New opportunities in synthetic macrocyclic arenes

Synthetic macrocyclic receptors generally display unique geometries, preorganized cavities, and tunable binding affinities, which facilitate their application in numerous fields including molecular recognition and self-assembly. Calix[ n ]arenes and pillar[ n ]arenes are very prevalent synthetic mac...

Full description

Saved in:
Bibliographic Details
Published inChemical communications (Cambridge, England) Vol. 55; no. 11; pp. 1533 - 1543
Main Authors Wu, Jia-Rui, Yang, Ying-Wei
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 31.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Synthetic macrocyclic receptors generally display unique geometries, preorganized cavities, and tunable binding affinities, which facilitate their application in numerous fields including molecular recognition and self-assembly. Calix[ n ]arenes and pillar[ n ]arenes are very prevalent synthetic macrocyclic arenes, whose syntheses, host-guest properties, and supramolecular functions have been intensively studied. In recent years, some new families of synthetic macrocyclic arenes closely related to calix[ n ]arenes and pillar[ n ]arenes have emerged and represent new opportunities in modern supramolecular chemistry. Therefore, in this feature article, we present a comprehensive discussion on some newly designed, versatile macrocyclic arene receptors that sprang up during the past decade, focusing on their syntheses, structures, functionalization, and host-guest properties. Future perspectives of synthetic macrocyclic arene chemistry are also given. We hope that this feature article will be a timely and useful reference for those who are exploring new opportunities in functional macrocycles. This feature article summarizes the latest research progress in the design and development of new synthetic macrocyclic arenes.
AbstractList Synthetic macrocyclic receptors generally display unique geometries, preorganized cavities, and tunable binding affinities, which facilitate their application in numerous fields including molecular recognition and self-assembly. Calix[ n ]arenes and pillar[ n ]arenes are very prevalent synthetic macrocyclic arenes, whose syntheses, host-guest properties, and supramolecular functions have been intensively studied. In recent years, some new families of synthetic macrocyclic arenes closely related to calix[ n ]arenes and pillar[ n ]arenes have emerged and represent new opportunities in modern supramolecular chemistry. Therefore, in this feature article, we present a comprehensive discussion on some newly designed, versatile macrocyclic arene receptors that sprang up during the past decade, focusing on their syntheses, structures, functionalization, and host-guest properties. Future perspectives of synthetic macrocyclic arene chemistry are also given. We hope that this feature article will be a timely and useful reference for those who are exploring new opportunities in functional macrocycles. This feature article summarizes the latest research progress in the design and development of new synthetic macrocyclic arenes.
Synthetic macrocyclic receptors generally display unique geometries, preorganized cavities, and tunable binding affinities, which facilitate their application in numerous fields including molecular recognition and self-assembly. Calix[n]arenes and pillar[n]arenes are very prevalent synthetic macrocyclic arenes, whose syntheses, host-guest properties, and supramolecular functions have been intensively studied. In recent years, some new families of synthetic macrocyclic arenes closely related to calix[n]arenes and pillar[n]arenes have emerged and represent new opportunities in modern supramolecular chemistry. Therefore, in this feature article, we present a comprehensive discussion on some newly designed, versatile macrocyclic arene receptors that sprang up during the past decade, focusing on their syntheses, structures, functionalization, and host-guest properties. Future perspectives of synthetic macrocyclic arene chemistry are also given. We hope that this feature article will be a timely and useful reference for those who are exploring new opportunities in functional macrocycles.
Synthetic macrocyclic receptors generally display unique geometries, preorganized cavities, and tunable binding affinities, which facilitate their application in numerous fields including molecular recognition and self-assembly. Calix[n]arenes and pillar[n]arenes are very prevalent synthetic macrocyclic arenes, whose syntheses, host-guest properties, and supramolecular functions have been intensively studied. In recent years, some new families of synthetic macrocyclic arenes closely related to calix[n]arenes and pillar[n]arenes have emerged and represent new opportunities in modern supramolecular chemistry. Therefore, in this feature article, we present a comprehensive discussion on some newly designed, versatile macrocyclic arene receptors that sprang up during the past decade, focusing on their syntheses, structures, functionalization, and host-guest properties. Future perspectives of synthetic macrocyclic arene chemistry are also given. We hope that this feature article will be a timely and useful reference for those who are exploring new opportunities in functional macrocycles.Synthetic macrocyclic receptors generally display unique geometries, preorganized cavities, and tunable binding affinities, which facilitate their application in numerous fields including molecular recognition and self-assembly. Calix[n]arenes and pillar[n]arenes are very prevalent synthetic macrocyclic arenes, whose syntheses, host-guest properties, and supramolecular functions have been intensively studied. In recent years, some new families of synthetic macrocyclic arenes closely related to calix[n]arenes and pillar[n]arenes have emerged and represent new opportunities in modern supramolecular chemistry. Therefore, in this feature article, we present a comprehensive discussion on some newly designed, versatile macrocyclic arene receptors that sprang up during the past decade, focusing on their syntheses, structures, functionalization, and host-guest properties. Future perspectives of synthetic macrocyclic arene chemistry are also given. We hope that this feature article will be a timely and useful reference for those who are exploring new opportunities in functional macrocycles.
Synthetic macrocyclic receptors generally display unique geometries, preorganized cavities, and tunable binding affinities, which facilitate their application in numerous fields including molecular recognition and self-assembly. Calix[ n ]arenes and pillar[ n ]arenes are very prevalent synthetic macrocyclic arenes, whose syntheses, host–guest properties, and supramolecular functions have been intensively studied. In recent years, some new families of synthetic macrocyclic arenes closely related to calix[ n ]arenes and pillar[ n ]arenes have emerged and represent new opportunities in modern supramolecular chemistry. Therefore, in this feature article, we present a comprehensive discussion on some newly designed, versatile macrocyclic arene receptors that sprang up during the past decade, focusing on their syntheses, structures, functionalization, and host–guest properties. Future perspectives of synthetic macrocyclic arene chemistry are also given. We hope that this feature article will be a timely and useful reference for those who are exploring new opportunities in functional macrocycles.
Author Yang, Ying-Wei
Wu, Jia-Rui
AuthorAffiliation Jilin University
College of Chemistry
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
2699 Qianjin Street
AuthorAffiliation_xml – name: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
– name: 2699 Qianjin Street
– name: Jilin University
– name: College of Chemistry
– name: International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
Author_xml – sequence: 1
  givenname: Jia-Rui
  surname: Wu
  fullname: Wu, Jia-Rui
– sequence: 2
  givenname: Ying-Wei
  surname: Yang
  fullname: Yang, Ying-Wei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30628605$$D View this record in MEDLINE/PubMed
BookMark eNqF0UtLAzEQAOAgirXqxbtS8SLCah6b17EsvkD0ouBtSbNZTNlm1ySL9N-b2lqhiOaSgflmYGaGYNu1zgBwhOAlgkReaaE1lITnagvsIcLyjObidXsRU5lxktMBGIYwhekhKnbBgECGBYN0D6BH8zFqu671sXc2WhNG1o3C3MU3E60ezZT2rZ7rJsXKG2fCAdipVRPM4erfBy8318_FXfbwdHtfjB8ynTMcs0qRqpaswoJQZLBk3NCaTWAF8xxRDZWgtGIUKV5hhkitFeYGC84nNGc1r8k-OF_27Xz73psQy5kN2jSNcqbtQ4kxTtMLjun_FHFJIJeIJXq2Qadt710aZKFSOyHlQp2sVD-ZmarsvJ0pPy-_95bAxRKk7YTgTb0mCJaLo5SFKIqvo4wThhtY26iibV30yja_lxwvS3zQ69Y_d07507_yZVfV5BPyJ6CM
CitedBy_id crossref_primary_10_1039_D0CC03945D
crossref_primary_10_3390_molecules27196259
crossref_primary_10_1016_j_tetlet_2019_151389
crossref_primary_10_1007_s12039_020_01862_6
crossref_primary_10_1039_D3SC00571B
crossref_primary_10_1016_j_molstruc_2024_139605
crossref_primary_10_1002_ange_202218142
crossref_primary_10_1016_j_dyepig_2024_112105
crossref_primary_10_1039_D1CE01003D
crossref_primary_10_1016_j_dyepig_2022_110712
crossref_primary_10_1039_C9CE01326A
crossref_primary_10_1002_ange_202424276
crossref_primary_10_1039_C9SM01126A
crossref_primary_10_1016_j_cclet_2023_108754
crossref_primary_10_1021_jacs_4c14424
crossref_primary_10_1039_D4CE01150C
crossref_primary_10_1021_acsanm_2c01620
crossref_primary_10_1016_j_cclet_2022_108088
crossref_primary_10_1002_adma_202410054
crossref_primary_10_1002_anie_201913340
crossref_primary_10_1021_acs_joc_3c01197
crossref_primary_10_1016_j_molstruc_2022_133220
crossref_primary_10_1002_ange_201916004
crossref_primary_10_1021_acs_orglett_4c01243
crossref_primary_10_1021_acs_orglett_9b01827
crossref_primary_10_1039_C9QM00428A
crossref_primary_10_1039_D4OB01569J
crossref_primary_10_1002_adma_201904824
crossref_primary_10_1246_cl_200887
crossref_primary_10_1002_asia_202400106
crossref_primary_10_1007_s13204_023_02914_2
crossref_primary_10_1039_D1PY00238D
crossref_primary_10_1021_acs_orglett_4c04403
crossref_primary_10_1039_D5CC00627A
crossref_primary_10_1016_j_cclet_2024_110600
crossref_primary_10_1021_jacs_3c12093
crossref_primary_10_1016_j_ccr_2024_216063
crossref_primary_10_1016_j_dyepig_2021_109203
crossref_primary_10_1021_acs_cgd_3c00677
crossref_primary_10_1002_ange_201911965
crossref_primary_10_1016_j_molstruc_2022_134043
crossref_primary_10_1016_j_matt_2019_03_005
crossref_primary_10_1246_cl_200773
crossref_primary_10_1002_smll_202003490
crossref_primary_10_1016_j_cclet_2020_06_041
crossref_primary_10_1021_acs_orglett_0c02357
crossref_primary_10_1039_D0CE01576H
crossref_primary_10_1016_j_rechem_2024_101588
crossref_primary_10_1021_acs_orglett_2c00272
crossref_primary_10_1007_s10847_019_00956_0
crossref_primary_10_3390_polym15234543
crossref_primary_10_1021_acsmacrolett_9b00621
crossref_primary_10_1016_j_snb_2021_129905
crossref_primary_10_1021_acs_orglett_3c01931
crossref_primary_10_1039_D3CS00002H
crossref_primary_10_1039_D1CC00498K
crossref_primary_10_1002_chem_202001450
crossref_primary_10_1039_D4QO00407H
crossref_primary_10_1039_D0TC03797D
crossref_primary_10_1039_D0CS00341G
crossref_primary_10_1038_s41570_023_00531_9
crossref_primary_10_1039_D4CC05660D
crossref_primary_10_1002_ange_202015162
crossref_primary_10_1016_j_chempr_2023_05_036
crossref_primary_10_1002_anie_202015162
crossref_primary_10_1002_chem_202400743
crossref_primary_10_3390_molecules27103162
crossref_primary_10_1016_j_actbio_2021_07_050
crossref_primary_10_1039_D1PY01397A
crossref_primary_10_1039_D1CE00722J
crossref_primary_10_1039_D1OB00222H
crossref_primary_10_1016_j_cclet_2019_03_035
crossref_primary_10_1039_D1NJ04920H
crossref_primary_10_1021_acs_joc_4c02864
crossref_primary_10_1002_cjoc_202000738
crossref_primary_10_1002_cplu_202000152
crossref_primary_10_1002_slct_202202564
crossref_primary_10_1039_D0NA00938E
crossref_primary_10_1080_10610278_2021_1908546
crossref_primary_10_1039_C9QM00741E
crossref_primary_10_1039_D0QO00670J
crossref_primary_10_1002_adfm_202006168
crossref_primary_10_1021_acs_orglett_9b04607
crossref_primary_10_1021_acs_orglett_4c02665
crossref_primary_10_1021_acsomega_0c04660
crossref_primary_10_1016_j_ccr_2020_213425
crossref_primary_10_3389_fchem_2020_00262
crossref_primary_10_1002_cplu_202200310
crossref_primary_10_1002_chem_201902700
crossref_primary_10_1002_ange_201913340
crossref_primary_10_1016_j_cclet_2020_08_035
crossref_primary_10_1002_anie_201916004
crossref_primary_10_1021_acs_accounts_2c00555
crossref_primary_10_1021_acs_chemmater_3c03322
crossref_primary_10_1002_chem_202002874
crossref_primary_10_1038_s41467_020_19677_x
crossref_primary_10_1021_jacsau_4c00097
crossref_primary_10_6023_cjoc202206018
crossref_primary_10_1039_D1CC06788E
crossref_primary_10_1039_D0OB00763C
crossref_primary_10_1016_j_ccr_2024_215762
crossref_primary_10_1002_ijch_201900032
crossref_primary_10_1039_D1CC04400A
crossref_primary_10_1007_s11172_020_2843_2
crossref_primary_10_1016_j_cclet_2025_110896
crossref_primary_10_1080_10610278_2019_1632457
crossref_primary_10_3390_inorganics11110435
crossref_primary_10_1021_jacs_9b01546
crossref_primary_10_1002_anie_201911965
crossref_primary_10_1002_anie_202218142
crossref_primary_10_1039_C9QO00329K
crossref_primary_10_1002_adma_202301721
crossref_primary_10_1016_j_cclet_2019_10_023
crossref_primary_10_1039_D1NJ05209H
crossref_primary_10_1007_s10847_020_00986_z
crossref_primary_10_1002_anie_202424276
crossref_primary_10_1039_D0CC03682J
crossref_primary_10_1039_D0OB00411A
crossref_primary_10_1016_j_inoche_2022_109643
crossref_primary_10_1021_jacsau_1c00343
crossref_primary_10_1016_j_dyepig_2021_109828
crossref_primary_10_1021_jacs_9b03559
crossref_primary_10_1039_D3QO00399J
Cites_doi 10.1021/ar200108c
10.1039/C8CC08252A
10.1016/0040-4020(95)00984-1
10.1039/C6CC05876K
10.1021/acs.orglett.7b02557
10.1021/acs.orglett.6b03005
10.1039/a706280j
10.1021/jacs.7b01937
10.1021/ar020254k
10.1021/cr960385x
10.1021/acs.orglett.6b02500
10.1039/C5CS00274E
10.1021/jo402884a
10.1021/jo00419a052
10.1039/C7CC06767D
10.1002/anie.201707869
10.1016/j.tetlet.2016.07.077
10.1002/chem.201404470
10.1021/ar2003418
10.1021/acs.orglett.7b04045
10.1002/anie.200460675
10.1039/c2cs35075k
10.1021/acs.chemrev.5b00341
10.1039/C1CS15164A
10.1002/cber.19440770322
10.1039/C8CS00037A
10.1039/C5CS00243E
10.1039/C4SC02422B
10.1021/acs.chemrev.5b00765
10.1021/acs.accounts.8b00255
10.1021/acs.joc.5b00099
10.1021/ja00285a049
10.1021/ar500022f
10.1039/C6CC08967D
10.1002/anie.201705451
10.1039/C6CC08113D
10.1021/acs.joc.6b00252
10.1039/C7NJ00039A
10.1021/ar00089a003
10.1021/ja045218q
10.1039/C5CC00225G
10.1039/C6RA18691B
10.1039/C6NJ01736C
10.1021/ol060823e
10.1002/ejoc.200300492
10.1021/ja00986a052
10.1002/asia.201601373
10.1080/1061027031000103005
10.1016/j.chempr.2018.05.015
10.1021/cr8002196
10.1016/j.tet.2003.12.028
10.1021/ar500222w
10.1039/C6CC09038A
10.1039/C5CC09088A
10.1002/chem.201204097
10.1039/b819333a
10.1002/anie.201502912
10.1021/acs.macromol.8b01632
10.1039/C7CC08365C
10.1002/anie.200351975
10.1039/C7CC08562A
10.1039/C7CS00185A
10.1038/ncomms2758
10.1126/science.8511582
10.1039/C6CC01892K
10.1038/nchem.1715
10.1039/C5CC01470K
10.1039/C4CS00390J
10.1021/ja01002a035
10.1007/s11426-018-9362-0
10.1002/ejoc.201800112
10.1039/C5SC03251B
10.1038/nchem.1668
10.1039/C4CC03170A
10.1039/C6CC01052K
10.1021/jacs.8b09157
10.1021/ja711260m
10.1038/368229a0
10.1002/anie.201805980
10.1039/b920032k
10.1021/acs.orglett.7b01511
10.1039/a706018a
10.1039/b718356a
10.1021/cr100242s
10.1002/advs.201800141
10.1021/cr068046j
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/c8cc09374a
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
CrossRef
Materials Research Database
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-548X
EndPage 1543
ExternalDocumentID 30628605
10_1039_C8CC09374A
c8cc09374a
Genre Journal Article
GroupedDBID -
0-7
0R
1TJ
29B
2WC
4.4
53G
5GY
70
705
70J
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
DU5
DZ
EBS
ECGLT
EE0
EF-
EJD
F5P
GNO
H13
HZ
H~N
IDZ
IH2
IPNFZ
J3I
JG
M4U
N9A
O9-
P2P
R7B
R7C
R7D
RCNCU
RIG
RPMJG
RRA
RRC
RSCEA
SJN
SKA
SKF
SKH
SLH
TN5
TWZ
UPT
VH6
VQA
WH7
X
X7L
---
-DZ
-~X
0R~
6J9
70~
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACBEA
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
HZ~
R56
RAOCF
-JG
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c462t-da3df96d28351e2967e5f6b0d04415c0a855d651a7d2613fca27e2877b546f7f3
ISSN 1359-7345
1364-548X
IngestDate Fri Jul 11 10:04:46 EDT 2025
Fri Jul 11 07:26:19 EDT 2025
Sun Jun 29 12:31:04 EDT 2025
Wed Feb 19 02:35:22 EST 2025
Thu Apr 24 23:08:11 EDT 2025
Tue Jul 01 01:14:24 EDT 2025
Thu May 30 17:46:26 EDT 2019
Fri Apr 08 11:20:08 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c462t-da3df96d28351e2967e5f6b0d04415c0a855d651a7d2613fca27e2877b546f7f3
Notes Jia-Rui Wu was born in China in 1992. He obtained his BSc degree from Lanzhou University in 2014. Then, he joined the research group directed by Prof. Ying-Wei Yang at Jilin University to pursue his PhD in organic chemistry. His current research interests include the design and synthesis of novel macrocyclic arenes and acyclic molecular hosts for molecular recognition, crystal engineering, and supramolecular assembly.
Ying-Wei Yang received his degrees (BSc in 2000 and PhD in 2005) from Nankai University and gained postdoctoral training at Arizona State University, UCLA, and UC Irvine from 2005 to 2010. He became an Associate Professor of Chemistry at Jilin University in 2011 and was promoted to Full Professor in 2014. He has published over 150 peer-reviewed scientific papers. His research centers on organic supramolecular chemistry, multifunctional hybrid materials, and stimuli-responsive polymers. He was amongst the world's most Highly Cited Researchers for 2017 by Clarivate Analytics and the 2017 Chinese Most Cited Researchers by Elsevier.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2994-7770
0000-0001-8839-8161
PMID 30628605
PQID 2173878996
PQPubID 2047502
PageCount 11
ParticipantIDs proquest_miscellaneous_2179307916
pubmed_primary_30628605
proquest_miscellaneous_2221038725
crossref_primary_10_1039_C8CC09374A
rsc_primary_c8cc09374a
proquest_journals_2173878996
crossref_citationtrail_10_1039_C8CC09374A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190131
PublicationDateYYYYMMDD 2019-01-31
PublicationDate_xml – month: 1
  year: 2019
  text: 20190131
  day: 31
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical communications (Cambridge, England)
PublicationTitleAlternate Chem Commun (Camb)
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wang (C8CC09374A-(cit58f)/*[position()=1]) 2018; 51
Swager (C8CC09374A-(cit32b)/*[position()=1]) 2018
Chun (C8CC09374A-(cit33)/*[position()=1]) 2013; 4
Jia (C8CC09374A-(cit55)/*[position()=1]) 2016; 52
Kumar (C8CC09374A-(cit42)/*[position()=1]) 2018; 20
Kim (C8CC09374A-(cit43)/*[position()=1]) 2017; 19
Kumari (C8CC09374A-(cit30)/*[position()=1]) 2014; 47
Thuéry (C8CC09374A-(cit20)/*[position()=1]) 2003; 15
Katz (C8CC09374A-(cit22)/*[position()=1]) 2006; 8
Zhou (C8CC09374A-(cit48)/*[position()=1]) 2016; 6
Atwood (C8CC09374A-(cit10)/*[position()=1]) 1994; 368
Barrow (C8CC09374A-(cit8a)/*[position()=1]) 2015; 115
Qiao (C8CC09374A-(cit59e)/*[position()=1]) 2017; 139
Cragg (C8CC09374A-(cit9c)/*[position()=1]) 2012; 41
Wang (C8CC09374A-(cit21)/*[position()=1]) 2004; 43
Ma (C8CC09374A-(cit45)/*[position()=1]) 2016; 11
Feng (C8CC09374A-(cit19d)/*[position()=1]) 2018; 54
Král (C8CC09374A-(cit25)/*[position()=1]) 1998
Gale (C8CC09374A-(cit26)/*[position()=1]) 1998
Boinski (C8CC09374A-(cit38)/*[position()=1]) 2015; 80
Hargrove (C8CC09374A-(cit2)/*[position()=1]) 2011; 111
Qiao (C8CC09374A-(cit59c)/*[position()=1]) 2016; 52
Sathiyajith (C8CC09374A-(cit19b)/*[position()=1]) 2017; 53
Xue (C8CC09374A-(cit17a)/*[position()=1]) 2012; 45
Kosiorek (C8CC09374A-(cit34)/*[position()=1]) 2017; 53
Zhang (C8CC09374A-(cit15)/*[position()=1]) 2016; 52
Gao (C8CC09374A-(cit51)/*[position()=1]) 2016; 52
Jie (C8CC09374A-(cit3b)/*[position()=1]) 2015; 44
Jia (C8CC09374A-(cit54)/*[position()=1]) 2015; 6
Gutsche (C8CC09374A-(cit7c)/*[position()=1]) 1978; 43
Cafeo (C8CC09374A-(cit24)/*[position()=1]) 2004; 60
Lhoták (C8CC09374A-(cit23)/*[position()=1]) 2004
Shetty (C8CC09374A-(cit32c)/*[position()=1]) 2018
Chen (C8CC09374A-(cit19c)/*[position()=1]) 2017; 53
Ramaiah (C8CC09374A-(cit5b)/*[position()=1]) 2010; 39
Pedersen (C8CC09374A-(cit4a)/*[position()=1]) 1967; 89
Jie (C8CC09374A-(cit17b)/*[position()=1]) 2018; 51
Lee (C8CC09374A-(cit8c)/*[position()=1]) 2003; 36
Jia (C8CC09374A-(cit56)/*[position()=1]) 2016; 53
Wisner (C8CC09374A-(cit59b)/*[position()=1]) 2013; 5
Kim (C8CC09374A-(cit11)/*[position()=1]) 2007; 107
Yang (C8CC09374A-(cit3c)/*[position()=1]) 2014; 47
Zhou (C8CC09374A-(cit46)/*[position()=1]) 2015; 51
Wang (C8CC09374A-(cit58b)/*[position()=1]) 2012; 45
Ghasemabadi (C8CC09374A-(cit5c)/*[position()=1]) 2015; 44
Timmerman (C8CC09374A-(cit29)/*[position()=1]) 1996; 52
Yao (C8CC09374A-(cit57)/*[position()=1]) 2018; 140
Kondratowicz (C8CC09374A-(cit36c)/*[position()=1]) 2014; 20
Lehn (C8CC09374A-(cit1)/*[position()=1]) 1993; 260
Li (C8CC09374A-(cit53)/*[position()=1]) 2017; 56
Zinke (C8CC09374A-(cit7b)/*[position()=1]) 1944; 77
Boinski (C8CC09374A-(cit40)/*[position()=1]) 2017; 41
Maes (C8CC09374A-(cit58a)/*[position()=1]) 2008; 37
Lagona (C8CC09374A-(cit8b)/*[position()=1]) 2005; 44
Song (C8CC09374A-(cit9a)/*[position()=1]) 2018; 4
Pia̧tek (C8CC09374A-(cit36b)/*[position()=1]) 2004; 126
Yang (C8CC09374A-(cit28)/*[position()=1]) 2016; 57
Schneebeli (C8CC09374A-(cit31)/*[position()=1]) 2013; 19
Ikeda (C8CC09374A-(cit13)/*[position()=1]) 1997; 97
Gutsche (C8CC09374A-(cit7a)/*[position()=1]) 1983; 16
Zafrani (C8CC09374A-(cit35)/*[position()=1]) 2017; 19
Yang (C8CC09374A-(cit36a)/*[position()=1]) 2016; 81
Zhou (C8CC09374A-(cit41)/*[position()=1]) 2016; 52
Chen (C8CC09374A-(cit44)/*[position()=1]) 2015; 6
Zhang (C8CC09374A-(cit18a)/*[position()=1]) 2018; 47
Liu (C8CC09374A-(cit3a)/*[position()=1]) 2017; 46
Zhang (C8CC09374A-(cit58c)/*[position()=1]) 2014; 79
Pedersen (C8CC09374A-(cit4b)/*[position()=1]) 1967; 89
Chen (C8CC09374A-(cit27)/*[position()=1]) 2013
Zhang (C8CC09374A-(cit58d)/*[position()=1]) 2015; 54
Boinski (C8CC09374A-(cit39)/*[position()=1]) 2016; 40
Li (C8CC09374A-(cit19a)/*[position()=1]) 2014; 50
Song (C8CC09374A-(cit18b)/*[position()=1]) 2015; 44
Homden (C8CC09374A-(cit14)/*[position()=1]) 2008; 108
Ma (C8CC09374A-(cit49)/*[position()=1]) 2016; 18
Dai (C8CC09374A-(cit50)/*[position()=1]) 2017; 53
Wu (C8CC09374A-(cit52)/*[position()=1]) 2018
Wang (C8CC09374A-(cit58e)/*[position()=1]) 2018; 5
Lee (C8CC09374A-(cit59a)/*[position()=1]) 2013; 5
Zhao (C8CC09374A-(cit59d)/*[position()=1]) 2017; 56
Ma (C8CC09374A-(cit47)/*[position()=1]) 2015; 51
Guo (C8CC09374A-(cit12)/*[position()=1]) 2012; 41
Ogoshi (C8CC09374A-(cit16)/*[position()=1]) 2008; 130
Stoddart (C8CC09374A-(cit5a)/*[position()=1]) 2009; 38
Bell (C8CC09374A-(cit6)/*[position()=1]) 1986; 108
Ogoshi (C8CC09374A-(cit9b)/*[position()=1]) 2016; 116
Zhu (C8CC09374A-(cit37)/*[position()=1]) 2016; 18
Wu (C8CC09374A-(cit32a)/*[position()=1]) 2018; 57
References_xml – volume: 45
  start-page: 182
  year: 2012
  ident: C8CC09374A-(cit58b)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200108c
– volume: 54
  start-page: 13626
  year: 2018
  ident: C8CC09374A-(cit19d)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC08252A
– volume: 52
  start-page: 2663
  year: 1996
  ident: C8CC09374A-(cit29)/*[position()=1]
  publication-title: Tetrahedron
  doi: 10.1016/0040-4020(95)00984-1
– volume: 52
  start-page: 12685
  year: 2016
  ident: C8CC09374A-(cit15)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC05876K
– volume: 19
  start-page: 5509
  year: 2017
  ident: C8CC09374A-(cit43)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.7b02557
– volume: 18
  start-page: 5740
  year: 2016
  ident: C8CC09374A-(cit49)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.6b03005
– start-page: 1
  year: 1998
  ident: C8CC09374A-(cit26)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/a706280j
– volume: 139
  start-page: 6226
  year: 2017
  ident: C8CC09374A-(cit59e)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01937
– volume: 36
  start-page: 621
  year: 2003
  ident: C8CC09374A-(cit8c)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar020254k
– volume: 97
  start-page: 1713
  year: 1997
  ident: C8CC09374A-(cit13)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr960385x
– volume: 18
  start-page: 5054
  year: 2016
  ident: C8CC09374A-(cit37)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.6b02500
– volume: 44
  start-page: 6494
  year: 2015
  ident: C8CC09374A-(cit5c)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00274E
– volume: 79
  start-page: 2729
  year: 2014
  ident: C8CC09374A-(cit58c)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo402884a
– volume: 43
  start-page: 4905
  year: 1978
  ident: C8CC09374A-(cit7c)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00419a052
– volume: 53
  start-page: 12096
  year: 2017
  ident: C8CC09374A-(cit50)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC06767D
– volume: 56
  start-page: 13083
  year: 2017
  ident: C8CC09374A-(cit59d)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201707869
– volume: 57
  start-page: 3978
  year: 2016
  ident: C8CC09374A-(cit28)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2016.07.077
– volume: 20
  start-page: 14981
  year: 2014
  ident: C8CC09374A-(cit36c)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201404470
– volume: 45
  start-page: 1294
  year: 2012
  ident: C8CC09374A-(cit17a)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar2003418
– volume: 20
  start-page: 1295
  year: 2018
  ident: C8CC09374A-(cit42)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.7b04045
– volume: 44
  start-page: 4844
  year: 2005
  ident: C8CC09374A-(cit8b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200460675
– volume: 41
  start-page: 5907
  year: 2012
  ident: C8CC09374A-(cit12)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35075k
– volume: 115
  start-page: 12320
  year: 2015
  ident: C8CC09374A-(cit8a)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00341
– volume: 41
  start-page: 597
  year: 2012
  ident: C8CC09374A-(cit9c)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15164A
– volume: 77
  start-page: 264
  year: 1944
  ident: C8CC09374A-(cit7b)/*[position()=1]
  publication-title: Chem. Ber.
  doi: 10.1002/cber.19440770322
– volume: 47
  start-page: 5491
  year: 2018
  ident: C8CC09374A-(cit18a)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00037A
– volume: 44
  start-page: 3474
  year: 2015
  ident: C8CC09374A-(cit18b)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00243E
– volume: 6
  start-page: 197
  year: 2015
  ident: C8CC09374A-(cit44)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC02422B
– volume: 116
  start-page: 7937
  year: 2016
  ident: C8CC09374A-(cit9b)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00765
– volume: 51
  start-page: 2064
  year: 2018
  ident: C8CC09374A-(cit17b)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00255
– volume: 80
  start-page: 3488
  year: 2015
  ident: C8CC09374A-(cit38)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.5b00099
– volume: 108
  start-page: 8109
  year: 1986
  ident: C8CC09374A-(cit6)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00285a049
– volume: 47
  start-page: 1950
  year: 2014
  ident: C8CC09374A-(cit3c)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500022f
– volume: 53
  start-page: 677
  year: 2017
  ident: C8CC09374A-(cit19b)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC08967D
– volume: 56
  start-page: 9473
  year: 2017
  ident: C8CC09374A-(cit53)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201705451
– volume: 52
  start-page: 13675
  year: 2016
  ident: C8CC09374A-(cit59c)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC08113D
– volume: 81
  start-page: 2974
  year: 2016
  ident: C8CC09374A-(cit36a)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.6b00252
– volume: 41
  start-page: 3387
  year: 2017
  ident: C8CC09374A-(cit40)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C7NJ00039A
– volume: 16
  start-page: 161
  year: 1983
  ident: C8CC09374A-(cit7a)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00089a003
– volume: 126
  start-page: 16073
  year: 2004
  ident: C8CC09374A-(cit36b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja045218q
– volume: 51
  start-page: 4188
  year: 2015
  ident: C8CC09374A-(cit46)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC00225G
– volume: 6
  start-page: 77179
  year: 2016
  ident: C8CC09374A-(cit48)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA18691B
– volume: 40
  start-page: 8892
  year: 2016
  ident: C8CC09374A-(cit39)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C6NJ01736C
– volume: 8
  start-page: 2755
  year: 2006
  ident: C8CC09374A-(cit22)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/ol060823e
– start-page: 1675
  year: 2004
  ident: C8CC09374A-(cit23)/*[position()=1]
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.200300492
– volume: 89
  start-page: 2495
  year: 1967
  ident: C8CC09374A-(cit4a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00986a052
– volume: 11
  start-page: 3449
  year: 2016
  ident: C8CC09374A-(cit45)/*[position()=1]
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201601373
– volume: 15
  start-page: 359
  year: 2003
  ident: C8CC09374A-(cit20)/*[position()=1]
  publication-title: Supramol. Chem.
  doi: 10.1080/1061027031000103005
– volume: 4
  start-page: 2029
  year: 2018
  ident: C8CC09374A-(cit9a)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.05.015
– volume: 108
  start-page: 5086
  year: 2008
  ident: C8CC09374A-(cit14)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr8002196
– volume: 60
  start-page: 1895
  year: 2004
  ident: C8CC09374A-(cit24)/*[position()=1]
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2003.12.028
– volume: 47
  start-page: 3080
  year: 2014
  ident: C8CC09374A-(cit30)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500222w
– volume: 53
  start-page: 336
  year: 2016
  ident: C8CC09374A-(cit56)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC09038A
– volume: 52
  start-page: 1622
  year: 2016
  ident: C8CC09374A-(cit41)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC09088A
– volume: 19
  start-page: 3860
  year: 2013
  ident: C8CC09374A-(cit31)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201204097
– volume: 38
  start-page: 1802
  year: 2009
  ident: C8CC09374A-(cit5a)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b819333a
– volume: 54
  start-page: 9244
  year: 2015
  ident: C8CC09374A-(cit58d)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201502912
– volume: 51
  start-page: 7863
  year: 2018
  ident: C8CC09374A-(cit58f)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b01632
– volume: 53
  start-page: 13296
  year: 2017
  ident: C8CC09374A-(cit19c)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC08365C
– volume: 43
  start-page: 838
  year: 2004
  ident: C8CC09374A-(cit21)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200351975
– volume: 53
  start-page: 13320
  year: 2017
  ident: C8CC09374A-(cit34)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC08562A
– start-page: 0815
  year: 2018
  ident: C8CC09374A-(cit32b)/*[position()=1]
  publication-title: Synfacts
– volume: 46
  start-page: 2459
  year: 2017
  ident: C8CC09374A-(cit3a)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00185A
– volume: 4
  start-page: 1797
  year: 2013
  ident: C8CC09374A-(cit33)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2758
– volume: 260
  start-page: 1762
  year: 1993
  ident: C8CC09374A-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.8511582
– volume: 52
  start-page: 5804
  year: 2016
  ident: C8CC09374A-(cit51)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC01892K
– volume: 5
  start-page: 646
  year: 2013
  ident: C8CC09374A-(cit59b)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1715
– start-page: 1497
  year: 2013
  ident: C8CC09374A-(cit27)/*[position()=1]
  publication-title: Synlett
– volume: 51
  start-page: 6621
  year: 2015
  ident: C8CC09374A-(cit47)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC01470K
– volume: 44
  start-page: 3568
  year: 2015
  ident: C8CC09374A-(cit3b)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00390J
– volume: 89
  start-page: 7017
  year: 1967
  ident: C8CC09374A-(cit4b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01002a035
– year: 2018
  ident: C8CC09374A-(cit32c)/*[position()=1]
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-018-9362-0
– start-page: 1321
  year: 2018
  ident: C8CC09374A-(cit52)/*[position()=1]
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201800112
– volume: 6
  start-page: 6731
  year: 2015
  ident: C8CC09374A-(cit54)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC03251B
– volume: 5
  start-page: 704
  year: 2013
  ident: C8CC09374A-(cit59a)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1668
– volume: 50
  start-page: 12420
  year: 2014
  ident: C8CC09374A-(cit19a)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC03170A
– volume: 52
  start-page: 5666
  year: 2016
  ident: C8CC09374A-(cit55)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC01052K
– volume: 140
  start-page: 13466
  year: 2018
  ident: C8CC09374A-(cit57)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b09157
– volume: 130
  start-page: 5022
  year: 2008
  ident: C8CC09374A-(cit16)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja711260m
– volume: 368
  start-page: 229
  year: 1994
  ident: C8CC09374A-(cit10)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/368229a0
– volume: 57
  start-page: 9853
  year: 2018
  ident: C8CC09374A-(cit32a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201805980
– volume: 39
  start-page: 4158
  year: 2010
  ident: C8CC09374A-(cit5b)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b920032k
– volume: 19
  start-page: 3719
  year: 2017
  ident: C8CC09374A-(cit35)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.7b01511
– start-page: 9
  year: 1998
  ident: C8CC09374A-(cit25)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/a706018a
– volume: 37
  start-page: 2393
  year: 2008
  ident: C8CC09374A-(cit58a)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b718356a
– volume: 111
  start-page: 6603
  year: 2011
  ident: C8CC09374A-(cit2)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr100242s
– volume: 5
  start-page: 1800141
  year: 2018
  ident: C8CC09374A-(cit58e)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800141
– volume: 107
  start-page: 3780
  year: 2007
  ident: C8CC09374A-(cit11)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr068046j
SSID ssj0000158
Score 2.5998237
Snippet Synthetic macrocyclic receptors generally display unique geometries, preorganized cavities, and tunable binding affinities, which facilitate their application...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1533
SubjectTerms Aromatic compounds
aromatic hydrocarbons
binding capacity
chemical communication
chemical reactions
geometry
Organic chemistry
Receptors
Self-assembly
Title New opportunities in synthetic macrocyclic arenes
URI https://www.ncbi.nlm.nih.gov/pubmed/30628605
https://www.proquest.com/docview/2173878996
https://www.proquest.com/docview/2179307916
https://www.proquest.com/docview/2221038725
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB0t2wNcEBQKKaUKggsHl8SO4-RGFbVqEXBAW3U5RY4_pJUgu2o3h_LrGefDm9IVKlyileOsEs9k_J6deQPwjgokHYpZEnElCOL_ikhjDKliK01uEaImLsH5y9f07CL5NOfzyeTjOLtkXR2pX1vzSv7HqtiGdnVZsv9gWf-n2IC_0b54RAvj8V42dh8nLlcOQTd1q4zqVi-ub2oEdU6H9afEKKtulNOxdjlf_eeCgy7BIBWgxjki7SKsT-RqI2VX5mO0ZHDZtLZfSPKtWfiw0S88f8e5kFyaxXg5wWUwxUMc7iIg4zkRrNN4PDJ9W5oQpDbzcdjs1HUH94hHQdBByNGEiiCNbQ3WEXNap0VWFBGCpMTLnW4Usf-Yqfz3g-3OOcvLzbUPYIciUaBT2Dk-mZ1_HkmItTVa_WMNErUs_7C5-jYoucM0EHdcDfVgWtwxewKPe8IQHnfWfwoTU-_Cw2Ko0_cMYvSC8JYXhIs69F4Qjrwg7LzgOVycnsyKM9IXwiAqSemaaMm0zVPttPFiQ_NUGG7TKtKRY8MqkhnnOuWxFBoJMbNKUmGQCouKJ6kVlu3BtF7W5iWEWY4AUWuL4EUi2Y1zkfGkEtRtwJlK6ADeDyNRql4l3hUr-VHeHfMA3vq-q04bZWuvg2FAy_7duS6RCLNMINdPA3jjT-PAue0qWZtl0_bJcQZC_vKXPpQ6hX9BeQAvOmP5W2EuPRjZegB7aD3frDKl2juTAexvP1GutN2_18O9gkebl-gApuurxrxGlLquDntH_A1kfYxV
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+opportunities+in+synthetic+macrocyclic+arenes&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Wu%2C+Jia-Rui&rft.au=Yang%2C+Ying-Wei&rft.date=2019-01-31&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=55&rft.issue=11&rft.spage=1533&rft.epage=1543&rft_id=info:doi/10.1039%2FC8CC09374A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8CC09374A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon