Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation

Electrocatalysis plays a central role in clean energy conversion, enabling a number of processes for future sustainable technologies. Atomic site electrocatalysts (ASCs), including single-atomic site catalysts (SASCs) and diatomic site catalysis (DASCs), are being pursued as economical alternatives...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 49; no. 7; pp. 2215 - 2264
Main Authors Zhao, Di, Zhuang, Zewen, Cao, Xing, Zhang, Chao, Peng, Qing, Chen, Chen, Li, Yadong
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 07.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrocatalysis plays a central role in clean energy conversion, enabling a number of processes for future sustainable technologies. Atomic site electrocatalysts (ASCs), including single-atomic site catalysts (SASCs) and diatomic site catalysis (DASCs), are being pursued as economical alternatives to noble-metal-based catalysts for these reactions by virtue of their exceptionally high atom utilization efficiencies, well-defined active sites and high selectivities. In this review, we start from a systematic review on the fabrication routes of ASCs followed by an overview of some new and effective characterization methods to precisely probe the atomic structure. Then we give a comprehensive summary on the current advances in some typical clean energy reactions: water splitting, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER); oxygen reduction reaction (ORR), including selective 4e − - ORR toward H 2 O/OH − and 2e − - ORR toward H 2 O 2 /HO 2 − ; selective electrooxidation of formic acid, methanol and ethanol (FAOR, MOR and EOR). At the end of this paper, we present a brief conclusion, and discuss the challenges and opportunities on the further development of more selective, active, stable and less expensive ASCs. This review summarized the fabrication routes and characterization methods of atomic site electrocatalysts (ASCs) followed by their applications for water splitting, oxygen reduction and selective oxidation.
AbstractList Electrocatalysis plays a central role in clean energy conversion, enabling a number of processes for future sustainable technologies. Atomic site electrocatalysts (ASCs), including single-atomic site catalysts (SASCs) and diatomic site catalysis (DASCs), are being pursued as economical alternatives to noble-metal-based catalysts for these reactions by virtue of their exceptionally high atom utilization efficiencies, well-defined active sites and high selectivities. In this review, we start from a systematic review on the fabrication routes of ASCs followed by an overview of some new and effective characterization methods to precisely probe the atomic structure. Then we give a comprehensive summary on the current advances in some typical clean energy reactions: water splitting, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER); oxygen reduction reaction (ORR), including selective 4e- - ORR toward H2O/OH- and 2e- - ORR toward H2O2/HO2-; selective electrooxidation of formic acid, methanol and ethanol (FAOR, MOR and EOR). At the end of this paper, we present a brief conclusion, and discuss the challenges and opportunities on the further development of more selective, active, stable and less expensive ASCs.
Electrocatalysis plays a central role in clean energy conversion, enabling a number of processes for future sustainable technologies. Atomic site electrocatalysts (ASCs), including single-atomic site catalysts (SASCs) and diatomic site catalysis (DASCs), are being pursued as economical alternatives to noble-metal-based catalysts for these reactions by virtue of their exceptionally high atom utilization efficiencies, well-defined active sites and high selectivities. In this review, we start from a systematic review on the fabrication routes of ASCs followed by an overview of some new and effective characterization methods to precisely probe the atomic structure. Then we give a comprehensive summary on the current advances in some typical clean energy reactions: water splitting, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER); oxygen reduction reaction (ORR), including selective 4e − – ORR toward H 2 O/OH − and 2e − – ORR toward H 2 O 2 /HO 2 − ; selective electrooxidation of formic acid, methanol and ethanol (FAOR, MOR and EOR). At the end of this paper, we present a brief conclusion, and discuss the challenges and opportunities on the further development of more selective, active, stable and less expensive ASCs.
Electrocatalysis plays a central role in clean energy conversion, enabling a number of processes for future sustainable technologies. Atomic site electrocatalysts (ASCs), including single-atomic site catalysts (SASCs) and diatomic site catalysis (DASCs), are being pursued as economical alternatives to noble-metal-based catalysts for these reactions by virtue of their exceptionally high atom utilization efficiencies, well-defined active sites and high selectivities. In this review, we start from a systematic review on the fabrication routes of ASCs followed by an overview of some new and effective characterization methods to precisely probe the atomic structure. Then we give a comprehensive summary on the current advances in some typical clean energy reactions: water splitting, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER); oxygen reduction reaction (ORR), including selective 4e− – ORR toward H2O/OH− and 2e− – ORR toward H2O2/HO2−; selective electrooxidation of formic acid, methanol and ethanol (FAOR, MOR and EOR). At the end of this paper, we present a brief conclusion, and discuss the challenges and opportunities on the further development of more selective, active, stable and less expensive ASCs.
Electrocatalysis plays a central role in clean energy conversion, enabling a number of processes for future sustainable technologies. Atomic site electrocatalysts (ASCs), including single-atomic site catalysts (SASCs) and diatomic site catalysis (DASCs), are being pursued as economical alternatives to noble-metal-based catalysts for these reactions by virtue of their exceptionally high atom utilization efficiencies, well-defined active sites and high selectivities. In this review, we start from a systematic review on the fabrication routes of ASCs followed by an overview of some new and effective characterization methods to precisely probe the atomic structure. Then we give a comprehensive summary on the current advances in some typical clean energy reactions: water splitting, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER); oxygen reduction reaction (ORR), including selective 4e − - ORR toward H 2 O/OH − and 2e − - ORR toward H 2 O 2 /HO 2 − ; selective electrooxidation of formic acid, methanol and ethanol (FAOR, MOR and EOR). At the end of this paper, we present a brief conclusion, and discuss the challenges and opportunities on the further development of more selective, active, stable and less expensive ASCs. This review summarized the fabrication routes and characterization methods of atomic site electrocatalysts (ASCs) followed by their applications for water splitting, oxygen reduction and selective oxidation.
Electrocatalysis plays a central role in clean energy conversion, enabling a number of processes for future sustainable technologies. Atomic site electrocatalysts (ASCs), including single-atomic site catalysts (SASCs) and diatomic site catalysis (DASCs), are being pursued as economical alternatives to noble-metal-based catalysts for these reactions by virtue of their exceptionally high atom utilization efficiencies, well-defined active sites and high selectivities. In this review, we start from a systematic review on the fabrication routes of ASCs followed by an overview of some new and effective characterization methods to precisely probe the atomic structure. Then we give a comprehensive summary on the current advances in some typical clean energy reactions: water splitting, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER); oxygen reduction reaction (ORR), including selective 4e- - ORR toward H2O/OH- and 2e- - ORR toward H2O2/HO2-; selective electrooxidation of formic acid, methanol and ethanol (FAOR, MOR and EOR). At the end of this paper, we present a brief conclusion, and discuss the challenges and opportunities on the further development of more selective, active, stable and less expensive ASCs.Electrocatalysis plays a central role in clean energy conversion, enabling a number of processes for future sustainable technologies. Atomic site electrocatalysts (ASCs), including single-atomic site catalysts (SASCs) and diatomic site catalysis (DASCs), are being pursued as economical alternatives to noble-metal-based catalysts for these reactions by virtue of their exceptionally high atom utilization efficiencies, well-defined active sites and high selectivities. In this review, we start from a systematic review on the fabrication routes of ASCs followed by an overview of some new and effective characterization methods to precisely probe the atomic structure. Then we give a comprehensive summary on the current advances in some typical clean energy reactions: water splitting, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER); oxygen reduction reaction (ORR), including selective 4e- - ORR toward H2O/OH- and 2e- - ORR toward H2O2/HO2-; selective electrooxidation of formic acid, methanol and ethanol (FAOR, MOR and EOR). At the end of this paper, we present a brief conclusion, and discuss the challenges and opportunities on the further development of more selective, active, stable and less expensive ASCs.
Electrocatalysis plays a central role in clean energy conversion, enabling a number of processes for future sustainable technologies. Atomic site electrocatalysts (ASCs), including single-atomic site catalysts (SASCs) and diatomic site catalysis (DASCs), are being pursued as economical alternatives to noble-metal-based catalysts for these reactions by virtue of their exceptionally high atom utilization efficiencies, well-defined active sites and high selectivities. In this review, we start from a systematic review on the fabrication routes of ASCs followed by an overview of some new and effective characterization methods to precisely probe the atomic structure. Then we give a comprehensive summary on the current advances in some typical clean energy reactions: water splitting, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER); oxygen reduction reaction (ORR), including selective 4e⁻ – ORR toward H₂O/OH⁻ and 2e⁻ – ORR toward H₂O₂/HO₂⁻; selective electrooxidation of formic acid, methanol and ethanol (FAOR, MOR and EOR). At the end of this paper, we present a brief conclusion, and discuss the challenges and opportunities on the further development of more selective, active, stable and less expensive ASCs.
Author Chen, Chen
Li, Yadong
Zhang, Chao
Peng, Qing
Zhuang, Zewen
Zhao, Di
Cao, Xing
AuthorAffiliation Department of Chemistry
Tsinghua University
AuthorAffiliation_xml – name: Department of Chemistry
– name: Tsinghua University
Author_xml – sequence: 1
  givenname: Di
  surname: Zhao
  fullname: Zhao, Di
– sequence: 2
  givenname: Zewen
  surname: Zhuang
  fullname: Zhuang, Zewen
– sequence: 3
  givenname: Xing
  surname: Cao
  fullname: Cao, Xing
– sequence: 4
  givenname: Chao
  surname: Zhang
  fullname: Zhang, Chao
– sequence: 5
  givenname: Qing
  surname: Peng
  fullname: Peng, Qing
– sequence: 6
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
– sequence: 7
  givenname: Yadong
  surname: Li
  fullname: Li, Yadong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32133461$$D View this record in MEDLINE/PubMed
BookMark eNqF0s1rHCEYB2AJCcnm49J7i6WXUjKNjt_HZWnTQKCHppdexFEnGGbHrTpp97-vu5s0EEpzUvw9r-D7egz2xzh6AF5h9BEjoi6sshkhyZXZAzNMOWqooHQfzBBBvEEIt0fgOOe7usOCt4fgiLSYEMrxDPyYl7gMFuZQPPSDtyVFa4oZ1rlk2McEf5niE8yrIZQSxttzGH-vb_0Ik3eTLSGO0IwO5m1tuPc1Ds5szk_BQW-G7M8e1hPw_fOnm8WX5vrr5dVift1YytvSOCUNc45h2mJjrKB9J23fiRb5zjGqBMIdIc6wzsmu5t4wwaxBvWSko16RE_B-d-8qxZ-Tz0UvQ7Z-GMzo45R1ywQlhHEiX6ZEYMlpyzf03TN6F6c01odUJTlXUihc1ZsHNXVL7_QqhaVJa_3Y4ArQDtgUc06-1zaUbXtKMmHQGOnNDPVCLb5tZzivJR-elTze-k_8eodTtn_d04eo-dv_5XrlevIHevaxxw
CitedBy_id crossref_primary_10_1016_j_rser_2023_113197
crossref_primary_10_1002_adfm_202422594
crossref_primary_10_1016_j_fuproc_2023_107879
crossref_primary_10_1016_j_cej_2024_149107
crossref_primary_10_3866_PKU_WHXB202407005
crossref_primary_10_1021_acsami_2c23232
crossref_primary_10_1016_j_jpowsour_2024_235750
crossref_primary_10_1002_cctc_202400413
crossref_primary_10_1016_j_cej_2021_128809
crossref_primary_10_1021_acsami_2c01208
crossref_primary_10_1016_j_jechem_2021_12_006
crossref_primary_10_1021_acs_langmuir_3c02758
crossref_primary_10_1021_acsaem_1c03073
crossref_primary_10_1016_j_ccr_2022_214970
crossref_primary_10_1016_j_mtcomm_2023_107800
crossref_primary_10_1007_s12274_021_3680_9
crossref_primary_10_1016_j_ccr_2021_214209
crossref_primary_10_1016_j_cej_2021_134137
crossref_primary_10_1021_acs_langmuir_1c02100
crossref_primary_10_1021_acsnano_2c04077
crossref_primary_10_1039_D2EE02151J
crossref_primary_10_1002_advs_202200307
crossref_primary_10_1016_j_ccr_2022_214969
crossref_primary_10_1016_S1872_5805_24_60860_7
crossref_primary_10_1021_acs_jpcc_3c06135
crossref_primary_10_1002_cphc_202400785
crossref_primary_10_1039_D4TA02463J
crossref_primary_10_1039_D3CC00721A
crossref_primary_10_1039_D0RA08223F
crossref_primary_10_1038_s41467_021_27664_z
crossref_primary_10_1021_acsami_1c08798
crossref_primary_10_1016_j_fuel_2025_134704
crossref_primary_10_1021_acssuschemeng_2c04965
crossref_primary_10_1016_j_chemosphere_2020_129243
crossref_primary_10_1016_j_jechem_2022_06_005
crossref_primary_10_1002_adma_202202544
crossref_primary_10_1016_j_ccr_2022_214600
crossref_primary_10_1039_D0TA05212D
crossref_primary_10_1002_smtd_202200413
crossref_primary_10_1002_aenm_202200493
crossref_primary_10_1039_D3EY00256J
crossref_primary_10_1039_D3MH00366C
crossref_primary_10_1021_acsami_2c14657
crossref_primary_10_1021_acs_jpcc_2c04794
crossref_primary_10_3390_ma17184670
crossref_primary_10_1016_j_nanoen_2020_105395
crossref_primary_10_1016_j_cclet_2024_110049
crossref_primary_10_1039_D1SC05867C
crossref_primary_10_1016_j_jallcom_2022_168627
crossref_primary_10_1186_s40580_022_00324_8
crossref_primary_10_1016_j_cej_2023_141688
crossref_primary_10_1039_D1EE01349A
crossref_primary_10_1002_chem_202100736
crossref_primary_10_1016_j_checat_2024_101117
crossref_primary_10_1039_D4TA00727A
crossref_primary_10_1016_j_mser_2023_100736
crossref_primary_10_1002_batt_202400402
crossref_primary_10_1002_adfm_202103558
crossref_primary_10_1007_s12274_023_6318_2
crossref_primary_10_1021_acs_jpclett_1c00139
crossref_primary_10_3390_nano12071141
crossref_primary_10_1039_D4SE01142B
crossref_primary_10_1002_adsu_202200163
crossref_primary_10_1021_acsami_3c17662
crossref_primary_10_1002_anie_202421918
crossref_primary_10_1016_j_apcatb_2023_122366
crossref_primary_10_1039_D1EE00248A
crossref_primary_10_1021_acsaem_4c00660
crossref_primary_10_1039_D2CP05786G
crossref_primary_10_1021_acscatal_2c02029
crossref_primary_10_1002_smll_202403767
crossref_primary_10_1021_acs_jpclett_3c02938
crossref_primary_10_1002_smll_202003943
crossref_primary_10_1002_aenm_202102715
crossref_primary_10_1021_acs_jpclett_1c00267
crossref_primary_10_1021_acsnano_2c12839
crossref_primary_10_1039_D1EE00247C
crossref_primary_10_1002_smm2_1023
crossref_primary_10_1016_j_jcis_2020_09_078
crossref_primary_10_1016_j_mssp_2023_107544
crossref_primary_10_1002_aenm_202003018
crossref_primary_10_1021_acs_langmuir_4c04034
crossref_primary_10_1360_SSPMA_2023_0061
crossref_primary_10_1021_acsnano_1c00251
crossref_primary_10_1002_smll_202202394
crossref_primary_10_1007_s10853_022_07502_3
crossref_primary_10_1002_smll_202403412
crossref_primary_10_1039_D2YA00284A
crossref_primary_10_1021_acsami_1c16121
crossref_primary_10_1016_j_flatc_2022_100334
crossref_primary_10_1021_acscatal_1c01503
crossref_primary_10_1016_j_nanoen_2020_105128
crossref_primary_10_1002_aenm_202303281
crossref_primary_10_1002_smll_202106635
crossref_primary_10_3390_molecules29163719
crossref_primary_10_1016_j_jallcom_2021_162614
crossref_primary_10_1016_j_jcis_2024_07_132
crossref_primary_10_1016_j_surfin_2024_105066
crossref_primary_10_1039_D3TA05147A
crossref_primary_10_1002_adfm_202408013
crossref_primary_10_1002_ange_202302950
crossref_primary_10_1016_j_ijhydene_2024_06_040
crossref_primary_10_1016_j_electacta_2021_138767
crossref_primary_10_1021_acs_jpclett_1c01409
crossref_primary_10_1021_acssuschemeng_0c02061
crossref_primary_10_1039_D1TA08039C
crossref_primary_10_1007_s12274_022_4429_9
crossref_primary_10_1039_D3EE04513G
crossref_primary_10_1039_D1TC05974B
crossref_primary_10_1021_acs_chemrev_0c00080
crossref_primary_10_1016_j_ijhydene_2022_03_174
crossref_primary_10_1016_j_mattod_2021_11_022
crossref_primary_10_1002_adfm_202010544
crossref_primary_10_1002_adfm_202215185
crossref_primary_10_1007_s11426_022_1326_2
crossref_primary_10_1038_s41467_021_25811_0
crossref_primary_10_1021_acscatal_3c02628
crossref_primary_10_1002_smtd_202201664
crossref_primary_10_1016_j_pnsc_2020_09_011
crossref_primary_10_1002_ange_202421918
crossref_primary_10_1016_j_jelechem_2022_116637
crossref_primary_10_1021_jacs_3c00262
crossref_primary_10_1002_cssc_202100833
crossref_primary_10_1002_adma_202418757
crossref_primary_10_1007_s12598_021_01904_z
crossref_primary_10_1016_j_matchemphys_2022_126769
crossref_primary_10_1002_ange_202311696
crossref_primary_10_1007_s10854_021_05690_3
crossref_primary_10_1016_j_jcat_2022_01_017
crossref_primary_10_1002_ece2_90
crossref_primary_10_1016_j_colsurfa_2025_136106
crossref_primary_10_3390_catal12121525
crossref_primary_10_1016_j_cej_2022_136416
crossref_primary_10_1016_j_cej_2022_138710
crossref_primary_10_1016_j_mattod_2020_07_002
crossref_primary_10_1039_D2CS01068B
crossref_primary_10_1021_acsnano_2c11939
crossref_primary_10_1021_acsanm_4c02704
crossref_primary_10_1039_D1TA01224J
crossref_primary_10_1039_D2TA08224A
crossref_primary_10_1038_s41560_022_01062_1
crossref_primary_10_3390_nano12061015
crossref_primary_10_1007_s11708_022_0813_0
crossref_primary_10_1016_j_apsusc_2022_153057
crossref_primary_10_1002_ange_202207537
crossref_primary_10_1016_j_nanoen_2020_105213
crossref_primary_10_1039_D0TA09903A
crossref_primary_10_1016_j_cej_2022_136665
crossref_primary_10_1039_D2CP04302E
crossref_primary_10_1126_sciadv_abl9271
crossref_primary_10_1021_acs_inorgchem_0c03485
crossref_primary_10_1039_D1TA01310F
crossref_primary_10_1002_adma_202004670
crossref_primary_10_1016_j_matchemphys_2025_130436
crossref_primary_10_1002_smm2_1067
crossref_primary_10_1016_j_jelechem_2023_117900
crossref_primary_10_1016_j_electacta_2022_140091
crossref_primary_10_1002_smll_202207249
crossref_primary_10_1016_j_jpowsour_2021_229626
crossref_primary_10_1021_acsmaterialslett_0c00396
crossref_primary_10_1002_aesr_202000090
crossref_primary_10_1016_j_jechem_2022_04_004
crossref_primary_10_1016_j_jechem_2024_01_035
crossref_primary_10_1002_aenm_202200875
crossref_primary_10_1016_j_cej_2023_147608
crossref_primary_10_1039_D2EE00542E
crossref_primary_10_1016_j_diamond_2025_112241
crossref_primary_10_1039_D1CE01505B
crossref_primary_10_1016_j_apenergy_2024_123193
crossref_primary_10_1016_j_cej_2021_131133
crossref_primary_10_1002_anie_202315003
crossref_primary_10_1016_j_ccr_2022_214577
crossref_primary_10_1002_anie_202107053
crossref_primary_10_1016_j_cej_2024_150054
crossref_primary_10_1007_s12274_021_3936_4
crossref_primary_10_1002_cey2_194
crossref_primary_10_1021_acsami_3c03430
crossref_primary_10_1016_j_apcatb_2023_122544
crossref_primary_10_1002_smll_202207243
crossref_primary_10_1002_sus2_69
crossref_primary_10_1016_j_jelechem_2023_117315
crossref_primary_10_1016_j_jclepro_2023_136613
crossref_primary_10_1039_D4CS00333K
crossref_primary_10_1002_smll_202007113
crossref_primary_10_1002_advs_202205031
crossref_primary_10_1002_cctc_202401331
crossref_primary_10_1039_D1TA06144E
crossref_primary_10_1002_advs_202306095
crossref_primary_10_1002_adma_202418504
crossref_primary_10_1016_j_ijhydene_2024_06_228
crossref_primary_10_1039_D0EE03596C
crossref_primary_10_1002_aenm_202203913
crossref_primary_10_1016_j_electacta_2023_143416
crossref_primary_10_1007_s40843_022_2302_0
crossref_primary_10_1021_jacs_1c00656
crossref_primary_10_1002_adfm_202202319
crossref_primary_10_1039_D1NJ02769G
crossref_primary_10_1002_anie_202302950
crossref_primary_10_1016_j_nanoen_2022_107853
crossref_primary_10_1039_D2NR03687H
crossref_primary_10_3390_catal14080513
crossref_primary_10_3390_electrochem3040040
crossref_primary_10_1021_acs_chemrev_3c00723
crossref_primary_10_1021_jacs_1c07391
crossref_primary_10_1039_D2MH01408D
crossref_primary_10_1016_j_jallcom_2024_174948
crossref_primary_10_1016_S1872_2067_21_64027_5
crossref_primary_10_1002_adfm_202007423
crossref_primary_10_1039_D3EY00174A
crossref_primary_10_1039_D3QM00157A
crossref_primary_10_1002_anie_202316123
crossref_primary_10_1002_smll_202201838
crossref_primary_10_1016_j_apcatb_2022_121150
crossref_primary_10_1039_D2RA04853A
crossref_primary_10_1002_smll_202304807
crossref_primary_10_1007_s40820_023_01014_8
crossref_primary_10_1002_smll_202003096
crossref_primary_10_1002_anie_202101522
crossref_primary_10_1016_j_apcatb_2021_120028
crossref_primary_10_1016_j_ijhydene_2024_06_261
crossref_primary_10_1016_j_mtcomm_2024_108470
crossref_primary_10_1016_j_jpowsour_2021_229859
crossref_primary_10_1039_D1EE02798K
crossref_primary_10_1142_S1088424623500748
crossref_primary_10_1016_j_ijhydene_2022_03_032
crossref_primary_10_1002_celc_202300370
crossref_primary_10_1039_D2TA01962K
crossref_primary_10_1002_elt2_26
crossref_primary_10_1016_j_apcatb_2023_123619
crossref_primary_10_1007_s12274_023_5449_9
crossref_primary_10_1002_anie_202423145
crossref_primary_10_1039_D0EE01706J
crossref_primary_10_1002_ange_202003917
crossref_primary_10_1016_j_jssc_2021_122018
crossref_primary_10_1038_s41467_021_25562_y
crossref_primary_10_1007_s11705_021_2085_3
crossref_primary_10_1016_j_apsusc_2021_149776
crossref_primary_10_1002_cctc_202200001
crossref_primary_10_1016_j_apcatb_2023_122898
crossref_primary_10_1039_D1TC02193A
crossref_primary_10_1016_j_apcatb_2021_120390
crossref_primary_10_1002_ange_202008129
crossref_primary_10_1002_nano_202000239
crossref_primary_10_1039_D3QM01002C
crossref_primary_10_1016_S1872_2067_22_64104_4
crossref_primary_10_1016_j_ijhydene_2025_01_137
crossref_primary_10_1021_acsnano_1c04715
crossref_primary_10_1016_j_mtener_2022_101017
crossref_primary_10_3390_en13215539
crossref_primary_10_1002_adfm_202300636
crossref_primary_10_1039_D3QM00935A
crossref_primary_10_1002_sstr_202100047
crossref_primary_10_1021_acsenergylett_0c02484
crossref_primary_10_1002_adfm_202300512
crossref_primary_10_1002_adfm_202108345
crossref_primary_10_1002_sstr_202400181
crossref_primary_10_1039_D1EE03311E
crossref_primary_10_1039_D3EY00050H
crossref_primary_10_1039_D2CS00368F
crossref_primary_10_1016_j_apsusc_2021_151853
crossref_primary_10_1016_j_cej_2021_129096
crossref_primary_10_1002_anie_202301833
crossref_primary_10_1039_D2NR01259F
crossref_primary_10_1073_pnas_2202812119
crossref_primary_10_1002_aenm_202303442
crossref_primary_10_1016_j_jpowsour_2021_229551
crossref_primary_10_1002_advs_202402038
crossref_primary_10_1002_sus2_132
crossref_primary_10_1002_eom2_12186
crossref_primary_10_1039_D4TA07638A
crossref_primary_10_1186_s42252_022_00030_y
crossref_primary_10_1002_nano_202100079
crossref_primary_10_1002_smll_202406658
crossref_primary_10_1016_j_ccr_2022_214521
crossref_primary_10_1016_j_nanoen_2024_110020
crossref_primary_10_1016_j_ijhydene_2023_11_333
crossref_primary_10_1002_cey2_284
crossref_primary_10_1039_D3SC00250K
crossref_primary_10_1073_pnas_2206321119
crossref_primary_10_1007_s11705_021_2062_x
crossref_primary_10_1016_S1872_2067_21_63933_5
crossref_primary_10_1039_D0CY01408G
crossref_primary_10_1016_j_jechem_2021_05_020
crossref_primary_10_1016_j_jechem_2021_10_011
crossref_primary_10_1039_D3QI01112G
crossref_primary_10_1021_acsomega_3c01794
crossref_primary_10_1038_s41467_022_33725_8
crossref_primary_10_1039_D3EE03183G
crossref_primary_10_1002_cssc_202002098
crossref_primary_10_1016_j_ccr_2024_216174
crossref_primary_10_1016_j_nanoen_2024_110370
crossref_primary_10_1039_D2CS00233G
crossref_primary_10_1016_j_ijhydene_2022_11_048
crossref_primary_10_1002_asia_202100030
crossref_primary_10_1016_j_jechem_2022_06_031
crossref_primary_10_1021_acssuschemeng_0c05509
crossref_primary_10_1039_D1CS00590A
crossref_primary_10_1016_j_cclet_2021_02_032
crossref_primary_10_1039_D1NJ00210D
crossref_primary_10_1002_ange_202209693
crossref_primary_10_1016_j_ijhydene_2023_12_250
crossref_primary_10_1007_s12274_023_5514_4
crossref_primary_10_1002_advs_202300342
crossref_primary_10_1039_D0NH00680G
crossref_primary_10_1016_j_jechem_2021_05_033
crossref_primary_10_1016_j_jechem_2021_04_010
crossref_primary_10_1002_aic_18690
crossref_primary_10_1002_aenm_202000478
crossref_primary_10_1007_s10904_025_03688_6
crossref_primary_10_1021_acsnano_2c01748
crossref_primary_10_1016_j_jallcom_2022_166532
crossref_primary_10_1002_anie_202413308
crossref_primary_10_1002_anie_202421168
crossref_primary_10_1039_D2CC02708A
crossref_primary_10_1016_j_apcatb_2021_121043
crossref_primary_10_1016_j_jpowsour_2024_235758
crossref_primary_10_1016_j_nanoen_2022_107959
crossref_primary_10_1039_D4NJ01923G
crossref_primary_10_1016_j_cesx_2021_100105
crossref_primary_10_1002_anie_202213366
crossref_primary_10_1016_j_nantod_2023_101972
crossref_primary_10_1039_D2QI02279F
crossref_primary_10_1002_adma_202008752
crossref_primary_10_1002_aenm_202303352
crossref_primary_10_1002_sus2_15
crossref_primary_10_1002_sstr_202100007
crossref_primary_10_1016_j_jpowsour_2021_230886
crossref_primary_10_1016_j_ijhydene_2022_03_229
crossref_primary_10_1002_smll_202006178
crossref_primary_10_1016_j_scenem_2025_100003
crossref_primary_10_1002_smll_202406209
crossref_primary_10_1016_j_apcatb_2023_122937
crossref_primary_10_1016_j_mtphys_2024_101411
crossref_primary_10_1002_ange_202316123
crossref_primary_10_1016_j_cej_2024_154141
crossref_primary_10_1088_1361_6463_ac4b56
crossref_primary_10_3390_nano11061595
crossref_primary_10_1002_adfm_202302573
crossref_primary_10_1002_ange_202213366
crossref_primary_10_1007_s42765_022_00138_7
crossref_primary_10_1002_adfm_202007602
crossref_primary_10_1002_elsa_202100115
crossref_primary_10_1002_asia_202201161
crossref_primary_10_1039_D0CS00978D
crossref_primary_10_1002_aenm_202001561
crossref_primary_10_1016_j_jtice_2022_104397
crossref_primary_10_1021_acscatal_4c01713
crossref_primary_10_1016_j_electacta_2024_145497
crossref_primary_10_1016_j_jpowsour_2025_236695
crossref_primary_10_1063_5_0048186
crossref_primary_10_1016_j_mssp_2024_109139
crossref_primary_10_3390_nano12193331
crossref_primary_10_1002_anie_202008129
crossref_primary_10_1039_D4NR00175C
crossref_primary_10_1002_adfm_202100833
crossref_primary_10_1002_adfm_202206081
crossref_primary_10_1016_j_ijhydene_2023_06_008
crossref_primary_10_1016_j_jallcom_2023_172518
crossref_primary_10_1039_D0NR08976A
crossref_primary_10_1039_D3QM00096F
crossref_primary_10_1002_adma_202206576
crossref_primary_10_1016_j_ica_2021_120250
crossref_primary_10_1088_2515_7639_ac1ab7
crossref_primary_10_1002_anie_202003917
crossref_primary_10_1016_j_ccr_2021_213804
crossref_primary_10_1021_acscatal_0c01459
crossref_primary_10_1039_D0CC03620J
crossref_primary_10_1039_D0CY01311K
crossref_primary_10_1007_s11814_025_00393_5
crossref_primary_10_1039_D4YA00279B
crossref_primary_10_1002_ange_202101522
crossref_primary_10_1016_j_scitotenv_2022_157711
crossref_primary_10_1002_cjoc_202300294
crossref_primary_10_1007_s40820_023_01142_1
crossref_primary_10_1016_j_mtener_2020_100586
crossref_primary_10_1002_adma_202101038
crossref_primary_10_1016_j_ccr_2023_215400
crossref_primary_10_1002_adfm_202301229
crossref_primary_10_1039_D0EE02800B
crossref_primary_10_1021_acsnano_4c00308
crossref_primary_10_1039_D2TA00747A
crossref_primary_10_1039_D3GC00580A
crossref_primary_10_1021_acs_accounts_2c00239
crossref_primary_10_1016_j_jechem_2021_08_041
crossref_primary_10_1016_j_ccr_2024_215961
crossref_primary_10_1007_s12274_022_5246_x
crossref_primary_10_1016_j_carbon_2022_11_067
crossref_primary_10_1002_smll_202410612
crossref_primary_10_1016_j_jechem_2022_11_023
crossref_primary_10_1039_D1TA03176G
crossref_primary_10_1007_s12274_021_4029_0
crossref_primary_10_1016_j_physb_2024_416762
crossref_primary_10_1021_acsanm_1c01236
crossref_primary_10_1007_s12274_022_4982_2
crossref_primary_10_1002_adma_202210703
crossref_primary_10_1016_j_fuel_2023_130256
crossref_primary_10_1016_j_nxmate_2023_100010
crossref_primary_10_1039_D4TA03518F
crossref_primary_10_1016_j_mcat_2024_114188
crossref_primary_10_1016_j_vacuum_2022_111308
crossref_primary_10_1016_j_cej_2023_143060
crossref_primary_10_1016_j_matt_2020_07_032
crossref_primary_10_1039_D2EE03642H
crossref_primary_10_1002_sstr_202000067
crossref_primary_10_1016_j_ijhydene_2022_06_060
crossref_primary_10_1039_D4TA08090D
crossref_primary_10_1002_advs_202203391
crossref_primary_10_1007_s12678_023_00832_z
crossref_primary_10_1038_s41467_021_27143_5
crossref_primary_10_1007_s12274_022_4270_1
crossref_primary_10_1016_j_ijhydene_2023_06_346
crossref_primary_10_1021_jacs_2c11597
crossref_primary_10_1021_acs_nanolett_0c04898
crossref_primary_10_1002_smll_202302338
crossref_primary_10_1002_smll_202406353
crossref_primary_10_1021_acs_analchem_2c05755
crossref_primary_10_1021_acsenergylett_1c00768
crossref_primary_10_1039_D2QM00893A
crossref_primary_10_1016_j_jallcom_2022_164829
crossref_primary_10_1021_acsami_1c02353
crossref_primary_10_1002_adma_202105410
crossref_primary_10_1021_acs_jpcc_0c11487
crossref_primary_10_1021_jacs_3c06311
crossref_primary_10_1002_cey2_85
crossref_primary_10_1021_acs_nanolett_2c00278
crossref_primary_10_1002_smll_202006773
crossref_primary_10_1039_D2NJ05979G
crossref_primary_10_1016_j_ccr_2022_214493
crossref_primary_10_1002_er_6749
crossref_primary_10_1016_j_nexus_2025_100387
crossref_primary_10_1021_acscatal_3c02186
crossref_primary_10_1007_s12274_022_4075_2
crossref_primary_10_1039_D3DT03486K
crossref_primary_10_1002_aenm_202101242
crossref_primary_10_1002_slct_202302699
crossref_primary_10_1002_adma_202209654
crossref_primary_10_1016_j_jechem_2023_12_048
crossref_primary_10_1002_anie_202207537
crossref_primary_10_1016_j_cattod_2022_09_005
crossref_primary_10_1002_smll_202405157
crossref_primary_10_1007_s12274_023_5994_2
crossref_primary_10_1021_acsanm_1c02301
crossref_primary_10_1039_D1EE01592C
crossref_primary_10_1039_D4QM00285G
crossref_primary_10_1007_s12274_021_3479_8
crossref_primary_10_1016_j_mtcata_2024_100039
crossref_primary_10_1021_jacs_3c05371
crossref_primary_10_1039_D0SC03522J
crossref_primary_10_1002_cctc_202300562
crossref_primary_10_1002_adma_202007056
crossref_primary_10_1016_j_cej_2021_132558
crossref_primary_10_1039_D0CS01482F
crossref_primary_10_2139_ssrn_4055065
crossref_primary_10_1016_j_mtener_2021_100911
crossref_primary_10_1016_j_jssc_2024_124559
crossref_primary_10_1039_D3CY01337E
crossref_primary_10_1002_smll_202305782
crossref_primary_10_1016_j_apcatb_2024_124590
crossref_primary_10_1016_j_jpowsour_2020_228446
crossref_primary_10_1016_j_jallcom_2021_162290
crossref_primary_10_1021_acs_energyfuels_4c00651
crossref_primary_10_1002_ange_202109057
crossref_primary_10_1002_aenm_202103670
crossref_primary_10_1038_s41467_025_57434_0
crossref_primary_10_1016_j_jechem_2023_11_014
crossref_primary_10_1088_2515_7639_ac01ac
crossref_primary_10_1002_ange_202304229
crossref_primary_10_1002_aenm_202103426
crossref_primary_10_1002_adfm_202105372
crossref_primary_10_1016_j_jiec_2023_01_037
crossref_primary_10_1039_D4TA05017G
crossref_primary_10_1002_eem2_12128
crossref_primary_10_1002_smll_202006473
crossref_primary_10_1016_j_cej_2021_132307
crossref_primary_10_1016_j_jcis_2023_11_124
crossref_primary_10_1016_j_cej_2023_142184
crossref_primary_10_1002_celc_202200375
crossref_primary_10_1016_j_ijhydene_2021_11_042
crossref_primary_10_1007_s11426_021_1175_2
crossref_primary_10_1016_j_ijhydene_2022_05_212
crossref_primary_10_1039_D4CC05900J
crossref_primary_10_1002_smll_202106091
crossref_primary_10_1016_j_ijhydene_2022_06_258
crossref_primary_10_1360_SSC_2023_0104
crossref_primary_10_1002_anie_202109057
crossref_primary_10_1039_D2CC06879F
crossref_primary_10_1016_j_jcis_2025_01_089
crossref_primary_10_1039_D3MA01010D
crossref_primary_10_1039_D0OB01902J
crossref_primary_10_1002_ange_202305447
crossref_primary_10_1021_acscentsci_0c00458
crossref_primary_10_1002_adsu_202000213
crossref_primary_10_1007_s11426_021_1163_7
crossref_primary_10_1039_D2TA08943B
crossref_primary_10_1039_D1TA04256D
crossref_primary_10_3390_ma16103760
crossref_primary_10_1002_aenm_202002816
crossref_primary_10_1016_j_ijhydene_2022_07_056
crossref_primary_10_1002_ange_202315003
crossref_primary_10_1039_D2CC06503G
crossref_primary_10_1149_1945_7111_ac7172
crossref_primary_10_1016_j_seppur_2024_126381
crossref_primary_10_1039_D2SC03650A
crossref_primary_10_3390_ma15020458
crossref_primary_10_1039_D2NJ04864G
crossref_primary_10_1039_D2TA09922E
crossref_primary_10_1016_j_cej_2021_129280
crossref_primary_10_1007_s40843_021_1848_8
crossref_primary_10_1021_acs_chemrev_3c00382
crossref_primary_10_1016_j_scib_2023_10_013
crossref_primary_10_1039_D4TA00586D
crossref_primary_10_1002_anie_202305447
crossref_primary_10_1039_D3CY00456B
crossref_primary_10_1002_cssc_202100055
crossref_primary_10_1039_D1NA00606A
crossref_primary_10_1016_j_apcatb_2020_119407
crossref_primary_10_1002_adma_202107421
crossref_primary_10_1016_j_apcatb_2022_121607
crossref_primary_10_1039_D3NR05328H
crossref_primary_10_1016_j_ces_2023_119260
crossref_primary_10_1016_j_jallcom_2023_171812
crossref_primary_10_1073_pnas_2315407121
crossref_primary_10_1039_D3GC01806G
crossref_primary_10_1002_ange_202421168
crossref_primary_10_1002_adfm_202106886
crossref_primary_10_1016_j_ccr_2023_215143
crossref_primary_10_1016_S1872_2067_21_63893_7
crossref_primary_10_1002_advs_202304120
crossref_primary_10_1016_j_mtnano_2021_100144
crossref_primary_10_1002_anie_202304229
crossref_primary_10_1016_j_checat_2024_101090
crossref_primary_10_1007_s11426_021_1106_9
crossref_primary_10_1016_j_nanoen_2022_107296
crossref_primary_10_1007_s12274_021_3767_3
crossref_primary_10_2139_ssrn_4123943
crossref_primary_10_1002_adfm_202113191
crossref_primary_10_1039_D2GC02956A
crossref_primary_10_1002_anie_202311696
crossref_primary_10_1016_j_enchem_2021_100066
crossref_primary_10_1002_adfm_202301075
crossref_primary_10_1016_j_enchem_2021_100065
crossref_primary_10_1016_j_mtphys_2020_100279
crossref_primary_10_1002_ange_202301833
crossref_primary_10_1002_ange_202413308
crossref_primary_10_1016_j_cis_2022_102811
crossref_primary_10_1039_D3CS01122D
crossref_primary_10_1039_D0TA06441F
crossref_primary_10_1016_j_jcis_2022_07_060
crossref_primary_10_1007_s12598_021_01791_4
crossref_primary_10_1039_D1CY01688A
crossref_primary_10_1016_j_jaap_2022_105810
crossref_primary_10_1002_adma_202301477
crossref_primary_10_1039_D1NJ05907F
crossref_primary_10_1002_smll_202203589
crossref_primary_10_1007_s12274_023_5959_5
crossref_primary_10_1021_acsami_4c17354
crossref_primary_10_1002_smsc_202100023
crossref_primary_10_1039_D4QM00822G
crossref_primary_10_1016_j_nanoen_2021_105817
crossref_primary_10_1021_acsami_0c13547
crossref_primary_10_1016_j_rser_2022_112887
crossref_primary_10_1002_smtd_202201358
crossref_primary_10_1039_D1TA00001B
crossref_primary_10_1007_s12274_022_4501_5
crossref_primary_10_1016_j_cogsc_2020_100398
crossref_primary_10_1002_smtd_202301602
crossref_primary_10_1016_j_apsusc_2022_153016
crossref_primary_10_1016_j_ensm_2021_11_050
crossref_primary_10_1016_j_apcatb_2024_124586
crossref_primary_10_1002_asia_202100406
crossref_primary_10_1021_acsaem_3c02215
crossref_primary_10_1021_jacs_0c07790
crossref_primary_10_1016_j_ccr_2023_215492
crossref_primary_10_1021_acs_jpcc_4c00545
crossref_primary_10_1016_j_apsusc_2020_148817
crossref_primary_10_1016_j_checat_2022_10_002
crossref_primary_10_1016_j_ijhydene_2021_09_063
crossref_primary_10_1016_j_jssc_2024_124775
crossref_primary_10_1016_j_cclet_2023_109269
crossref_primary_10_1016_j_mser_2025_100942
crossref_primary_10_1002_elsa_202100047
crossref_primary_10_1002_aenm_202201047
crossref_primary_10_1002_advs_202410784
crossref_primary_10_1016_j_coelec_2023_101379
crossref_primary_10_1016_j_chempr_2021_08_020
crossref_primary_10_1016_j_apcatb_2023_123186
crossref_primary_10_1016_j_jallcom_2024_177776
crossref_primary_10_1002_adfm_202210674
crossref_primary_10_1039_D1NR02307A
crossref_primary_10_1016_j_asems_2022_100001
crossref_primary_10_1021_acs_nanolett_5c00465
crossref_primary_10_1016_j_cej_2024_149706
crossref_primary_10_1002_ange_202423145
crossref_primary_10_1002_idm2_12172
crossref_primary_10_1007_s12274_022_4862_9
crossref_primary_10_1021_acsnano_3c09806
crossref_primary_10_1039_D4TA03382E
crossref_primary_10_1002_cctc_202300040
crossref_primary_10_1002_cey2_79
crossref_primary_10_1016_j_cej_2020_128047
crossref_primary_10_1002_cey2_74
crossref_primary_10_1007_s12274_024_6497_5
crossref_primary_10_1002_adfm_202315563
crossref_primary_10_1016_j_apcatb_2023_123279
crossref_primary_10_1016_j_electacta_2022_139975
crossref_primary_10_1007_s10904_020_01668_6
crossref_primary_10_1038_s41467_022_33589_y
crossref_primary_10_1016_j_mtphys_2021_100418
crossref_primary_10_1002_smll_202300926
crossref_primary_10_1016_j_reactfunctpolym_2021_105142
crossref_primary_10_1021_acsnano_3c08831
crossref_primary_10_1016_S1872_2067_21_63918_9
crossref_primary_10_1016_j_cej_2024_157208
crossref_primary_10_1021_acscatal_1c05958
crossref_primary_10_1002_anie_202209693
crossref_primary_10_1007_s13204_020_01550_4
crossref_primary_10_1016_j_cej_2023_147230
crossref_primary_10_1021_acs_inorgchem_0c03746
crossref_primary_10_1007_s12274_022_4677_8
crossref_primary_10_1021_acsami_3c19483
crossref_primary_10_1021_acscatal_2c05624
crossref_primary_10_1016_j_jece_2023_110573
crossref_primary_10_1021_acsomega_2c04499
crossref_primary_10_1039_D1TA02341A
crossref_primary_10_1016_S1872_2067_23_64611_X
crossref_primary_10_1039_D1TA00154J
crossref_primary_10_1021_acs_jpclett_1c03452
crossref_primary_10_1002_adfm_202300294
crossref_primary_10_1063_5_0232980
crossref_primary_10_1016_j_seppur_2024_129011
crossref_primary_10_1360_SSC_2024_0159
crossref_primary_10_1016_j_jcis_2023_07_039
crossref_primary_10_2139_ssrn_4169979
crossref_primary_10_1039_D0CC05785A
crossref_primary_10_1016_j_nxsust_2023_100023
crossref_primary_10_1039_D0SE00824A
crossref_primary_10_1016_j_carbon_2021_03_015
crossref_primary_10_1016_j_ensm_2021_12_029
crossref_primary_10_1016_j_cej_2023_146004
crossref_primary_10_1016_j_mtphys_2022_100931
crossref_primary_10_1002_adfm_202107608
crossref_primary_10_1016_j_apsusc_2024_161651
crossref_primary_10_1016_j_fuel_2021_121420
crossref_primary_10_1016_j_jechem_2022_02_045
crossref_primary_10_1002_adma_202501113
crossref_primary_10_1016_j_jssc_2020_121867
crossref_primary_10_1002_ange_202107053
crossref_primary_10_1039_D1TA09925F
crossref_primary_10_1039_D1QM01256H
crossref_primary_10_1016_j_apcatb_2023_123269
crossref_primary_10_1016_j_jpowsour_2022_231353
crossref_primary_10_1021_acsaem_0c03035
crossref_primary_10_1021_acsami_3c07261
crossref_primary_10_1007_s12274_021_3964_0
crossref_primary_10_1002_adfm_202101193
crossref_primary_10_1149_1945_7111_ac6e91
crossref_primary_10_1016_j_apsusc_2022_155506
crossref_primary_10_1002_cey2_505
crossref_primary_10_1007_s12274_022_4510_4
crossref_primary_10_1039_D3TA05922G
crossref_primary_10_1039_D2TA03860A
crossref_primary_10_1002_aenm_202300884
Cites_doi 10.1016/j.nanoen.2017.03.027
10.1039/c3cp51479j
10.1021/acscatal.6b00476
10.1021/nl500037x
10.1017/S1431927604040577
10.1038/s41467-019-09765-y
10.1002/anie.201709803
10.1002/adma.201804504
10.1021/jacs.8b03121
10.1038/s41929-017-0008-y
10.1038/s41467-019-10854-1
10.1002/adma.201806545
10.1016/j.apcatb.2015.02.033
10.1038/s41467-019-09290-y
10.1021/jacs.7b10817
10.1039/C5TA02551F
10.1103/RevModPhys.72.621
10.1038/s41467-019-09845-z
10.1002/adma.201808193
10.1002/adma.201801732
10.1021/jacs.9b02936
10.1039/C6CC07049C
10.1039/C5EE00751H
10.1126/science.aay1844
10.1021/cs500740u
10.1126/science.aah4321
10.1021/jz301476w
10.1016/j.chempr.2019.07.020
10.1002/smll.201804524
10.1021/jacs.7b02736
10.1007/s12274-018-2149-y
10.1016/j.chempr.2017.12.005
10.1021/jacs.8b13543
10.1126/science.aan2255
10.1038/s41467-018-03896-4
10.1039/C8EE01841C
10.1002/adma.201803498
10.1007/s11705-015-1547-x
10.1038/s41565-019-0518-7
10.1039/C8SC04480E
10.1038/s41467-019-09666-0
10.1039/c2dt30639e
10.1016/j.cplett.2011.09.034
10.1038/s41467-018-04845-x
10.1021/jacs.8b00814
10.1038/s41557-018-0201-x
10.1038/s41929-018-0195-1
10.1002/anie.201706602
10.1021/acs.chemrev.9b00220
10.1002/aenm.201902084
10.1038/s41565-019-0513-z
10.1039/C4CS00160E
10.1002/adma.201903470
10.1038/s41570-019-0110-6
10.1016/j.nanoen.2018.11.054
10.1002/adma.201806312
10.1016/j.chempr.2019.03.002
10.1126/science.aaf8800
10.1126/science.aad4998
10.1038/s41467-018-07288-6
10.1002/anie.201804349
10.1002/aenm.201802856
10.1073/pnas.1800771115
10.1038/nchem.1095
10.1002/anie.201505073
10.1002/aenm.201701343
10.1021/acsenergylett.7b00219
10.1103/PhysRevLett.122.106802
10.1002/anie.201710599
10.1126/science.1180297
10.1038/s41467-019-11796-4
10.1021/acscatal.6b02772
10.1073/pnas.1412962111
10.1038/ncomms13481
10.1039/C6CP04022E
10.1002/xrs.1103
10.1038/s41467-018-08136-3
10.1002/adma.201704720
10.1021/acsnano.7b00796
10.1038/ncomms13638
10.1038/s41560-019-0402-6
10.1002/anie.201702473
10.1038/s41467-018-06296-w
10.1038/s41563-019-0571-5
10.1021/ja9922476
10.1002/adma.201302820
10.1021/jacs.7b10385
10.1126/sciadv.1500462
10.1002/anie.201908760
10.1021/acscatal.6b01534
10.1021/acsami.9b09125
10.1038/s41467-019-12886-z
10.1039/C7CY00881C
10.1038/s41929-018-0203-5
10.1002/aenm.201701345
10.1039/C8EE01481G
10.1002/anie.201814182
10.1002/smtd.201900159
10.1038/ncomms9668
10.1002/adma.201002828
10.1063/1.4766919
10.1016/j.joule.2018.06.019
10.1002/anie.201504903
10.1021/jacs.7b10646
10.1039/C8EE02694G
10.1002/anie.201908351
10.1006/jcat.1998.2234
10.1002/anie.201813494
10.1002/smll.201704319
10.1038/s41929-018-0181-7
10.1039/C5CP01824B
10.1038/s41929-019-0246-2
10.1038/s41467-019-11992-2
10.1002/adma.201705369
10.1021/jacs.7b10194
10.1021/acsami.5b01963
10.1126/science.aad8892
10.1038/378159a0
10.1038/nchem.121
10.1002/aenm.201703487
10.1002/aenm.201701476
10.1021/cr900056b
10.1021/jp5113894
10.1038/s41570-018-0010-1
10.1039/C8EE02656D
10.1038/srep01775
10.1038/nmat4367
10.1126/science.1253150
10.1093/nsr/nwy043
10.1126/science.aaw7515
10.1002/adma.201801649
10.1002/aenm.201900149
10.1002/adma.201603662
10.1002/aenm.201601979
10.1002/anie.201602097
10.1002/adma.201801995
10.1038/s41467-019-12885-0
10.1021/jacs.8b00752
10.1038/s41929-018-0164-8
10.1038/nchem.2915
10.1021/cr2000898
10.1038/nenergy.2017.111
10.1002/adfm.201808872
10.1021/jacs.9b05576
10.1016/j.chempr.2017.10.013
10.2136/sssaj1998.03615995006200050014x
10.1021/ar300361m
10.1039/C9EE01722D
10.1039/b912552c
10.1016/j.chempr.2019.04.024
10.1021/ja408574m
10.1126/sciadv.aao6657
10.1038/s41560-017-0078-8
10.1039/C6NR04403D
10.1021/jacs.8b04647
10.1038/s41467-018-05754-9
10.1039/C9TA03011E
10.1016/j.chempr.2017.09.014
10.1038/nmat3191
10.1021/acsnano.7b02148
10.1016/j.ijhydene.2012.07.059
10.1039/B804591G
10.1002/anie.201403353
10.1038/s41467-019-09596-x
10.1002/celc.201900598
10.1038/s41467-019-12362-8
10.1021/jacs.7b01686
10.1002/anie.201901575
10.1002/anie.201906289
10.1016/j.nanoen.2016.12.056
10.1016/j.nanoen.2018.06.023
10.1002/cssc.201701306
10.1038/s41565-018-0197-9
10.1021/jacs.7b08881
10.1039/C9EE00877B
10.1039/C5EE00682A
10.1149/1.1525270
10.1039/C8EE02888E
10.1038/s41467-019-10622-1
10.1002/anie.201808049
10.1039/C4CS00470A
10.1021/jacs.8b09834
10.1038/s41467-017-01100-7
10.1002/anie.201811126
10.1063/1.2709758
10.1039/c1cs15091j
10.1002/anie.201804817
10.1038/s41467-017-01259-z
10.1038/nmat4757
10.1002/anie.201610955
10.1002/ange.201905241
10.1016/j.chempr.2019.02.008
10.1021/ar3002427
10.1038/s41929-019-0279-6
10.1039/b926434e
10.1002/ange.200501792
10.1021/ja206477z
10.1021/jacs.7b05130
10.1002/anie.201803262
10.1038/ncomms9550
10.1126/science.1135752
10.1038/ncomms16100
10.1126/science.aac6368
10.1002/anie.201805467
10.1126/science.1200832
10.1021/jacs.8b13579
10.1021/jp9059505
10.1002/adma.201800396
10.1002/cssc.201800855
10.1021/acscatal.6b02899
10.1038/am.2017.212
10.1038/s41929-017-0017-x
10.1002/adma.201800588
10.1002/anie.201712451
10.1002/anie.201811728
10.1021/ja211433h
10.1021/ja2042029
10.1021/jacs.8b07294
10.1002/anie.201604802
10.1002/anie.201804854
10.1002/anie.201711688
10.1038/s41467-019-08484-8
10.1021/jacs.5b10484
10.1039/C9CS00422J
10.1021/jacs.6b02692
10.1002/anie.201509241
10.1038/ncomms10922
10.1021/jacs.6b03339
10.1002/anie.201507381
10.1021/acsenergylett.7b01188
10.1002/aenm.201900931
10.1002/smtd.201800471
10.1002/aenm.201701799
10.1016/j.nanoen.2018.07.033
10.1038/s41467-018-07850-2
10.1081/CR-120001809
10.1021/jacs.7b05372
10.1002/adma.201705112
10.1038/s41467-018-03380-z
10.1038/nmat2883
10.1126/sciadv.aaw2322
10.1002/adma.201604571
10.1016/j.apcatb.2017.12.059
10.1038/nature11475
10.1039/C8EE01169A
10.1038/s41563-018-0167-5
10.1038/nchem.2740
10.1021/jacs.9b03004
10.1021/cs5008206
10.1021/ja401847c
10.1063/1.4774216
10.1002/anie.201812423
10.1021/acs.jpcc.7b03779
10.1038/s41467-017-01521-4
10.1038/s41467-019-09188-9
10.1002/adma.201808066
10.1038/s41929-018-0146-x
10.1016/j.jcat.2011.06.015
10.1039/C6EE01867J
10.1002/anie.201703864
10.1039/C9CC00199A
10.1038/ncomms8938
10.1016/j.chempr.2019.07.005
10.1021/acs.jpcc.7b00913
10.1073/pnas.1813605115
10.1002/anie.201709597
10.1126/science.1085721
10.1038/s41929-019-0237-3
10.1038/nmat3143
10.1002/anie.201902109
10.1021/jacs.8b02225
10.1126/science.aad0832
10.1021/jp307408u
10.1073/pnas.1116897109
10.1021/acsnano.7b08721
10.1038/nmat3795
10.1021/jacs.9b03182
10.1021/jacs.6b13100
10.1126/science.aaf5251
10.1093/nsr/nwy056
10.1002/anie.201906079
10.1021/jacs.8b06029
10.1002/adma.201706508
10.1002/anie.201712504
10.1002/aenm.201801956
10.1039/c3cp51538a
10.1021/cs500923c
10.1021/acscatal.7b01816
10.1021/acscatal.8b02288
10.1021/cs300809j
10.1021/ar300229c
10.1016/j.chempr.2018.10.007
10.1021/jacs.6b00757
10.1021/acscatal.5b01816
10.1002/anie.201109065
10.1021/jacs.5b06485
10.1021/jacs.6b09470
10.1002/advs.201802066
10.1002/adma.201706758
10.1126/science.aau0630
10.1002/anie.201902107
10.1038/srep05441
10.1126/science.1215864
10.1039/C6CS00328A
10.1126/science.1249061
10.1021/jacs.9b04907
10.1021/jacs.9b05268
10.1002/anie.201604311
10.1021/jacs.7b06514
10.1038/ncomms15938
10.1038/ncomms2929
10.1021/acscatal.7b00312
10.1002/anie.201804958
10.1002/anie.201602801
10.1007/s12274-019-2345-4
10.1038/s41467-019-08419-3
10.1038/s41929-019-0304-9
10.1021/jacs.9b08362
10.1021/jacs.7b05018
10.1021/acs.chemrev.5b00462
10.3390/catal7030080
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/c9cs00869a
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
CrossRef
Materials Research Database

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 2264
ExternalDocumentID 32133461
10_1039_C9CS00869A
c9cs00869a
Genre Journal Article
Review
GroupedDBID -
0-7
02
0R
29B
4.4
53G
5GY
70
705
70J
7~J
85S
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
COF
CS3
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3I
JG
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
X
---
-DZ
-~X
0R~
2WC
6J9
70~
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
~02
-JG
NPM
YIN
Z5M
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c462t-d98a5dd51421aac74fb8cfb720ebd549701b33da5bd8bac7ea575ca0f853b4e93
ISSN 0306-0012
1460-4744
IngestDate Thu Jul 10 22:50:33 EDT 2025
Thu Jul 10 18:44:53 EDT 2025
Sun Jun 29 13:40:43 EDT 2025
Wed Feb 19 02:31:12 EST 2025
Tue Jul 01 04:18:43 EDT 2025
Thu Apr 24 23:12:35 EDT 2025
Sat Jan 08 03:36:53 EST 2022
Wed Nov 11 00:36:14 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c462t-d98a5dd51421aac74fb8cfb720ebd549701b33da5bd8bac7ea575ca0f853b4e93
Notes Di Zhao is currently a postdoctoral fellow under the supervision of Prof. Yadong Li at the Department of Chemistry, Tsinghua University. She received her BS degree from the College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University in 2011 and her PhD degree from the School of Chemistry and Chemical Engineering in 2017, Beijing Institute of Technology. Her research interests include the design, synthesis and characterization of nanostructured materials and their applications in energy storage and conversion.
Yadong Li received his BS degree from the Department of Chemistry, Anhui Normal University in 1986 and his PhD degree from the Department of Chemistry, University of Science and Technology of China in 1998, with Prof. Yitai Qian. He joined the faculty of the Department of Chemistry, Tsinghua University in 1999 as a full professor. His research interests are focused on the synthesis, assembly, structure, and application exploration of nanomaterials.
Chen Chen received his BS degree from the Department of Chemistry, Beijing Institute of Technology in 2006, and his PhD degree from the Department of Chemistry, Tsinghua University in 2011 under the direction of Prof. Yadong Li. After postdoctoral work at Lawrence Berkeley National Laboratory with Prof. Peidong Yang, he joined the Department of Chemistry at Tsinghua University as an associate professor in 2015. His research interests are focused on nanomaterials and catalysis.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7060-426X
0000-0001-5902-3037
0000-0003-1544-1127
PMID 32133461
PQID 2386698791
PQPubID 2047503
PageCount 5
ParticipantIDs pubmed_primary_32133461
crossref_citationtrail_10_1039_C9CS00869A
proquest_miscellaneous_2371864268
proquest_journals_2386698791
rsc_primary_c9cs00869a
crossref_primary_10_1039_C9CS00869A
proquest_miscellaneous_2574335638
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-07
PublicationDateYYYYMMDD 2020-04-07
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-07
  day: 07
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhang (C9CS00869A-(cit188)/*[position()=1]) 2018; 57
Cao (C9CS00869A-(cit138)/*[position()=1]) 2015; 9
Zhang (C9CS00869A-(cit20)/*[position()=1]) 2017; 139
Yao (C9CS00869A-(cit247)/*[position()=1]) 2019; 2
Lin (C9CS00869A-(cit156)/*[position()=1]) 2019; 31
Yin (C9CS00869A-(cit116)/*[position()=1]) 2018; 57
Ji (C9CS00869A-(cit53)/*[position()=1]) 2019; 58
Zhuang (C9CS00869A-(cit233)/*[position()=1]) 2019; 10
Yang (C9CS00869A-(cit31)/*[position()=1]) 2018; 3
Humblot (C9CS00869A-(cit37)/*[position()=1]) 1998; 179
Dauth (C9CS00869A-(cit236)/*[position()=1]) 2012; 41
Li (C9CS00869A-(cit78)/*[position()=1]) 2017; 11
Li (C9CS00869A-(cit256)/*[position()=1]) 2016; 52
Kneebone (C9CS00869A-(cit298)/*[position()=1]) 2017; 121
Cui (C9CS00869A-(cit143)/*[position()=1]) 2016; 55
Zhang (C9CS00869A-(cit106)/*[position()=1]) 2017; 56
Miller (C9CS00869A-(cit239)/*[position()=1]) 2004; 10
Zhao (C9CS00869A-(cit293)/*[position()=1]) 2019; 10
Wang (C9CS00869A-(cit277)/*[position()=1]) 2019; 2
Shan (C9CS00869A-(cit139)/*[position()=1]) 2018; 226
Dong (C9CS00869A-(cit110)/*[position()=1]) 2015; 3
Wang (C9CS00869A-(cit44)/*[position()=1]) 2018; 30
Jeon (C9CS00869A-(cit142)/*[position()=1]) 2012; 109
Chen (C9CS00869A-(cit90)/*[position()=1]) 2018; 140
Wan (C9CS00869A-(cit160)/*[position()=1]) 2019; 2
Li (C9CS00869A-(cit205)/*[position()=1]) 2019; 58
Lei (C9CS00869A-(cit199)/*[position()=1]) 2019; 12
Benck (C9CS00869A-(cit322)/*[position()=1]) 2014; 4
Zhang (C9CS00869A-(cit107)/*[position()=1]) 2018; 140
Li (C9CS00869A-(cit112)/*[position()=1]) 2019; 2
Chao (C9CS00869A-(cit245)/*[position()=1]) 2017; 56
Zhu (C9CS00869A-(cit301)/*[position()=1]) 2019; 7
Fang (C9CS00869A-(cit24)/*[position()=1]) 2018; 30
Ye (C9CS00869A-(cit65)/*[position()=1]) 2019; 12
Yamamoto (C9CS00869A-(cit235)/*[position()=1]) 2008; 37
Liu (C9CS00869A-(cit288)/*[position()=1]) 2017; 8
Deng (C9CS00869A-(cit70)/*[position()=1]) 2015; 8
Zhou (C9CS00869A-(cit104)/*[position()=1]) 2017; 139
Wan (C9CS00869A-(cit294)/*[position()=1]) 2018; 14
Ren (C9CS00869A-(cit158)/*[position()=1]) 2019; 58
Papaderakis (C9CS00869A-(cit132)/*[position()=1]) 2017; 7
Zhang (C9CS00869A-(cit191)/*[position()=1]) 2018; 8
Zhang (C9CS00869A-(cit105)/*[position()=1]) 2018; 140
Chen (C9CS00869A-(cit43)/*[position()=1]) 2018; 2
Jiao (C9CS00869A-(cit252)/*[position()=1]) 2015; 44
Zhang (C9CS00869A-(cit292)/*[position()=1]) 2019; 12
Choi (C9CS00869A-(cit94)/*[position()=1]) 2016; 7
Zhu (C9CS00869A-(cit207)/*[position()=1]) 2019; 15
Iglesias (C9CS00869A-(cit306)/*[position()=1]) 2018; 4
Siahrostami (C9CS00869A-(cit283)/*[position()=1]) 2013; 15
Luo (C9CS00869A-(cit168)/*[position()=1]) 2019; 58
Harvey (C9CS00869A-(cit69)/*[position()=1]) 2000
Liu (C9CS00869A-(cit129)/*[position()=1]) 2019; 4
Sun (C9CS00869A-(cit287)/*[position()=1]) 2019; 141
Han (C9CS00869A-(cit42)/*[position()=1]) 2019; 3
Yan (C9CS00869A-(cit127)/*[position()=1]) 2017; 8
Geng (C9CS00869A-(cit32)/*[position()=1]) 2018; 30
Zheng (C9CS00869A-(cit193)/*[position()=1]) 2017; 139
Park (C9CS00869A-(cit307)/*[position()=1]) 2014; 4
Chen (C9CS00869A-(cit161)/*[position()=1]) 2018; 9
Liu (C9CS00869A-(cit214)/*[position()=1]) 2017; 139
Chong (C9CS00869A-(cit266)/*[position()=1]) 2018; 362
Qiu (C9CS00869A-(cit80)/*[position()=1]) 2015; 54
Zhu (C9CS00869A-(cit198)/*[position()=1]) 2018; 9
Wu (C9CS00869A-(cit202)/*[position()=1]) 2016; 9
Zagal (C9CS00869A-(cit265)/*[position()=1]) 2016; 55
Seh (C9CS00869A-(cit242)/*[position()=1]) 2017; 355
Wang (C9CS00869A-(cit147)/*[position()=1]) 2018; 57
Fu (C9CS00869A-(cit39)/*[position()=1]) 2003; 301
Deng (C9CS00869A-(cit151)/*[position()=1]) 2019; 9
Tao (C9CS00869A-(cit155)/*[position()=1]) 2019; 5
Shen (C9CS00869A-(cit183)/*[position()=1]) 2017; 56
Cheong (C9CS00869A-(cit213)/*[position()=1]) 2019; 11
Yang (C9CS00869A-(cit311)/*[position()=1]) 2015; 174–175
Norskov (C9CS00869A-(cit284)/*[position()=1]) 2009; 1
Lin (C9CS00869A-(cit62)/*[position()=1]) 2013; 135
Wang (C9CS00869A-(cit33)/*[position()=1]) 2019; 10
Wang (C9CS00869A-(cit146)/*[position()=1]) 2017; 139
Chen (C9CS00869A-(cit144)/*[position()=1]) 2017; 32
Kim (C9CS00869A-(cit318)/*[position()=1]) 2018; 11
Zhao (C9CS00869A-(cit145)/*[position()=1]) 2017; 139
Yang (C9CS00869A-(cit264)/*[position()=1]) 2018; 50
Zhou (C9CS00869A-(cit323)/*[position()=1]) 2019; 58
Lin (C9CS00869A-(cit164)/*[position()=1]) 2019; 31
Yang (C9CS00869A-(cit13)/*[position()=1]) 2013; 46
Chen (C9CS00869A-(cit99)/*[position()=1]) 2018; 30
Kyriakou (C9CS00869A-(cit133)/*[position()=1]) 2012; 335
Yang (C9CS00869A-(cit175)/*[position()=1]) 2015; 8
Chen (C9CS00869A-(cit208)/*[position()=1]) 2017; 56
Zhang (C9CS00869A-(cit244)/*[position()=1]) 2018; 4
Ou (C9CS00869A-(cit275)/*[position()=1]) 2009; 113
Boucher (C9CS00869A-(cit134)/*[position()=1]) 2013; 15
Han (C9CS00869A-(cit54)/*[position()=1]) 2017; 139
Bulushev (C9CS00869A-(cit313)/*[position()=1]) 2016; 6
Gao (C9CS00869A-(cit25)/*[position()=1]) 2016; 138
Xia (C9CS00869A-(cit131)/*[position()=1]) 2013; 25
Pan (C9CS00869A-(cit92)/*[position()=1]) 2018; 140
Tiwari (C9CS00869A-(cit210)/*[position()=1]) 2019; 9
Abbet (C9CS00869A-(cit38)/*[position()=1]) 2000; 122
Zhang (C9CS00869A-(cit50)/*[position()=1]) 2019; 58
Jirkovsky (C9CS00869A-(cit282)/*[position()=1]) 2011; 133
Mistry (C9CS00869A-(cit4)/*[position()=1]) 2016; 1
Tian (C9CS00869A-(cit100)/*[position()=1]) 2018; 140
Hui (C9CS00869A-(cit117)/*[position()=1]) 2019; 141
Melchionna (C9CS00869A-(cit305)/*[position()=1]) 2019; 5
Liu (C9CS00869A-(cit137)/*[position()=1]) 2016; 138
Han (C9CS00869A-(cit195)/*[position()=1]) 2018; 57
Qu (C9CS00869A-(cit227)/*[position()=1]) 2018; 1
He (C9CS00869A-(cit118)/*[position()=1]) 2012; 116
Pan (C9CS00869A-(cit231)/*[position()=1]) 2019; 10
Cao (C9CS00869A-(cit249)/*[position()=1]) 2019; 10
Shen (C9CS00869A-(cit60)/*[position()=1]) 2019; 5
Siahrostami (C9CS00869A-(cit281)/*[position()=1]) 2013; 12
Liu (C9CS00869A-(cit316)/*[position()=1]) 2017; 29
Li (C9CS00869A-(cit68)/*[position()=1]) 2018; 5
Liu (C9CS00869A-(cit79)/*[position()=1]) 2017; 9
Wei (C9CS00869A-(cit113)/*[position()=1]) 2017; 8
Rehr (C9CS00869A-(cit232)/*[position()=1]) 2010; 12
Mori (C9CS00869A-(cit260)/*[position()=1]) 2017; 7
Yang (C9CS00869A-(cit59)/*[position()=1]) 2016; 55
Kelly (C9CS00869A-(cit240)/*[position()=1]) 2007; 78
Hansen (C9CS00869A-(cit218)/*[position()=1]) 2013; 46
Xia (C9CS00869A-(cit234)/*[position()=1]) 1998; 62
Choi (C9CS00869A-(cit280)/*[position()=1]) 2014; 118
Bing (C9CS00869A-(cit5)/*[position()=1]) 2010; 39
Jiang (C9CS00869A-(cit28)/*[position()=1]) 2018; 140
Sun (C9CS00869A-(cit196)/*[position()=1]) 2018; 115
Li (C9CS00869A-(cit167)/*[position()=1]) 2018; 1
Kim (C9CS00869A-(cit35)/*[position()=1]) 2006; 118
Zhao (C9CS00869A-(cit243)/*[position()=1]) 2019
Xia (C9CS00869A-(cit304)/*[position()=1]) 2019; 366
Ding (C9CS00869A-(cit254)/*[position()=1]) 2019; 6
Sun (C9CS00869A-(cit41)/*[position()=1]) 2019; 12
Zeng (C9CS00869A-(cit96)/*[position()=1]) 2018; 8
Chen (C9CS00869A-(cit150)/*[position()=1]) 2018; 30
Liu (C9CS00869A-(cit66)/*[position()=1]) 2016; 352
Wang (C9CS00869A-(cit152)/*[position()=1]) 2018; 11
Fei (C9CS00869A-(cit103)/*[position()=1]) 2018; 1
Qiao (C9CS00869A-(cit163)/*[position()=1]) 2018; 30
Yang (C9CS00869A-(cit187)/*[position()=1]) 2018; 115
Li (C9CS00869A-(cit201)/*[position()=1]) 2018; 11
Lucci (C9CS00869A-(cit135)/*[position()=1]) 2015; 6
Li (C9CS00869A-(cit101)/*[position()=1]) 2018; 8
Li (C9CS00869A-(cit180)/*[position()=1]) 2019; 56
Bordiga (C9CS00869A-(cit238)/*[position()=1]) 2013; 113
Yang (C9CS00869A-(cit102)/*[position()=1]) 2018; 57
Matthey (C9CS00869A-(cit74)/*[position()=1]) 2007; 315
Rehr (C9CS00869A-(cit230)/*[position()=1]) 2000; 72
Pan (C9CS00869A-(cit148)/*[position()=1]) 2018; 57
Zhu (C9CS00869A-(cit192)/*[position()=1]) 2018; 11
Liu (C9CS00869A-(cit120)/*[position()=1]) 2016; 7
Li (C9CS00869A-(cit204)/*[position()=1]) 2019; 10
Maschmeyer (C9CS00869A-(cit36)/*[position()=1]) 1995; 378
Yang (C9CS00869A-(cit14)/*[position()=1]) 2017; 7
Escudero-Escribano (C9CS00869A-(cit278)/*[position()=1]) 2016; 352
Bruce (C9CS00869A-(cit273)/*[position()=1]) 2011; 11
Zhang (C9CS00869A-(cit290)/*[position()=1]) 2017; 139
Mun (C9CS00869A-(cit300)/*[position()=1]) 2019; 141
Jung (C9CS00869A-(cit309)/*[position()=1]) 2020
Ball (C9CS00869A-(cit9)/*[position()=1]) 2018; 5
Chen (C9CS00869A-(cit312)/*[position()=1]) 2011; 133
Peng (C9CS00869A-(cit29)/*[position()=1]) 2019; 5
Platschek (C9CS00869A-(cit216)/*[position()=1]) 2011; 23
Yang (C9CS00869A-(cit223)/*[position()=1]) 2018; 57
Siyu Yao (C9CS00869A-(cit18)/*[position()=1]) 2017; 357
Liu (C9CS00869A-(cit55)/*[position()=1]) 2019; 12
Wei (C9CS00869A-(cit157)/*[position()=1]) 2018; 52
Genorio (C9CS00869A-(cit286)/*[position()=1]) 2010; 9
Zhang (C9CS00869A-(cit128)/*[position()=1]) 2013; 4
Vile (C9CS00869A-(cit91)/*[position()=1]) 2015; 54
Zhang (C9CS00869A-(cit85)/*[position()=1]) 2019; 10
He (C9CS00869A-(cit165)/*[position()=1]) 2019; 12
Chen (C9CS00869A-(cit279)/*[position()=1]) 2014; 343
Verdaguer-Casadevall (C9CS00869A-(cit269)/*[position()=1]) 2014; 14
Zhang (C9CS00869A-(cit75)/*[position()=1]) 2015; 6
Fan (C9CS00869A-(cit258)/*[position()=1]) 2014; 43
Chen (C9CS00869A-(cit111)/*[position()=1]) 2017; 2
Tian (C9CS00869A-(cit58)/*[position()=1]) 2018; 9
Lu (C9CS00869A-(cit122)/*[position()=1]) 2013; 46
Lu (C9CS00869A-(cit270)/*[position()=1]) 2018; 1
Gu (C9CS00869A-(cit159)/*[position()=1]) 2019; 364
Yang (C9CS00869A-(cit170)/*[position()=1]) 2018; 30
Zhu (C9CS00869A-(cit177)/*[position()=1]) 2018; 8
Zhu (C9CS00869A-(cit57)/*[position()=1]) 2017; 56
Huang (C9CS00869A-(cit222)/*[position()=1]) 2012; 51
Fei (C9CS00869A-(cit15)/*[position()=1]) 2019; 48
Gu (C9CS00869A-(cit64)/*[position()=1]) 2014; 4
Gao (C9CS00869A-(cit83)/*[position()=1]) 2013; 138
Jiao (C9CS00869A-(cit49)/*[position()=1]) 2019; 11
Yang (C9CS00869A-(cit173)/*[position()=1]) 2019; 58
Sa (C9CS00869A-(cit182)/*[position()=1]) 2016; 138
Fei (C9CS00869A-(cit197)/*[position()=1]) 2015; 6
Zhao (C9CS00869A-(cit229)/*[position()=1]) 2014; 111
Yuan (C9CS00869A-(cit174)/*[position()=1]) 2018; 3
Li (C9CS00869A-(cit109)/*[position()=1]) 2017; 2
Fu (C9CS00869A-(cit317)/*[position()=1]) 2015; 7
Liu (C9CS00869A-(cit88)/*[posit
References_xml – issn: 2000
  publication-title: Modern Analytical Chemistry
  doi: Harvey
– volume: 35
  start-page: 9
  year: 2017
  ident: C9CS00869A-(cit212)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.03.027
– volume: 15
  start-page: 9326
  year: 2013
  ident: C9CS00869A-(cit283)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp51479j
– volume: 6
  start-page: 3442
  year: 2016
  ident: C9CS00869A-(cit313)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00476
– volume: 14
  start-page: 1603
  year: 2014
  ident: C9CS00869A-(cit269)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl500037x
– volume: 10
  start-page: 336
  year: 2004
  ident: C9CS00869A-(cit239)/*[position()=1]
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927604040577
– volume: 10
  start-page: 1743
  year: 2019
  ident: C9CS00869A-(cit27)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09765-y
– volume: 56
  start-page: 16047
  year: 2017
  ident: C9CS00869A-(cit245)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201709803
– volume: 30
  start-page: 1804504
  year: 2018
  ident: C9CS00869A-(cit163)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804504
– volume: 140
  start-page: 7407
  year: 2018
  ident: C9CS00869A-(cit90)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b03121
– volume: 1
  start-page: 63
  year: 2018
  ident: C9CS00869A-(cit103)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0008-y
– volume: 10
  start-page: 2980
  year: 2019
  ident: C9CS00869A-(cit206)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10854-1
– volume: 31
  start-page: 1806545
  year: 2019
  ident: C9CS00869A-(cit297)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806545
– volume: 174–175
  start-page: 35
  year: 2015
  ident: C9CS00869A-(cit311)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2015.02.033
– volume: 10
  start-page: 1278
  year: 2019
  ident: C9CS00869A-(cit293)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09290-y
– volume: 139
  start-page: 18093
  year: 2017
  ident: C9CS00869A-(cit203)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10817
– volume: 3
  start-page: 13080
  year: 2015
  ident: C9CS00869A-(cit110)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02551F
– volume: 72
  start-page: 621
  year: 2000
  ident: C9CS00869A-(cit230)/*[position()=1]
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.72.621
– volume: 10
  start-page: 2149
  year: 2019
  ident: C9CS00869A-(cit248)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09845-z
– volume: 31
  start-page: 1808193
  year: 2019
  ident: C9CS00869A-(cit156)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808193
– volume: 30
  start-page: 1801732
  year: 2018
  ident: C9CS00869A-(cit170)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801732
– volume: 141
  start-page: 9305
  year: 2019
  ident: C9CS00869A-(cit88)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02936
– volume: 52
  start-page: 13233
  year: 2016
  ident: C9CS00869A-(cit256)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC07049C
– volume: 8
  start-page: 1594
  year: 2015
  ident: C9CS00869A-(cit70)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE00751H
– volume: 366
  start-page: 226
  year: 2019
  ident: C9CS00869A-(cit304)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aay1844
– volume: 4
  start-page: 3886
  year: 2014
  ident: C9CS00869A-(cit64)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs500740u
– volume: 357
  start-page: 389
  year: 2017
  ident: C9CS00869A-(cit18)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aah4321
– volume: 3
  start-page: 2948
  year: 2012
  ident: C9CS00869A-(cit272)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz301476w
– volume: 5
  start-page: 2865
  year: 2019
  ident: C9CS00869A-(cit48)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.07.020
– volume: 15
  start-page: 1804524
  year: 2019
  ident: C9CS00869A-(cit207)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201804524
– volume: 139
  start-page: 8078
  year: 2017
  ident: C9CS00869A-(cit145)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02736
– volume: 11
  start-page: 6260
  year: 2018
  ident: C9CS00869A-(cit181)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2149-y
– volume: 4
  start-page: 285
  year: 2018
  ident: C9CS00869A-(cit200)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.12.005
– volume: 141
  start-page: 6254
  year: 2019
  ident: C9CS00869A-(cit300)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13543
– volume: 357
  start-page: 479
  year: 2017
  ident: C9CS00869A-(cit190)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aan2255
– volume: 9
  start-page: 1460
  year: 2018
  ident: C9CS00869A-(cit115)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03896-4
– volume: 12
  start-page: 149
  year: 2019
  ident: C9CS00869A-(cit199)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01841C
– volume: 30
  start-page: 1803498
  year: 2018
  ident: C9CS00869A-(cit32)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803498
– volume: 9
  start-page: 442
  year: 2015
  ident: C9CS00869A-(cit138)/*[position()=1]
  publication-title: Front. Chem. Sci. Eng.
  doi: 10.1007/s11705-015-1547-x
– volume: 14
  start-page: 851
  year: 2019
  ident: C9CS00869A-(cit224)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0518-7
– volume: 10
  start-page: 378
  year: 2019
  ident: C9CS00869A-(cit33)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC04480E
– volume: 10
  start-page: 1711
  year: 2019
  ident: C9CS00869A-(cit95)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09666-0
– volume: 41
  start-page: 7876
  year: 2012
  ident: C9CS00869A-(cit236)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/c2dt30639e
– volume: 515
  start-page: 159
  year: 2011
  ident: C9CS00869A-(cit84)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2011.09.034
– volume: 9
  start-page: 2353
  year: 2018
  ident: C9CS00869A-(cit58)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04845-x
– volume: 140
  start-page: 4218
  year: 2018
  ident: C9CS00869A-(cit92)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00814
– volume: 11
  start-page: 222
  year: 2019
  ident: C9CS00869A-(cit49)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0201-x
– volume: 1
  start-page: 985
  year: 2018
  ident: C9CS00869A-(cit108)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0195-1
– volume: 56
  start-page: 13800
  year: 2017
  ident: C9CS00869A-(cit183)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201706602
– volume: 2
  start-page: 1184
  year: 2020
  ident: C9CS00869A-(cit10)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00220
– start-page: 1902084
  year: 2019
  ident: C9CS00869A-(cit296)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902084
– volume: 14
  start-page: 817
  year: 2019
  ident: C9CS00869A-(cit221)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0513-z
– volume: 43
  start-page: 7040
  year: 2014
  ident: C9CS00869A-(cit258)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00160E
– volume: 31
  start-page: 1903470
  year: 2019
  ident: C9CS00869A-(cit164)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903470
– volume: 3
  start-page: 442
  year: 2019
  ident: C9CS00869A-(cit267)/*[position()=1]
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-019-0110-6
– volume: 56
  start-page: 524
  year: 2019
  ident: C9CS00869A-(cit180)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.054
– volume: 31
  start-page: 1806312
  year: 2018
  ident: C9CS00869A-(cit189)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806312
– volume: 5
  start-page: 1486
  year: 2019
  ident: C9CS00869A-(cit7)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.03.002
– volume: 353
  start-page: 150
  year: 2016
  ident: C9CS00869A-(cit220)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaf8800
– volume: 355
  start-page: eaad4998
  year: 2017
  ident: C9CS00869A-(cit242)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 9
  start-page: 4958
  year: 2018
  ident: C9CS00869A-(cit246)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07288-6
– volume: 57
  start-page: 8614
  year: 2018
  ident: C9CS00869A-(cit148)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201804349
– volume: 9
  start-page: 1802856
  year: 2019
  ident: C9CS00869A-(cit151)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802856
– volume: 115
  start-page: 6626
  year: 2018
  ident: C9CS00869A-(cit187)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1800771115
– volume: 3
  start-page: 634
  year: 2011
  ident: C9CS00869A-(cit17)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
– volume: 54
  start-page: 11265
  year: 2015
  ident: C9CS00869A-(cit91)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201505073
– volume: 8
  start-page: 1701343
  year: 2018
  ident: C9CS00869A-(cit56)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701343
– volume: 2
  start-page: 1070
  year: 2017
  ident: C9CS00869A-(cit111)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00219
– volume: 122
  start-page: 106802
  year: 2019
  ident: C9CS00869A-(cit121)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.106802
– volume: 56
  start-page: 16086
  year: 2017
  ident: C9CS00869A-(cit208)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201710599
– volume: 326
  start-page: 826
  year: 2009
  ident: C9CS00869A-(cit119)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1180297
– volume: 10
  start-page: 3734
  year: 2019
  ident: C9CS00869A-(cit225)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11796-4
– volume: 7
  start-page: 413
  year: 2016
  ident: C9CS00869A-(cit140)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02772
– volume: 111
  start-page: 15641
  year: 2014
  ident: C9CS00869A-(cit229)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1412962111
– volume: 7
  start-page: 13481
  year: 2016
  ident: C9CS00869A-(cit77)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13481
– volume: 18
  start-page: 23686
  year: 2016
  ident: C9CS00869A-(cit237)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP04022E
– volume: 37
  start-page: 572
  year: 2008
  ident: C9CS00869A-(cit235)/*[position()=1]
  publication-title: X-Ray Spectrom.
  doi: 10.1002/xrs.1103
– volume: 10
  start-page: 234
  year: 2019
  ident: C9CS00869A-(cit72)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-08136-3
– volume: 30
  start-page: 1704720
  year: 2018
  ident: C9CS00869A-(cit99)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704720
– volume: 11
  start-page: 3392
  year: 2017
  ident: C9CS00869A-(cit78)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00796
– volume: 7
  start-page: 13638
  year: 2016
  ident: C9CS00869A-(cit26)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13638
– volume: 4
  start-page: 512
  year: 2019
  ident: C9CS00869A-(cit129)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0402-6
– volume: 56
  start-page: 6937
  year: 2017
  ident: C9CS00869A-(cit149)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201702473
– volume: 9
  start-page: 3861
  year: 2018
  ident: C9CS00869A-(cit198)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06296-w
– year: 2020
  ident: C9CS00869A-(cit309)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0571-5
– volume: 122
  start-page: 3453
  year: 2000
  ident: C9CS00869A-(cit38)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9922476
– volume: 25
  start-page: 6313
  year: 2013
  ident: C9CS00869A-(cit131)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302820
– volume: 139
  start-page: 17281
  year: 2017
  ident: C9CS00869A-(cit146)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10385
– volume: 1
  start-page: e1500462
  year: 2015
  ident: C9CS00869A-(cit21)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500462
– year: 2019
  ident: C9CS00869A-(cit243)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201908760
– volume: 7
  start-page: 34
  year: 2016
  ident: C9CS00869A-(cit120)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01534
– volume: 11
  start-page: 33819
  year: 2019
  ident: C9CS00869A-(cit213)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b09125
– volume: 10
  start-page: 4849
  year: 2019
  ident: C9CS00869A-(cit249)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12886-z
– volume: 7
  start-page: 4259
  year: 2017
  ident: C9CS00869A-(cit73)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY00881C
– volume: 2
  start-page: 134
  year: 2018
  ident: C9CS00869A-(cit98)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0203-5
– volume: 8
  start-page: 1701345
  year: 2018
  ident: C9CS00869A-(cit96)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701345
– volume: 11
  start-page: 2348
  year: 2018
  ident: C9CS00869A-(cit178)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01481G
– volume: 58
  start-page: 4271
  year: 2019
  ident: C9CS00869A-(cit53)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201814182
– volume: 3
  start-page: 1900159
  year: 2019
  ident: C9CS00869A-(cit217)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.201900159
– volume: 6
  start-page: 8668
  year: 2015
  ident: C9CS00869A-(cit197)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9668
– volume: 23
  start-page: 2395
  year: 2011
  ident: C9CS00869A-(cit216)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201002828
– volume: 112
  start-page: 104316
  year: 2012
  ident: C9CS00869A-(cit276)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4766919
– volume: 2
  start-page: 1242
  year: 2018
  ident: C9CS00869A-(cit43)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2018.06.019
– volume: 54
  start-page: 12753
  year: 2015
  ident: C9CS00869A-(cit302)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201504903
– volume: 139
  start-page: 17677
  year: 2017
  ident: C9CS00869A-(cit104)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10646
– volume: 12
  start-page: 250
  year: 2019
  ident: C9CS00869A-(cit165)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02694G
– volume: 58
  start-page: 14184
  year: 2019
  ident: C9CS00869A-(cit323)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201908351
– volume: 179
  start-page: 459
  year: 1998
  ident: C9CS00869A-(cit37)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1006/jcat.1998.2234
– volume: 58
  start-page: 3511
  year: 2019
  ident: C9CS00869A-(cit173)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201813494
– volume: 14
  start-page: 1704319
  year: 2018
  ident: C9CS00869A-(cit294)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201704319
– volume: 1
  start-page: 909
  year: 2018
  ident: C9CS00869A-(cit250)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0181-7
– volume: 17
  start-page: 17601
  year: 2015
  ident: C9CS00869A-(cit320)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP01824B
– volume: 2
  start-page: 304
  year: 2019
  ident: C9CS00869A-(cit247)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0246-2
– volume: 10
  start-page: 3997
  year: 2019
  ident: C9CS00869A-(cit3)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11992-2
– volume: 30
  start-page: 1705369
  year: 2018
  ident: C9CS00869A-(cit46)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705369
– volume: 139
  start-page: 17269
  year: 2017
  ident: C9CS00869A-(cit54)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10194
– volume: 7
  start-page: 13842
  year: 2015
  ident: C9CS00869A-(cit317)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01963
– volume: 352
  start-page: 73
  year: 2016
  ident: C9CS00869A-(cit278)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aad8892
– volume: 378
  start-page: 159
  year: 1995
  ident: C9CS00869A-(cit36)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/378159a0
– volume: 1
  start-page: 37
  year: 2009
  ident: C9CS00869A-(cit284)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.121
– volume: 8
  start-page: 1703487
  year: 2018
  ident: C9CS00869A-(cit191)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703487
– volume: 8
  start-page: 1701476
  year: 2018
  ident: C9CS00869A-(cit314)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701476
– volume: 110
  start-page: 111
  year: 2010
  ident: C9CS00869A-(cit124)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr900056b
– volume: 118
  start-page: 30063
  year: 2014
  ident: C9CS00869A-(cit280)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5113894
– volume: 2
  start-page: 65
  year: 2018
  ident: C9CS00869A-(cit12)/*[position()=1]
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 11
  start-page: 3375
  year: 2018
  ident: C9CS00869A-(cit152)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02656D
– volume: 3
  start-page: 1775
  year: 2013
  ident: C9CS00869A-(cit11)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep01775
– volume: 14
  start-page: 937
  year: 2015
  ident: C9CS00869A-(cit261)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4367
– volume: 344
  start-page: 616
  year: 2014
  ident: C9CS00869A-(cit19)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1253150
– volume: 5
  start-page: 690
  year: 2018
  ident: C9CS00869A-(cit9)/*[position()=1]
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwy043
– volume: 364
  start-page: 1091
  year: 2019
  ident: C9CS00869A-(cit159)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaw7515
– volume: 30
  start-page: 1801649
  year: 2018
  ident: C9CS00869A-(cit44)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801649
– volume: 9
  start-page: 1900149
  year: 2019
  ident: C9CS00869A-(cit171)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900149
– volume: 28
  start-page: 9949
  year: 2016
  ident: C9CS00869A-(cit271)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603662
– volume: 7
  start-page: 1601979
  year: 2017
  ident: C9CS00869A-(cit172)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601979
– volume: 55
  start-page: 6708
  year: 2016
  ident: C9CS00869A-(cit143)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201602097
– volume: 30
  start-page: 1801995
  year: 2018
  ident: C9CS00869A-(cit16)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801995
– volume: 10
  start-page: 4875
  year: 2019
  ident: C9CS00869A-(cit233)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12885-0
– volume: 140
  start-page: 3876
  year: 2018
  ident: C9CS00869A-(cit105)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00752
– volume: 1
  start-page: 935
  year: 2018
  ident: C9CS00869A-(cit167)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0164-8
– volume: 10
  start-page: 325
  year: 2018
  ident: C9CS00869A-(cit136)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2915
– volume: 113
  start-page: 1736
  year: 2013
  ident: C9CS00869A-(cit238)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr2000898
– volume: 2
  start-page: 17111
  year: 2017
  ident: C9CS00869A-(cit109)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.111
– volume: 29
  start-page: 1808872
  year: 2019
  ident: C9CS00869A-(cit162)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808872
– volume: 141
  start-page: 12372
  year: 2019
  ident: C9CS00869A-(cit287)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05576
– volume: 4
  start-page: 106
  year: 2018
  ident: C9CS00869A-(cit306)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.10.013
– volume: 62
  start-page: 1240
  year: 1998
  ident: C9CS00869A-(cit234)/*[position()=1]
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1998.03615995006200050014x
– volume: 46
  start-page: 1740
  year: 2013
  ident: C9CS00869A-(cit13)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300361m
– volume: 12
  start-page: 2890
  year: 2019
  ident: C9CS00869A-(cit55)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01722D
– volume: 39
  start-page: 2184
  year: 2010
  ident: C9CS00869A-(cit5)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b912552c
– volume: 5
  start-page: 2099
  year: 2019
  ident: C9CS00869A-(cit60)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.04.024
– volume: 135
  start-page: 15314
  year: 2013
  ident: C9CS00869A-(cit62)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja408574m
– volume: 4
  start-page: eaao6657
  year: 2018
  ident: C9CS00869A-(cit244)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao6657
– volume: 3
  start-page: 140
  year: 2018
  ident: C9CS00869A-(cit31)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0078-8
– volume: 8
  start-page: 15348
  year: 2016
  ident: C9CS00869A-(cit126)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR04403D
– volume: 140
  start-page: 10757
  year: 2018
  ident: C9CS00869A-(cit107)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04647
– volume: 9
  start-page: 3197
  year: 2018
  ident: C9CS00869A-(cit130)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05754-9
– volume: 7
  start-page: 14732
  year: 2019
  ident: C9CS00869A-(cit301)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03011E
– volume: 3
  start-page: 950
  year: 2017
  ident: C9CS00869A-(cit241)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.09.014
– volume: 11
  start-page: 19
  year: 2011
  ident: C9CS00869A-(cit273)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3191
– volume: 11
  start-page: 6930
  year: 2017
  ident: C9CS00869A-(cit289)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02148
– volume: 38
  start-page: 9438
  year: 2013
  ident: C9CS00869A-(cit319)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.07.059
– volume: 140
  start-page: 363
  year: 2008
  ident: C9CS00869A-(cit321)/*[position()=1]
  publication-title: Faraday Discuss.
  doi: 10.1039/B804591G
– volume: 53
  start-page: 8904
  year: 2014
  ident: C9CS00869A-(cit87)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201403353
– volume: 10
  start-page: 1657
  year: 2019
  ident: C9CS00869A-(cit85)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09596-x
– volume: 6
  start-page: 3860
  year: 2019
  ident: C9CS00869A-(cit254)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201900598
– volume: 10
  start-page: 4290
  year: 2019
  ident: C9CS00869A-(cit231)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12362-8
– volume: 139
  start-page: 9419
  year: 2017
  ident: C9CS00869A-(cit23)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01686
– volume: 58
  start-page: 6972
  year: 2019
  ident: C9CS00869A-(cit158)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201901575
– volume: 58
  start-page: 12469
  year: 2019
  ident: C9CS00869A-(cit168)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201906289
– volume: 32
  start-page: 353
  year: 2017
  ident: C9CS00869A-(cit144)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.056
– volume: 50
  start-page: 691
  year: 2018
  ident: C9CS00869A-(cit264)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.023
– volume: 11
  start-page: 104
  year: 2018
  ident: C9CS00869A-(cit318)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201701306
– volume: 13
  start-page: 856
  year: 2018
  ident: C9CS00869A-(cit219)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0197-9
– volume: 139
  start-page: 15479
  year: 2017
  ident: C9CS00869A-(cit63)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08881
– volume: 12
  start-page: 2548
  year: 2019
  ident: C9CS00869A-(cit292)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00877B
– volume: 8
  start-page: 1799
  year: 2015
  ident: C9CS00869A-(cit175)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE00682A
– volume: 150
  start-page: E39
  year: 2003
  ident: C9CS00869A-(cit285)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1525270
– volume: 12
  start-page: 1000
  year: 2019
  ident: C9CS00869A-(cit65)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02888E
– volume: 10
  start-page: 2623
  year: 2019
  ident: C9CS00869A-(cit204)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10622-1
– volume: 57
  start-page: 14095
  year: 2018
  ident: C9CS00869A-(cit223)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201808049
– volume: 44
  start-page: 2060
  year: 2015
  ident: C9CS00869A-(cit252)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00470A
– volume: 141
  start-page: 4505
  year: 2019
  ident: C9CS00869A-(cit226)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b09834
– volume: 8
  start-page: 957
  year: 2017
  ident: C9CS00869A-(cit303)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01100-7
– volume: 58
  start-page: 1975
  year: 2019
  ident: C9CS00869A-(cit51)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201811126
– volume: 78
  start-page: 031101
  year: 2007
  ident: C9CS00869A-(cit240)/*[position()=1]
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2709758
– volume: 40
  start-page: 5242
  year: 2011
  ident: C9CS00869A-(cit123)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c1cs15091j
– volume: 57
  start-page: 9382
  year: 2018
  ident: C9CS00869A-(cit116)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201804817
– volume: 8
  start-page: 1070
  year: 2017
  ident: C9CS00869A-(cit127)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01259-z
– volume: 16
  start-page: 132
  year: 2017
  ident: C9CS00869A-(cit89)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4757
– volume: 56
  start-page: 1
  year: 2017
  ident: C9CS00869A-(cit106)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201610955
– volume: 131
  start-page: 9742
  year: 2019
  ident: C9CS00869A-(cit169)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201905241
– volume: 1
  start-page: 16009
  year: 2016
  ident: C9CS00869A-(cit4)/*[position()=1]
  publication-title: Nat. Rev. Chem.
– volume: 5
  start-page: 1371
  year: 2019
  ident: C9CS00869A-(cit2)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.02.008
– volume: 46
  start-page: 1720
  year: 2013
  ident: C9CS00869A-(cit218)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar3002427
– volume: 2
  start-page: 495
  year: 2019
  ident: C9CS00869A-(cit112)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0279-6
– volume: 12
  start-page: 5503
  year: 2010
  ident: C9CS00869A-(cit232)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b926434e
– volume: 118
  start-page: 421
  year: 2006
  ident: C9CS00869A-(cit35)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.200501792
– volume: 133
  start-page: 19432
  year: 2011
  ident: C9CS00869A-(cit282)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206477z
– volume: 139
  start-page: 10790
  year: 2017
  ident: C9CS00869A-(cit214)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05130
– volume: 57
  start-page: 8525
  year: 2018
  ident: C9CS00869A-(cit153)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201803262
– volume: 6
  start-page: 8550
  year: 2015
  ident: C9CS00869A-(cit135)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9550
– volume: 315
  start-page: 1692
  year: 2007
  ident: C9CS00869A-(cit74)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1135752
– volume: 8
  start-page: 16100
  year: 2017
  ident: C9CS00869A-(cit215)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms16100
– volume: 350
  start-page: 189
  year: 2015
  ident: C9CS00869A-(cit76)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aac6368
– volume: 57
  start-page: 11262
  year: 2018
  ident: C9CS00869A-(cit195)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201805467
– volume: 332
  start-page: 443
  year: 2011
  ident: C9CS00869A-(cit268)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1200832
– volume: 141
  start-page: 4086
  year: 2019
  ident: C9CS00869A-(cit47)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13579
– volume: 113
  start-page: 20657
  year: 2009
  ident: C9CS00869A-(cit275)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp9059505
– volume: 30
  start-page: 1800396
  year: 2018
  ident: C9CS00869A-(cit150)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800396
– volume: 11
  start-page: 2402
  year: 2018
  ident: C9CS00869A-(cit192)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201800855
– volume: 7
  start-page: 1301
  year: 2017
  ident: C9CS00869A-(cit14)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02899
– volume: 10
  start-page: e461
  year: 2018
  ident: C9CS00869A-(cit185)/*[position()=1]
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2017.212
– volume: 1
  start-page: 156
  year: 2018
  ident: C9CS00869A-(cit270)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0017-x
– volume: 30
  start-page: 1800588
  year: 2018
  ident: C9CS00869A-(cit186)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800588
– volume: 57
  start-page: 1944
  year: 2018
  ident: C9CS00869A-(cit147)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201712451
– volume: 58
  start-page: 2321
  year: 2019
  ident: C9CS00869A-(cit209)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201811728
– volume: 134
  start-page: 6707
  year: 2012
  ident: C9CS00869A-(cit308)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211433h
– volume: 133
  start-page: 12930
  year: 2011
  ident: C9CS00869A-(cit312)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2042029
– volume: 140
  start-page: 11594
  year: 2018
  ident: C9CS00869A-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07294
– volume: 55
  start-page: 10800
  year: 2016
  ident: C9CS00869A-(cit40)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201604802
– volume: 57
  start-page: 9495
  year: 2018
  ident: C9CS00869A-(cit102)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201804854
– volume: 57
  start-page: 3514
  year: 2018
  ident: C9CS00869A-(cit255)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201711688
– volume: 10
  start-page: 606
  year: 2019
  ident: C9CS00869A-(cit114)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08484-8
– volume: 138
  start-page: 3623
  year: 2016
  ident: C9CS00869A-(cit97)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10484
– volume: 48
  start-page: 5207
  year: 2019
  ident: C9CS00869A-(cit15)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00422J
– volume: 138
  start-page: 6292
  year: 2016
  ident: C9CS00869A-(cit25)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02692
– volume: 55
  start-page: 2058
  year: 2016
  ident: C9CS00869A-(cit59)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201509241
– volume: 7
  start-page: 10922
  year: 2016
  ident: C9CS00869A-(cit94)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10922
– volume: 138
  start-page: 6396
  year: 2016
  ident: C9CS00869A-(cit137)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03339
– volume: 54
  start-page: 14031
  year: 2015
  ident: C9CS00869A-(cit80)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201507381
– volume: 3
  start-page: 252
  year: 2018
  ident: C9CS00869A-(cit174)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01188
– volume: 9
  start-page: 1900931
  year: 2019
  ident: C9CS00869A-(cit210)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900931
– volume: 3
  start-page: 1800471
  year: 2019
  ident: C9CS00869A-(cit42)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.201800471
– volume: 8
  start-page: 1701799
  year: 2017
  ident: C9CS00869A-(cit315)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701799
– volume: 52
  start-page: 29
  year: 2018
  ident: C9CS00869A-(cit157)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.033
– volume: 9
  start-page: 5422
  year: 2018
  ident: C9CS00869A-(cit161)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07850-2
– volume: 43
  start-page: 443
  year: 2001
  ident: C9CS00869A-(cit259)/*[position()=1]
  publication-title: Catal. Rev.
  doi: 10.1081/CR-120001809
– volume: 139
  start-page: 10976
  year: 2017
  ident: C9CS00869A-(cit20)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05372
– volume: 30
  start-page: 1705112
  year: 2018
  ident: C9CS00869A-(cit24)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705112
– volume: 9
  start-page: 1002
  year: 2018
  ident: C9CS00869A-(cit52)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03380-z
– volume: 9
  start-page: 998
  year: 2010
  ident: C9CS00869A-(cit286)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2883
– volume: 5
  start-page: eaaw2322
  year: 2019
  ident: C9CS00869A-(cit29)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw2322
– volume: 29
  start-page: 1604571
  year: 2017
  ident: C9CS00869A-(cit316)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604571
– volume: 226
  start-page: 534
  year: 2018
  ident: C9CS00869A-(cit139)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.12.059
– volume: 488
  start-page: 294
  year: 2012
  ident: C9CS00869A-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 11
  start-page: 2263
  year: 2018
  ident: C9CS00869A-(cit201)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01169A
– volume: 17
  start-page: 1033
  year: 2018
  ident: C9CS00869A-(cit34)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0167-5
– volume: 9
  start-page: 810
  year: 2017
  ident: C9CS00869A-(cit79)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2740
– volume-title: Modern Analytical Chemistry
  year: 2000
  ident: C9CS00869A-(cit69)/*[position()=1]
– volume: 141
  start-page: 10677
  year: 2019
  ident: C9CS00869A-(cit117)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03004
– volume: 4
  start-page: 3749
  year: 2014
  ident: C9CS00869A-(cit307)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs5008206
– volume: 135
  start-page: 12634
  year: 2013
  ident: C9CS00869A-(cit61)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja401847c
– volume: 138
  start-page: 034701
  year: 2013
  ident: C9CS00869A-(cit83)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4774216
– volume: 58
  start-page: 1163
  year: 2019
  ident: C9CS00869A-(cit81)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201812423
– volume: 121
  start-page: 16283
  year: 2017
  ident: C9CS00869A-(cit298)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b03779
– volume: 8
  start-page: 1490
  year: 2017
  ident: C9CS00869A-(cit113)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01521-4
– volume: 10
  start-page: 1330
  year: 2019
  ident: C9CS00869A-(cit67)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09188-9
– volume: 31
  start-page: 1808066
  year: 2019
  ident: C9CS00869A-(cit6)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808066
– volume: 1
  start-page: 781
  year: 2018
  ident: C9CS00869A-(cit227)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0146-x
– volume: 282
  start-page: 183
  year: 2011
  ident: C9CS00869A-(cit274)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2011.06.015
– volume: 9
  start-page: 3736
  year: 2016
  ident: C9CS00869A-(cit202)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01867J
– volume: 56
  start-page: 13944
  year: 2017
  ident: C9CS00869A-(cit57)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201703864
– volume: 55
  start-page: 2285
  year: 2019
  ident: C9CS00869A-(cit228)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00199A
– volume: 6
  start-page: 7938
  year: 2015
  ident: C9CS00869A-(cit75)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8938
– volume: 5
  start-page: 1927
  year: 2019
  ident: C9CS00869A-(cit305)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.07.005
– volume: 121
  start-page: 11319
  year: 2017
  ident: C9CS00869A-(cit299)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b00913
– volume: 115
  start-page: 12692
  year: 2018
  ident: C9CS00869A-(cit196)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1813605115
– volume: 57
  start-page: 1204
  year: 2018
  ident: C9CS00869A-(cit291)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201709597
– volume: 301
  start-page: 935
  year: 2003
  ident: C9CS00869A-(cit39)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1085721
– volume: 2
  start-page: 259
  year: 2019
  ident: C9CS00869A-(cit160)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0237-3
– volume: 11
  start-page: 49
  year: 2011
  ident: C9CS00869A-(cit141)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3143
– volume: 58
  start-page: 7035
  year: 2019
  ident: C9CS00869A-(cit205)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201902109
– volume: 140
  start-page: 6745
  year: 2018
  ident: C9CS00869A-(cit257)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02225
– volume: 351
  start-page: 361
  year: 2016
  ident: C9CS00869A-(cit262)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aad0832
– volume: 116
  start-page: 26313
  year: 2012
  ident: C9CS00869A-(cit118)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp307408u
– volume: 109
  start-page: 5588
  year: 2012
  ident: C9CS00869A-(cit142)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1116897109
– volume: 12
  start-page: 1894
  year: 2018
  ident: C9CS00869A-(cit194)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08721
– volume: 12
  start-page: 1137
  year: 2013
  ident: C9CS00869A-(cit281)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3795
– volume: 141
  start-page: 10590
  year: 2019
  ident: C9CS00869A-(cit154)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03182
– volume: 139
  start-page: 3336
  year: 2017
  ident: C9CS00869A-(cit193)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b13100
– volume: 352
  start-page: 797
  year: 2016
  ident: C9CS00869A-(cit66)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaf5251
– volume: 5
  start-page: 673
  year: 2018
  ident: C9CS00869A-(cit68)/*[position()=1]
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwy056
– volume: 58
  start-page: 14871
  year: 2019
  ident: C9CS00869A-(cit179)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201906079
– volume: 140
  start-page: 11161
  year: 2018
  ident: C9CS00869A-(cit100)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b06029
– volume: 30
  start-page: 1706508
  year: 2018
  ident: C9CS00869A-(cit45)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706508
– volume: 57
  start-page: 2
  year: 2018
  ident: C9CS00869A-(cit251)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201712504
– volume: 8
  start-page: 1801956
  year: 2018
  ident: C9CS00869A-(cit177)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801956
– volume: 15
  start-page: 12187
  year: 2013
  ident: C9CS00869A-(cit134)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp51538a
– volume: 4
  start-page: 3957
  year: 2014
  ident: C9CS00869A-(cit322)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs500923c
– volume: 7
  start-page: 5987
  year: 2017
  ident: C9CS00869A-(cit86)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01816
– volume: 8
  start-page: 8450
  year: 2018
  ident: C9CS00869A-(cit101)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02288
– volume: 3
  start-page: 437
  year: 2013
  ident: C9CS00869A-(cit310)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs300809j
– volume: 46
  start-page: 1806
  year: 2013
  ident: C9CS00869A-(cit122)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300229c
– volume: 5
  start-page: 204
  year: 2019
  ident: C9CS00869A-(cit155)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.10.007
– volume: 138
  start-page: 3570
  year: 2016
  ident: C9CS00869A-(cit263)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00757
– volume: 5
  start-page: 7152
  year: 2015
  ident: C9CS00869A-(cit71)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01816
– volume: 51
  start-page: 4198
  year: 2012
  ident: C9CS00869A-(cit222)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201109065
– volume: 137
  start-page: 10484
  year: 2015
  ident: C9CS00869A-(cit125)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06485
– volume: 138
  start-page: 15046
  year: 2016
  ident: C9CS00869A-(cit182)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09470
– volume: 6
  start-page: 1802066
  year: 2019
  ident: C9CS00869A-(cit184)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201802066
– volume: 30
  start-page: 1706758
  year: 2018
  ident: C9CS00869A-(cit166)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706758
– volume: 362
  start-page: 1276
  year: 2018
  ident: C9CS00869A-(cit266)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aau0630
– volume: 58
  start-page: 9404
  year: 2019
  ident: C9CS00869A-(cit50)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201902107
– volume: 4
  start-page: 5441
  year: 2014
  ident: C9CS00869A-(cit82)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep05441
– volume: 335
  start-page: 1209
  year: 2012
  ident: C9CS00869A-(cit133)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1215864
– volume: 46
  start-page: 337
  year: 2017
  ident: C9CS00869A-(cit253)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00328A
– volume: 343
  start-page: 1339
  year: 2014
  ident: C9CS00869A-(cit279)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1249061
– volume: 141
  start-page: 12717
  year: 2019
  ident: C9CS00869A-(cit30)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04907
– volume: 141
  start-page: 14190
  year: 2019
  ident: C9CS00869A-(cit176)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05268
– volume: 55
  start-page: 14510
  year: 2016
  ident: C9CS00869A-(cit265)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201604311
– volume: 139
  start-page: 14143
  year: 2017
  ident: C9CS00869A-(cit290)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06514
– volume: 8
  start-page: 15938
  year: 2017
  ident: C9CS00869A-(cit288)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15938
– volume: 4
  start-page: 1924
  year: 2013
  ident: C9CS00869A-(cit128)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2929
– volume: 7
  start-page: 3147
  year: 2017
  ident: C9CS00869A-(cit260)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00312
– volume: 57
  start-page: 9038
  year: 2018
  ident: C9CS00869A-(cit188)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201804958
– volume: 55
  start-page: 8319
  year: 2016
  ident: C9CS00869A-(cit93)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201602801
– volume: 12
  start-page: 2067
  year: 2019
  ident: C9CS00869A-(cit41)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2345-4
– volume: 10
  start-page: 631
  year: 2019
  ident: C9CS00869A-(cit211)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08419-3
– volume: 2
  start-page: 578
  year: 2019
  ident: C9CS00869A-(cit277)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0304-9
– volume: 141
  start-page: 17763
  year: 2019
  ident: C9CS00869A-(cit295)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b08362
– volume: 139
  start-page: 9795
  year: 2017
  ident: C9CS00869A-(cit22)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05018
– volume: 116
  start-page: 3594
  year: 2016
  ident: C9CS00869A-(cit8)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00462
– volume: 7
  start-page: 80
  year: 2017
  ident: C9CS00869A-(cit132)/*[position()=1]
  publication-title: Catalysts
  doi: 10.3390/catal7030080
SSID ssj0011762
Score 2.716458
SecondaryResourceType review_article
Snippet Electrocatalysis plays a central role in clean energy conversion, enabling a number of processes for future sustainable technologies. Atomic site...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2215
SubjectTerms Atomic properties
Atomic structure
Catalysis
Catalysts
catalytic activity
Clean energy
Clean technology
Electrocatalysts
electrochemistry
Energy conversion
Ethanol
Formic acid
Hydrogen evolution reactions
Hydrogen peroxide
hydrogen production
methanol
Noble metals
Oxidation
oxygen
Oxygen evolution reactions
oxygen production
Oxygen reduction reactions
systematic review
Water splitting
Title Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation
URI https://www.ncbi.nlm.nih.gov/pubmed/32133461
https://www.proquest.com/docview/2386698791
https://www.proquest.com/docview/2371864268
https://www.proquest.com/docview/2574335638
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLage4AXxG3QMZARvKASSGzHjh-rMDQQ8NRJ1V4iOxdpEmqnNtU2fj3H15StQoOXqHKcNPH5Yn8-PuczQm-Bg9IGsJGArVnClOaJbghLeAqjd1doldrg8e8_-PEJ-zrP54NP12aX9PpD_WtnXsn_WBXKwK4mS_YfLBtvCgXwG-wLR7AwHG9l42lvcoonZgF44vezse6Yq3VvZRYmF8poIK6BaNrwZtOey8sruN9kZSRb-xCLvLZXmyCi5eVZMxgrSBgEVYEQ4-k1TLe8ztbj-ulsKNl4R_RpezFkm5Wu3jyMl9se6xJusu2DIKkNXRFbXRU1fonUB0S3ritlPE2YcOqOoa918qQeU2K74yQuq9MPwia9d2cHn1Kjj1rK0qR4cxklUgcV7WujW4w5tKvtVFbDtXfRHoHJBRmhvenR7Mu3uPqUCe5Xn9xbBVlbKj8OV_9JZG7MToCrrMIeMparzB6iB36SgacOMY_QnXbxGN0rw95-T9CpQw42yMHXkYMBOdgiB0fkvMcONzjiBgNucMQNjrh5ik4-H83K48TvspHUjJM-aWSh8qYB4kwypWrBOl3UnRYkbXWTMynSTFPaqFw38OnWolXA8GuVdkD0NGsl3UejxXLRPkdYZkTUUuSa85rlTBVAjzTpuNRZq_Ncj9G70GRV7SXozU4oP6ubxhmjN7HuuRNe2VnrMLR85T_MdQUslHNZCJmN0et4GlrYrIWpRbvcmDpAymDuzYu_1MmBXtMcRqgxeuasGh-FkoxSxuEf9sHMsbiW9do-mRqjg90nqvOmO7jVy71A94eP7RCN-tWmfQkUuNevPGJ_A78IsOc
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomic+site+electrocatalysts+for+water+splitting%2C+oxygen+reduction+and+selective+oxidation&rft.jtitle=Chemical+Society+reviews&rft.au=Zhao%2C+Di&rft.au=Zhuang%2C+Zewen&rft.au=Cao%2C+Xing&rft.au=Zhang%2C+Chao&rft.date=2020-04-07&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=49&rft.issue=7&rft.spage=2215&rft.epage=2264&rft_id=info:doi/10.1039%2FC9CS00869A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9CS00869A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon