_10_1080_24709360_2022_2069457 crossref_primary_10_1111_biom_13918 crossref_primary_10_1212_WNL_0000000000200756 crossref_primary_10_1016_j_esmogo_2024_100087 crossref_primary_10_1161_JAHA_120_019240 crossref_primary_10_3390_jcm11237066 crossref_primary_10_1002_sim_9706 crossref_primary_10_1016_j_jns_2022_120280 crossref_primary_10_1016_j_reprotox_2018_05_003 crossref_primary_10_1016_S1473_3099_22_00507_2 crossref_primary_10_1093_ije_dyaa057 crossref_primary_10_1182_bloodadvances_2022007265 crossref_primary_10_3390_jcm12247598 crossref_primary_10_1186_s12916_021_02182_3 crossref_primary_10_1161_CIRCULATIONAHA_124_072855 crossref_primary_10_3389_fresc_2022_1045231 crossref_primary_10_3802_jgo_2025_36_e16 crossref_primary_10_1038_s41598_019_50129_9 crossref_primary_10_3389_fphar_2022_866441 crossref_primary_10_1080_00220973_2023_2287447 crossref_primary_10_1093_biomtc_ujae167 crossref_primary_10_1002_ajh_26991 crossref_primary_10_1093_aje_kwab299 crossref_primary_10_1111_hepr_13486 crossref_primary_10_2196_52447 crossref_primary_10_1093_cid_ciz206 crossref_primary_10_1001_jamaophthalmol_2024_1712 crossref_primary_10_1001_jamanetworkopen_2023_9694 crossref_primary_10_3390_ijerph18136694 crossref_primary_10_1002_sim_8503 crossref_primary_10_1186_s12874_024_02319_x crossref_primary_10_1016_j_jad_2025_01_145 crossref_primary_10_1007_s10654_018_0447_z crossref_primary_10_1186_s12874_023_01843_6 crossref_primary_10_1371_journal_pmed_1004465 crossref_primary_10_1002_sim_8581 crossref_primary_10_1080_19466315_2023_2190931 crossref_primary_10_1111_1475_6773_14376 crossref_primary_10_3390_cancers16142573 crossref_primary_10_1016_j_rbmo_2024_103861 crossref_primary_10_1053_j_ajkd_2023_05_010 crossref_primary_10_1007_s40471_018_0164_x crossref_primary_10_1016_j_carrev_2021_04_005 crossref_primary_10_1093_epirev_mxac006 crossref_primary_10_1093_aje_kwae137 crossref_primary_10_1093_neuros_nyaa473 crossref_primary_10_1080_08856257_2023_2195073 crossref_primary_10_1097_MAT_0000000000001288 crossref_primary_10_1002_sim_8355 crossref_primary_10_1177_14773708211003011 crossref_primary_10_3310_hta25170 crossref_primary_10_1016_j_hrthm_2025_01_007 crossref_primary_10_1016_j_jtho_2021_05_010 crossref_primary_10_1007_s40261_022_01208_9 crossref_primary_10_1136_bmjdrc_2020_001346 crossref_primary_10_1161_JAHA_121_023489 crossref_primary_10_1111_jomf_12841 crossref_primary_10_1007_s10648_023_09724_6 crossref_primary_10_1186_s12874_021_01454_z crossref_primary_10_3389_fpsyg_2017_01413 crossref_primary_10_1515_em_2017_0020 crossref_primary_10_1001_jamanetworkopen_2019_12424 crossref_primary_10_1007_s11162_023_09772_5 crossref_primary_10_3310_ABUT7744 crossref_primary_10_1093_aje_kwaa225 crossref_primary_10_1097_HEP_0000000000000404 crossref_primary_10_15406_ppij_2020_08_00284 crossref_primary_10_1080_09286586_2023_2235001 crossref_primary_10_1111_cts_70004 crossref_primary_10_1536_ihj_20_671 crossref_primary_10_1016_j_ejso_2024_108746 crossref_primary_10_1080_00273171_2021_1925521 crossref_primary_10_1177_20543581241228731 crossref_primary_10_1016_j_giq_2022_101753 crossref_primary_10_1016_j_jclinepi_2025_111709 crossref_primary_10_1161_CIRCINTERVENTIONS_119_008325 crossref_primary_10_1136_spcare_2023_004356 crossref_primary_10_1002_pds_5130 crossref_primary_10_1007_s00134_023_07211_8 crossref_primary_10_1111_jdi_13510 crossref_primary_10_1007_s10742_018_0191_6 crossref_primary_10_1002_sim_8489 crossref_primary_10_1002_sim_8764 crossref_primary_10_1001_jamanetworkopen_2024_42602 crossref_primary_10_1093_cid_ciab728 crossref_primary_10_1002_bimj_202100294 crossref_primary_10_1093_brain_awaa262 crossref_primary_10_1111_dme_15170 crossref_primary_10_1016_j_ahjo_2021_100053 crossref_primary_10_1016_j_jaci_2024_05_023 crossref_primary_10_1001_jamanetworkopen_2022_46889 crossref_primary_10_1515_mks_2023_0047 crossref_primary_10_1016_j_eclinm_2022_101510 crossref_primary_10_2215_CJN_15360920 crossref_primary_10_1136_bmjopen_2021_051907 crossref_primary_10_1080_14737167_2021_1936501 crossref_primary_10_1001_jamaneurol_2024_1312 crossref_primary_10_1002_pst_2041 crossref_primary_10_1214_20_AOAS1356 crossref_primary_10_1002_bimj_202000196 crossref_primary_10_1007_s10654_019_00538_x crossref_primary_10_1302_0301_620X_102B10_BJJ_2020_0038_R1 crossref_primary_10_1371_journal_pmed_1002999 crossref_primary_10_1016_j_schres_2020_11_021 crossref_primary_10_1136_bmj_m4080 crossref_primary_10_1097_EDE_0000000000001618 crossref_primary_10_1002_ehf2_13200 crossref_primary_10_1016_j_jclinepi_2021_12_008 crossref_primary_10_1093_ije_dyae170 crossref_primary_10_3390_curroncol30070478 crossref_primary_10_1177_09622802211037075 crossref_primary_10_1177_25152459241236149 crossref_primary_10_1007_s40264_022_01206_y crossref_primary_10_1093_aje_kwab136 crossref_primary_10_1038_s41598_024_65237_4 crossref_primary_10_5897_ERR2021_4137 crossref_primary_10_1016_j_jcin_2022_09_022 crossref_primary_10_1186_s12874_020_01053_4 crossref_primary_10_1080_00273171_2024_2307529 crossref_primary_10_3389_fneur_2020_610192 crossref_primary_10_3390_jcm11092423 crossref_primary_10_1016_j_hrthm_2024_06_033 crossref_primary_10_3390_jcm12062301 crossref_primary_10_3389_fmed_2023_1177636 crossref_primary_10_1016_j_lanepe_2021_100301 crossref_primary_10_1515_em_2023_0005 crossref_primary_10_1002_sim_10078 crossref_primary_10_1097_EDE_0000000000001633 crossref_primary_10_1177_10983007241275691 crossref_primary_10_1515_em_2019_0003 crossref_primary_10_1111_aogs_14569 crossref_primary_10_1097_MLR_0000000000001457 crossref_primary_10_3389_fendo_2023_1100985 crossref_primary_10_1136_bmjgast_2024_001373 crossref_primary_10_22237_jmasm_1608552120 crossref_primary_10_1177_13524585221085733 crossref_primary_10_1002_pst_2266 crossref_primary_10_1002_pst_2389 crossref_primary_10_1002_pds_5500 crossref_primary_10_1371_journal_pone_0278842 crossref_primary_10_1016_j_diabet_2020_09_005 crossref_primary_10_1186_s13075_024_03285_x crossref_primary_10_1007_s00277_020_04045_y crossref_primary_10_1002_mdc3_13894 crossref_primary_10_1007_s10742_019_00205_4 crossref_primary_10_1002_ejhf_1698 crossref_primary_10_1016_j_xjon_2024_08_020 crossref_primary_10_1161_CIRCINTERVENTIONS_121_010641 crossref_primary_10_1002_acr_24987 crossref_primary_10_1016_j_apmr_2019_06_007 crossref_primary_10_3390_cancers14061410 crossref_primary_10_1002_pds_4808 crossref_primary_10_3389_fphar_2019_00973 crossref_primary_10_1001_jamanetworkopen_2022_34258 crossref_primary_10_1097_NHH_0000000000000980 crossref_primary_10_1111_jep_13211 crossref_primary_10_1093_aje_kwae105 crossref_primary_10_1002_jrsm_1660 crossref_primary_10_1097_AS9_0000000000000159 crossref_primary_10_1186_s12911_023_02345_7 crossref_primary_10_1080_09286586_2024_2399764 crossref_primary_10_1002_sim_9899 crossref_primary_10_1053_j_jrn_2021_05_008 crossref_primary_10_1002_sim_9658 crossref_primary_10_1002_14651858_CD013793 crossref_primary_10_1080_00949655_2022_2089672 crossref_primary_10_1002_ehf2_13790 crossref_primary_10_1016_j_spl_2018_02_044 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 |
Copyright_xml | – notice: The Author(s) 2017 |
DBID | AFRWT CGR CUY CVF ECM EIF NPM |
DOI | 10.1177/0962280217713032 |
DatabaseName | Sage Journals GOLD Open Access 2024 Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Mathematics |
EISSN | 1477-0334 |
EndPage | 19 |
ExternalDocumentID | 28573919 10.1177_0962280217713032 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: G0802403 – fundername: Medical Research Council grantid: MC_UU_12023/21 – fundername: Medical Research Council grantid: MR/M013278/1 |
GroupedDBID | --- -TM .2G .2J .2N 0-V 01A 0R~ 123 1~K 29Q 31S 31U 31X 31Y 31Z 36B 4.4 53G 54M 5RE 5VS 6PF 7X7 88E 88I 8C1 8FE 8FG 8FI 8FJ 8R4 8R5 AABMB AABOD AACKU AACMV AACTG AADUE AAEWN AAGGD AAGLT AAJIQ AAJOX AAJPV AANSI AAPEO AAQDB AAQXH AAQXI AARDL AARIX AATAA AATBZ AAWTL AAYTG ABAWP ABCCA ABCJG ABDLQ ABDWY ABEIX ABFWQ ABHKI ABHQH ABIDT ABJCF ABJIS ABKRH ABLUO ABPGX ABPNF ABQKF ABQXT ABRHV ABTDE ABUJY ABUWG ABVFX ABVVC ABYTW ACARO ACDSZ ACDXX ACFEJ ACFMA ACGBL ACGFS ACGOD ACGZU ACIWK ACJER ACLHI ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUAV ACUIR ACXKE ACXMB ADBBV ADDLC ADEBD ADEIA ADNMO ADNON ADRRZ ADSTG ADTBJ ADUKL ADVBO ADYCS AECGH AECVZ AEDTQ AENEX AEPTA AEQLS AERKM AESZF AEUHG AEWDL AEWHI AEXNY AFEET AFKBI AFKRA AFKRG AFMOU AFQAA AFRWT AFUIA AFWMB AGKLV AGNHF AGQPQ AGWFA AGWNL AHDMH AHHFK AHMBA AJEFB AJMMQ AJUZI AJXAJ ALIPV ALKWR ALMA_UNASSIGNED_HOLDINGS ALSLI AMCVQ AMVHM ANDLU ARALO ARTOV ASOEW ASPBG AUTPY AUVAJ AVWKF AYAKG AZFZN AZQEC B8O B8R B8Z B93 B94 BBRGL BDDNI BENPR BGLVJ BKIIM BPACV BPHCQ BSEHC BVXVI BYIEH C45 CAG CBRKF CCPQU CFDXU COF CORYS CQQTX CS3 DC- DD- DD0 DE- DF0 DO- DOPDO DU5 DV7 DWQXO D~Y EBS EJD EMOBN F5P FEDTE FHBDP FYUFA GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HCIFZ HEHIP HF~ HMCUK HVGLF HZ~ J8X K.F K.J L6V M1P M2P M2S M7S N9A O9- OVD P.B P2P PHGZM PHGZT PQQKQ PROAC PSQYO PTHSS Q1R Q2X Q7K Q7L Q7X Q82 Q83 RIG ROL S01 SASJQ SAUOL SCNPE SDB SFB SFC SFK SFN SFT SGA SGP SGR SGV SGX SGZ SHG SNB SPJ SPV SQCSI STM TEORI TN5 UKHRP YHZ ZONMY ZPPRI ZRKOI AAEJI AAPII AJGYC AJVBE CGR CUY CVF ECM EIF NPM PJZUB POGQB PPXIY PQGLB PRQQA |
ID | FETCH-LOGICAL-c462t-db0e3b1f78d6db0639b7d447a5efeb63e9a5f275825e3a271beb4e3ff62261a53 |
IEDL.DBID | AFRWT |
ISSN | 0962-2802 |
IngestDate | Mon Jul 21 05:50:30 EDT 2025 Tue Jun 17 22:31:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Missing covariates inverse probability of treatment weighting chained equations missingness pattern Rubin’s rules |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-db0e3b1f78d6db0639b7d447a5efeb63e9a5f275825e3a271beb4e3ff62261a53 |
OpenAccessLink | https://journals.sagepub.com/doi/full/10.1177/0962280217713032?utm_source=summon&utm_medium=discovery-provider |
PMID | 28573919 |
PageCount | 17 |
ParticipantIDs | pubmed_primary_28573919 sage_journals_10_1177_0962280217713032 |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: England |
PublicationTitle | Statistical methods in medical research |
PublicationTitleAlternate | Stat Methods Med Res |
PublicationYear | 2019 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Lewis, Schinnar, Bilker 2007; 16 de Groot, Redekop, Sleijfer 2016; 95 Lunceford, Davidian 2004; 23 Blak, Thompson, Dattani 2011; 19 Williamson, Forbes, White 2014; 33 Sulkowski, Cooper, Duggan 2015; 50 Imbens 2000; 87 Penning de Vries, Groenwold 2016; 25 Gelman, Hill 2011; 40 Mitra, Reiter 2012; 0 Neuderth, Schwarz, Gerlich 2016; 16 Bartlett, Seaman, White 2015; 24 Moons, Donders, Stijnen 2006; 59 Rubin 1986; 81 Weber-Schoendorfer, Hoeltzenbein, Wacker 2014; 53 Cole, Hernán 2008; 168 Austin 2007; 26 Rosenbaum, Rubin 1983; 70 Azur, Stuart, Frangakis 2011; 20 Austin 2014; 33 Rubin 1974; 66 An 2010; 40 Gutman, Rubin 2015 Jobarteh, Shiraishi, Malimane 2016; 11 Seaman, White 2014; 43 Rubin 2008; 2 Hayes, Groner 2008; 43 Goel, Aksoy, Gupta 2014; 161 D’Agostino 1998; 17 Franklin, Eddings, Schneeweiss 2015; 38 Cochran, Rubin 1973; 35 Douglas, Evans, Smeeth 2011; 342 Concato, Shah, Horwitz 2000; 342 D’Agostino, Rubin 2000; 95 Hade, Lu 2014; 33 Rosenbaum 1987; 82 Rosenbaum, Rubin 1984; 79 White, Carlin 2010; 29 Hirano, Imbens 2001; 2 Qu, Lipkovich 2009; 28 |
References_xml | – volume: 342 start-page: 1887 year: 2000 end-page: 1892 article-title: Randomized, controlled trials, observational studies, and the hierarchy of research designs publication-title: New Engl J Med – volume: 0 start-page: 1 year: 2012 end-page: 17 article-title: A comparison of two methods of estimating propensity scores after multiple imputation publication-title: Stat Methods Med Res – volume: 43 start-page: 3499 year: 2014 end-page: 3515 article-title: Inverse probability weighting with missing predictors of treatment assignment or missingness publication-title: Commun Stat - Theory Methods – volume: 342 start-page: d1642 year: 2011 end-page: d1642 article-title: Effect of statin treatment on short term mortality after pneumonia episode: cohort study publication-title: BMJ – volume: 23 start-page: 2937 year: 2004 end-page: 2960 article-title: Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study publication-title: Stat Med – volume: 17 start-page: 2265 year: 1998 end-page: 2281 article-title: Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group publication-title: Stat Med – volume: 20 start-page: 40 year: 2011 end-page: 49 article-title: Multiple imputation by chained equations: What is it and how does it work? publication-title: Int J Methods Psychiatr Res – volume: 95 start-page: 121 year: 2016 end-page: 127 article-title: Survival in patients with primary metastatic renal cell carcinoma treated with sunitinib with or without previous cytoreductive nephrectomy: Results from a population-based registry publication-title: Urology – volume: 38 start-page: 589 year: 2015 end-page: 600 article-title: Incorporating linked healthcare claims to improve confounding control in a study of in-hospital medication use publication-title: Drug Saf – volume: 16 start-page: 804 year: 2016 end-page: 804 article-title: Work-related medical rehabilitation in patients with musculoskeletal disorders: the protocol of a propensity score matched effectiveness study (EVA-WMR, DRKS00009780) publication-title: BMC Publ Health – volume: 66 start-page: 688 year: 1974 end-page: 701 article-title: Estimating causal effects of treatments in randomized and nonrandomized studies publication-title: J Educ Psychol – volume: 33 start-page: 74 year: 2014 end-page: 87 article-title: Bias associated with using the estimated propensity score as a regression covariate publication-title: Stat Med – volume: 40 start-page: 1 year: 2011 end-page: 31 article-title: Multiple imputation with diagnostics (mi) in r: Opening windows to the black box publication-title: J Stat Softw – volume: 29 start-page: 2920 year: 2010 end-page: 2931 article-title: Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values publication-title: Stat Med – volume: 43 start-page: 924 year: 2008 end-page: 927 article-title: Using multiple imputation and propensity scores to test the effect of car seats and seat belt usage on injury severity from trauma registry data publication-title: J Pediatr Surg – volume: 81 start-page: 961 year: 1986 end-page: 962 article-title: Comment: Which ifs have causal answers publication-title: J Am Stat Assoc – volume: 79 start-page: 516 year: 1984 end-page: 524 article-title: Reducing bias in observational studies using subclassification on the propensity score publication-title: J Am Stat Assoc – volume: 2 start-page: 259 year: 2001 end-page: 278 article-title: Estimation of causal effects using propensity score weighting: An application to data on right heart catheterization publication-title: Health Serv Outcome Res Methodol – year: 2015 article-title: Estimation of causal effects of binary treatments in unconfounded studies with one continuous covariate publication-title: Stat Methods Med Res – volume: 11 start-page: e0166444 year: 2016 end-page: e0166444 article-title: Community ART support groups in mozambique: The potential of patients as partners in care publication-title: PloS One – volume: 35 start-page: 417 year: 1973 end-page: 446 article-title: Controlling bias in observational studies: A review publication-title: Sankhyā: Indian J Stat Ser A (1961-2002) – volume: 19 start-page: 251 year: 2011 end-page: 255 article-title: Generalisability of The Health Improvement Network (THIN) database: demographics, chronic disease prevalence and mortality rates publication-title: Inform Prim Care – volume: 40 start-page: 151 year: 2010 end-page: 189 article-title: Bayesian propensity score estimators: incorporating uncertainties in propensity scores into causal inference publication-title: Sociol Methodol – volume: 87 start-page: 706 year: 2000 end-page: 710 article-title: The role of the propensity score in estimating dose-response functions publication-title: Biometrika – volume: 59 start-page: 1092 year: 2006 end-page: 1101 article-title: Using the outcome for imputation of missing predictor values was preferred publication-title: J Clin Epidemiol – volume: 161 start-page: 699 year: 2014 end-page: 710 article-title: Renin-angiotensin system blockade therapy after surgical aortic valve replacement for severe aortic stenosis: a cohort study publication-title: Ann Int Med – volume: 50 start-page: 171 year: 2015 end-page: 176 article-title: Does timing of neonatal inguinal hernia repair affect outcomes? publication-title: J Pediatr Surg – volume: 26 start-page: 3078 year: 2007 end-page: 3094 article-title: The performance of different propensity score methods for estimating marginal odds ratios publication-title: Stat Med – volume: 168 start-page: 656 year: 2008 end-page: 664 article-title: Constructing inverse probability weights for marginal structural models publication-title: Am J Epidemiol – volume: 16 start-page: 393 year: 2007 end-page: 401 article-title: Validation studies of the health improvement network (THIN) database for pharmacoepidemiology research publication-title: Pharmacoepidemiol Drug Saf – volume: 2 start-page: 808 year: 2008 end-page: 840 article-title: For objective causal inference, design trumps analysis publication-title: Ann Appl Stat – volume: 28 start-page: 1402 year: 2009 end-page: 1414 article-title: Propensity score estimation with missing values using a multiple imputation missingness pattern (MIMP) approach publication-title: Stat Med – volume: 24 start-page: 462 year: 2015 end-page: 487 article-title: Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model publication-title: Stat Methods Med Res – volume: 82 start-page: 387 year: 1987 end-page: 394 article-title: Model-based direct adjustment publication-title: J Am Stat Assoc – volume: 33 start-page: 1057 year: 2014 end-page: 1069 article-title: A comparison of 12 algorithms for matching on the propensity score publication-title: Stat Med – volume: 53 start-page: 757 year: 2014 end-page: 763 article-title: No evidence for an increased risk of adverse pregnancy outcome after paternal low-dose methotrexate: an observational cohort study publication-title: Rheumatology (Oxford, England) – volume: 70 start-page: 41 year: 1983 end-page: 55 article-title: The central role of the propensity score in observational studies for causal effects publication-title: Biometrika – volume: 95 start-page: 749 year: 2000 end-page: 759 article-title: Estimating and using propensity scores with partially missing data publication-title: J Am Stat Assoc – volume: 25 start-page: 3066 year: 2016 end-page: 3068 article-title: Comments on propensity score matching following multiple imputation publication-title: Stat Methods Med Res – volume: 33 start-page: 721 year: 2014 end-page: 737 article-title: Variance reduction in randomised trials by inverse probability weighting using the propensity score publication-title: Stat Med |
SSID | ssj0007049 |
Score | 2.5826807 |
Snippet | Inverse probability of treatment weighting is a popular propensity score-based approach to estimate marginal treatment effects in observational studies at risk... |
SourceID | pubmed sage |
SourceType | Index Database Publisher |
StartPage | 3 |
SubjectTerms | Bias Data Interpretation, Statistical Humans Hydroxymethylglutaryl-CoA Reductase Inhibitors - therapeutic use Models, Statistical Observational Studies as Topic Pneumonia - mortality Probability Propensity Score Treatment Outcome |
Title | Propensity score analysis with partially observed covariates: How should multiple imputation be used? |
URI | https://journals.sagepub.com/doi/full/10.1177/0962280217713032 https://www.ncbi.nlm.nih.gov/pubmed/28573919 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7sAjIfROdtXkYexLe6Nm2a1ZcxxDGEjiEb7q00bYrC1g3bIvv35vQyh774WkqTnpwkX845-T6AO6FHoWSW0CwfJcwirmuOEzANU17q0MK5mas1uBN7PLdeFmxRg7i6C1NaMHnAsirVo3yxxtmN0ehemWTsKdyNNC4KTnNcg-kgS1deEe2uRDXwCaansxVmtgOsh9xq1e22OjQpt5mayM3h6PVttlu7eQmY1fc1bOAnsfmnzb0ta68GLN-WRsdwVOJJMiwc4ARqMm7DobsjY03acOCW-fM2tBBbFtTMpyCnGIiPsSiDJMhmSfySoYRgdJZs0Kv85XJL1gJjtzIk6gfV2Rrh6SMZr79I8o4K2aSqSiQfKBGRjzURkmSJDAdnMB89z57GWqm6oAWWTVMtFLo0hRHxPmpNIYIRPLQs7jMZSWGb0vFZRNUxgzJp-pQbQgpLmlGkzGMbPjPPoRGvY3kJhPYDJpjCcAYiAT3wA90JnCjE-0V6GIgOXBQm9DYFtYZH-4ybjuF04B5t6lXu4BkVLfmvUbj674vX0FJYxymiJzfQSD8zeavwRCq6pRN0oT6Zut9qHMdQ |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6kBa0H0fqqzz2It0geu9muFyliidoWkRZ7C7vJBoWSFNMq_nt3krQWvXjfhDCzmflmdvb7AC6UncSaUWVRiRJmCbctISJm4ZGXKVo49wq1hv7AD0b0YczGK1JflQXzKxyrMl9UBOvl341MScJHBheDpDmGXxN96xSTVg3qne7zy3AZhnmFfc16Cx_4OaP8846V7LMyzlVkmO42bFXQkHRKX-7Amk6bsNlf8qrmTVjvV0fhTWggTCxZlndBP2FPPcX5CpIjMSWRFdkIwUYrmeIGkZPJF8kUtmF1TKLsw5TJiDSvSZB9kvwVxa7JYsCQvKHaQ-E2ojSZ5zq-2YNR9254G1iVgIIVUd-dWbGytaechLdRNgrBiOIxpVwynWjle1pIlrimYnCZ9qTLHaUV1V6SGPP4jmTePtTSLNWHQNx2xBQzcMzBpG5HMrJFJJIYrwrZcaRacFCaMJyWLBmh22bcE45owSXaNFx4NnQWDOO_vHD034XnsBEM-72wdz94PIaGgTCibIqcQG32PtenBibM1Fm1Ib4B8-CzrQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6khVIPovVVn3sQb7F5bbbxIkUt9dFSpEVvIZvdRaEkxbSK_96dZFuLXrxvQpjZzHw7M_t9AGfcVkJSn1t-jBJmitlWGCbUwpaXPrQw5hVqDf1B0Bv79y_0xczm4F0YY8H8Aseq9BcVwRr_7qlQLdNjbGnYjSwuGk0zDME6Ald9X6fGClQ73afn0TIUM4N_9XoLH_jpU_55x0oGWhnpKrJMdxM2DDwkndKfW7Am0was95fcqnkDan3TDm9AHaFiybS8DXKIdfUUZyxIjuSUJDaEIwSLrWSKmySeTL5IxrEUKwVJsg99VEa0eUl62SfJX1HwmiyGDMkbKj4UriNcknkuxdUOjLu3o-ueZUQUrMQP3JkluC097ijWRukoBCScCW2tmEoleeDJMKbK1acGl0ovdpnDJfelp5Q2T-DE1NuFSpqlch-I204opxqSOZjY7SRO7DAJlcDrQrZIeBP2ShNG05IpI3LblHmhEzbhHG0aLbwbOQuW8V9eOPjvwlOoDW-60ePd4OEQ6hrFhGVd5Agqs_e5PNZIYcZPzH74BsiKtL0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Propensity+score+analysis+with+partially+observed+covariates%3A+How+should+multiple+imputation+be+used%3F&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Leyrat%2C+Cl%C3%A9mence&rft.au=Seaman%2C+Shaun+R&rft.au=White%2C+Ian+R&rft.au=Douglas%2C+Ian&rft.date=2019-01-01&rft.pub=SAGE+Publications&rft.issn=0962-2802&rft.eissn=1477-0334&rft.volume=28&rft.issue=1&rft.spage=3&rft.epage=19&rft_id=info:doi/10.1177%2F0962280217713032&rft.externalDocID=10.1177_0962280217713032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-2802&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-2802&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-2802&client=summon |