Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation
Electrocatalysis plays a central role in clean energy conversion, enabling a number of processes for future sustainable technologies. Atomic site electrocatalysts (ASCs), including single-atomic site catalysts (SASCs) and diatomic site catalysis (DASCs), are being pursued as economical alternatives...
Saved in:
Published in | Chemical Society reviews Vol. 49; no. 7; pp. 2215 - 2264 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
07.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrocatalysis plays a central role in clean energy conversion, enabling a number of processes for future sustainable technologies. Atomic site electrocatalysts (ASCs), including single-atomic site catalysts (SASCs) and diatomic site catalysis (DASCs), are being pursued as economical alternatives to noble-metal-based catalysts for these reactions by virtue of their exceptionally high atom utilization efficiencies, well-defined active sites and high selectivities. In this review, we start from a systematic review on the fabrication routes of ASCs followed by an overview of some new and effective characterization methods to precisely probe the atomic structure. Then we give a comprehensive summary on the current advances in some typical clean energy reactions: water splitting, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER); oxygen reduction reaction (ORR), including selective 4e
−
- ORR toward H
2
O/OH
−
and 2e
−
- ORR toward H
2
O
2
/HO
2
−
; selective electrooxidation of formic acid, methanol and ethanol (FAOR, MOR and EOR). At the end of this paper, we present a brief conclusion, and discuss the challenges and opportunities on the further development of more selective, active, stable and less expensive ASCs.
This review summarized the fabrication routes and characterization methods of atomic site electrocatalysts (ASCs) followed by their applications for water splitting, oxygen reduction and selective oxidation. |
---|---|
AbstractList | Electrocatalysis plays a central role in clean energy conversion, enabling a number of processes for future sustainable technologies. Atomic site electrocatalysts (ASCs), including single-atomic site catalysts (SASCs) and diatomic site catalysis (DASCs), are being pursued as economical alternatives to noble-metal-based catalysts for these reactions by virtue of their exceptionally high atom utilization efficiencies, well-defined active sites and high selectivities. In this review, we start from a systematic review on the fabrication routes of ASCs followed by an overview of some new and effective characterization methods to precisely probe the atomic structure. Then we give a comprehensive summary on the current advances in some typical clean energy reactions: water splitting, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER); oxygen reduction reaction (ORR), including selective 4e- - ORR toward H2O/OH- and 2e- - ORR toward H2O2/HO2-; selective electrooxidation of formic acid, methanol and ethanol (FAOR, MOR and EOR). At the end of this paper, we present a brief conclusion, and discuss the challenges and opportunities on the further development of more selective, active, stable and less expensive ASCs. Electrocatalysis plays a central role in clean energy conversion, enabling a number of processes for future sustainable technologies. Atomic site electrocatalysts (ASCs), including single-atomic site catalysts (SASCs) and diatomic site catalysis (DASCs), are being pursued as economical alternatives to noble-metal-based catalysts for these reactions by virtue of their exceptionally high atom utilization efficiencies, well-defined active sites and high selectivities. In this review, we start from a systematic review on the fabrication routes of ASCs followed by an overview of some new and effective characterization methods to precisely probe the atomic structure. Then we give a comprehensive summary on the current advances in some typical clean energy reactions: water splitting, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER); oxygen reduction reaction (ORR), including selective 4e − – ORR toward H 2 O/OH − and 2e − – ORR toward H 2 O 2 /HO 2 − ; selective electrooxidation of formic acid, methanol and ethanol (FAOR, MOR and EOR). At the end of this paper, we present a brief conclusion, and discuss the challenges and opportunities on the further development of more selective, active, stable and less expensive ASCs. Electrocatalysis plays a central role in clean energy conversion, enabling a number of processes for future sustainable technologies. Atomic site electrocatalysts (ASCs), including single-atomic site catalysts (SASCs) and diatomic site catalysis (DASCs), are being pursued as economical alternatives to noble-metal-based catalysts for these reactions by virtue of their exceptionally high atom utilization efficiencies, well-defined active sites and high selectivities. In this review, we start from a systematic review on the fabrication routes of ASCs followed by an overview of some new and effective characterization methods to precisely probe the atomic structure. Then we give a comprehensive summary on the current advances in some typical clean energy reactions: water splitting, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER); oxygen reduction reaction (ORR), including selective 4e− – ORR toward H2O/OH− and 2e− – ORR toward H2O2/HO2−; selective electrooxidation of formic acid, methanol and ethanol (FAOR, MOR and EOR). At the end of this paper, we present a brief conclusion, and discuss the challenges and opportunities on the further development of more selective, active, stable and less expensive ASCs. Electrocatalysis plays a central role in clean energy conversion, enabling a number of processes for future sustainable technologies. Atomic site electrocatalysts (ASCs), including single-atomic site catalysts (SASCs) and diatomic site catalysis (DASCs), are being pursued as economical alternatives to noble-metal-based catalysts for these reactions by virtue of their exceptionally high atom utilization efficiencies, well-defined active sites and high selectivities. In this review, we start from a systematic review on the fabrication routes of ASCs followed by an overview of some new and effective characterization methods to precisely probe the atomic structure. Then we give a comprehensive summary on the current advances in some typical clean energy reactions: water splitting, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER); oxygen reduction reaction (ORR), including selective 4e − - ORR toward H 2 O/OH − and 2e − - ORR toward H 2 O 2 /HO 2 − ; selective electrooxidation of formic acid, methanol and ethanol (FAOR, MOR and EOR). At the end of this paper, we present a brief conclusion, and discuss the challenges and opportunities on the further development of more selective, active, stable and less expensive ASCs. This review summarized the fabrication routes and characterization methods of atomic site electrocatalysts (ASCs) followed by their applications for water splitting, oxygen reduction and selective oxidation. Electrocatalysis plays a central role in clean energy conversion, enabling a number of processes for future sustainable technologies. Atomic site electrocatalysts (ASCs), including single-atomic site catalysts (SASCs) and diatomic site catalysis (DASCs), are being pursued as economical alternatives to noble-metal-based catalysts for these reactions by virtue of their exceptionally high atom utilization efficiencies, well-defined active sites and high selectivities. In this review, we start from a systematic review on the fabrication routes of ASCs followed by an overview of some new and effective characterization methods to precisely probe the atomic structure. Then we give a comprehensive summary on the current advances in some typical clean energy reactions: water splitting, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER); oxygen reduction reaction (ORR), including selective 4e- - ORR toward H2O/OH- and 2e- - ORR toward H2O2/HO2-; selective electrooxidation of formic acid, methanol and ethanol (FAOR, MOR and EOR). At the end of this paper, we present a brief conclusion, and discuss the challenges and opportunities on the further development of more selective, active, stable and less expensive ASCs.Electrocatalysis plays a central role in clean energy conversion, enabling a number of processes for future sustainable technologies. Atomic site electrocatalysts (ASCs), including single-atomic site catalysts (SASCs) and diatomic site catalysis (DASCs), are being pursued as economical alternatives to noble-metal-based catalysts for these reactions by virtue of their exceptionally high atom utilization efficiencies, well-defined active sites and high selectivities. In this review, we start from a systematic review on the fabrication routes of ASCs followed by an overview of some new and effective characterization methods to precisely probe the atomic structure. Then we give a comprehensive summary on the current advances in some typical clean energy reactions: water splitting, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER); oxygen reduction reaction (ORR), including selective 4e- - ORR toward H2O/OH- and 2e- - ORR toward H2O2/HO2-; selective electrooxidation of formic acid, methanol and ethanol (FAOR, MOR and EOR). At the end of this paper, we present a brief conclusion, and discuss the challenges and opportunities on the further development of more selective, active, stable and less expensive ASCs. Electrocatalysis plays a central role in clean energy conversion, enabling a number of processes for future sustainable technologies. Atomic site electrocatalysts (ASCs), including single-atomic site catalysts (SASCs) and diatomic site catalysis (DASCs), are being pursued as economical alternatives to noble-metal-based catalysts for these reactions by virtue of their exceptionally high atom utilization efficiencies, well-defined active sites and high selectivities. In this review, we start from a systematic review on the fabrication routes of ASCs followed by an overview of some new and effective characterization methods to precisely probe the atomic structure. Then we give a comprehensive summary on the current advances in some typical clean energy reactions: water splitting, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER); oxygen reduction reaction (ORR), including selective 4e⁻ – ORR toward H₂O/OH⁻ and 2e⁻ – ORR toward H₂O₂/HO₂⁻; selective electrooxidation of formic acid, methanol and ethanol (FAOR, MOR and EOR). At the end of this paper, we present a brief conclusion, and discuss the challenges and opportunities on the further development of more selective, active, stable and less expensive ASCs. |
Author | Chen, Chen Li, Yadong Zhang, Chao Peng, Qing Zhuang, Zewen Zhao, Di Cao, Xing |
AuthorAffiliation | Department of Chemistry Tsinghua University |
AuthorAffiliation_xml | – name: Department of Chemistry – name: Tsinghua University |
Author_xml | – sequence: 1 givenname: Di surname: Zhao fullname: Zhao, Di – sequence: 2 givenname: Zewen surname: Zhuang fullname: Zhuang, Zewen – sequence: 3 givenname: Xing surname: Cao fullname: Cao, Xing – sequence: 4 givenname: Chao surname: Zhang fullname: Zhang, Chao – sequence: 5 givenname: Qing surname: Peng fullname: Peng, Qing – sequence: 6 givenname: Chen surname: Chen fullname: Chen, Chen – sequence: 7 givenname: Yadong surname: Li fullname: Li, Yadong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32133461$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0s1rHCEYB2AJCcnm49J7i6WXUjKNjt_HZWnTQKCHppdexFEnGGbHrTpp97-vu5s0EEpzUvw9r-D7egz2xzh6AF5h9BEjoi6sshkhyZXZAzNMOWqooHQfzBBBvEEIt0fgOOe7usOCt4fgiLSYEMrxDPyYl7gMFuZQPPSDtyVFa4oZ1rlk2McEf5niE8yrIZQSxttzGH-vb_0Ik3eTLSGO0IwO5m1tuPc1Ds5szk_BQW-G7M8e1hPw_fOnm8WX5vrr5dVift1YytvSOCUNc45h2mJjrKB9J23fiRb5zjGqBMIdIc6wzsmu5t4wwaxBvWSko16RE_B-d-8qxZ-Tz0UvQ7Z-GMzo45R1ywQlhHEiX6ZEYMlpyzf03TN6F6c01odUJTlXUihc1ZsHNXVL7_QqhaVJa_3Y4ArQDtgUc06-1zaUbXtKMmHQGOnNDPVCLb5tZzivJR-elTze-k_8eodTtn_d04eo-dv_5XrlevIHevaxxw |
CitedBy_id | crossref_primary_10_1016_j_rser_2023_113197 crossref_primary_10_1002_adfm_202422594 crossref_primary_10_1016_j_fuproc_2023_107879 crossref_primary_10_1016_j_cej_2024_149107 crossref_primary_10_3866_PKU_WHXB202407005 crossref_primary_10_1021_acsami_2c23232 crossref_primary_10_1016_j_jpowsour_2024_235750 crossref_primary_10_1002_cctc_202400413 crossref_primary_10_1016_j_cej_2021_128809 crossref_primary_10_1021_acsami_2c01208 crossref_primary_10_1016_j_jechem_2021_12_006 crossref_primary_10_1021_acs_langmuir_3c02758 crossref_primary_10_1021_acsaem_1c03073 crossref_primary_10_1016_j_ccr_2022_214970 crossref_primary_10_1016_j_mtcomm_2023_107800 crossref_primary_10_1007_s12274_021_3680_9 crossref_primary_10_1016_j_ccr_2021_214209 crossref_primary_10_1016_j_cej_2021_134137 crossref_primary_10_1021_acs_langmuir_1c02100 crossref_primary_10_1021_acsnano_2c04077 crossref_primary_10_1039_D2EE02151J crossref_primary_10_1002_advs_202200307 crossref_primary_10_1016_j_ccr_2022_214969 crossref_primary_10_1016_S1872_5805_24_60860_7 crossref_primary_10_1021_acs_jpcc_3c06135 crossref_primary_10_1002_cphc_202400785 crossref_primary_10_1039_D4TA02463J crossref_primary_10_1039_D3CC00721A crossref_primary_10_1039_D0RA08223F crossref_primary_10_1038_s41467_021_27664_z crossref_primary_10_1021_acsami_1c08798 crossref_primary_10_1016_j_fuel_2025_134704 crossref_primary_10_1021_acssuschemeng_2c04965 crossref_primary_10_1016_j_chemosphere_2020_129243 crossref_primary_10_1016_j_jechem_2022_06_005 crossref_primary_10_1002_adma_202202544 crossref_primary_10_1016_j_ccr_2022_214600 crossref_primary_10_1039_D0TA05212D crossref_primary_10_1002_smtd_202200413 crossref_primary_10_1002_aenm_202200493 crossref_primary_10_1039_D3EY00256J crossref_primary_10_1039_D3MH00366C crossref_primary_10_1021_acsami_2c14657 crossref_primary_10_1021_acs_jpcc_2c04794 crossref_primary_10_3390_ma17184670 crossref_primary_10_1016_j_nanoen_2020_105395 crossref_primary_10_1016_j_cclet_2024_110049 crossref_primary_10_1039_D1SC05867C crossref_primary_10_1016_j_jallcom_2022_168627 crossref_primary_10_1186_s40580_022_00324_8 crossref_primary_10_1016_j_cej_2023_141688 crossref_primary_10_1039_D1EE01349A crossref_primary_10_1002_chem_202100736 crossref_primary_10_1016_j_checat_2024_101117 crossref_primary_10_1039_D4TA00727A crossref_primary_10_1016_j_mser_2023_100736 crossref_primary_10_1002_batt_202400402 crossref_primary_10_1002_adfm_202103558 crossref_primary_10_1007_s12274_023_6318_2 crossref_primary_10_1021_acs_jpclett_1c00139 crossref_primary_10_3390_nano12071141 crossref_primary_10_1039_D4SE01142B crossref_primary_10_1002_adsu_202200163 crossref_primary_10_1021_acsami_3c17662 crossref_primary_10_1002_anie_202421918 crossref_primary_10_1016_j_apcatb_2023_122366 crossref_primary_10_1039_D1EE00248A crossref_primary_10_1021_acsaem_4c00660 crossref_primary_10_1039_D2CP05786G crossref_primary_10_1021_acscatal_2c02029 crossref_primary_10_1002_smll_202403767 crossref_primary_10_1021_acs_jpclett_3c02938 crossref_primary_10_1002_smll_202003943 crossref_primary_10_1002_aenm_202102715 crossref_primary_10_1021_acs_jpclett_1c00267 crossref_primary_10_1021_acsnano_2c12839 crossref_primary_10_1039_D1EE00247C crossref_primary_10_1002_smm2_1023 crossref_primary_10_1016_j_jcis_2020_09_078 crossref_primary_10_1016_j_mssp_2023_107544 crossref_primary_10_1002_aenm_202003018 crossref_primary_10_1021_acs_langmuir_4c04034 crossref_primary_10_1360_SSPMA_2023_0061 crossref_primary_10_1021_acsnano_1c00251 crossref_primary_10_1002_smll_202202394 crossref_primary_10_1007_s10853_022_07502_3 crossref_primary_10_1002_smll_202403412 crossref_primary_10_1039_D2YA00284A crossref_primary_10_1021_acsami_1c16121 crossref_primary_10_1016_j_flatc_2022_100334 crossref_primary_10_1021_acscatal_1c01503 crossref_primary_10_1016_j_nanoen_2020_105128 crossref_primary_10_1002_aenm_202303281 crossref_primary_10_1002_smll_202106635 crossref_primary_10_3390_molecules29163719 crossref_primary_10_1016_j_jallcom_2021_162614 crossref_primary_10_1016_j_jcis_2024_07_132 crossref_primary_10_1016_j_surfin_2024_105066 crossref_primary_10_1039_D3TA05147A crossref_primary_10_1002_adfm_202408013 crossref_primary_10_1002_ange_202302950 crossref_primary_10_1016_j_ijhydene_2024_06_040 crossref_primary_10_1016_j_electacta_2021_138767 crossref_primary_10_1021_acs_jpclett_1c01409 crossref_primary_10_1021_acssuschemeng_0c02061 crossref_primary_10_1039_D1TA08039C crossref_primary_10_1007_s12274_022_4429_9 crossref_primary_10_1039_D3EE04513G crossref_primary_10_1039_D1TC05974B crossref_primary_10_1021_acs_chemrev_0c00080 crossref_primary_10_1016_j_ijhydene_2022_03_174 crossref_primary_10_1016_j_mattod_2021_11_022 crossref_primary_10_1002_adfm_202010544 crossref_primary_10_1002_adfm_202215185 crossref_primary_10_1007_s11426_022_1326_2 crossref_primary_10_1038_s41467_021_25811_0 crossref_primary_10_1021_acscatal_3c02628 crossref_primary_10_1002_smtd_202201664 crossref_primary_10_1016_j_pnsc_2020_09_011 crossref_primary_10_1002_ange_202421918 crossref_primary_10_1016_j_jelechem_2022_116637 crossref_primary_10_1021_jacs_3c00262 crossref_primary_10_1002_cssc_202100833 crossref_primary_10_1002_adma_202418757 crossref_primary_10_1007_s12598_021_01904_z crossref_primary_10_1016_j_matchemphys_2022_126769 crossref_primary_10_1002_ange_202311696 crossref_primary_10_1007_s10854_021_05690_3 crossref_primary_10_1016_j_jcat_2022_01_017 crossref_primary_10_1002_ece2_90 crossref_primary_10_1016_j_colsurfa_2025_136106 crossref_primary_10_3390_catal12121525 crossref_primary_10_1016_j_cej_2022_136416 crossref_primary_10_1016_j_cej_2022_138710 crossref_primary_10_1016_j_mattod_2020_07_002 crossref_primary_10_1039_D2CS01068B crossref_primary_10_1021_acsnano_2c11939 crossref_primary_10_1021_acsanm_4c02704 crossref_primary_10_1039_D1TA01224J crossref_primary_10_1039_D2TA08224A crossref_primary_10_1038_s41560_022_01062_1 crossref_primary_10_3390_nano12061015 crossref_primary_10_1007_s11708_022_0813_0 crossref_primary_10_1016_j_apsusc_2022_153057 crossref_primary_10_1002_ange_202207537 crossref_primary_10_1016_j_nanoen_2020_105213 crossref_primary_10_1039_D0TA09903A crossref_primary_10_1016_j_cej_2022_136665 crossref_primary_10_1039_D2CP04302E crossref_primary_10_1126_sciadv_abl9271 crossref_primary_10_1021_acs_inorgchem_0c03485 crossref_primary_10_1039_D1TA01310F crossref_primary_10_1002_adma_202004670 crossref_primary_10_1016_j_matchemphys_2025_130436 crossref_primary_10_1002_smm2_1067 crossref_primary_10_1016_j_jelechem_2023_117900 crossref_primary_10_1016_j_electacta_2022_140091 crossref_primary_10_1002_smll_202207249 crossref_primary_10_1016_j_jpowsour_2021_229626 crossref_primary_10_1021_acsmaterialslett_0c00396 crossref_primary_10_1002_aesr_202000090 crossref_primary_10_1016_j_jechem_2022_04_004 crossref_primary_10_1016_j_jechem_2024_01_035 crossref_primary_10_1002_aenm_202200875 crossref_primary_10_1016_j_cej_2023_147608 crossref_primary_10_1039_D2EE00542E crossref_primary_10_1016_j_diamond_2025_112241 crossref_primary_10_1039_D1CE01505B crossref_primary_10_1016_j_apenergy_2024_123193 crossref_primary_10_1016_j_cej_2021_131133 crossref_primary_10_1002_anie_202315003 crossref_primary_10_1016_j_ccr_2022_214577 crossref_primary_10_1002_anie_202107053 crossref_primary_10_1016_j_cej_2024_150054 crossref_primary_10_1007_s12274_021_3936_4 crossref_primary_10_1002_cey2_194 crossref_primary_10_1021_acsami_3c03430 crossref_primary_10_1016_j_apcatb_2023_122544 crossref_primary_10_1002_smll_202207243 crossref_primary_10_1002_sus2_69 crossref_primary_10_1016_j_jelechem_2023_117315 crossref_primary_10_1016_j_jclepro_2023_136613 crossref_primary_10_1039_D4CS00333K crossref_primary_10_1002_smll_202007113 crossref_primary_10_1002_advs_202205031 crossref_primary_10_1002_cctc_202401331 crossref_primary_10_1039_D1TA06144E crossref_primary_10_1002_advs_202306095 crossref_primary_10_1002_adma_202418504 crossref_primary_10_1016_j_ijhydene_2024_06_228 crossref_primary_10_1039_D0EE03596C crossref_primary_10_1002_aenm_202203913 crossref_primary_10_1016_j_electacta_2023_143416 crossref_primary_10_1007_s40843_022_2302_0 crossref_primary_10_1021_jacs_1c00656 crossref_primary_10_1002_adfm_202202319 crossref_primary_10_1039_D1NJ02769G crossref_primary_10_1002_anie_202302950 crossref_primary_10_1016_j_nanoen_2022_107853 crossref_primary_10_1039_D2NR03687H crossref_primary_10_3390_catal14080513 crossref_primary_10_3390_electrochem3040040 crossref_primary_10_1021_acs_chemrev_3c00723 crossref_primary_10_1021_jacs_1c07391 crossref_primary_10_1039_D2MH01408D crossref_primary_10_1016_j_jallcom_2024_174948 crossref_primary_10_1016_S1872_2067_21_64027_5 crossref_primary_10_1002_adfm_202007423 crossref_primary_10_1039_D3EY00174A crossref_primary_10_1039_D3QM00157A crossref_primary_10_1002_anie_202316123 crossref_primary_10_1002_smll_202201838 crossref_primary_10_1016_j_apcatb_2022_121150 crossref_primary_10_1039_D2RA04853A crossref_primary_10_1002_smll_202304807 crossref_primary_10_1007_s40820_023_01014_8 crossref_primary_10_1002_smll_202003096 crossref_primary_10_1002_anie_202101522 crossref_primary_10_1016_j_apcatb_2021_120028 crossref_primary_10_1016_j_ijhydene_2024_06_261 crossref_primary_10_1016_j_mtcomm_2024_108470 crossref_primary_10_1016_j_jpowsour_2021_229859 crossref_primary_10_1039_D1EE02798K crossref_primary_10_1142_S1088424623500748 crossref_primary_10_1016_j_ijhydene_2022_03_032 crossref_primary_10_1002_celc_202300370 crossref_primary_10_1039_D2TA01962K crossref_primary_10_1002_elt2_26 crossref_primary_10_1016_j_apcatb_2023_123619 crossref_primary_10_1007_s12274_023_5449_9 crossref_primary_10_1002_anie_202423145 crossref_primary_10_1039_D0EE01706J crossref_primary_10_1002_ange_202003917 crossref_primary_10_1016_j_jssc_2021_122018 crossref_primary_10_1038_s41467_021_25562_y crossref_primary_10_1007_s11705_021_2085_3 crossref_primary_10_1016_j_apsusc_2021_149776 crossref_primary_10_1002_cctc_202200001 crossref_primary_10_1016_j_apcatb_2023_122898 crossref_primary_10_1039_D1TC02193A crossref_primary_10_1016_j_apcatb_2021_120390 crossref_primary_10_1002_ange_202008129 crossref_primary_10_1002_nano_202000239 crossref_primary_10_1039_D3QM01002C crossref_primary_10_1016_S1872_2067_22_64104_4 crossref_primary_10_1016_j_ijhydene_2025_01_137 crossref_primary_10_1021_acsnano_1c04715 crossref_primary_10_1016_j_mtener_2022_101017 crossref_primary_10_3390_en13215539 crossref_primary_10_1002_adfm_202300636 crossref_primary_10_1039_D3QM00935A crossref_primary_10_1002_sstr_202100047 crossref_primary_10_1021_acsenergylett_0c02484 crossref_primary_10_1002_adfm_202300512 crossref_primary_10_1002_adfm_202108345 crossref_primary_10_1002_sstr_202400181 crossref_primary_10_1039_D1EE03311E crossref_primary_10_1039_D3EY00050H crossref_primary_10_1039_D2CS00368F crossref_primary_10_1016_j_apsusc_2021_151853 crossref_primary_10_1016_j_cej_2021_129096 crossref_primary_10_1002_anie_202301833 crossref_primary_10_1039_D2NR01259F crossref_primary_10_1073_pnas_2202812119 crossref_primary_10_1002_aenm_202303442 crossref_primary_10_1016_j_jpowsour_2021_229551 crossref_primary_10_1002_advs_202402038 crossref_primary_10_1002_sus2_132 crossref_primary_10_1002_eom2_12186 crossref_primary_10_1039_D4TA07638A crossref_primary_10_1186_s42252_022_00030_y crossref_primary_10_1002_nano_202100079 crossref_primary_10_1002_smll_202406658 crossref_primary_10_1016_j_ccr_2022_214521 crossref_primary_10_1016_j_nanoen_2024_110020 crossref_primary_10_1016_j_ijhydene_2023_11_333 crossref_primary_10_1002_cey2_284 crossref_primary_10_1039_D3SC00250K crossref_primary_10_1073_pnas_2206321119 crossref_primary_10_1007_s11705_021_2062_x crossref_primary_10_1016_S1872_2067_21_63933_5 crossref_primary_10_1039_D0CY01408G crossref_primary_10_1016_j_jechem_2021_05_020 crossref_primary_10_1016_j_jechem_2021_10_011 crossref_primary_10_1039_D3QI01112G crossref_primary_10_1021_acsomega_3c01794 crossref_primary_10_1038_s41467_022_33725_8 crossref_primary_10_1039_D3EE03183G crossref_primary_10_1002_cssc_202002098 crossref_primary_10_1016_j_ccr_2024_216174 crossref_primary_10_1016_j_nanoen_2024_110370 crossref_primary_10_1039_D2CS00233G crossref_primary_10_1016_j_ijhydene_2022_11_048 crossref_primary_10_1002_asia_202100030 crossref_primary_10_1016_j_jechem_2022_06_031 crossref_primary_10_1021_acssuschemeng_0c05509 crossref_primary_10_1039_D1CS00590A crossref_primary_10_1016_j_cclet_2021_02_032 crossref_primary_10_1039_D1NJ00210D crossref_primary_10_1002_ange_202209693 crossref_primary_10_1016_j_ijhydene_2023_12_250 crossref_primary_10_1007_s12274_023_5514_4 crossref_primary_10_1002_advs_202300342 crossref_primary_10_1039_D0NH00680G crossref_primary_10_1016_j_jechem_2021_05_033 crossref_primary_10_1016_j_jechem_2021_04_010 crossref_primary_10_1002_aic_18690 crossref_primary_10_1002_aenm_202000478 crossref_primary_10_1007_s10904_025_03688_6 crossref_primary_10_1021_acsnano_2c01748 crossref_primary_10_1016_j_jallcom_2022_166532 crossref_primary_10_1002_anie_202413308 crossref_primary_10_1002_anie_202421168 crossref_primary_10_1039_D2CC02708A crossref_primary_10_1016_j_apcatb_2021_121043 crossref_primary_10_1016_j_jpowsour_2024_235758 crossref_primary_10_1016_j_nanoen_2022_107959 crossref_primary_10_1039_D4NJ01923G crossref_primary_10_1016_j_cesx_2021_100105 crossref_primary_10_1002_anie_202213366 crossref_primary_10_1016_j_nantod_2023_101972 crossref_primary_10_1039_D2QI02279F crossref_primary_10_1002_adma_202008752 crossref_primary_10_1002_aenm_202303352 crossref_primary_10_1002_sus2_15 crossref_primary_10_1002_sstr_202100007 crossref_primary_10_1016_j_jpowsour_2021_230886 crossref_primary_10_1016_j_ijhydene_2022_03_229 crossref_primary_10_1002_smll_202006178 crossref_primary_10_1016_j_scenem_2025_100003 crossref_primary_10_1002_smll_202406209 crossref_primary_10_1016_j_apcatb_2023_122937 crossref_primary_10_1016_j_mtphys_2024_101411 crossref_primary_10_1002_ange_202316123 crossref_primary_10_1016_j_cej_2024_154141 crossref_primary_10_1088_1361_6463_ac4b56 crossref_primary_10_3390_nano11061595 crossref_primary_10_1002_adfm_202302573 crossref_primary_10_1002_ange_202213366 crossref_primary_10_1007_s42765_022_00138_7 crossref_primary_10_1002_adfm_202007602 crossref_primary_10_1002_elsa_202100115 crossref_primary_10_1002_asia_202201161 crossref_primary_10_1039_D0CS00978D crossref_primary_10_1002_aenm_202001561 crossref_primary_10_1016_j_jtice_2022_104397 crossref_primary_10_1021_acscatal_4c01713 crossref_primary_10_1016_j_electacta_2024_145497 crossref_primary_10_1016_j_jpowsour_2025_236695 crossref_primary_10_1063_5_0048186 crossref_primary_10_1016_j_mssp_2024_109139 crossref_primary_10_3390_nano12193331 crossref_primary_10_1002_anie_202008129 crossref_primary_10_1039_D4NR00175C crossref_primary_10_1002_adfm_202100833 crossref_primary_10_1002_adfm_202206081 crossref_primary_10_1016_j_ijhydene_2023_06_008 crossref_primary_10_1016_j_jallcom_2023_172518 crossref_primary_10_1039_D0NR08976A crossref_primary_10_1039_D3QM00096F crossref_primary_10_1002_adma_202206576 crossref_primary_10_1016_j_ica_2021_120250 crossref_primary_10_1088_2515_7639_ac1ab7 crossref_primary_10_1002_anie_202003917 crossref_primary_10_1016_j_ccr_2021_213804 crossref_primary_10_1021_acscatal_0c01459 crossref_primary_10_1039_D0CC03620J crossref_primary_10_1039_D0CY01311K crossref_primary_10_1007_s11814_025_00393_5 crossref_primary_10_1039_D4YA00279B crossref_primary_10_1002_ange_202101522 crossref_primary_10_1016_j_scitotenv_2022_157711 crossref_primary_10_1002_cjoc_202300294 crossref_primary_10_1007_s40820_023_01142_1 crossref_primary_10_1016_j_mtener_2020_100586 crossref_primary_10_1002_adma_202101038 crossref_primary_10_1016_j_ccr_2023_215400 crossref_primary_10_1002_adfm_202301229 crossref_primary_10_1039_D0EE02800B crossref_primary_10_1021_acsnano_4c00308 crossref_primary_10_1039_D2TA00747A crossref_primary_10_1039_D3GC00580A crossref_primary_10_1021_acs_accounts_2c00239 crossref_primary_10_1016_j_jechem_2021_08_041 crossref_primary_10_1016_j_ccr_2024_215961 crossref_primary_10_1007_s12274_022_5246_x crossref_primary_10_1016_j_carbon_2022_11_067 crossref_primary_10_1002_smll_202410612 crossref_primary_10_1016_j_jechem_2022_11_023 crossref_primary_10_1039_D1TA03176G crossref_primary_10_1007_s12274_021_4029_0 crossref_primary_10_1016_j_physb_2024_416762 crossref_primary_10_1021_acsanm_1c01236 crossref_primary_10_1007_s12274_022_4982_2 crossref_primary_10_1002_adma_202210703 crossref_primary_10_1016_j_fuel_2023_130256 crossref_primary_10_1016_j_nxmate_2023_100010 crossref_primary_10_1039_D4TA03518F crossref_primary_10_1016_j_mcat_2024_114188 crossref_primary_10_1016_j_vacuum_2022_111308 crossref_primary_10_1016_j_cej_2023_143060 crossref_primary_10_1016_j_matt_2020_07_032 crossref_primary_10_1039_D2EE03642H crossref_primary_10_1002_sstr_202000067 crossref_primary_10_1016_j_ijhydene_2022_06_060 crossref_primary_10_1039_D4TA08090D crossref_primary_10_1002_advs_202203391 crossref_primary_10_1007_s12678_023_00832_z crossref_primary_10_1038_s41467_021_27143_5 crossref_primary_10_1007_s12274_022_4270_1 crossref_primary_10_1016_j_ijhydene_2023_06_346 crossref_primary_10_1021_jacs_2c11597 crossref_primary_10_1021_acs_nanolett_0c04898 crossref_primary_10_1002_smll_202302338 crossref_primary_10_1002_smll_202406353 crossref_primary_10_1021_acs_analchem_2c05755 crossref_primary_10_1021_acsenergylett_1c00768 crossref_primary_10_1039_D2QM00893A crossref_primary_10_1016_j_jallcom_2022_164829 crossref_primary_10_1021_acsami_1c02353 crossref_primary_10_1002_adma_202105410 crossref_primary_10_1021_acs_jpcc_0c11487 crossref_primary_10_1021_jacs_3c06311 crossref_primary_10_1002_cey2_85 crossref_primary_10_1021_acs_nanolett_2c00278 crossref_primary_10_1002_smll_202006773 crossref_primary_10_1039_D2NJ05979G crossref_primary_10_1016_j_ccr_2022_214493 crossref_primary_10_1002_er_6749 crossref_primary_10_1016_j_nexus_2025_100387 crossref_primary_10_1021_acscatal_3c02186 crossref_primary_10_1007_s12274_022_4075_2 crossref_primary_10_1039_D3DT03486K crossref_primary_10_1002_aenm_202101242 crossref_primary_10_1002_slct_202302699 crossref_primary_10_1002_adma_202209654 crossref_primary_10_1016_j_jechem_2023_12_048 crossref_primary_10_1002_anie_202207537 crossref_primary_10_1016_j_cattod_2022_09_005 crossref_primary_10_1002_smll_202405157 crossref_primary_10_1007_s12274_023_5994_2 crossref_primary_10_1021_acsanm_1c02301 crossref_primary_10_1039_D1EE01592C crossref_primary_10_1039_D4QM00285G crossref_primary_10_1007_s12274_021_3479_8 crossref_primary_10_1016_j_mtcata_2024_100039 crossref_primary_10_1021_jacs_3c05371 crossref_primary_10_1039_D0SC03522J crossref_primary_10_1002_cctc_202300562 crossref_primary_10_1002_adma_202007056 crossref_primary_10_1016_j_cej_2021_132558 crossref_primary_10_1039_D0CS01482F crossref_primary_10_2139_ssrn_4055065 crossref_primary_10_1016_j_mtener_2021_100911 crossref_primary_10_1016_j_jssc_2024_124559 crossref_primary_10_1039_D3CY01337E crossref_primary_10_1002_smll_202305782 crossref_primary_10_1016_j_apcatb_2024_124590 crossref_primary_10_1016_j_jpowsour_2020_228446 crossref_primary_10_1016_j_jallcom_2021_162290 crossref_primary_10_1021_acs_energyfuels_4c00651 crossref_primary_10_1002_ange_202109057 crossref_primary_10_1002_aenm_202103670 crossref_primary_10_1038_s41467_025_57434_0 crossref_primary_10_1016_j_jechem_2023_11_014 crossref_primary_10_1088_2515_7639_ac01ac crossref_primary_10_1002_ange_202304229 crossref_primary_10_1002_aenm_202103426 crossref_primary_10_1002_adfm_202105372 crossref_primary_10_1016_j_jiec_2023_01_037 crossref_primary_10_1039_D4TA05017G crossref_primary_10_1002_eem2_12128 crossref_primary_10_1002_smll_202006473 crossref_primary_10_1016_j_cej_2021_132307 crossref_primary_10_1016_j_jcis_2023_11_124 crossref_primary_10_1016_j_cej_2023_142184 crossref_primary_10_1002_celc_202200375 crossref_primary_10_1016_j_ijhydene_2021_11_042 crossref_primary_10_1007_s11426_021_1175_2 crossref_primary_10_1016_j_ijhydene_2022_05_212 crossref_primary_10_1039_D4CC05900J crossref_primary_10_1002_smll_202106091 crossref_primary_10_1016_j_ijhydene_2022_06_258 crossref_primary_10_1360_SSC_2023_0104 crossref_primary_10_1002_anie_202109057 crossref_primary_10_1039_D2CC06879F crossref_primary_10_1016_j_jcis_2025_01_089 crossref_primary_10_1039_D3MA01010D crossref_primary_10_1039_D0OB01902J crossref_primary_10_1002_ange_202305447 crossref_primary_10_1021_acscentsci_0c00458 crossref_primary_10_1002_adsu_202000213 crossref_primary_10_1007_s11426_021_1163_7 crossref_primary_10_1039_D2TA08943B crossref_primary_10_1039_D1TA04256D crossref_primary_10_3390_ma16103760 crossref_primary_10_1002_aenm_202002816 crossref_primary_10_1016_j_ijhydene_2022_07_056 crossref_primary_10_1002_ange_202315003 crossref_primary_10_1039_D2CC06503G crossref_primary_10_1149_1945_7111_ac7172 crossref_primary_10_1016_j_seppur_2024_126381 crossref_primary_10_1039_D2SC03650A crossref_primary_10_3390_ma15020458 crossref_primary_10_1039_D2NJ04864G crossref_primary_10_1039_D2TA09922E crossref_primary_10_1016_j_cej_2021_129280 crossref_primary_10_1007_s40843_021_1848_8 crossref_primary_10_1021_acs_chemrev_3c00382 crossref_primary_10_1016_j_scib_2023_10_013 crossref_primary_10_1039_D4TA00586D crossref_primary_10_1002_anie_202305447 crossref_primary_10_1039_D3CY00456B crossref_primary_10_1002_cssc_202100055 crossref_primary_10_1039_D1NA00606A crossref_primary_10_1016_j_apcatb_2020_119407 crossref_primary_10_1002_adma_202107421 crossref_primary_10_1016_j_apcatb_2022_121607 crossref_primary_10_1039_D3NR05328H crossref_primary_10_1016_j_ces_2023_119260 crossref_primary_10_1016_j_jallcom_2023_171812 crossref_primary_10_1073_pnas_2315407121 crossref_primary_10_1039_D3GC01806G crossref_primary_10_1002_ange_202421168 crossref_primary_10_1002_adfm_202106886 crossref_primary_10_1016_j_ccr_2023_215143 crossref_primary_10_1016_S1872_2067_21_63893_7 crossref_primary_10_1002_advs_202304120 crossref_primary_10_1016_j_mtnano_2021_100144 crossref_primary_10_1002_anie_202304229 crossref_primary_10_1016_j_checat_2024_101090 crossref_primary_10_1007_s11426_021_1106_9 crossref_primary_10_1016_j_nanoen_2022_107296 crossref_primary_10_1007_s12274_021_3767_3 crossref_primary_10_2139_ssrn_4123943 crossref_primary_10_1002_adfm_202113191 crossref_primary_10_1039_D2GC02956A crossref_primary_10_1002_anie_202311696 crossref_primary_10_1016_j_enchem_2021_100066 crossref_primary_10_1002_adfm_202301075 crossref_primary_10_1016_j_enchem_2021_100065 crossref_primary_10_1016_j_mtphys_2020_100279 crossref_primary_10_1002_ange_202301833 crossref_primary_10_1002_ange_202413308 crossref_primary_10_1016_j_cis_2022_102811 crossref_primary_10_1039_D3CS01122D crossref_primary_10_1039_D0TA06441F crossref_primary_10_1016_j_jcis_2022_07_060 crossref_primary_10_1007_s12598_021_01791_4 crossref_primary_10_1039_D1CY01688A crossref_primary_10_1016_j_jaap_2022_105810 crossref_primary_10_1002_adma_202301477 crossref_primary_10_1039_D1NJ05907F crossref_primary_10_1002_smll_202203589 crossref_primary_10_1007_s12274_023_5959_5 crossref_primary_10_1021_acsami_4c17354 crossref_primary_10_1002_smsc_202100023 crossref_primary_10_1039_D4QM00822G crossref_primary_10_1016_j_nanoen_2021_105817 crossref_primary_10_1021_acsami_0c13547 crossref_primary_10_1016_j_rser_2022_112887 crossref_primary_10_1002_smtd_202201358 crossref_primary_10_1039_D1TA00001B crossref_primary_10_1007_s12274_022_4501_5 crossref_primary_10_1016_j_cogsc_2020_100398 crossref_primary_10_1002_smtd_202301602 crossref_primary_10_1016_j_apsusc_2022_153016 crossref_primary_10_1016_j_ensm_2021_11_050 crossref_primary_10_1016_j_apcatb_2024_124586 crossref_primary_10_1002_asia_202100406 crossref_primary_10_1021_acsaem_3c02215 crossref_primary_10_1021_jacs_0c07790 crossref_primary_10_1016_j_ccr_2023_215492 crossref_primary_10_1021_acs_jpcc_4c00545 crossref_primary_10_1016_j_apsusc_2020_148817 crossref_primary_10_1016_j_checat_2022_10_002 crossref_primary_10_1016_j_ijhydene_2021_09_063 crossref_primary_10_1016_j_jssc_2024_124775 crossref_primary_10_1016_j_cclet_2023_109269 crossref_primary_10_1016_j_mser_2025_100942 crossref_primary_10_1002_elsa_202100047 crossref_primary_10_1002_aenm_202201047 crossref_primary_10_1002_advs_202410784 crossref_primary_10_1016_j_coelec_2023_101379 crossref_primary_10_1016_j_chempr_2021_08_020 crossref_primary_10_1016_j_apcatb_2023_123186 crossref_primary_10_1016_j_jallcom_2024_177776 crossref_primary_10_1002_adfm_202210674 crossref_primary_10_1039_D1NR02307A crossref_primary_10_1016_j_asems_2022_100001 crossref_primary_10_1021_acs_nanolett_5c00465 crossref_primary_10_1016_j_cej_2024_149706 crossref_primary_10_1002_ange_202423145 crossref_primary_10_1002_idm2_12172 crossref_primary_10_1007_s12274_022_4862_9 crossref_primary_10_1021_acsnano_3c09806 crossref_primary_10_1039_D4TA03382E crossref_primary_10_1002_cctc_202300040 crossref_primary_10_1002_cey2_79 crossref_primary_10_1016_j_cej_2020_128047 crossref_primary_10_1002_cey2_74 crossref_primary_10_1007_s12274_024_6497_5 crossref_primary_10_1002_adfm_202315563 crossref_primary_10_1016_j_apcatb_2023_123279 crossref_primary_10_1016_j_electacta_2022_139975 crossref_primary_10_1007_s10904_020_01668_6 crossref_primary_10_1038_s41467_022_33589_y crossref_primary_10_1016_j_mtphys_2021_100418 crossref_primary_10_1002_smll_202300926 crossref_primary_10_1016_j_reactfunctpolym_2021_105142 crossref_primary_10_1021_acsnano_3c08831 crossref_primary_10_1016_S1872_2067_21_63918_9 crossref_primary_10_1016_j_cej_2024_157208 crossref_primary_10_1021_acscatal_1c05958 crossref_primary_10_1002_anie_202209693 crossref_primary_10_1007_s13204_020_01550_4 crossref_primary_10_1016_j_cej_2023_147230 crossref_primary_10_1021_acs_inorgchem_0c03746 crossref_primary_10_1007_s12274_022_4677_8 crossref_primary_10_1021_acsami_3c19483 crossref_primary_10_1021_acscatal_2c05624 crossref_primary_10_1016_j_jece_2023_110573 crossref_primary_10_1021_acsomega_2c04499 crossref_primary_10_1039_D1TA02341A crossref_primary_10_1016_S1872_2067_23_64611_X crossref_primary_10_1039_D1TA00154J crossref_primary_10_1021_acs_jpclett_1c03452 crossref_primary_10_1002_adfm_202300294 crossref_primary_10_1063_5_0232980 crossref_primary_10_1016_j_seppur_2024_129011 crossref_primary_10_1360_SSC_2024_0159 crossref_primary_10_1016_j_jcis_2023_07_039 crossref_primary_10_2139_ssrn_4169979 crossref_primary_10_1039_D0CC05785A crossref_primary_10_1016_j_nxsust_2023_100023 crossref_primary_10_1039_D0SE00824A crossref_primary_10_1016_j_carbon_2021_03_015 crossref_primary_10_1016_j_ensm_2021_12_029 crossref_primary_10_1016_j_cej_2023_146004 crossref_primary_10_1016_j_mtphys_2022_100931 crossref_primary_10_1002_adfm_202107608 crossref_primary_10_1016_j_apsusc_2024_161651 crossref_primary_10_1016_j_fuel_2021_121420 crossref_primary_10_1016_j_jechem_2022_02_045 crossref_primary_10_1002_adma_202501113 crossref_primary_10_1016_j_jssc_2020_121867 crossref_primary_10_1002_ange_202107053 crossref_primary_10_1039_D1TA09925F crossref_primary_10_1039_D1QM01256H crossref_primary_10_1016_j_apcatb_2023_123269 crossref_primary_10_1016_j_jpowsour_2022_231353 crossref_primary_10_1021_acsaem_0c03035 crossref_primary_10_1021_acsami_3c07261 crossref_primary_10_1007_s12274_021_3964_0 crossref_primary_10_1002_adfm_202101193 crossref_primary_10_1149_1945_7111_ac6e91 crossref_primary_10_1016_j_apsusc_2022_155506 crossref_primary_10_1002_cey2_505 crossref_primary_10_1007_s12274_022_4510_4 crossref_primary_10_1039_D3TA05922G crossref_primary_10_1039_D2TA03860A crossref_primary_10_1002_aenm_202300884 |
Cites_doi | 10.1016/j.nanoen.2017.03.027 10.1039/c3cp51479j 10.1021/acscatal.6b00476 10.1021/nl500037x 10.1017/S1431927604040577 10.1038/s41467-019-09765-y 10.1002/anie.201709803 10.1002/adma.201804504 10.1021/jacs.8b03121 10.1038/s41929-017-0008-y 10.1038/s41467-019-10854-1 10.1002/adma.201806545 10.1016/j.apcatb.2015.02.033 10.1038/s41467-019-09290-y 10.1021/jacs.7b10817 10.1039/C5TA02551F 10.1103/RevModPhys.72.621 10.1038/s41467-019-09845-z 10.1002/adma.201808193 10.1002/adma.201801732 10.1021/jacs.9b02936 10.1039/C6CC07049C 10.1039/C5EE00751H 10.1126/science.aay1844 10.1021/cs500740u 10.1126/science.aah4321 10.1021/jz301476w 10.1016/j.chempr.2019.07.020 10.1002/smll.201804524 10.1021/jacs.7b02736 10.1007/s12274-018-2149-y 10.1016/j.chempr.2017.12.005 10.1021/jacs.8b13543 10.1126/science.aan2255 10.1038/s41467-018-03896-4 10.1039/C8EE01841C 10.1002/adma.201803498 10.1007/s11705-015-1547-x 10.1038/s41565-019-0518-7 10.1039/C8SC04480E 10.1038/s41467-019-09666-0 10.1039/c2dt30639e 10.1016/j.cplett.2011.09.034 10.1038/s41467-018-04845-x 10.1021/jacs.8b00814 10.1038/s41557-018-0201-x 10.1038/s41929-018-0195-1 10.1002/anie.201706602 10.1021/acs.chemrev.9b00220 10.1002/aenm.201902084 10.1038/s41565-019-0513-z 10.1039/C4CS00160E 10.1002/adma.201903470 10.1038/s41570-019-0110-6 10.1016/j.nanoen.2018.11.054 10.1002/adma.201806312 10.1016/j.chempr.2019.03.002 10.1126/science.aaf8800 10.1126/science.aad4998 10.1038/s41467-018-07288-6 10.1002/anie.201804349 10.1002/aenm.201802856 10.1073/pnas.1800771115 10.1038/nchem.1095 10.1002/anie.201505073 10.1002/aenm.201701343 10.1021/acsenergylett.7b00219 10.1103/PhysRevLett.122.106802 10.1002/anie.201710599 10.1126/science.1180297 10.1038/s41467-019-11796-4 10.1021/acscatal.6b02772 10.1073/pnas.1412962111 10.1038/ncomms13481 10.1039/C6CP04022E 10.1002/xrs.1103 10.1038/s41467-018-08136-3 10.1002/adma.201704720 10.1021/acsnano.7b00796 10.1038/ncomms13638 10.1038/s41560-019-0402-6 10.1002/anie.201702473 10.1038/s41467-018-06296-w 10.1038/s41563-019-0571-5 10.1021/ja9922476 10.1002/adma.201302820 10.1021/jacs.7b10385 10.1126/sciadv.1500462 10.1002/anie.201908760 10.1021/acscatal.6b01534 10.1021/acsami.9b09125 10.1038/s41467-019-12886-z 10.1039/C7CY00881C 10.1038/s41929-018-0203-5 10.1002/aenm.201701345 10.1039/C8EE01481G 10.1002/anie.201814182 10.1002/smtd.201900159 10.1038/ncomms9668 10.1002/adma.201002828 10.1063/1.4766919 10.1016/j.joule.2018.06.019 10.1002/anie.201504903 10.1021/jacs.7b10646 10.1039/C8EE02694G 10.1002/anie.201908351 10.1006/jcat.1998.2234 10.1002/anie.201813494 10.1002/smll.201704319 10.1038/s41929-018-0181-7 10.1039/C5CP01824B 10.1038/s41929-019-0246-2 10.1038/s41467-019-11992-2 10.1002/adma.201705369 10.1021/jacs.7b10194 10.1021/acsami.5b01963 10.1126/science.aad8892 10.1038/378159a0 10.1038/nchem.121 10.1002/aenm.201703487 10.1002/aenm.201701476 10.1021/cr900056b 10.1021/jp5113894 10.1038/s41570-018-0010-1 10.1039/C8EE02656D 10.1038/srep01775 10.1038/nmat4367 10.1126/science.1253150 10.1093/nsr/nwy043 10.1126/science.aaw7515 10.1002/adma.201801649 10.1002/aenm.201900149 10.1002/adma.201603662 10.1002/aenm.201601979 10.1002/anie.201602097 10.1002/adma.201801995 10.1038/s41467-019-12885-0 10.1021/jacs.8b00752 10.1038/s41929-018-0164-8 10.1038/nchem.2915 10.1021/cr2000898 10.1038/nenergy.2017.111 10.1002/adfm.201808872 10.1021/jacs.9b05576 10.1016/j.chempr.2017.10.013 10.2136/sssaj1998.03615995006200050014x 10.1021/ar300361m 10.1039/C9EE01722D 10.1039/b912552c 10.1016/j.chempr.2019.04.024 10.1021/ja408574m 10.1126/sciadv.aao6657 10.1038/s41560-017-0078-8 10.1039/C6NR04403D 10.1021/jacs.8b04647 10.1038/s41467-018-05754-9 10.1039/C9TA03011E 10.1016/j.chempr.2017.09.014 10.1038/nmat3191 10.1021/acsnano.7b02148 10.1016/j.ijhydene.2012.07.059 10.1039/B804591G 10.1002/anie.201403353 10.1038/s41467-019-09596-x 10.1002/celc.201900598 10.1038/s41467-019-12362-8 10.1021/jacs.7b01686 10.1002/anie.201901575 10.1002/anie.201906289 10.1016/j.nanoen.2016.12.056 10.1016/j.nanoen.2018.06.023 10.1002/cssc.201701306 10.1038/s41565-018-0197-9 10.1021/jacs.7b08881 10.1039/C9EE00877B 10.1039/C5EE00682A 10.1149/1.1525270 10.1039/C8EE02888E 10.1038/s41467-019-10622-1 10.1002/anie.201808049 10.1039/C4CS00470A 10.1021/jacs.8b09834 10.1038/s41467-017-01100-7 10.1002/anie.201811126 10.1063/1.2709758 10.1039/c1cs15091j 10.1002/anie.201804817 10.1038/s41467-017-01259-z 10.1038/nmat4757 10.1002/anie.201610955 10.1002/ange.201905241 10.1016/j.chempr.2019.02.008 10.1021/ar3002427 10.1038/s41929-019-0279-6 10.1039/b926434e 10.1002/ange.200501792 10.1021/ja206477z 10.1021/jacs.7b05130 10.1002/anie.201803262 10.1038/ncomms9550 10.1126/science.1135752 10.1038/ncomms16100 10.1126/science.aac6368 10.1002/anie.201805467 10.1126/science.1200832 10.1021/jacs.8b13579 10.1021/jp9059505 10.1002/adma.201800396 10.1002/cssc.201800855 10.1021/acscatal.6b02899 10.1038/am.2017.212 10.1038/s41929-017-0017-x 10.1002/adma.201800588 10.1002/anie.201712451 10.1002/anie.201811728 10.1021/ja211433h 10.1021/ja2042029 10.1021/jacs.8b07294 10.1002/anie.201604802 10.1002/anie.201804854 10.1002/anie.201711688 10.1038/s41467-019-08484-8 10.1021/jacs.5b10484 10.1039/C9CS00422J 10.1021/jacs.6b02692 10.1002/anie.201509241 10.1038/ncomms10922 10.1021/jacs.6b03339 10.1002/anie.201507381 10.1021/acsenergylett.7b01188 10.1002/aenm.201900931 10.1002/smtd.201800471 10.1002/aenm.201701799 10.1016/j.nanoen.2018.07.033 10.1038/s41467-018-07850-2 10.1081/CR-120001809 10.1021/jacs.7b05372 10.1002/adma.201705112 10.1038/s41467-018-03380-z 10.1038/nmat2883 10.1126/sciadv.aaw2322 10.1002/adma.201604571 10.1016/j.apcatb.2017.12.059 10.1038/nature11475 10.1039/C8EE01169A 10.1038/s41563-018-0167-5 10.1038/nchem.2740 10.1021/jacs.9b03004 10.1021/cs5008206 10.1021/ja401847c 10.1063/1.4774216 10.1002/anie.201812423 10.1021/acs.jpcc.7b03779 10.1038/s41467-017-01521-4 10.1038/s41467-019-09188-9 10.1002/adma.201808066 10.1038/s41929-018-0146-x 10.1016/j.jcat.2011.06.015 10.1039/C6EE01867J 10.1002/anie.201703864 10.1039/C9CC00199A 10.1038/ncomms8938 10.1016/j.chempr.2019.07.005 10.1021/acs.jpcc.7b00913 10.1073/pnas.1813605115 10.1002/anie.201709597 10.1126/science.1085721 10.1038/s41929-019-0237-3 10.1038/nmat3143 10.1002/anie.201902109 10.1021/jacs.8b02225 10.1126/science.aad0832 10.1021/jp307408u 10.1073/pnas.1116897109 10.1021/acsnano.7b08721 10.1038/nmat3795 10.1021/jacs.9b03182 10.1021/jacs.6b13100 10.1126/science.aaf5251 10.1093/nsr/nwy056 10.1002/anie.201906079 10.1021/jacs.8b06029 10.1002/adma.201706508 10.1002/anie.201712504 10.1002/aenm.201801956 10.1039/c3cp51538a 10.1021/cs500923c 10.1021/acscatal.7b01816 10.1021/acscatal.8b02288 10.1021/cs300809j 10.1021/ar300229c 10.1016/j.chempr.2018.10.007 10.1021/jacs.6b00757 10.1021/acscatal.5b01816 10.1002/anie.201109065 10.1021/jacs.5b06485 10.1021/jacs.6b09470 10.1002/advs.201802066 10.1002/adma.201706758 10.1126/science.aau0630 10.1002/anie.201902107 10.1038/srep05441 10.1126/science.1215864 10.1039/C6CS00328A 10.1126/science.1249061 10.1021/jacs.9b04907 10.1021/jacs.9b05268 10.1002/anie.201604311 10.1021/jacs.7b06514 10.1038/ncomms15938 10.1038/ncomms2929 10.1021/acscatal.7b00312 10.1002/anie.201804958 10.1002/anie.201602801 10.1007/s12274-019-2345-4 10.1038/s41467-019-08419-3 10.1038/s41929-019-0304-9 10.1021/jacs.9b08362 10.1021/jacs.7b05018 10.1021/acs.chemrev.5b00462 10.3390/catal7030080 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/c9cs00869a |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed CrossRef Materials Research Database MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 2264 |
ExternalDocumentID | 32133461 10_1039_C9CS00869A c9cs00869a |
Genre | Journal Article Review |
GroupedDBID | - 0-7 02 0R 29B 4.4 53G 5GY 70 705 70J 7~J 85S AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX COF CS3 DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3I JG M4U N9A O9- OK1 P2P R7B R7D RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 X --- -DZ -~X 0R~ 2WC 6J9 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF ~02 -JG NPM YIN Z5M 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c462t-d98a5dd51421aac74fb8cfb720ebd549701b33da5bd8bac7ea575ca0f853b4e93 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Thu Jul 10 22:50:33 EDT 2025 Thu Jul 10 18:44:53 EDT 2025 Sun Jun 29 13:40:43 EDT 2025 Wed Feb 19 02:31:12 EST 2025 Tue Jul 01 04:18:43 EDT 2025 Thu Apr 24 23:12:35 EDT 2025 Sat Jan 08 03:36:53 EST 2022 Wed Nov 11 00:36:14 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c462t-d98a5dd51421aac74fb8cfb720ebd549701b33da5bd8bac7ea575ca0f853b4e93 |
Notes | Di Zhao is currently a postdoctoral fellow under the supervision of Prof. Yadong Li at the Department of Chemistry, Tsinghua University. She received her BS degree from the College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University in 2011 and her PhD degree from the School of Chemistry and Chemical Engineering in 2017, Beijing Institute of Technology. Her research interests include the design, synthesis and characterization of nanostructured materials and their applications in energy storage and conversion. Yadong Li received his BS degree from the Department of Chemistry, Anhui Normal University in 1986 and his PhD degree from the Department of Chemistry, University of Science and Technology of China in 1998, with Prof. Yitai Qian. He joined the faculty of the Department of Chemistry, Tsinghua University in 1999 as a full professor. His research interests are focused on the synthesis, assembly, structure, and application exploration of nanomaterials. Chen Chen received his BS degree from the Department of Chemistry, Beijing Institute of Technology in 2006, and his PhD degree from the Department of Chemistry, Tsinghua University in 2011 under the direction of Prof. Yadong Li. After postdoctoral work at Lawrence Berkeley National Laboratory with Prof. Peidong Yang, he joined the Department of Chemistry at Tsinghua University as an associate professor in 2015. His research interests are focused on nanomaterials and catalysis. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7060-426X 0000-0001-5902-3037 0000-0003-1544-1127 |
PMID | 32133461 |
PQID | 2386698791 |
PQPubID | 2047503 |
PageCount | 5 |
ParticipantIDs | pubmed_primary_32133461 crossref_citationtrail_10_1039_C9CS00869A proquest_miscellaneous_2371864268 proquest_journals_2386698791 rsc_primary_c9cs00869a crossref_primary_10_1039_C9CS00869A proquest_miscellaneous_2574335638 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-07 |
PublicationDateYYYYMMDD | 2020-04-07 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhang (C9CS00869A-(cit188)/*[position()=1]) 2018; 57 Cao (C9CS00869A-(cit138)/*[position()=1]) 2015; 9 Zhang (C9CS00869A-(cit20)/*[position()=1]) 2017; 139 Yao (C9CS00869A-(cit247)/*[position()=1]) 2019; 2 Lin (C9CS00869A-(cit156)/*[position()=1]) 2019; 31 Yin (C9CS00869A-(cit116)/*[position()=1]) 2018; 57 Ji (C9CS00869A-(cit53)/*[position()=1]) 2019; 58 Zhuang (C9CS00869A-(cit233)/*[position()=1]) 2019; 10 Yang (C9CS00869A-(cit31)/*[position()=1]) 2018; 3 Humblot (C9CS00869A-(cit37)/*[position()=1]) 1998; 179 Dauth (C9CS00869A-(cit236)/*[position()=1]) 2012; 41 Li (C9CS00869A-(cit78)/*[position()=1]) 2017; 11 Li (C9CS00869A-(cit256)/*[position()=1]) 2016; 52 Kneebone (C9CS00869A-(cit298)/*[position()=1]) 2017; 121 Cui (C9CS00869A-(cit143)/*[position()=1]) 2016; 55 Zhang (C9CS00869A-(cit106)/*[position()=1]) 2017; 56 Miller (C9CS00869A-(cit239)/*[position()=1]) 2004; 10 Zhao (C9CS00869A-(cit293)/*[position()=1]) 2019; 10 Wang (C9CS00869A-(cit277)/*[position()=1]) 2019; 2 Shan (C9CS00869A-(cit139)/*[position()=1]) 2018; 226 Dong (C9CS00869A-(cit110)/*[position()=1]) 2015; 3 Wang (C9CS00869A-(cit44)/*[position()=1]) 2018; 30 Jeon (C9CS00869A-(cit142)/*[position()=1]) 2012; 109 Chen (C9CS00869A-(cit90)/*[position()=1]) 2018; 140 Wan (C9CS00869A-(cit160)/*[position()=1]) 2019; 2 Li (C9CS00869A-(cit205)/*[position()=1]) 2019; 58 Lei (C9CS00869A-(cit199)/*[position()=1]) 2019; 12 Benck (C9CS00869A-(cit322)/*[position()=1]) 2014; 4 Zhang (C9CS00869A-(cit107)/*[position()=1]) 2018; 140 Li (C9CS00869A-(cit112)/*[position()=1]) 2019; 2 Chao (C9CS00869A-(cit245)/*[position()=1]) 2017; 56 Zhu (C9CS00869A-(cit301)/*[position()=1]) 2019; 7 Fang (C9CS00869A-(cit24)/*[position()=1]) 2018; 30 Ye (C9CS00869A-(cit65)/*[position()=1]) 2019; 12 Yamamoto (C9CS00869A-(cit235)/*[position()=1]) 2008; 37 Liu (C9CS00869A-(cit288)/*[position()=1]) 2017; 8 Deng (C9CS00869A-(cit70)/*[position()=1]) 2015; 8 Zhou (C9CS00869A-(cit104)/*[position()=1]) 2017; 139 Wan (C9CS00869A-(cit294)/*[position()=1]) 2018; 14 Ren (C9CS00869A-(cit158)/*[position()=1]) 2019; 58 Papaderakis (C9CS00869A-(cit132)/*[position()=1]) 2017; 7 Zhang (C9CS00869A-(cit191)/*[position()=1]) 2018; 8 Zhang (C9CS00869A-(cit105)/*[position()=1]) 2018; 140 Chen (C9CS00869A-(cit43)/*[position()=1]) 2018; 2 Jiao (C9CS00869A-(cit252)/*[position()=1]) 2015; 44 Zhang (C9CS00869A-(cit292)/*[position()=1]) 2019; 12 Choi (C9CS00869A-(cit94)/*[position()=1]) 2016; 7 Zhu (C9CS00869A-(cit207)/*[position()=1]) 2019; 15 Iglesias (C9CS00869A-(cit306)/*[position()=1]) 2018; 4 Siahrostami (C9CS00869A-(cit283)/*[position()=1]) 2013; 15 Luo (C9CS00869A-(cit168)/*[position()=1]) 2019; 58 Harvey (C9CS00869A-(cit69)/*[position()=1]) 2000 Liu (C9CS00869A-(cit129)/*[position()=1]) 2019; 4 Sun (C9CS00869A-(cit287)/*[position()=1]) 2019; 141 Han (C9CS00869A-(cit42)/*[position()=1]) 2019; 3 Yan (C9CS00869A-(cit127)/*[position()=1]) 2017; 8 Geng (C9CS00869A-(cit32)/*[position()=1]) 2018; 30 Zheng (C9CS00869A-(cit193)/*[position()=1]) 2017; 139 Park (C9CS00869A-(cit307)/*[position()=1]) 2014; 4 Chen (C9CS00869A-(cit161)/*[position()=1]) 2018; 9 Liu (C9CS00869A-(cit214)/*[position()=1]) 2017; 139 Chong (C9CS00869A-(cit266)/*[position()=1]) 2018; 362 Qiu (C9CS00869A-(cit80)/*[position()=1]) 2015; 54 Zhu (C9CS00869A-(cit198)/*[position()=1]) 2018; 9 Wu (C9CS00869A-(cit202)/*[position()=1]) 2016; 9 Zagal (C9CS00869A-(cit265)/*[position()=1]) 2016; 55 Seh (C9CS00869A-(cit242)/*[position()=1]) 2017; 355 Wang (C9CS00869A-(cit147)/*[position()=1]) 2018; 57 Fu (C9CS00869A-(cit39)/*[position()=1]) 2003; 301 Deng (C9CS00869A-(cit151)/*[position()=1]) 2019; 9 Tao (C9CS00869A-(cit155)/*[position()=1]) 2019; 5 Shen (C9CS00869A-(cit183)/*[position()=1]) 2017; 56 Cheong (C9CS00869A-(cit213)/*[position()=1]) 2019; 11 Yang (C9CS00869A-(cit311)/*[position()=1]) 2015; 174–175 Norskov (C9CS00869A-(cit284)/*[position()=1]) 2009; 1 Lin (C9CS00869A-(cit62)/*[position()=1]) 2013; 135 Wang (C9CS00869A-(cit33)/*[position()=1]) 2019; 10 Wang (C9CS00869A-(cit146)/*[position()=1]) 2017; 139 Chen (C9CS00869A-(cit144)/*[position()=1]) 2017; 32 Kim (C9CS00869A-(cit318)/*[position()=1]) 2018; 11 Zhao (C9CS00869A-(cit145)/*[position()=1]) 2017; 139 Yang (C9CS00869A-(cit264)/*[position()=1]) 2018; 50 Zhou (C9CS00869A-(cit323)/*[position()=1]) 2019; 58 Lin (C9CS00869A-(cit164)/*[position()=1]) 2019; 31 Yang (C9CS00869A-(cit13)/*[position()=1]) 2013; 46 Chen (C9CS00869A-(cit99)/*[position()=1]) 2018; 30 Kyriakou (C9CS00869A-(cit133)/*[position()=1]) 2012; 335 Yang (C9CS00869A-(cit175)/*[position()=1]) 2015; 8 Chen (C9CS00869A-(cit208)/*[position()=1]) 2017; 56 Zhang (C9CS00869A-(cit244)/*[position()=1]) 2018; 4 Ou (C9CS00869A-(cit275)/*[position()=1]) 2009; 113 Boucher (C9CS00869A-(cit134)/*[position()=1]) 2013; 15 Han (C9CS00869A-(cit54)/*[position()=1]) 2017; 139 Bulushev (C9CS00869A-(cit313)/*[position()=1]) 2016; 6 Gao (C9CS00869A-(cit25)/*[position()=1]) 2016; 138 Xia (C9CS00869A-(cit131)/*[position()=1]) 2013; 25 Pan (C9CS00869A-(cit92)/*[position()=1]) 2018; 140 Tiwari (C9CS00869A-(cit210)/*[position()=1]) 2019; 9 Abbet (C9CS00869A-(cit38)/*[position()=1]) 2000; 122 Zhang (C9CS00869A-(cit50)/*[position()=1]) 2019; 58 Jirkovsky (C9CS00869A-(cit282)/*[position()=1]) 2011; 133 Mistry (C9CS00869A-(cit4)/*[position()=1]) 2016; 1 Tian (C9CS00869A-(cit100)/*[position()=1]) 2018; 140 Hui (C9CS00869A-(cit117)/*[position()=1]) 2019; 141 Melchionna (C9CS00869A-(cit305)/*[position()=1]) 2019; 5 Liu (C9CS00869A-(cit137)/*[position()=1]) 2016; 138 Han (C9CS00869A-(cit195)/*[position()=1]) 2018; 57 Qu (C9CS00869A-(cit227)/*[position()=1]) 2018; 1 He (C9CS00869A-(cit118)/*[position()=1]) 2012; 116 Pan (C9CS00869A-(cit231)/*[position()=1]) 2019; 10 Cao (C9CS00869A-(cit249)/*[position()=1]) 2019; 10 Shen (C9CS00869A-(cit60)/*[position()=1]) 2019; 5 Siahrostami (C9CS00869A-(cit281)/*[position()=1]) 2013; 12 Liu (C9CS00869A-(cit316)/*[position()=1]) 2017; 29 Li (C9CS00869A-(cit68)/*[position()=1]) 2018; 5 Liu (C9CS00869A-(cit79)/*[position()=1]) 2017; 9 Wei (C9CS00869A-(cit113)/*[position()=1]) 2017; 8 Rehr (C9CS00869A-(cit232)/*[position()=1]) 2010; 12 Mori (C9CS00869A-(cit260)/*[position()=1]) 2017; 7 Yang (C9CS00869A-(cit59)/*[position()=1]) 2016; 55 Kelly (C9CS00869A-(cit240)/*[position()=1]) 2007; 78 Hansen (C9CS00869A-(cit218)/*[position()=1]) 2013; 46 Xia (C9CS00869A-(cit234)/*[position()=1]) 1998; 62 Choi (C9CS00869A-(cit280)/*[position()=1]) 2014; 118 Bing (C9CS00869A-(cit5)/*[position()=1]) 2010; 39 Jiang (C9CS00869A-(cit28)/*[position()=1]) 2018; 140 Sun (C9CS00869A-(cit196)/*[position()=1]) 2018; 115 Li (C9CS00869A-(cit167)/*[position()=1]) 2018; 1 Kim (C9CS00869A-(cit35)/*[position()=1]) 2006; 118 Zhao (C9CS00869A-(cit243)/*[position()=1]) 2019 Xia (C9CS00869A-(cit304)/*[position()=1]) 2019; 366 Ding (C9CS00869A-(cit254)/*[position()=1]) 2019; 6 Sun (C9CS00869A-(cit41)/*[position()=1]) 2019; 12 Zeng (C9CS00869A-(cit96)/*[position()=1]) 2018; 8 Chen (C9CS00869A-(cit150)/*[position()=1]) 2018; 30 Liu (C9CS00869A-(cit66)/*[position()=1]) 2016; 352 Wang (C9CS00869A-(cit152)/*[position()=1]) 2018; 11 Fei (C9CS00869A-(cit103)/*[position()=1]) 2018; 1 Qiao (C9CS00869A-(cit163)/*[position()=1]) 2018; 30 Yang (C9CS00869A-(cit187)/*[position()=1]) 2018; 115 Li (C9CS00869A-(cit201)/*[position()=1]) 2018; 11 Lucci (C9CS00869A-(cit135)/*[position()=1]) 2015; 6 Li (C9CS00869A-(cit101)/*[position()=1]) 2018; 8 Li (C9CS00869A-(cit180)/*[position()=1]) 2019; 56 Bordiga (C9CS00869A-(cit238)/*[position()=1]) 2013; 113 Yang (C9CS00869A-(cit102)/*[position()=1]) 2018; 57 Matthey (C9CS00869A-(cit74)/*[position()=1]) 2007; 315 Rehr (C9CS00869A-(cit230)/*[position()=1]) 2000; 72 Pan (C9CS00869A-(cit148)/*[position()=1]) 2018; 57 Zhu (C9CS00869A-(cit192)/*[position()=1]) 2018; 11 Liu (C9CS00869A-(cit120)/*[position()=1]) 2016; 7 Li (C9CS00869A-(cit204)/*[position()=1]) 2019; 10 Maschmeyer (C9CS00869A-(cit36)/*[position()=1]) 1995; 378 Yang (C9CS00869A-(cit14)/*[position()=1]) 2017; 7 Escudero-Escribano (C9CS00869A-(cit278)/*[position()=1]) 2016; 352 Bruce (C9CS00869A-(cit273)/*[position()=1]) 2011; 11 Zhang (C9CS00869A-(cit290)/*[position()=1]) 2017; 139 Mun (C9CS00869A-(cit300)/*[position()=1]) 2019; 141 Jung (C9CS00869A-(cit309)/*[position()=1]) 2020 Ball (C9CS00869A-(cit9)/*[position()=1]) 2018; 5 Chen (C9CS00869A-(cit312)/*[position()=1]) 2011; 133 Peng (C9CS00869A-(cit29)/*[position()=1]) 2019; 5 Platschek (C9CS00869A-(cit216)/*[position()=1]) 2011; 23 Yang (C9CS00869A-(cit223)/*[position()=1]) 2018; 57 Siyu Yao (C9CS00869A-(cit18)/*[position()=1]) 2017; 357 Liu (C9CS00869A-(cit55)/*[position()=1]) 2019; 12 Wei (C9CS00869A-(cit157)/*[position()=1]) 2018; 52 Genorio (C9CS00869A-(cit286)/*[position()=1]) 2010; 9 Zhang (C9CS00869A-(cit128)/*[position()=1]) 2013; 4 Vile (C9CS00869A-(cit91)/*[position()=1]) 2015; 54 Zhang (C9CS00869A-(cit85)/*[position()=1]) 2019; 10 He (C9CS00869A-(cit165)/*[position()=1]) 2019; 12 Chen (C9CS00869A-(cit279)/*[position()=1]) 2014; 343 Verdaguer-Casadevall (C9CS00869A-(cit269)/*[position()=1]) 2014; 14 Zhang (C9CS00869A-(cit75)/*[position()=1]) 2015; 6 Fan (C9CS00869A-(cit258)/*[position()=1]) 2014; 43 Chen (C9CS00869A-(cit111)/*[position()=1]) 2017; 2 Tian (C9CS00869A-(cit58)/*[position()=1]) 2018; 9 Lu (C9CS00869A-(cit122)/*[position()=1]) 2013; 46 Lu (C9CS00869A-(cit270)/*[position()=1]) 2018; 1 Gu (C9CS00869A-(cit159)/*[position()=1]) 2019; 364 Yang (C9CS00869A-(cit170)/*[position()=1]) 2018; 30 Zhu (C9CS00869A-(cit177)/*[position()=1]) 2018; 8 Zhu (C9CS00869A-(cit57)/*[position()=1]) 2017; 56 Huang (C9CS00869A-(cit222)/*[position()=1]) 2012; 51 Fei (C9CS00869A-(cit15)/*[position()=1]) 2019; 48 Gu (C9CS00869A-(cit64)/*[position()=1]) 2014; 4 Gao (C9CS00869A-(cit83)/*[position()=1]) 2013; 138 Jiao (C9CS00869A-(cit49)/*[position()=1]) 2019; 11 Yang (C9CS00869A-(cit173)/*[position()=1]) 2019; 58 Sa (C9CS00869A-(cit182)/*[position()=1]) 2016; 138 Fei (C9CS00869A-(cit197)/*[position()=1]) 2015; 6 Zhao (C9CS00869A-(cit229)/*[position()=1]) 2014; 111 Yuan (C9CS00869A-(cit174)/*[position()=1]) 2018; 3 Li (C9CS00869A-(cit109)/*[position()=1]) 2017; 2 Fu (C9CS00869A-(cit317)/*[position()=1]) 2015; 7 Liu (C9CS00869A-(cit88)/*[posit |
References_xml | – issn: 2000 publication-title: Modern Analytical Chemistry doi: Harvey – volume: 35 start-page: 9 year: 2017 ident: C9CS00869A-(cit212)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.03.027 – volume: 15 start-page: 9326 year: 2013 ident: C9CS00869A-(cit283)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51479j – volume: 6 start-page: 3442 year: 2016 ident: C9CS00869A-(cit313)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b00476 – volume: 14 start-page: 1603 year: 2014 ident: C9CS00869A-(cit269)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl500037x – volume: 10 start-page: 336 year: 2004 ident: C9CS00869A-(cit239)/*[position()=1] publication-title: Microsc. Microanal. doi: 10.1017/S1431927604040577 – volume: 10 start-page: 1743 year: 2019 ident: C9CS00869A-(cit27)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09765-y – volume: 56 start-page: 16047 year: 2017 ident: C9CS00869A-(cit245)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201709803 – volume: 30 start-page: 1804504 year: 2018 ident: C9CS00869A-(cit163)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201804504 – volume: 140 start-page: 7407 year: 2018 ident: C9CS00869A-(cit90)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b03121 – volume: 1 start-page: 63 year: 2018 ident: C9CS00869A-(cit103)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-017-0008-y – volume: 10 start-page: 2980 year: 2019 ident: C9CS00869A-(cit206)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-10854-1 – volume: 31 start-page: 1806545 year: 2019 ident: C9CS00869A-(cit297)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201806545 – volume: 174–175 start-page: 35 year: 2015 ident: C9CS00869A-(cit311)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2015.02.033 – volume: 10 start-page: 1278 year: 2019 ident: C9CS00869A-(cit293)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09290-y – volume: 139 start-page: 18093 year: 2017 ident: C9CS00869A-(cit203)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10817 – volume: 3 start-page: 13080 year: 2015 ident: C9CS00869A-(cit110)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02551F – volume: 72 start-page: 621 year: 2000 ident: C9CS00869A-(cit230)/*[position()=1] publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.72.621 – volume: 10 start-page: 2149 year: 2019 ident: C9CS00869A-(cit248)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09845-z – volume: 31 start-page: 1808193 year: 2019 ident: C9CS00869A-(cit156)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201808193 – volume: 30 start-page: 1801732 year: 2018 ident: C9CS00869A-(cit170)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201801732 – volume: 141 start-page: 9305 year: 2019 ident: C9CS00869A-(cit88)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02936 – volume: 52 start-page: 13233 year: 2016 ident: C9CS00869A-(cit256)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC07049C – volume: 8 start-page: 1594 year: 2015 ident: C9CS00869A-(cit70)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE00751H – volume: 366 start-page: 226 year: 2019 ident: C9CS00869A-(cit304)/*[position()=1] publication-title: Science doi: 10.1126/science.aay1844 – volume: 4 start-page: 3886 year: 2014 ident: C9CS00869A-(cit64)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs500740u – volume: 357 start-page: 389 year: 2017 ident: C9CS00869A-(cit18)/*[position()=1] publication-title: Science doi: 10.1126/science.aah4321 – volume: 3 start-page: 2948 year: 2012 ident: C9CS00869A-(cit272)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz301476w – volume: 5 start-page: 2865 year: 2019 ident: C9CS00869A-(cit48)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2019.07.020 – volume: 15 start-page: 1804524 year: 2019 ident: C9CS00869A-(cit207)/*[position()=1] publication-title: Small doi: 10.1002/smll.201804524 – volume: 139 start-page: 8078 year: 2017 ident: C9CS00869A-(cit145)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02736 – volume: 11 start-page: 6260 year: 2018 ident: C9CS00869A-(cit181)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-018-2149-y – volume: 4 start-page: 285 year: 2018 ident: C9CS00869A-(cit200)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2017.12.005 – volume: 141 start-page: 6254 year: 2019 ident: C9CS00869A-(cit300)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13543 – volume: 357 start-page: 479 year: 2017 ident: C9CS00869A-(cit190)/*[position()=1] publication-title: Science doi: 10.1126/science.aan2255 – volume: 9 start-page: 1460 year: 2018 ident: C9CS00869A-(cit115)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-03896-4 – volume: 12 start-page: 149 year: 2019 ident: C9CS00869A-(cit199)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01841C – volume: 30 start-page: 1803498 year: 2018 ident: C9CS00869A-(cit32)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201803498 – volume: 9 start-page: 442 year: 2015 ident: C9CS00869A-(cit138)/*[position()=1] publication-title: Front. Chem. Sci. Eng. doi: 10.1007/s11705-015-1547-x – volume: 14 start-page: 851 year: 2019 ident: C9CS00869A-(cit224)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0518-7 – volume: 10 start-page: 378 year: 2019 ident: C9CS00869A-(cit33)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC04480E – volume: 10 start-page: 1711 year: 2019 ident: C9CS00869A-(cit95)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09666-0 – volume: 41 start-page: 7876 year: 2012 ident: C9CS00869A-(cit236)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c2dt30639e – volume: 515 start-page: 159 year: 2011 ident: C9CS00869A-(cit84)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2011.09.034 – volume: 9 start-page: 2353 year: 2018 ident: C9CS00869A-(cit58)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-04845-x – volume: 140 start-page: 4218 year: 2018 ident: C9CS00869A-(cit92)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00814 – volume: 11 start-page: 222 year: 2019 ident: C9CS00869A-(cit49)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/s41557-018-0201-x – volume: 1 start-page: 985 year: 2018 ident: C9CS00869A-(cit108)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-018-0195-1 – volume: 56 start-page: 13800 year: 2017 ident: C9CS00869A-(cit183)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201706602 – volume: 2 start-page: 1184 year: 2020 ident: C9CS00869A-(cit10)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00220 – start-page: 1902084 year: 2019 ident: C9CS00869A-(cit296)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902084 – volume: 14 start-page: 817 year: 2019 ident: C9CS00869A-(cit221)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0513-z – volume: 43 start-page: 7040 year: 2014 ident: C9CS00869A-(cit258)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00160E – volume: 31 start-page: 1903470 year: 2019 ident: C9CS00869A-(cit164)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201903470 – volume: 3 start-page: 442 year: 2019 ident: C9CS00869A-(cit267)/*[position()=1] publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-019-0110-6 – volume: 56 start-page: 524 year: 2019 ident: C9CS00869A-(cit180)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.054 – volume: 31 start-page: 1806312 year: 2018 ident: C9CS00869A-(cit189)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201806312 – volume: 5 start-page: 1486 year: 2019 ident: C9CS00869A-(cit7)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2019.03.002 – volume: 353 start-page: 150 year: 2016 ident: C9CS00869A-(cit220)/*[position()=1] publication-title: Science doi: 10.1126/science.aaf8800 – volume: 355 start-page: eaad4998 year: 2017 ident: C9CS00869A-(cit242)/*[position()=1] publication-title: Science doi: 10.1126/science.aad4998 – volume: 9 start-page: 4958 year: 2018 ident: C9CS00869A-(cit246)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-07288-6 – volume: 57 start-page: 8614 year: 2018 ident: C9CS00869A-(cit148)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201804349 – volume: 9 start-page: 1802856 year: 2019 ident: C9CS00869A-(cit151)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802856 – volume: 115 start-page: 6626 year: 2018 ident: C9CS00869A-(cit187)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1800771115 – volume: 3 start-page: 634 year: 2011 ident: C9CS00869A-(cit17)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 54 start-page: 11265 year: 2015 ident: C9CS00869A-(cit91)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201505073 – volume: 8 start-page: 1701343 year: 2018 ident: C9CS00869A-(cit56)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701343 – volume: 2 start-page: 1070 year: 2017 ident: C9CS00869A-(cit111)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00219 – volume: 122 start-page: 106802 year: 2019 ident: C9CS00869A-(cit121)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.106802 – volume: 56 start-page: 16086 year: 2017 ident: C9CS00869A-(cit208)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201710599 – volume: 326 start-page: 826 year: 2009 ident: C9CS00869A-(cit119)/*[position()=1] publication-title: Science doi: 10.1126/science.1180297 – volume: 10 start-page: 3734 year: 2019 ident: C9CS00869A-(cit225)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-11796-4 – volume: 7 start-page: 413 year: 2016 ident: C9CS00869A-(cit140)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b02772 – volume: 111 start-page: 15641 year: 2014 ident: C9CS00869A-(cit229)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1412962111 – volume: 7 start-page: 13481 year: 2016 ident: C9CS00869A-(cit77)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms13481 – volume: 18 start-page: 23686 year: 2016 ident: C9CS00869A-(cit237)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP04022E – volume: 37 start-page: 572 year: 2008 ident: C9CS00869A-(cit235)/*[position()=1] publication-title: X-Ray Spectrom. doi: 10.1002/xrs.1103 – volume: 10 start-page: 234 year: 2019 ident: C9CS00869A-(cit72)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-08136-3 – volume: 30 start-page: 1704720 year: 2018 ident: C9CS00869A-(cit99)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201704720 – volume: 11 start-page: 3392 year: 2017 ident: C9CS00869A-(cit78)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b00796 – volume: 7 start-page: 13638 year: 2016 ident: C9CS00869A-(cit26)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms13638 – volume: 4 start-page: 512 year: 2019 ident: C9CS00869A-(cit129)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-019-0402-6 – volume: 56 start-page: 6937 year: 2017 ident: C9CS00869A-(cit149)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201702473 – volume: 9 start-page: 3861 year: 2018 ident: C9CS00869A-(cit198)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-06296-w – year: 2020 ident: C9CS00869A-(cit309)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-019-0571-5 – volume: 122 start-page: 3453 year: 2000 ident: C9CS00869A-(cit38)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9922476 – volume: 25 start-page: 6313 year: 2013 ident: C9CS00869A-(cit131)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201302820 – volume: 139 start-page: 17281 year: 2017 ident: C9CS00869A-(cit146)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10385 – volume: 1 start-page: e1500462 year: 2015 ident: C9CS00869A-(cit21)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1500462 – year: 2019 ident: C9CS00869A-(cit243)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201908760 – volume: 7 start-page: 34 year: 2016 ident: C9CS00869A-(cit120)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b01534 – volume: 11 start-page: 33819 year: 2019 ident: C9CS00869A-(cit213)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b09125 – volume: 10 start-page: 4849 year: 2019 ident: C9CS00869A-(cit249)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-12886-z – volume: 7 start-page: 4259 year: 2017 ident: C9CS00869A-(cit73)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY00881C – volume: 2 start-page: 134 year: 2018 ident: C9CS00869A-(cit98)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-018-0203-5 – volume: 8 start-page: 1701345 year: 2018 ident: C9CS00869A-(cit96)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701345 – volume: 11 start-page: 2348 year: 2018 ident: C9CS00869A-(cit178)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01481G – volume: 58 start-page: 4271 year: 2019 ident: C9CS00869A-(cit53)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201814182 – volume: 3 start-page: 1900159 year: 2019 ident: C9CS00869A-(cit217)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.201900159 – volume: 6 start-page: 8668 year: 2015 ident: C9CS00869A-(cit197)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms9668 – volume: 23 start-page: 2395 year: 2011 ident: C9CS00869A-(cit216)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201002828 – volume: 112 start-page: 104316 year: 2012 ident: C9CS00869A-(cit276)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.4766919 – volume: 2 start-page: 1242 year: 2018 ident: C9CS00869A-(cit43)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2018.06.019 – volume: 54 start-page: 12753 year: 2015 ident: C9CS00869A-(cit302)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201504903 – volume: 139 start-page: 17677 year: 2017 ident: C9CS00869A-(cit104)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10646 – volume: 12 start-page: 250 year: 2019 ident: C9CS00869A-(cit165)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02694G – volume: 58 start-page: 14184 year: 2019 ident: C9CS00869A-(cit323)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201908351 – volume: 179 start-page: 459 year: 1998 ident: C9CS00869A-(cit37)/*[position()=1] publication-title: J. Catal. doi: 10.1006/jcat.1998.2234 – volume: 58 start-page: 3511 year: 2019 ident: C9CS00869A-(cit173)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201813494 – volume: 14 start-page: 1704319 year: 2018 ident: C9CS00869A-(cit294)/*[position()=1] publication-title: Small doi: 10.1002/smll.201704319 – volume: 1 start-page: 909 year: 2018 ident: C9CS00869A-(cit250)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-018-0181-7 – volume: 17 start-page: 17601 year: 2015 ident: C9CS00869A-(cit320)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP01824B – volume: 2 start-page: 304 year: 2019 ident: C9CS00869A-(cit247)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-019-0246-2 – volume: 10 start-page: 3997 year: 2019 ident: C9CS00869A-(cit3)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-11992-2 – volume: 30 start-page: 1705369 year: 2018 ident: C9CS00869A-(cit46)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201705369 – volume: 139 start-page: 17269 year: 2017 ident: C9CS00869A-(cit54)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10194 – volume: 7 start-page: 13842 year: 2015 ident: C9CS00869A-(cit317)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01963 – volume: 352 start-page: 73 year: 2016 ident: C9CS00869A-(cit278)/*[position()=1] publication-title: Science doi: 10.1126/science.aad8892 – volume: 378 start-page: 159 year: 1995 ident: C9CS00869A-(cit36)/*[position()=1] publication-title: Nature doi: 10.1038/378159a0 – volume: 1 start-page: 37 year: 2009 ident: C9CS00869A-(cit284)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.121 – volume: 8 start-page: 1703487 year: 2018 ident: C9CS00869A-(cit191)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703487 – volume: 8 start-page: 1701476 year: 2018 ident: C9CS00869A-(cit314)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701476 – volume: 110 start-page: 111 year: 2010 ident: C9CS00869A-(cit124)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr900056b – volume: 118 start-page: 30063 year: 2014 ident: C9CS00869A-(cit280)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp5113894 – volume: 2 start-page: 65 year: 2018 ident: C9CS00869A-(cit12)/*[position()=1] publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 11 start-page: 3375 year: 2018 ident: C9CS00869A-(cit152)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02656D – volume: 3 start-page: 1775 year: 2013 ident: C9CS00869A-(cit11)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep01775 – volume: 14 start-page: 937 year: 2015 ident: C9CS00869A-(cit261)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4367 – volume: 344 start-page: 616 year: 2014 ident: C9CS00869A-(cit19)/*[position()=1] publication-title: Science doi: 10.1126/science.1253150 – volume: 5 start-page: 690 year: 2018 ident: C9CS00869A-(cit9)/*[position()=1] publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwy043 – volume: 364 start-page: 1091 year: 2019 ident: C9CS00869A-(cit159)/*[position()=1] publication-title: Science doi: 10.1126/science.aaw7515 – volume: 30 start-page: 1801649 year: 2018 ident: C9CS00869A-(cit44)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201801649 – volume: 9 start-page: 1900149 year: 2019 ident: C9CS00869A-(cit171)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900149 – volume: 28 start-page: 9949 year: 2016 ident: C9CS00869A-(cit271)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201603662 – volume: 7 start-page: 1601979 year: 2017 ident: C9CS00869A-(cit172)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601979 – volume: 55 start-page: 6708 year: 2016 ident: C9CS00869A-(cit143)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201602097 – volume: 30 start-page: 1801995 year: 2018 ident: C9CS00869A-(cit16)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201801995 – volume: 10 start-page: 4875 year: 2019 ident: C9CS00869A-(cit233)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-12885-0 – volume: 140 start-page: 3876 year: 2018 ident: C9CS00869A-(cit105)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00752 – volume: 1 start-page: 935 year: 2018 ident: C9CS00869A-(cit167)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-018-0164-8 – volume: 10 start-page: 325 year: 2018 ident: C9CS00869A-(cit136)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2915 – volume: 113 start-page: 1736 year: 2013 ident: C9CS00869A-(cit238)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr2000898 – volume: 2 start-page: 17111 year: 2017 ident: C9CS00869A-(cit109)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2017.111 – volume: 29 start-page: 1808872 year: 2019 ident: C9CS00869A-(cit162)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808872 – volume: 141 start-page: 12372 year: 2019 ident: C9CS00869A-(cit287)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05576 – volume: 4 start-page: 106 year: 2018 ident: C9CS00869A-(cit306)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2017.10.013 – volume: 62 start-page: 1240 year: 1998 ident: C9CS00869A-(cit234)/*[position()=1] publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1998.03615995006200050014x – volume: 46 start-page: 1740 year: 2013 ident: C9CS00869A-(cit13)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar300361m – volume: 12 start-page: 2890 year: 2019 ident: C9CS00869A-(cit55)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01722D – volume: 39 start-page: 2184 year: 2010 ident: C9CS00869A-(cit5)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b912552c – volume: 5 start-page: 2099 year: 2019 ident: C9CS00869A-(cit60)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2019.04.024 – volume: 135 start-page: 15314 year: 2013 ident: C9CS00869A-(cit62)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408574m – volume: 4 start-page: eaao6657 year: 2018 ident: C9CS00869A-(cit244)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.aao6657 – volume: 3 start-page: 140 year: 2018 ident: C9CS00869A-(cit31)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-017-0078-8 – volume: 8 start-page: 15348 year: 2016 ident: C9CS00869A-(cit126)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR04403D – volume: 140 start-page: 10757 year: 2018 ident: C9CS00869A-(cit107)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04647 – volume: 9 start-page: 3197 year: 2018 ident: C9CS00869A-(cit130)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-05754-9 – volume: 7 start-page: 14732 year: 2019 ident: C9CS00869A-(cit301)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03011E – volume: 3 start-page: 950 year: 2017 ident: C9CS00869A-(cit241)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2017.09.014 – volume: 11 start-page: 19 year: 2011 ident: C9CS00869A-(cit273)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3191 – volume: 11 start-page: 6930 year: 2017 ident: C9CS00869A-(cit289)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b02148 – volume: 38 start-page: 9438 year: 2013 ident: C9CS00869A-(cit319)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.07.059 – volume: 140 start-page: 363 year: 2008 ident: C9CS00869A-(cit321)/*[position()=1] publication-title: Faraday Discuss. doi: 10.1039/B804591G – volume: 53 start-page: 8904 year: 2014 ident: C9CS00869A-(cit87)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201403353 – volume: 10 start-page: 1657 year: 2019 ident: C9CS00869A-(cit85)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09596-x – volume: 6 start-page: 3860 year: 2019 ident: C9CS00869A-(cit254)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201900598 – volume: 10 start-page: 4290 year: 2019 ident: C9CS00869A-(cit231)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-12362-8 – volume: 139 start-page: 9419 year: 2017 ident: C9CS00869A-(cit23)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01686 – volume: 58 start-page: 6972 year: 2019 ident: C9CS00869A-(cit158)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201901575 – volume: 58 start-page: 12469 year: 2019 ident: C9CS00869A-(cit168)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201906289 – volume: 32 start-page: 353 year: 2017 ident: C9CS00869A-(cit144)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.056 – volume: 50 start-page: 691 year: 2018 ident: C9CS00869A-(cit264)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.023 – volume: 11 start-page: 104 year: 2018 ident: C9CS00869A-(cit318)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201701306 – volume: 13 start-page: 856 year: 2018 ident: C9CS00869A-(cit219)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0197-9 – volume: 139 start-page: 15479 year: 2017 ident: C9CS00869A-(cit63)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08881 – volume: 12 start-page: 2548 year: 2019 ident: C9CS00869A-(cit292)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00877B – volume: 8 start-page: 1799 year: 2015 ident: C9CS00869A-(cit175)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE00682A – volume: 150 start-page: E39 year: 2003 ident: C9CS00869A-(cit285)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1525270 – volume: 12 start-page: 1000 year: 2019 ident: C9CS00869A-(cit65)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02888E – volume: 10 start-page: 2623 year: 2019 ident: C9CS00869A-(cit204)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-10622-1 – volume: 57 start-page: 14095 year: 2018 ident: C9CS00869A-(cit223)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201808049 – volume: 44 start-page: 2060 year: 2015 ident: C9CS00869A-(cit252)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00470A – volume: 141 start-page: 4505 year: 2019 ident: C9CS00869A-(cit226)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09834 – volume: 8 start-page: 957 year: 2017 ident: C9CS00869A-(cit303)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-01100-7 – volume: 58 start-page: 1975 year: 2019 ident: C9CS00869A-(cit51)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811126 – volume: 78 start-page: 031101 year: 2007 ident: C9CS00869A-(cit240)/*[position()=1] publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2709758 – volume: 40 start-page: 5242 year: 2011 ident: C9CS00869A-(cit123)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15091j – volume: 57 start-page: 9382 year: 2018 ident: C9CS00869A-(cit116)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201804817 – volume: 8 start-page: 1070 year: 2017 ident: C9CS00869A-(cit127)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-01259-z – volume: 16 start-page: 132 year: 2017 ident: C9CS00869A-(cit89)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4757 – volume: 56 start-page: 1 year: 2017 ident: C9CS00869A-(cit106)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201610955 – volume: 131 start-page: 9742 year: 2019 ident: C9CS00869A-(cit169)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201905241 – volume: 1 start-page: 16009 year: 2016 ident: C9CS00869A-(cit4)/*[position()=1] publication-title: Nat. Rev. Chem. – volume: 5 start-page: 1371 year: 2019 ident: C9CS00869A-(cit2)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2019.02.008 – volume: 46 start-page: 1720 year: 2013 ident: C9CS00869A-(cit218)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar3002427 – volume: 2 start-page: 495 year: 2019 ident: C9CS00869A-(cit112)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-019-0279-6 – volume: 12 start-page: 5503 year: 2010 ident: C9CS00869A-(cit232)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b926434e – volume: 118 start-page: 421 year: 2006 ident: C9CS00869A-(cit35)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.200501792 – volume: 133 start-page: 19432 year: 2011 ident: C9CS00869A-(cit282)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206477z – volume: 139 start-page: 10790 year: 2017 ident: C9CS00869A-(cit214)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05130 – volume: 57 start-page: 8525 year: 2018 ident: C9CS00869A-(cit153)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201803262 – volume: 6 start-page: 8550 year: 2015 ident: C9CS00869A-(cit135)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms9550 – volume: 315 start-page: 1692 year: 2007 ident: C9CS00869A-(cit74)/*[position()=1] publication-title: Science doi: 10.1126/science.1135752 – volume: 8 start-page: 16100 year: 2017 ident: C9CS00869A-(cit215)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms16100 – volume: 350 start-page: 189 year: 2015 ident: C9CS00869A-(cit76)/*[position()=1] publication-title: Science doi: 10.1126/science.aac6368 – volume: 57 start-page: 11262 year: 2018 ident: C9CS00869A-(cit195)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201805467 – volume: 332 start-page: 443 year: 2011 ident: C9CS00869A-(cit268)/*[position()=1] publication-title: Science doi: 10.1126/science.1200832 – volume: 141 start-page: 4086 year: 2019 ident: C9CS00869A-(cit47)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13579 – volume: 113 start-page: 20657 year: 2009 ident: C9CS00869A-(cit275)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp9059505 – volume: 30 start-page: 1800396 year: 2018 ident: C9CS00869A-(cit150)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201800396 – volume: 11 start-page: 2402 year: 2018 ident: C9CS00869A-(cit192)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201800855 – volume: 7 start-page: 1301 year: 2017 ident: C9CS00869A-(cit14)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b02899 – volume: 10 start-page: e461 year: 2018 ident: C9CS00869A-(cit185)/*[position()=1] publication-title: NPG Asia Mater. doi: 10.1038/am.2017.212 – volume: 1 start-page: 156 year: 2018 ident: C9CS00869A-(cit270)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-017-0017-x – volume: 30 start-page: 1800588 year: 2018 ident: C9CS00869A-(cit186)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201800588 – volume: 57 start-page: 1944 year: 2018 ident: C9CS00869A-(cit147)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201712451 – volume: 58 start-page: 2321 year: 2019 ident: C9CS00869A-(cit209)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811728 – volume: 134 start-page: 6707 year: 2012 ident: C9CS00869A-(cit308)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211433h – volume: 133 start-page: 12930 year: 2011 ident: C9CS00869A-(cit312)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2042029 – volume: 140 start-page: 11594 year: 2018 ident: C9CS00869A-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07294 – volume: 55 start-page: 10800 year: 2016 ident: C9CS00869A-(cit40)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201604802 – volume: 57 start-page: 9495 year: 2018 ident: C9CS00869A-(cit102)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201804854 – volume: 57 start-page: 3514 year: 2018 ident: C9CS00869A-(cit255)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201711688 – volume: 10 start-page: 606 year: 2019 ident: C9CS00869A-(cit114)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-08484-8 – volume: 138 start-page: 3623 year: 2016 ident: C9CS00869A-(cit97)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10484 – volume: 48 start-page: 5207 year: 2019 ident: C9CS00869A-(cit15)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00422J – volume: 138 start-page: 6292 year: 2016 ident: C9CS00869A-(cit25)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02692 – volume: 55 start-page: 2058 year: 2016 ident: C9CS00869A-(cit59)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201509241 – volume: 7 start-page: 10922 year: 2016 ident: C9CS00869A-(cit94)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms10922 – volume: 138 start-page: 6396 year: 2016 ident: C9CS00869A-(cit137)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03339 – volume: 54 start-page: 14031 year: 2015 ident: C9CS00869A-(cit80)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201507381 – volume: 3 start-page: 252 year: 2018 ident: C9CS00869A-(cit174)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01188 – volume: 9 start-page: 1900931 year: 2019 ident: C9CS00869A-(cit210)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900931 – volume: 3 start-page: 1800471 year: 2019 ident: C9CS00869A-(cit42)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.201800471 – volume: 8 start-page: 1701799 year: 2017 ident: C9CS00869A-(cit315)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701799 – volume: 52 start-page: 29 year: 2018 ident: C9CS00869A-(cit157)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.033 – volume: 9 start-page: 5422 year: 2018 ident: C9CS00869A-(cit161)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-07850-2 – volume: 43 start-page: 443 year: 2001 ident: C9CS00869A-(cit259)/*[position()=1] publication-title: Catal. Rev. doi: 10.1081/CR-120001809 – volume: 139 start-page: 10976 year: 2017 ident: C9CS00869A-(cit20)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05372 – volume: 30 start-page: 1705112 year: 2018 ident: C9CS00869A-(cit24)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201705112 – volume: 9 start-page: 1002 year: 2018 ident: C9CS00869A-(cit52)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-03380-z – volume: 9 start-page: 998 year: 2010 ident: C9CS00869A-(cit286)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2883 – volume: 5 start-page: eaaw2322 year: 2019 ident: C9CS00869A-(cit29)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw2322 – volume: 29 start-page: 1604571 year: 2017 ident: C9CS00869A-(cit316)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201604571 – volume: 226 start-page: 534 year: 2018 ident: C9CS00869A-(cit139)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.12.059 – volume: 488 start-page: 294 year: 2012 ident: C9CS00869A-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/nature11475 – volume: 11 start-page: 2263 year: 2018 ident: C9CS00869A-(cit201)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01169A – volume: 17 start-page: 1033 year: 2018 ident: C9CS00869A-(cit34)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-018-0167-5 – volume: 9 start-page: 810 year: 2017 ident: C9CS00869A-(cit79)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2740 – volume-title: Modern Analytical Chemistry year: 2000 ident: C9CS00869A-(cit69)/*[position()=1] – volume: 141 start-page: 10677 year: 2019 ident: C9CS00869A-(cit117)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03004 – volume: 4 start-page: 3749 year: 2014 ident: C9CS00869A-(cit307)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs5008206 – volume: 135 start-page: 12634 year: 2013 ident: C9CS00869A-(cit61)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja401847c – volume: 138 start-page: 034701 year: 2013 ident: C9CS00869A-(cit83)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4774216 – volume: 58 start-page: 1163 year: 2019 ident: C9CS00869A-(cit81)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201812423 – volume: 121 start-page: 16283 year: 2017 ident: C9CS00869A-(cit298)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b03779 – volume: 8 start-page: 1490 year: 2017 ident: C9CS00869A-(cit113)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-01521-4 – volume: 10 start-page: 1330 year: 2019 ident: C9CS00869A-(cit67)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09188-9 – volume: 31 start-page: 1808066 year: 2019 ident: C9CS00869A-(cit6)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201808066 – volume: 1 start-page: 781 year: 2018 ident: C9CS00869A-(cit227)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-018-0146-x – volume: 282 start-page: 183 year: 2011 ident: C9CS00869A-(cit274)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2011.06.015 – volume: 9 start-page: 3736 year: 2016 ident: C9CS00869A-(cit202)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01867J – volume: 56 start-page: 13944 year: 2017 ident: C9CS00869A-(cit57)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201703864 – volume: 55 start-page: 2285 year: 2019 ident: C9CS00869A-(cit228)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC00199A – volume: 6 start-page: 7938 year: 2015 ident: C9CS00869A-(cit75)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms8938 – volume: 5 start-page: 1927 year: 2019 ident: C9CS00869A-(cit305)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2019.07.005 – volume: 121 start-page: 11319 year: 2017 ident: C9CS00869A-(cit299)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b00913 – volume: 115 start-page: 12692 year: 2018 ident: C9CS00869A-(cit196)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1813605115 – volume: 57 start-page: 1204 year: 2018 ident: C9CS00869A-(cit291)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201709597 – volume: 301 start-page: 935 year: 2003 ident: C9CS00869A-(cit39)/*[position()=1] publication-title: Science doi: 10.1126/science.1085721 – volume: 2 start-page: 259 year: 2019 ident: C9CS00869A-(cit160)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-019-0237-3 – volume: 11 start-page: 49 year: 2011 ident: C9CS00869A-(cit141)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3143 – volume: 58 start-page: 7035 year: 2019 ident: C9CS00869A-(cit205)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201902109 – volume: 140 start-page: 6745 year: 2018 ident: C9CS00869A-(cit257)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02225 – volume: 351 start-page: 361 year: 2016 ident: C9CS00869A-(cit262)/*[position()=1] publication-title: Science doi: 10.1126/science.aad0832 – volume: 116 start-page: 26313 year: 2012 ident: C9CS00869A-(cit118)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp307408u – volume: 109 start-page: 5588 year: 2012 ident: C9CS00869A-(cit142)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1116897109 – volume: 12 start-page: 1894 year: 2018 ident: C9CS00869A-(cit194)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b08721 – volume: 12 start-page: 1137 year: 2013 ident: C9CS00869A-(cit281)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3795 – volume: 141 start-page: 10590 year: 2019 ident: C9CS00869A-(cit154)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03182 – volume: 139 start-page: 3336 year: 2017 ident: C9CS00869A-(cit193)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b13100 – volume: 352 start-page: 797 year: 2016 ident: C9CS00869A-(cit66)/*[position()=1] publication-title: Science doi: 10.1126/science.aaf5251 – volume: 5 start-page: 673 year: 2018 ident: C9CS00869A-(cit68)/*[position()=1] publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwy056 – volume: 58 start-page: 14871 year: 2019 ident: C9CS00869A-(cit179)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201906079 – volume: 140 start-page: 11161 year: 2018 ident: C9CS00869A-(cit100)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06029 – volume: 30 start-page: 1706508 year: 2018 ident: C9CS00869A-(cit45)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201706508 – volume: 57 start-page: 2 year: 2018 ident: C9CS00869A-(cit251)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201712504 – volume: 8 start-page: 1801956 year: 2018 ident: C9CS00869A-(cit177)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801956 – volume: 15 start-page: 12187 year: 2013 ident: C9CS00869A-(cit134)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51538a – volume: 4 start-page: 3957 year: 2014 ident: C9CS00869A-(cit322)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs500923c – volume: 7 start-page: 5987 year: 2017 ident: C9CS00869A-(cit86)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b01816 – volume: 8 start-page: 8450 year: 2018 ident: C9CS00869A-(cit101)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b02288 – volume: 3 start-page: 437 year: 2013 ident: C9CS00869A-(cit310)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs300809j – volume: 46 start-page: 1806 year: 2013 ident: C9CS00869A-(cit122)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar300229c – volume: 5 start-page: 204 year: 2019 ident: C9CS00869A-(cit155)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2018.10.007 – volume: 138 start-page: 3570 year: 2016 ident: C9CS00869A-(cit263)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00757 – volume: 5 start-page: 7152 year: 2015 ident: C9CS00869A-(cit71)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b01816 – volume: 51 start-page: 4198 year: 2012 ident: C9CS00869A-(cit222)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201109065 – volume: 137 start-page: 10484 year: 2015 ident: C9CS00869A-(cit125)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06485 – volume: 138 start-page: 15046 year: 2016 ident: C9CS00869A-(cit182)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09470 – volume: 6 start-page: 1802066 year: 2019 ident: C9CS00869A-(cit184)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201802066 – volume: 30 start-page: 1706758 year: 2018 ident: C9CS00869A-(cit166)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201706758 – volume: 362 start-page: 1276 year: 2018 ident: C9CS00869A-(cit266)/*[position()=1] publication-title: Science doi: 10.1126/science.aau0630 – volume: 58 start-page: 9404 year: 2019 ident: C9CS00869A-(cit50)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201902107 – volume: 4 start-page: 5441 year: 2014 ident: C9CS00869A-(cit82)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep05441 – volume: 335 start-page: 1209 year: 2012 ident: C9CS00869A-(cit133)/*[position()=1] publication-title: Science doi: 10.1126/science.1215864 – volume: 46 start-page: 337 year: 2017 ident: C9CS00869A-(cit253)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00328A – volume: 343 start-page: 1339 year: 2014 ident: C9CS00869A-(cit279)/*[position()=1] publication-title: Science doi: 10.1126/science.1249061 – volume: 141 start-page: 12717 year: 2019 ident: C9CS00869A-(cit30)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04907 – volume: 141 start-page: 14190 year: 2019 ident: C9CS00869A-(cit176)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05268 – volume: 55 start-page: 14510 year: 2016 ident: C9CS00869A-(cit265)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201604311 – volume: 139 start-page: 14143 year: 2017 ident: C9CS00869A-(cit290)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06514 – volume: 8 start-page: 15938 year: 2017 ident: C9CS00869A-(cit288)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms15938 – volume: 4 start-page: 1924 year: 2013 ident: C9CS00869A-(cit128)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2929 – volume: 7 start-page: 3147 year: 2017 ident: C9CS00869A-(cit260)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b00312 – volume: 57 start-page: 9038 year: 2018 ident: C9CS00869A-(cit188)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201804958 – volume: 55 start-page: 8319 year: 2016 ident: C9CS00869A-(cit93)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201602801 – volume: 12 start-page: 2067 year: 2019 ident: C9CS00869A-(cit41)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-019-2345-4 – volume: 10 start-page: 631 year: 2019 ident: C9CS00869A-(cit211)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-08419-3 – volume: 2 start-page: 578 year: 2019 ident: C9CS00869A-(cit277)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-019-0304-9 – volume: 141 start-page: 17763 year: 2019 ident: C9CS00869A-(cit295)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b08362 – volume: 139 start-page: 9795 year: 2017 ident: C9CS00869A-(cit22)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05018 – volume: 116 start-page: 3594 year: 2016 ident: C9CS00869A-(cit8)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00462 – volume: 7 start-page: 80 year: 2017 ident: C9CS00869A-(cit132)/*[position()=1] publication-title: Catalysts doi: 10.3390/catal7030080 |
SSID | ssj0011762 |
Score | 2.716458 |
SecondaryResourceType | review_article |
Snippet | Electrocatalysis plays a central role in clean energy conversion, enabling a number of processes for future sustainable technologies. Atomic site... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2215 |
SubjectTerms | Atomic properties Atomic structure Catalysis Catalysts catalytic activity Clean energy Clean technology Electrocatalysts electrochemistry Energy conversion Ethanol Formic acid Hydrogen evolution reactions Hydrogen peroxide hydrogen production methanol Noble metals Oxidation oxygen Oxygen evolution reactions oxygen production Oxygen reduction reactions systematic review Water splitting |
Title | Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32133461 https://www.proquest.com/docview/2386698791 https://www.proquest.com/docview/2371864268 https://www.proquest.com/docview/2574335638 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLage4AXxG3QMZARvKASSGzHjh-rMDQQ8NRJ1V4iOxdpEmqnNtU2fj3H15StQoOXqHKcNPH5Yn8-PuczQm-Bg9IGsJGArVnClOaJbghLeAqjd1doldrg8e8_-PEJ-zrP54NP12aX9PpD_WtnXsn_WBXKwK4mS_YfLBtvCgXwG-wLR7AwHG9l42lvcoonZgF44vezse6Yq3VvZRYmF8poIK6BaNrwZtOey8sruN9kZSRb-xCLvLZXmyCi5eVZMxgrSBgEVYEQ4-k1TLe8ztbj-ulsKNl4R_RpezFkm5Wu3jyMl9se6xJusu2DIKkNXRFbXRU1fonUB0S3ritlPE2YcOqOoa918qQeU2K74yQuq9MPwia9d2cHn1Kjj1rK0qR4cxklUgcV7WujW4w5tKvtVFbDtXfRHoHJBRmhvenR7Mu3uPqUCe5Xn9xbBVlbKj8OV_9JZG7MToCrrMIeMparzB6iB36SgacOMY_QnXbxGN0rw95-T9CpQw42yMHXkYMBOdgiB0fkvMcONzjiBgNucMQNjrh5ik4-H83K48TvspHUjJM-aWSh8qYB4kwypWrBOl3UnRYkbXWTMynSTFPaqFw38OnWolXA8GuVdkD0NGsl3UejxXLRPkdYZkTUUuSa85rlTBVAjzTpuNRZq_Ncj9G70GRV7SXozU4oP6ubxhmjN7HuuRNe2VnrMLR85T_MdQUslHNZCJmN0et4GlrYrIWpRbvcmDpAymDuzYu_1MmBXtMcRqgxeuasGh-FkoxSxuEf9sHMsbiW9do-mRqjg90nqvOmO7jVy71A94eP7RCN-tWmfQkUuNevPGJ_A78IsOc |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomic+site+electrocatalysts+for+water+splitting%2C+oxygen+reduction+and+selective+oxidation&rft.jtitle=Chemical+Society+reviews&rft.au=Zhao%2C+Di&rft.au=Zhuang%2C+Zewen&rft.au=Cao%2C+Xing&rft.au=Zhang%2C+Chao&rft.date=2020-04-07&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=49&rft.issue=7&rft.spage=2215&rft.epage=2264&rft_id=info:doi/10.1039%2FC9CS00869A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9CS00869A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |