New opportunities in synthetic macrocyclic arenes
Synthetic macrocyclic receptors generally display unique geometries, preorganized cavities, and tunable binding affinities, which facilitate their application in numerous fields including molecular recognition and self-assembly. Calix[ n ]arenes and pillar[ n ]arenes are very prevalent synthetic mac...
Saved in:
Published in | Chemical communications (Cambridge, England) Vol. 55; no. 11; pp. 1533 - 1543 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
31.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Synthetic macrocyclic receptors generally display unique geometries, preorganized cavities, and tunable binding affinities, which facilitate their application in numerous fields including molecular recognition and self-assembly. Calix[
n
]arenes and pillar[
n
]arenes are very prevalent synthetic macrocyclic arenes, whose syntheses, host-guest properties, and supramolecular functions have been intensively studied. In recent years, some new families of synthetic macrocyclic arenes closely related to calix[
n
]arenes and pillar[
n
]arenes have emerged and represent new opportunities in modern supramolecular chemistry. Therefore, in this feature article, we present a comprehensive discussion on some newly designed, versatile macrocyclic arene receptors that sprang up during the past decade, focusing on their syntheses, structures, functionalization, and host-guest properties. Future perspectives of synthetic macrocyclic arene chemistry are also given. We hope that this feature article will be a timely and useful reference for those who are exploring new opportunities in functional macrocycles.
This feature article summarizes the latest research progress in the design and development of new synthetic macrocyclic arenes. |
---|---|
AbstractList | Synthetic macrocyclic receptors generally display unique geometries, preorganized cavities, and tunable binding affinities, which facilitate their application in numerous fields including molecular recognition and self-assembly. Calix[
n
]arenes and pillar[
n
]arenes are very prevalent synthetic macrocyclic arenes, whose syntheses, host-guest properties, and supramolecular functions have been intensively studied. In recent years, some new families of synthetic macrocyclic arenes closely related to calix[
n
]arenes and pillar[
n
]arenes have emerged and represent new opportunities in modern supramolecular chemistry. Therefore, in this feature article, we present a comprehensive discussion on some newly designed, versatile macrocyclic arene receptors that sprang up during the past decade, focusing on their syntheses, structures, functionalization, and host-guest properties. Future perspectives of synthetic macrocyclic arene chemistry are also given. We hope that this feature article will be a timely and useful reference for those who are exploring new opportunities in functional macrocycles.
This feature article summarizes the latest research progress in the design and development of new synthetic macrocyclic arenes. Synthetic macrocyclic receptors generally display unique geometries, preorganized cavities, and tunable binding affinities, which facilitate their application in numerous fields including molecular recognition and self-assembly. Calix[n]arenes and pillar[n]arenes are very prevalent synthetic macrocyclic arenes, whose syntheses, host-guest properties, and supramolecular functions have been intensively studied. In recent years, some new families of synthetic macrocyclic arenes closely related to calix[n]arenes and pillar[n]arenes have emerged and represent new opportunities in modern supramolecular chemistry. Therefore, in this feature article, we present a comprehensive discussion on some newly designed, versatile macrocyclic arene receptors that sprang up during the past decade, focusing on their syntheses, structures, functionalization, and host-guest properties. Future perspectives of synthetic macrocyclic arene chemistry are also given. We hope that this feature article will be a timely and useful reference for those who are exploring new opportunities in functional macrocycles. Synthetic macrocyclic receptors generally display unique geometries, preorganized cavities, and tunable binding affinities, which facilitate their application in numerous fields including molecular recognition and self-assembly. Calix[n]arenes and pillar[n]arenes are very prevalent synthetic macrocyclic arenes, whose syntheses, host-guest properties, and supramolecular functions have been intensively studied. In recent years, some new families of synthetic macrocyclic arenes closely related to calix[n]arenes and pillar[n]arenes have emerged and represent new opportunities in modern supramolecular chemistry. Therefore, in this feature article, we present a comprehensive discussion on some newly designed, versatile macrocyclic arene receptors that sprang up during the past decade, focusing on their syntheses, structures, functionalization, and host-guest properties. Future perspectives of synthetic macrocyclic arene chemistry are also given. We hope that this feature article will be a timely and useful reference for those who are exploring new opportunities in functional macrocycles.Synthetic macrocyclic receptors generally display unique geometries, preorganized cavities, and tunable binding affinities, which facilitate their application in numerous fields including molecular recognition and self-assembly. Calix[n]arenes and pillar[n]arenes are very prevalent synthetic macrocyclic arenes, whose syntheses, host-guest properties, and supramolecular functions have been intensively studied. In recent years, some new families of synthetic macrocyclic arenes closely related to calix[n]arenes and pillar[n]arenes have emerged and represent new opportunities in modern supramolecular chemistry. Therefore, in this feature article, we present a comprehensive discussion on some newly designed, versatile macrocyclic arene receptors that sprang up during the past decade, focusing on their syntheses, structures, functionalization, and host-guest properties. Future perspectives of synthetic macrocyclic arene chemistry are also given. We hope that this feature article will be a timely and useful reference for those who are exploring new opportunities in functional macrocycles. Synthetic macrocyclic receptors generally display unique geometries, preorganized cavities, and tunable binding affinities, which facilitate their application in numerous fields including molecular recognition and self-assembly. Calix[ n ]arenes and pillar[ n ]arenes are very prevalent synthetic macrocyclic arenes, whose syntheses, host–guest properties, and supramolecular functions have been intensively studied. In recent years, some new families of synthetic macrocyclic arenes closely related to calix[ n ]arenes and pillar[ n ]arenes have emerged and represent new opportunities in modern supramolecular chemistry. Therefore, in this feature article, we present a comprehensive discussion on some newly designed, versatile macrocyclic arene receptors that sprang up during the past decade, focusing on their syntheses, structures, functionalization, and host–guest properties. Future perspectives of synthetic macrocyclic arene chemistry are also given. We hope that this feature article will be a timely and useful reference for those who are exploring new opportunities in functional macrocycles. |
Author | Yang, Ying-Wei Wu, Jia-Rui |
AuthorAffiliation | Jilin University College of Chemistry State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC) 2699 Qianjin Street |
AuthorAffiliation_xml | – name: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry – name: 2699 Qianjin Street – name: Jilin University – name: College of Chemistry – name: International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC) |
Author_xml | – sequence: 1 givenname: Jia-Rui surname: Wu fullname: Wu, Jia-Rui – sequence: 2 givenname: Ying-Wei surname: Yang fullname: Yang, Ying-Wei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30628605$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0UtLAzEQAOAgirXqxbtS8SLCah6b17EsvkD0ouBtSbNZTNlm1ySL9N-b2lqhiOaSgflmYGaGYNu1zgBwhOAlgkReaaE1lITnagvsIcLyjObidXsRU5lxktMBGIYwhekhKnbBgECGBYN0D6BH8zFqu671sXc2WhNG1o3C3MU3E60ezZT2rZ7rJsXKG2fCAdipVRPM4erfBy8318_FXfbwdHtfjB8ynTMcs0qRqpaswoJQZLBk3NCaTWAF8xxRDZWgtGIUKV5hhkitFeYGC84nNGc1r8k-OF_27Xz73psQy5kN2jSNcqbtQ4kxTtMLjun_FHFJIJeIJXq2Qadt710aZKFSOyHlQp2sVD-ZmarsvJ0pPy-_95bAxRKk7YTgTb0mCJaLo5SFKIqvo4wThhtY26iibV30yja_lxwvS3zQ69Y_d07507_yZVfV5BPyJ6CM |
CitedBy_id | crossref_primary_10_1039_D0CC03945D crossref_primary_10_3390_molecules27196259 crossref_primary_10_1016_j_tetlet_2019_151389 crossref_primary_10_1007_s12039_020_01862_6 crossref_primary_10_1039_D3SC00571B crossref_primary_10_1016_j_molstruc_2024_139605 crossref_primary_10_1002_ange_202218142 crossref_primary_10_1016_j_dyepig_2024_112105 crossref_primary_10_1039_D1CE01003D crossref_primary_10_1016_j_dyepig_2022_110712 crossref_primary_10_1039_C9CE01326A crossref_primary_10_1002_ange_202424276 crossref_primary_10_1039_C9SM01126A crossref_primary_10_1016_j_cclet_2023_108754 crossref_primary_10_1021_jacs_4c14424 crossref_primary_10_1039_D4CE01150C crossref_primary_10_1021_acsanm_2c01620 crossref_primary_10_1016_j_cclet_2022_108088 crossref_primary_10_1002_adma_202410054 crossref_primary_10_1002_anie_201913340 crossref_primary_10_1021_acs_joc_3c01197 crossref_primary_10_1016_j_molstruc_2022_133220 crossref_primary_10_1002_ange_201916004 crossref_primary_10_1021_acs_orglett_4c01243 crossref_primary_10_1021_acs_orglett_9b01827 crossref_primary_10_1039_C9QM00428A crossref_primary_10_1039_D4OB01569J crossref_primary_10_1002_adma_201904824 crossref_primary_10_1246_cl_200887 crossref_primary_10_1002_asia_202400106 crossref_primary_10_1007_s13204_023_02914_2 crossref_primary_10_1039_D1PY00238D crossref_primary_10_1021_acs_orglett_4c04403 crossref_primary_10_1039_D5CC00627A crossref_primary_10_1016_j_cclet_2024_110600 crossref_primary_10_1021_jacs_3c12093 crossref_primary_10_1016_j_ccr_2024_216063 crossref_primary_10_1016_j_dyepig_2021_109203 crossref_primary_10_1021_acs_cgd_3c00677 crossref_primary_10_1002_ange_201911965 crossref_primary_10_1016_j_molstruc_2022_134043 crossref_primary_10_1016_j_matt_2019_03_005 crossref_primary_10_1246_cl_200773 crossref_primary_10_1002_smll_202003490 crossref_primary_10_1016_j_cclet_2020_06_041 crossref_primary_10_1021_acs_orglett_0c02357 crossref_primary_10_1039_D0CE01576H crossref_primary_10_1016_j_rechem_2024_101588 crossref_primary_10_1021_acs_orglett_2c00272 crossref_primary_10_1007_s10847_019_00956_0 crossref_primary_10_3390_polym15234543 crossref_primary_10_1021_acsmacrolett_9b00621 crossref_primary_10_1016_j_snb_2021_129905 crossref_primary_10_1021_acs_orglett_3c01931 crossref_primary_10_1039_D3CS00002H crossref_primary_10_1039_D1CC00498K crossref_primary_10_1002_chem_202001450 crossref_primary_10_1039_D4QO00407H crossref_primary_10_1039_D0TC03797D crossref_primary_10_1039_D0CS00341G crossref_primary_10_1038_s41570_023_00531_9 crossref_primary_10_1039_D4CC05660D crossref_primary_10_1002_ange_202015162 crossref_primary_10_1016_j_chempr_2023_05_036 crossref_primary_10_1002_anie_202015162 crossref_primary_10_1002_chem_202400743 crossref_primary_10_3390_molecules27103162 crossref_primary_10_1016_j_actbio_2021_07_050 crossref_primary_10_1039_D1PY01397A crossref_primary_10_1039_D1CE00722J crossref_primary_10_1039_D1OB00222H crossref_primary_10_1016_j_cclet_2019_03_035 crossref_primary_10_1039_D1NJ04920H crossref_primary_10_1021_acs_joc_4c02864 crossref_primary_10_1002_cjoc_202000738 crossref_primary_10_1002_cplu_202000152 crossref_primary_10_1002_slct_202202564 crossref_primary_10_1039_D0NA00938E crossref_primary_10_1080_10610278_2021_1908546 crossref_primary_10_1039_C9QM00741E crossref_primary_10_1039_D0QO00670J crossref_primary_10_1002_adfm_202006168 crossref_primary_10_1021_acs_orglett_9b04607 crossref_primary_10_1021_acs_orglett_4c02665 crossref_primary_10_1021_acsomega_0c04660 crossref_primary_10_1016_j_ccr_2020_213425 crossref_primary_10_3389_fchem_2020_00262 crossref_primary_10_1002_cplu_202200310 crossref_primary_10_1002_chem_201902700 crossref_primary_10_1002_ange_201913340 crossref_primary_10_1016_j_cclet_2020_08_035 crossref_primary_10_1002_anie_201916004 crossref_primary_10_1021_acs_accounts_2c00555 crossref_primary_10_1021_acs_chemmater_3c03322 crossref_primary_10_1002_chem_202002874 crossref_primary_10_1038_s41467_020_19677_x crossref_primary_10_1021_jacsau_4c00097 crossref_primary_10_6023_cjoc202206018 crossref_primary_10_1039_D1CC06788E crossref_primary_10_1039_D0OB00763C crossref_primary_10_1016_j_ccr_2024_215762 crossref_primary_10_1002_ijch_201900032 crossref_primary_10_1039_D1CC04400A crossref_primary_10_1007_s11172_020_2843_2 crossref_primary_10_1016_j_cclet_2025_110896 crossref_primary_10_1080_10610278_2019_1632457 crossref_primary_10_3390_inorganics11110435 crossref_primary_10_1021_jacs_9b01546 crossref_primary_10_1002_anie_201911965 crossref_primary_10_1002_anie_202218142 crossref_primary_10_1039_C9QO00329K crossref_primary_10_1002_adma_202301721 crossref_primary_10_1016_j_cclet_2019_10_023 crossref_primary_10_1039_D1NJ05209H crossref_primary_10_1007_s10847_020_00986_z crossref_primary_10_1002_anie_202424276 crossref_primary_10_1039_D0CC03682J crossref_primary_10_1039_D0OB00411A crossref_primary_10_1016_j_inoche_2022_109643 crossref_primary_10_1021_jacsau_1c00343 crossref_primary_10_1016_j_dyepig_2021_109828 crossref_primary_10_1021_jacs_9b03559 crossref_primary_10_1039_D3QO00399J |
Cites_doi | 10.1021/ar200108c 10.1039/C8CC08252A 10.1016/0040-4020(95)00984-1 10.1039/C6CC05876K 10.1021/acs.orglett.7b02557 10.1021/acs.orglett.6b03005 10.1039/a706280j 10.1021/jacs.7b01937 10.1021/ar020254k 10.1021/cr960385x 10.1021/acs.orglett.6b02500 10.1039/C5CS00274E 10.1021/jo402884a 10.1021/jo00419a052 10.1039/C7CC06767D 10.1002/anie.201707869 10.1016/j.tetlet.2016.07.077 10.1002/chem.201404470 10.1021/ar2003418 10.1021/acs.orglett.7b04045 10.1002/anie.200460675 10.1039/c2cs35075k 10.1021/acs.chemrev.5b00341 10.1039/C1CS15164A 10.1002/cber.19440770322 10.1039/C8CS00037A 10.1039/C5CS00243E 10.1039/C4SC02422B 10.1021/acs.chemrev.5b00765 10.1021/acs.accounts.8b00255 10.1021/acs.joc.5b00099 10.1021/ja00285a049 10.1021/ar500022f 10.1039/C6CC08967D 10.1002/anie.201705451 10.1039/C6CC08113D 10.1021/acs.joc.6b00252 10.1039/C7NJ00039A 10.1021/ar00089a003 10.1021/ja045218q 10.1039/C5CC00225G 10.1039/C6RA18691B 10.1039/C6NJ01736C 10.1021/ol060823e 10.1002/ejoc.200300492 10.1021/ja00986a052 10.1002/asia.201601373 10.1080/1061027031000103005 10.1016/j.chempr.2018.05.015 10.1021/cr8002196 10.1016/j.tet.2003.12.028 10.1021/ar500222w 10.1039/C6CC09038A 10.1039/C5CC09088A 10.1002/chem.201204097 10.1039/b819333a 10.1002/anie.201502912 10.1021/acs.macromol.8b01632 10.1039/C7CC08365C 10.1002/anie.200351975 10.1039/C7CC08562A 10.1039/C7CS00185A 10.1038/ncomms2758 10.1126/science.8511582 10.1039/C6CC01892K 10.1038/nchem.1715 10.1039/C5CC01470K 10.1039/C4CS00390J 10.1021/ja01002a035 10.1007/s11426-018-9362-0 10.1002/ejoc.201800112 10.1039/C5SC03251B 10.1038/nchem.1668 10.1039/C4CC03170A 10.1039/C6CC01052K 10.1021/jacs.8b09157 10.1021/ja711260m 10.1038/368229a0 10.1002/anie.201805980 10.1039/b920032k 10.1021/acs.orglett.7b01511 10.1039/a706018a 10.1039/b718356a 10.1021/cr100242s 10.1002/advs.201800141 10.1021/cr068046j |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/c8cc09374a |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-548X |
EndPage | 1543 |
ExternalDocumentID | 30628605 10_1039_C8CC09374A c8cc09374a |
Genre | Journal Article |
GroupedDBID | - 0-7 0R 1TJ 29B 2WC 4.4 53G 5GY 70 705 70J 7~J AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 DU5 DZ EBS ECGLT EE0 EF- EJD F5P GNO H13 HZ H~N IDZ IH2 IPNFZ J3I JG M4U N9A O9- P2P R7B R7C R7D RCNCU RIG RPMJG RRA RRC RSCEA SJN SKA SKF SKH SLH TN5 TWZ UPT VH6 VQA WH7 X X7L --- -DZ -~X 0R~ 6J9 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ACBEA ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP HZ~ R56 RAOCF -JG NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c462t-da3df96d28351e2967e5f6b0d04415c0a855d651a7d2613fca27e2877b546f7f3 |
ISSN | 1359-7345 1364-548X |
IngestDate | Fri Jul 11 10:04:46 EDT 2025 Fri Jul 11 07:26:19 EDT 2025 Sun Jun 29 12:31:04 EDT 2025 Wed Feb 19 02:35:22 EST 2025 Thu Apr 24 23:08:11 EDT 2025 Tue Jul 01 01:14:24 EDT 2025 Thu May 30 17:46:26 EDT 2019 Fri Apr 08 11:20:08 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c462t-da3df96d28351e2967e5f6b0d04415c0a855d651a7d2613fca27e2877b546f7f3 |
Notes | Jia-Rui Wu was born in China in 1992. He obtained his BSc degree from Lanzhou University in 2014. Then, he joined the research group directed by Prof. Ying-Wei Yang at Jilin University to pursue his PhD in organic chemistry. His current research interests include the design and synthesis of novel macrocyclic arenes and acyclic molecular hosts for molecular recognition, crystal engineering, and supramolecular assembly. Ying-Wei Yang received his degrees (BSc in 2000 and PhD in 2005) from Nankai University and gained postdoctoral training at Arizona State University, UCLA, and UC Irvine from 2005 to 2010. He became an Associate Professor of Chemistry at Jilin University in 2011 and was promoted to Full Professor in 2014. He has published over 150 peer-reviewed scientific papers. His research centers on organic supramolecular chemistry, multifunctional hybrid materials, and stimuli-responsive polymers. He was amongst the world's most Highly Cited Researchers for 2017 by Clarivate Analytics and the 2017 Chinese Most Cited Researchers by Elsevier. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2994-7770 0000-0001-8839-8161 |
PMID | 30628605 |
PQID | 2173878996 |
PQPubID | 2047502 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2179307916 pubmed_primary_30628605 proquest_miscellaneous_2221038725 crossref_primary_10_1039_C8CC09374A rsc_primary_c8cc09374a proquest_journals_2173878996 crossref_citationtrail_10_1039_C8CC09374A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190131 |
PublicationDateYYYYMMDD | 2019-01-31 |
PublicationDate_xml | – month: 1 year: 2019 text: 20190131 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical communications (Cambridge, England) |
PublicationTitleAlternate | Chem Commun (Camb) |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wang (C8CC09374A-(cit58f)/*[position()=1]) 2018; 51 Swager (C8CC09374A-(cit32b)/*[position()=1]) 2018 Chun (C8CC09374A-(cit33)/*[position()=1]) 2013; 4 Jia (C8CC09374A-(cit55)/*[position()=1]) 2016; 52 Kumar (C8CC09374A-(cit42)/*[position()=1]) 2018; 20 Kim (C8CC09374A-(cit43)/*[position()=1]) 2017; 19 Kumari (C8CC09374A-(cit30)/*[position()=1]) 2014; 47 Thuéry (C8CC09374A-(cit20)/*[position()=1]) 2003; 15 Katz (C8CC09374A-(cit22)/*[position()=1]) 2006; 8 Zhou (C8CC09374A-(cit48)/*[position()=1]) 2016; 6 Atwood (C8CC09374A-(cit10)/*[position()=1]) 1994; 368 Barrow (C8CC09374A-(cit8a)/*[position()=1]) 2015; 115 Qiao (C8CC09374A-(cit59e)/*[position()=1]) 2017; 139 Cragg (C8CC09374A-(cit9c)/*[position()=1]) 2012; 41 Wang (C8CC09374A-(cit21)/*[position()=1]) 2004; 43 Ma (C8CC09374A-(cit45)/*[position()=1]) 2016; 11 Feng (C8CC09374A-(cit19d)/*[position()=1]) 2018; 54 Král (C8CC09374A-(cit25)/*[position()=1]) 1998 Gale (C8CC09374A-(cit26)/*[position()=1]) 1998 Boinski (C8CC09374A-(cit38)/*[position()=1]) 2015; 80 Hargrove (C8CC09374A-(cit2)/*[position()=1]) 2011; 111 Qiao (C8CC09374A-(cit59c)/*[position()=1]) 2016; 52 Sathiyajith (C8CC09374A-(cit19b)/*[position()=1]) 2017; 53 Xue (C8CC09374A-(cit17a)/*[position()=1]) 2012; 45 Kosiorek (C8CC09374A-(cit34)/*[position()=1]) 2017; 53 Zhang (C8CC09374A-(cit15)/*[position()=1]) 2016; 52 Gao (C8CC09374A-(cit51)/*[position()=1]) 2016; 52 Jie (C8CC09374A-(cit3b)/*[position()=1]) 2015; 44 Jia (C8CC09374A-(cit54)/*[position()=1]) 2015; 6 Gutsche (C8CC09374A-(cit7c)/*[position()=1]) 1978; 43 Cafeo (C8CC09374A-(cit24)/*[position()=1]) 2004; 60 Lhoták (C8CC09374A-(cit23)/*[position()=1]) 2004 Shetty (C8CC09374A-(cit32c)/*[position()=1]) 2018 Chen (C8CC09374A-(cit19c)/*[position()=1]) 2017; 53 Ramaiah (C8CC09374A-(cit5b)/*[position()=1]) 2010; 39 Pedersen (C8CC09374A-(cit4a)/*[position()=1]) 1967; 89 Jie (C8CC09374A-(cit17b)/*[position()=1]) 2018; 51 Lee (C8CC09374A-(cit8c)/*[position()=1]) 2003; 36 Jia (C8CC09374A-(cit56)/*[position()=1]) 2016; 53 Wisner (C8CC09374A-(cit59b)/*[position()=1]) 2013; 5 Kim (C8CC09374A-(cit11)/*[position()=1]) 2007; 107 Yang (C8CC09374A-(cit3c)/*[position()=1]) 2014; 47 Zhou (C8CC09374A-(cit46)/*[position()=1]) 2015; 51 Wang (C8CC09374A-(cit58b)/*[position()=1]) 2012; 45 Ghasemabadi (C8CC09374A-(cit5c)/*[position()=1]) 2015; 44 Timmerman (C8CC09374A-(cit29)/*[position()=1]) 1996; 52 Yao (C8CC09374A-(cit57)/*[position()=1]) 2018; 140 Kondratowicz (C8CC09374A-(cit36c)/*[position()=1]) 2014; 20 Lehn (C8CC09374A-(cit1)/*[position()=1]) 1993; 260 Li (C8CC09374A-(cit53)/*[position()=1]) 2017; 56 Zinke (C8CC09374A-(cit7b)/*[position()=1]) 1944; 77 Boinski (C8CC09374A-(cit40)/*[position()=1]) 2017; 41 Maes (C8CC09374A-(cit58a)/*[position()=1]) 2008; 37 Lagona (C8CC09374A-(cit8b)/*[position()=1]) 2005; 44 Song (C8CC09374A-(cit9a)/*[position()=1]) 2018; 4 Pia̧tek (C8CC09374A-(cit36b)/*[position()=1]) 2004; 126 Yang (C8CC09374A-(cit28)/*[position()=1]) 2016; 57 Schneebeli (C8CC09374A-(cit31)/*[position()=1]) 2013; 19 Ikeda (C8CC09374A-(cit13)/*[position()=1]) 1997; 97 Gutsche (C8CC09374A-(cit7a)/*[position()=1]) 1983; 16 Zafrani (C8CC09374A-(cit35)/*[position()=1]) 2017; 19 Yang (C8CC09374A-(cit36a)/*[position()=1]) 2016; 81 Zhou (C8CC09374A-(cit41)/*[position()=1]) 2016; 52 Chen (C8CC09374A-(cit44)/*[position()=1]) 2015; 6 Zhang (C8CC09374A-(cit18a)/*[position()=1]) 2018; 47 Liu (C8CC09374A-(cit3a)/*[position()=1]) 2017; 46 Zhang (C8CC09374A-(cit58c)/*[position()=1]) 2014; 79 Pedersen (C8CC09374A-(cit4b)/*[position()=1]) 1967; 89 Chen (C8CC09374A-(cit27)/*[position()=1]) 2013 Zhang (C8CC09374A-(cit58d)/*[position()=1]) 2015; 54 Boinski (C8CC09374A-(cit39)/*[position()=1]) 2016; 40 Li (C8CC09374A-(cit19a)/*[position()=1]) 2014; 50 Song (C8CC09374A-(cit18b)/*[position()=1]) 2015; 44 Homden (C8CC09374A-(cit14)/*[position()=1]) 2008; 108 Ma (C8CC09374A-(cit49)/*[position()=1]) 2016; 18 Dai (C8CC09374A-(cit50)/*[position()=1]) 2017; 53 Wu (C8CC09374A-(cit52)/*[position()=1]) 2018 Wang (C8CC09374A-(cit58e)/*[position()=1]) 2018; 5 Lee (C8CC09374A-(cit59a)/*[position()=1]) 2013; 5 Zhao (C8CC09374A-(cit59d)/*[position()=1]) 2017; 56 Ma (C8CC09374A-(cit47)/*[position()=1]) 2015; 51 Guo (C8CC09374A-(cit12)/*[position()=1]) 2012; 41 Ogoshi (C8CC09374A-(cit16)/*[position()=1]) 2008; 130 Stoddart (C8CC09374A-(cit5a)/*[position()=1]) 2009; 38 Bell (C8CC09374A-(cit6)/*[position()=1]) 1986; 108 Ogoshi (C8CC09374A-(cit9b)/*[position()=1]) 2016; 116 Zhu (C8CC09374A-(cit37)/*[position()=1]) 2016; 18 Wu (C8CC09374A-(cit32a)/*[position()=1]) 2018; 57 |
References_xml | – volume: 45 start-page: 182 year: 2012 ident: C8CC09374A-(cit58b)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar200108c – volume: 54 start-page: 13626 year: 2018 ident: C8CC09374A-(cit19d)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC08252A – volume: 52 start-page: 2663 year: 1996 ident: C8CC09374A-(cit29)/*[position()=1] publication-title: Tetrahedron doi: 10.1016/0040-4020(95)00984-1 – volume: 52 start-page: 12685 year: 2016 ident: C8CC09374A-(cit15)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC05876K – volume: 19 start-page: 5509 year: 2017 ident: C8CC09374A-(cit43)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/acs.orglett.7b02557 – volume: 18 start-page: 5740 year: 2016 ident: C8CC09374A-(cit49)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/acs.orglett.6b03005 – start-page: 1 year: 1998 ident: C8CC09374A-(cit26)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/a706280j – volume: 139 start-page: 6226 year: 2017 ident: C8CC09374A-(cit59e)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01937 – volume: 36 start-page: 621 year: 2003 ident: C8CC09374A-(cit8c)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar020254k – volume: 97 start-page: 1713 year: 1997 ident: C8CC09374A-(cit13)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr960385x – volume: 18 start-page: 5054 year: 2016 ident: C8CC09374A-(cit37)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/acs.orglett.6b02500 – volume: 44 start-page: 6494 year: 2015 ident: C8CC09374A-(cit5c)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00274E – volume: 79 start-page: 2729 year: 2014 ident: C8CC09374A-(cit58c)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo402884a – volume: 43 start-page: 4905 year: 1978 ident: C8CC09374A-(cit7c)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo00419a052 – volume: 53 start-page: 12096 year: 2017 ident: C8CC09374A-(cit50)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC06767D – volume: 56 start-page: 13083 year: 2017 ident: C8CC09374A-(cit59d)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201707869 – volume: 57 start-page: 3978 year: 2016 ident: C8CC09374A-(cit28)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2016.07.077 – volume: 20 start-page: 14981 year: 2014 ident: C8CC09374A-(cit36c)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201404470 – volume: 45 start-page: 1294 year: 2012 ident: C8CC09374A-(cit17a)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar2003418 – volume: 20 start-page: 1295 year: 2018 ident: C8CC09374A-(cit42)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/acs.orglett.7b04045 – volume: 44 start-page: 4844 year: 2005 ident: C8CC09374A-(cit8b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200460675 – volume: 41 start-page: 5907 year: 2012 ident: C8CC09374A-(cit12)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35075k – volume: 115 start-page: 12320 year: 2015 ident: C8CC09374A-(cit8a)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00341 – volume: 41 start-page: 597 year: 2012 ident: C8CC09374A-(cit9c)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15164A – volume: 77 start-page: 264 year: 1944 ident: C8CC09374A-(cit7b)/*[position()=1] publication-title: Chem. Ber. doi: 10.1002/cber.19440770322 – volume: 47 start-page: 5491 year: 2018 ident: C8CC09374A-(cit18a)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00037A – volume: 44 start-page: 3474 year: 2015 ident: C8CC09374A-(cit18b)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00243E – volume: 6 start-page: 197 year: 2015 ident: C8CC09374A-(cit44)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C4SC02422B – volume: 116 start-page: 7937 year: 2016 ident: C8CC09374A-(cit9b)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00765 – volume: 51 start-page: 2064 year: 2018 ident: C8CC09374A-(cit17b)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00255 – volume: 80 start-page: 3488 year: 2015 ident: C8CC09374A-(cit38)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/acs.joc.5b00099 – volume: 108 start-page: 8109 year: 1986 ident: C8CC09374A-(cit6)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00285a049 – volume: 47 start-page: 1950 year: 2014 ident: C8CC09374A-(cit3c)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar500022f – volume: 53 start-page: 677 year: 2017 ident: C8CC09374A-(cit19b)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC08967D – volume: 56 start-page: 9473 year: 2017 ident: C8CC09374A-(cit53)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201705451 – volume: 52 start-page: 13675 year: 2016 ident: C8CC09374A-(cit59c)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC08113D – volume: 81 start-page: 2974 year: 2016 ident: C8CC09374A-(cit36a)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/acs.joc.6b00252 – volume: 41 start-page: 3387 year: 2017 ident: C8CC09374A-(cit40)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C7NJ00039A – volume: 16 start-page: 161 year: 1983 ident: C8CC09374A-(cit7a)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar00089a003 – volume: 126 start-page: 16073 year: 2004 ident: C8CC09374A-(cit36b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja045218q – volume: 51 start-page: 4188 year: 2015 ident: C8CC09374A-(cit46)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC00225G – volume: 6 start-page: 77179 year: 2016 ident: C8CC09374A-(cit48)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA18691B – volume: 40 start-page: 8892 year: 2016 ident: C8CC09374A-(cit39)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C6NJ01736C – volume: 8 start-page: 2755 year: 2006 ident: C8CC09374A-(cit22)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/ol060823e – start-page: 1675 year: 2004 ident: C8CC09374A-(cit23)/*[position()=1] publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.200300492 – volume: 89 start-page: 2495 year: 1967 ident: C8CC09374A-(cit4a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00986a052 – volume: 11 start-page: 3449 year: 2016 ident: C8CC09374A-(cit45)/*[position()=1] publication-title: Chem. – Asian J. doi: 10.1002/asia.201601373 – volume: 15 start-page: 359 year: 2003 ident: C8CC09374A-(cit20)/*[position()=1] publication-title: Supramol. Chem. doi: 10.1080/1061027031000103005 – volume: 4 start-page: 2029 year: 2018 ident: C8CC09374A-(cit9a)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2018.05.015 – volume: 108 start-page: 5086 year: 2008 ident: C8CC09374A-(cit14)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr8002196 – volume: 60 start-page: 1895 year: 2004 ident: C8CC09374A-(cit24)/*[position()=1] publication-title: Tetrahedron doi: 10.1016/j.tet.2003.12.028 – volume: 47 start-page: 3080 year: 2014 ident: C8CC09374A-(cit30)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar500222w – volume: 53 start-page: 336 year: 2016 ident: C8CC09374A-(cit56)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC09038A – volume: 52 start-page: 1622 year: 2016 ident: C8CC09374A-(cit41)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC09088A – volume: 19 start-page: 3860 year: 2013 ident: C8CC09374A-(cit31)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201204097 – volume: 38 start-page: 1802 year: 2009 ident: C8CC09374A-(cit5a)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b819333a – volume: 54 start-page: 9244 year: 2015 ident: C8CC09374A-(cit58d)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201502912 – volume: 51 start-page: 7863 year: 2018 ident: C8CC09374A-(cit58f)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.8b01632 – volume: 53 start-page: 13296 year: 2017 ident: C8CC09374A-(cit19c)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC08365C – volume: 43 start-page: 838 year: 2004 ident: C8CC09374A-(cit21)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200351975 – volume: 53 start-page: 13320 year: 2017 ident: C8CC09374A-(cit34)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC08562A – start-page: 0815 year: 2018 ident: C8CC09374A-(cit32b)/*[position()=1] publication-title: Synfacts – volume: 46 start-page: 2459 year: 2017 ident: C8CC09374A-(cit3a)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00185A – volume: 4 start-page: 1797 year: 2013 ident: C8CC09374A-(cit33)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2758 – volume: 260 start-page: 1762 year: 1993 ident: C8CC09374A-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.8511582 – volume: 52 start-page: 5804 year: 2016 ident: C8CC09374A-(cit51)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC01892K – volume: 5 start-page: 646 year: 2013 ident: C8CC09374A-(cit59b)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1715 – start-page: 1497 year: 2013 ident: C8CC09374A-(cit27)/*[position()=1] publication-title: Synlett – volume: 51 start-page: 6621 year: 2015 ident: C8CC09374A-(cit47)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC01470K – volume: 44 start-page: 3568 year: 2015 ident: C8CC09374A-(cit3b)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00390J – volume: 89 start-page: 7017 year: 1967 ident: C8CC09374A-(cit4b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01002a035 – year: 2018 ident: C8CC09374A-(cit32c)/*[position()=1] publication-title: Sci. China: Chem. doi: 10.1007/s11426-018-9362-0 – start-page: 1321 year: 2018 ident: C8CC09374A-(cit52)/*[position()=1] publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201800112 – volume: 6 start-page: 6731 year: 2015 ident: C8CC09374A-(cit54)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C5SC03251B – volume: 5 start-page: 704 year: 2013 ident: C8CC09374A-(cit59a)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1668 – volume: 50 start-page: 12420 year: 2014 ident: C8CC09374A-(cit19a)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC03170A – volume: 52 start-page: 5666 year: 2016 ident: C8CC09374A-(cit55)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC01052K – volume: 140 start-page: 13466 year: 2018 ident: C8CC09374A-(cit57)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09157 – volume: 130 start-page: 5022 year: 2008 ident: C8CC09374A-(cit16)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja711260m – volume: 368 start-page: 229 year: 1994 ident: C8CC09374A-(cit10)/*[position()=1] publication-title: Nature doi: 10.1038/368229a0 – volume: 57 start-page: 9853 year: 2018 ident: C8CC09374A-(cit32a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201805980 – volume: 39 start-page: 4158 year: 2010 ident: C8CC09374A-(cit5b)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b920032k – volume: 19 start-page: 3719 year: 2017 ident: C8CC09374A-(cit35)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/acs.orglett.7b01511 – start-page: 9 year: 1998 ident: C8CC09374A-(cit25)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/a706018a – volume: 37 start-page: 2393 year: 2008 ident: C8CC09374A-(cit58a)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b718356a – volume: 111 start-page: 6603 year: 2011 ident: C8CC09374A-(cit2)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr100242s – volume: 5 start-page: 1800141 year: 2018 ident: C8CC09374A-(cit58e)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201800141 – volume: 107 start-page: 3780 year: 2007 ident: C8CC09374A-(cit11)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr068046j |
SSID | ssj0000158 |
Score | 2.5998237 |
Snippet | Synthetic macrocyclic receptors generally display unique geometries, preorganized cavities, and tunable binding affinities, which facilitate their application... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1533 |
SubjectTerms | Aromatic compounds aromatic hydrocarbons binding capacity chemical communication chemical reactions geometry Organic chemistry Receptors Self-assembly |
Title | New opportunities in synthetic macrocyclic arenes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30628605 https://www.proquest.com/docview/2173878996 https://www.proquest.com/docview/2179307916 https://www.proquest.com/docview/2221038725 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB0t2wNcEBQKKaUKggsHl8SO4-RGFbVqEXBAW3U5RY4_pJUgu2o3h_LrGefDm9IVKlyileOsEs9k_J6deQPwjgokHYpZEnElCOL_ikhjDKliK01uEaImLsH5y9f07CL5NOfzyeTjOLtkXR2pX1vzSv7HqtiGdnVZsv9gWf-n2IC_0b54RAvj8V42dh8nLlcOQTd1q4zqVi-ub2oEdU6H9afEKKtulNOxdjlf_eeCgy7BIBWgxjki7SKsT-RqI2VX5mO0ZHDZtLZfSPKtWfiw0S88f8e5kFyaxXg5wWUwxUMc7iIg4zkRrNN4PDJ9W5oQpDbzcdjs1HUH94hHQdBByNGEiiCNbQ3WEXNap0VWFBGCpMTLnW4Usf-Yqfz3g-3OOcvLzbUPYIciUaBT2Dk-mZ1_HkmItTVa_WMNErUs_7C5-jYoucM0EHdcDfVgWtwxewKPe8IQHnfWfwoTU-_Cw2Ko0_cMYvSC8JYXhIs69F4Qjrwg7LzgOVycnsyKM9IXwiAqSemaaMm0zVPttPFiQ_NUGG7TKtKRY8MqkhnnOuWxFBoJMbNKUmGQCouKJ6kVlu3BtF7W5iWEWY4AUWuL4EUi2Y1zkfGkEtRtwJlK6ADeDyNRql4l3hUr-VHeHfMA3vq-q04bZWuvg2FAy_7duS6RCLNMINdPA3jjT-PAue0qWZtl0_bJcQZC_vKXPpQ6hX9BeQAvOmP5W2EuPRjZegB7aD3frDKl2juTAexvP1GutN2_18O9gkebl-gApuurxrxGlLquDntH_A1kfYxV |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+opportunities+in+synthetic+macrocyclic+arenes&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Wu%2C+Jia-Rui&rft.au=Yang%2C+Ying-Wei&rft.date=2019-01-31&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=55&rft.issue=11&rft.spage=1533&rft.epage=1543&rft_id=info:doi/10.1039%2FC8CC09374A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8CC09374A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon |