Vascular endothelial growth factor promotes neurite maturation in primary CNS neuronal cultures

Recent studies have demonstrated that vascular endothelial growth factor (VEGF) and its receptor VEGFR2 (flk-1) are expressed by neurons during development and following hypoxic–ischemic events. Moreover, fetal CNS tissue explants exposed to exogenous VEGF exhibit increased neuronal Map-2 expression...

Full description

Saved in:
Bibliographic Details
Published inBrain research. Developmental brain research Vol. 148; no. 1; pp. 59 - 68
Main Authors Khaibullina, Alfia A., Rosenstein, Jeffrey M., Krum, Janette M.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 31.01.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent studies have demonstrated that vascular endothelial growth factor (VEGF) and its receptor VEGFR2 (flk-1) are expressed by neurons during development and following hypoxic–ischemic events. Moreover, fetal CNS tissue explants exposed to exogenous VEGF exhibit increased neuronal Map-2 expression, suggesting that VEGF could have an effect on neuronal maturation. To determine whether this effect is of a direct nature, we examined the expression of Map-2 in the presence of VEGF in primary CNS neuronal cultures. After 3 days in culture, a statistically significant dose-dependent increase in the length of Map-2(+) processes was observed, with the peak occurring at 10 ng/ml of VEGF. Immunohistochemical analysis of the cultures demonstrated the presence of VEGFR2 after VEGF treatment, as well as the expression of the VEGF receptor VEGFR1 (flt-1). Treatment of the cultures with antisense oligonucleotides against VEGFR2, but not against VEGFR1, abolished the effect of VEGF on the length of Map-2(+) processes. RT-PCR analyses of Map-2 and VEGFR1 indicated that mRNAs of these two genes are upregulated in the presence of VEGF. The addition of wortmannin, an inhibitor of PI3K/Akt signal-transduction pathway, to the media did not affect the VEGF-dependent increase in Map-2(+) length. In contrast PD98059, which inhibits the MAPK pathway, partially abolished this effect of VEGF. These experiments suggest that VEGF has a direct effect on neuronal growth and maturation under normoxic conditions during CNS development, which is mediated by the VEGFR2 receptor via the MAPK pathway.
AbstractList Recent studies have demonstrated that vascular endothelial growth factor (VEGF) and its receptor VEGFR2 (flk-1) are expressed by neurons during development and following hypoxic–ischemic events. Moreover, fetal CNS tissue explants exposed to exogenous VEGF exhibit increased neuronal Map-2 expression, suggesting that VEGF could have an effect on neuronal maturation. To determine whether this effect is of a direct nature, we examined the expression of Map-2 in the presence of VEGF in primary CNS neuronal cultures. After 3 days in culture, a statistically significant dose-dependent increase in the length of Map-2(+) processes was observed, with the peak occurring at 10 ng/ml of VEGF. Immunohistochemical analysis of the cultures demonstrated the presence of VEGFR2 after VEGF treatment, as well as the expression of the VEGF receptor VEGFR1 (flt-1). Treatment of the cultures with antisense oligonucleotides against VEGFR2, but not against VEGFR1, abolished the effect of VEGF on the length of Map-2(+) processes. RT-PCR analyses of Map-2 and VEGFR1 indicated that mRNAs of these two genes are upregulated in the presence of VEGF. The addition of wortmannin, an inhibitor of PI3K/Akt signal-transduction pathway, to the media did not affect the VEGF-dependent increase in Map-2(+) length. In contrast PD98059, which inhibits the MAPK pathway, partially abolished this effect of VEGF. These experiments suggest that VEGF has a direct effect on neuronal growth and maturation under normoxic conditions during CNS development, which is mediated by the VEGFR2 receptor via the MAPK pathway.
Recent studies have demonstrated that vascular endothelial growth factor (VEGF) and its receptor VEGFR2 (flk-1) are expressed by neurons during development and following hypoxic-ischemic events. Moreover, fetal CNS tissue explants exposed to exogenous VEGF exhibit increased neuronal Map-2 expression, suggesting that VEGF could have an effect on neuronal maturation. To determine whether this effect is of a direct nature, we examined the expression of Map-2 in the presence of VEGF in primary CNS neuronal cultures. After 3 days in culture, a statistically significant dose-dependent increase in the length of Map-2(+) processes was observed, with the peak occurring at 10 ng/ml of VEGF. Immunohistochemical analysis of the cultures demonstrated the presence of VEGFR2 after VEGF treatment, as well as the expression of the VEGF receptor VEGFR1 (flt-1). Treatment of the cultures with antisense oligonucleotides against VEGFR2, but not against VEGFR1, abolished the effect of VEGF on the length of Map-2(+) processes. RT-PCR analyses of Map-2 and VEGFR1 indicated that mRNAs of these two genes are upregulated in the presence of VEGF. The addition of wortmannin, an inhibitor of PI3K/Akt signal-transduction pathway, to the media did not affect the VEGF-dependent increase in Map-2(+) length. In contrast PD98059, which inhibits the MAPK pathway, partially abolished this effect of VEGF. These experiments suggest that VEGF has a direct effect on neuronal growth and maturation under normoxic conditions during CNS development, which is mediated by the VEGFR2 receptor via the MAPK pathway.Recent studies have demonstrated that vascular endothelial growth factor (VEGF) and its receptor VEGFR2 (flk-1) are expressed by neurons during development and following hypoxic-ischemic events. Moreover, fetal CNS tissue explants exposed to exogenous VEGF exhibit increased neuronal Map-2 expression, suggesting that VEGF could have an effect on neuronal maturation. To determine whether this effect is of a direct nature, we examined the expression of Map-2 in the presence of VEGF in primary CNS neuronal cultures. After 3 days in culture, a statistically significant dose-dependent increase in the length of Map-2(+) processes was observed, with the peak occurring at 10 ng/ml of VEGF. Immunohistochemical analysis of the cultures demonstrated the presence of VEGFR2 after VEGF treatment, as well as the expression of the VEGF receptor VEGFR1 (flt-1). Treatment of the cultures with antisense oligonucleotides against VEGFR2, but not against VEGFR1, abolished the effect of VEGF on the length of Map-2(+) processes. RT-PCR analyses of Map-2 and VEGFR1 indicated that mRNAs of these two genes are upregulated in the presence of VEGF. The addition of wortmannin, an inhibitor of PI3K/Akt signal-transduction pathway, to the media did not affect the VEGF-dependent increase in Map-2(+) length. In contrast PD98059, which inhibits the MAPK pathway, partially abolished this effect of VEGF. These experiments suggest that VEGF has a direct effect on neuronal growth and maturation under normoxic conditions during CNS development, which is mediated by the VEGFR2 receptor via the MAPK pathway.
Author Krum, Janette M.
Khaibullina, Alfia A.
Rosenstein, Jeffrey M.
Author_xml – sequence: 1
  givenname: Alfia A.
  surname: Khaibullina
  fullname: Khaibullina, Alfia A.
– sequence: 2
  givenname: Jeffrey M.
  surname: Rosenstein
  fullname: Rosenstein, Jeffrey M.
– sequence: 3
  givenname: Janette M.
  surname: Krum
  fullname: Krum, Janette M.
  email: anajmk@gwumc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/14757519$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAURr0oog_4Cyhs2E24dmInXqFqxEuqYMFjazn2DfXg2GA7Rf33uJ1BoG6YlRf33KPr7zsnJyEGJOQ5hZYCFS93rcWbKWkXEuaWAXQtyBYYOyFndc433QjilJznvAMA2o30MTml_cAHTuUZUV91NqvXqcFgY7lG77RvvqX4q1w3szYlpuZHikssmJuAa3IFm0WXNeniYmhcqGO36HTbbD98uidiqIbqrAzmJ-TRrH3Gp4f3gnx58_rz9t3m6uPb99vLq43pBSsbK4duFlQjE2YeJdhRsGliXE6acitkxzlwM82Gid5O1orZ9nSYAaahn7tOdxfkxd5bj_25Yi5qcdmg9zpgXLMagbJhHOV_QTpILoWECj47gOu0oFWHb6o_2VVA7gGTYs4J578IqLtu1E79042660aBVLWbuvvqwa5x5T7RUnF_lGG7N2BN9cZhUtk4DAatS2iKstEdZbl8YDHeBWe0_463Rzp-A_j9zb8
CitedBy_id crossref_primary_10_3390_ijms19051362
crossref_primary_10_1152_ajpheart_00077_2009
crossref_primary_10_1016_j_neulet_2006_04_033
crossref_primary_10_1073_pnas_1007640108
crossref_primary_10_1016_j_neures_2013_03_013
crossref_primary_10_1016_j_neuro_2010_02_003
crossref_primary_10_1016_j_phrs_2021_105460
crossref_primary_10_1002_glia_24361
crossref_primary_10_1007_s00405_006_0154_3
crossref_primary_10_1016_j_psychres_2018_04_027
crossref_primary_10_1111_j_1460_9568_2005_04527_x
crossref_primary_10_1186_s12929_025_01128_8
crossref_primary_10_1002_mus_20609
crossref_primary_10_1007_s00429_006_0105_1
crossref_primary_10_1016_j_euroneuro_2020_11_008
crossref_primary_10_1007_s00213_018_4950_4
crossref_primary_10_1007_s11357_012_9496_5
crossref_primary_10_1016_j_expneurol_2008_03_019
crossref_primary_10_1038_nn2018
crossref_primary_10_1016_j_ijdevneu_2015_03_003
crossref_primary_10_1093_neuonc_nou013
crossref_primary_10_1016_j_ncl_2018_04_014
crossref_primary_10_1016_j_psychres_2015_04_020
crossref_primary_10_1134_S1990750816040053
crossref_primary_10_1155_2019_4978917
crossref_primary_10_1016_j_brainres_2015_02_045
crossref_primary_10_1016_S1734_1140_13_71031_4
crossref_primary_10_1042_BSR20240562
crossref_primary_10_1016_j_neulet_2007_08_040
crossref_primary_10_3390_ijms22042173
crossref_primary_10_1016_j_neuroscience_2005_04_064
crossref_primary_10_3390_pharmaceutics15051556
crossref_primary_10_1371_journal_pone_0004987
crossref_primary_10_1038_mp_2015_96
crossref_primary_10_1016_j_mvr_2012_08_004
crossref_primary_10_3389_fncel_2017_00381
crossref_primary_10_3892_etm_2017_4022
crossref_primary_10_1371_journal_pone_0022901
crossref_primary_10_1111_jnc_12110
crossref_primary_10_1242_dev_039636
crossref_primary_10_1096_fj_12_225185
crossref_primary_10_1016_j_bbagen_2012_09_002
crossref_primary_10_1007_s00018_013_1281_9
crossref_primary_10_1007_s00018_013_1283_7
crossref_primary_10_18097_PBMC20166202124
crossref_primary_10_1007_s00018_013_1280_x
crossref_primary_10_1038_nature04481
crossref_primary_10_1016_j_molbrainres_2005_02_010
crossref_primary_10_1371_journal_pone_0070020
crossref_primary_10_1016_j_expneurol_2004_12_022
crossref_primary_10_1007_s12035_015_9651_y
crossref_primary_10_1021_acs_bioconjchem_0c00030
crossref_primary_10_1007_s00418_012_1036_y
crossref_primary_10_1242_dev_072348
crossref_primary_10_1515_REVNEURO_2004_15_4_293
crossref_primary_10_3390_ph13020031
crossref_primary_10_1016_j_neuropharm_2012_04_033
crossref_primary_10_1016_j_npep_2010_04_002
crossref_primary_10_1097_NEN_0b013e3181ccc9a9
crossref_primary_10_1016_j_archger_2009_09_027
crossref_primary_10_1016_j_ddstr_2008_10_003
crossref_primary_10_1016_j_npep_2011_05_005
crossref_primary_10_1016_j_neuint_2009_06_007
crossref_primary_10_4184_asj_2007_1_2_65
crossref_primary_10_1016_j_neuroscience_2016_12_036
crossref_primary_10_1016_j_peptides_2012_09_006
crossref_primary_10_1002_mus_20272
crossref_primary_10_3389_fnmol_2017_00002
crossref_primary_10_54101_ACEN_2021_3_7
crossref_primary_10_1016_j_neuint_2017_06_001
crossref_primary_10_4103_1673_5374_235012
crossref_primary_10_1016_j_neuropharm_2013_09_027
crossref_primary_10_1016_j_brainresbull_2009_11_012
crossref_primary_10_1152_physrev_00031_2008
crossref_primary_10_1177_0004867419893433
crossref_primary_10_5483_BMBRep_2009_42_5_239
crossref_primary_10_3892_ijmm_2012_1164
crossref_primary_10_1016_j_biomaterials_2008_03_015
crossref_primary_10_1111_j_1365_2990_2004_00600_x
crossref_primary_10_1007_s00213_011_2190_y
crossref_primary_10_1159_000485030
crossref_primary_10_1007_s13365_012_0102_5
crossref_primary_10_1016_j_jns_2014_09_044
crossref_primary_10_1111_j_1365_2141_2004_05291_x
crossref_primary_10_1523_JNEUROSCI_2577_05_2005
crossref_primary_10_1002_neu_20215
crossref_primary_10_1007_s00018_013_1282_8
crossref_primary_10_4103_1673_5374_175067
crossref_primary_10_1016_j_bbr_2011_04_022
crossref_primary_10_4161_org_6_2_11687
crossref_primary_10_1016_j_neures_2013_09_011
crossref_primary_10_1074_mcp_M115_049312
crossref_primary_10_1093_brain_awr222
Cites_doi 10.1523/JNEUROSCI.16-19-06089.1996
10.1146/annurev.ne.11.030188.000333
10.1016/0166-2236(95)93933-O
10.1016/S0021-9258(18)47116-5
10.1016/0165-3806(85)90044-6
10.1073/pnas.97.18.10242
10.1126/science.2479986
10.1523/JNEUROSCI.19-14-05731.1999
10.1016/S0306-4522(01)00615-7
10.1074/jbc.271.30.17629
10.1073/pnas.95.12.7086
10.1038/376062a0
10.1016/S0896-6273(02)00722-5
10.1096/fj.00-0598fje
10.1007/s004240050348
10.1038/380435a0
10.1523/JNEUROSCI.08-04-01454.1988
10.1046/j.0953-816X.2000.01326.x
10.1016/S1385-299X(97)00043-3
10.1073/pnas.95.16.9349
10.1172/JCI116573
10.1089/neu.1995.12.933
10.1038/88842
10.1007/PL00001950
10.1073/pnas.90.19.8915
10.1097/00004647-200210000-00003
10.1016/0165-0173(90)90013-E
10.1242/dev.114.2.521
10.1016/S0306-4522(98)00540-5
10.1097/00005072-199904000-00001
10.1006/exnr.1998.6930
10.1006/exnr.1999.7222
10.1074/jbc.274.43.31047
10.1073/pnas.90.16.7533
10.1038/376066a0
10.1111/j.1749-6632.1986.tb38393.x
10.1016/S0021-9258(19)61431-6
10.1016/S0306-4522(01)00154-3
10.1038/336674a0
10.1016/S0165-3806(99)00125-X
10.1073/pnas.182296499
10.1523/JNEUROSCI.22-15-06401.2002
10.1074/jbc.273.46.30336
10.1210/er.18.1.4
10.1096/fj.00-0495fje
10.1074/jbc.M111085200
10.1182/blood.V87.8.3336.bloodjournal8783336
ContentType Journal Article
Copyright 2003 Elsevier B.V.
Copyright_xml – notice: 2003 Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1016/j.devbrainres.2003.09.022
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EndPage 68
ExternalDocumentID 14757519
10_1016_j_devbrainres_2003_09_022
S0165380603003328
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
Comparative Study
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: NS 38128
– fundername: NINDS NIH HHS
  grantid: NS 39282
GroupedDBID --K
--M
-DZ
-~X
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29F
3O-
4.4
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACNCT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADIYS
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AEUPX
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMQ
HZ~
IHE
KOM
M2V
M41
MO0
MOBAO
MVM
O-L
O9-
OAUVE
OZT
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SEW
SNS
SSN
SSZ
T5K
WUQ
X7M
XJT
XPP
YYP
ZGI
AACTN
AADPK
ABYKQ
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
RIG
AAYXX
AGRNS
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
ID FETCH-LOGICAL-c462t-d973f61ae26cf890d862bb259ba15d6935505cbfc264dbdd6fd417f00b74f33a3
IEDL.DBID AIKHN
ISSN 0165-3806
IngestDate Mon Jul 21 11:08:42 EDT 2025
Fri Jul 11 02:00:23 EDT 2025
Wed Feb 19 02:34:18 EST 2025
Tue Jul 01 00:42:49 EDT 2025
Thu Apr 24 23:04:26 EDT 2025
Fri Feb 23 02:22:16 EST 2024
Tue Aug 26 18:40:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords VEGFR2
Neurotrophic factor
VEGFR1
Map-2
Development and regeneration
Dendrite
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-d973f61ae26cf890d862bb259ba15d6935505cbfc264dbdd6fd417f00b74f33a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 14757519
PQID 17959690
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_80127889
proquest_miscellaneous_17959690
pubmed_primary_14757519
crossref_primary_10_1016_j_devbrainres_2003_09_022
crossref_citationtrail_10_1016_j_devbrainres_2003_09_022
elsevier_sciencedirect_doi_10_1016_j_devbrainres_2003_09_022
elsevier_clinicalkey_doi_10_1016_j_devbrainres_2003_09_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-01-31
PublicationDateYYYYMMDD 2004-01-31
PublicationDate_xml – month: 01
  year: 2004
  text: 2004-01-31
  day: 31
PublicationDecade 2000
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Brain research. Developmental brain research
PublicationTitleAlternate Brain Res Dev Brain Res
PublicationYear 2004
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Silverman, Krum, Mani, Rosenstein (BIB42) 1999; 90
Breier, Albrecht, Sterrer, Risau (BIB4) 1992; 114
Quinn, Peters, De Vries, Ferrara, Williams (BIB36) 1993; 90
Wang, Dow (BIB48) 1998; 2
Hayes, Yang, Whitson, Postmantur (BIB16) 1995; 12
Poltorak, Cohen, Neufeld (BIB35) 2000; 25
Wick, Wick, Waltenberger, Weller, Dichgans, Schulz (BIB49) 2002; 22
Krum, Rosenstein (BIB21) 1998; 154
Matsuzaki, Tamatani, Yamaguchi, Namikawa, Kiyama, Vitek, Mitsuda, Tohyama (BIB27) 2001; 15
Robinson, Ju, Shih, Xu, McMahon, Caldwell, Smith (BIB38) 2001; 15
Mani, Khaibullina, Tadvalkar, Rosenstein, Krum (BIB26) 2001; 27
Jin, Mao, Greenberg (BIB18) 2000; 97
Louissaint, Rao, Leventhal, Goldman (BIB25) 2002; 34
Ogunshola, Stewart, Mihalcik, Solli, Madri, Ment (BIB30) 2000; 119
Hartel, Matus (BIB15) 1997; 78
Yang, Cepko (BIB50) 1996; 16
Sondell, Sundler, Kanje (BIB44) 2000; 12
Jin, Mao, Batteur, McEachron, Leahy, Greenberg (BIB19) 2001; 108
Sandner, Wolf, Bergmaier, Gess, Kurtz (BIB40) 1997; 433
Dotti, Sullivan, Banker (BIB8) 1988; 8
Krum, Rosenstein (BIB22) 1999; 160
Rosenstein, Mani, Silverman, Krum (BIB39) 1998; 95
Gerber, McMurtrey, Kowalski, Yan, Keyt, Dixit, Ferrara (BIB14) 1998; 273
Waltenberger, Claesson-Welsh, Siegbahn, Shibuya, Heldin (BIB47) 1994; 269
Krum, Mani, Rosenstein (BIB23) 2002; 110
Carmeliet, Ferreira, Breier, Pollefeyt, Kieckens, Gertsenstein, Fahrig, Vandenhoeck, Harpal, Eberhardt, Declercq, Pawling, Moons, Collen, Risau, Nagy (BIB5) 1996; 380
Leung, Cachianes, Kuang, Goeddel, Ferrara (BIB24) 1989; 246
Fuh, Garcia, de Vos (BIB12) 2000; 275
Ogunshola, Antic, Donoghue, Fan, Kim, Stewart, Madri, Ment (BIB31) 2002; 277
Plate (BIB34) 1999; 58
Clauss, Weich, Breier, Knies, Rockl, Waltenberger, Risau (BIB7) 1996; 271
Oosthuyse (BIB32) 2001; 28
Sondell, Lundborg, Kanje (BIB43) 1999; 19
Eddleston, de la Torre, Oldstone, Loskutoff, Edgington, Mackman (BIB9) 1993; 92
Matus, Riederer (BIB29) 1986; 466
Ferrara, Davis-Smyth (BIB10) 1997; 18
Fong, Rossant, Gertsenstein, Breitman (BIB11) 1995; 376
Shalaby, Rossant, Yamaguchi, Gertsenstein, Wu, Breitman, Schuh (BIB41) 1995; 376
Tucker (BIB46) 1990; 15
Svensson, Peters, Konig, Poppe, Levkau, Rothermundt, Arolt, Kogel, Prehn (BIB45) 2002; 22
Peters, De Vries, Williams (BIB33) 1993; 90
Robertson, Du Bois, Bowman, Goldstein (BIB37) 1985; 355
Barleon, Sozzani, Zhou, Weich, Mantovani, Marme (BIB1) 1996; 87
Caviness, Takahashi, Nowakowski (BIB6) 1995; 18
Bernatchez, Soker, Sirois (BIB2) 1999; 274
Matus (BIB28) 1988; 11
Bocker-Meffert, Rosenstiel, Rohl, Warneke, Held-Feindt, Sievers, Lucius (BIB3) 2002; 43
Hiratsuka, Minowa, Kuno, Noda, Shibuya (BIB17) 1998; 95
Garner (BIB13) 1988; 336
Jin, Zhu, Sun, Mao, Xie, Greenberg (BIB20) 2002; 99
Bocker-Meffert (10.1016/j.devbrainres.2003.09.022_BIB3) 2002; 43
Shalaby (10.1016/j.devbrainres.2003.09.022_BIB41) 1995; 376
Mani (10.1016/j.devbrainres.2003.09.022_BIB26) 2001; 27
Leung (10.1016/j.devbrainres.2003.09.022_BIB24) 1989; 246
Jin (10.1016/j.devbrainres.2003.09.022_BIB19) 2001; 108
Ogunshola (10.1016/j.devbrainres.2003.09.022_BIB31) 2002; 277
Sandner (10.1016/j.devbrainres.2003.09.022_BIB40) 1997; 433
Krum (10.1016/j.devbrainres.2003.09.022_BIB22) 1999; 160
Robinson (10.1016/j.devbrainres.2003.09.022_BIB38) 2001; 15
Rosenstein (10.1016/j.devbrainres.2003.09.022_BIB39) 1998; 95
Clauss (10.1016/j.devbrainres.2003.09.022_BIB7) 1996; 271
Ferrara (10.1016/j.devbrainres.2003.09.022_BIB10) 1997; 18
Breier (10.1016/j.devbrainres.2003.09.022_BIB4) 1992; 114
Waltenberger (10.1016/j.devbrainres.2003.09.022_BIB47) 1994; 269
Matus (10.1016/j.devbrainres.2003.09.022_BIB29) 1986; 466
Jin (10.1016/j.devbrainres.2003.09.022_BIB20) 2002; 99
Hartel (10.1016/j.devbrainres.2003.09.022_BIB15) 1997; 78
Poltorak (10.1016/j.devbrainres.2003.09.022_BIB35) 2000; 25
Sondell (10.1016/j.devbrainres.2003.09.022_BIB43) 1999; 19
Peters (10.1016/j.devbrainres.2003.09.022_BIB33) 1993; 90
Hayes (10.1016/j.devbrainres.2003.09.022_BIB16) 1995; 12
Sondell (10.1016/j.devbrainres.2003.09.022_BIB44) 2000; 12
Barleon (10.1016/j.devbrainres.2003.09.022_BIB1) 1996; 87
Krum (10.1016/j.devbrainres.2003.09.022_BIB21) 1998; 154
Plate (10.1016/j.devbrainres.2003.09.022_BIB34) 1999; 58
Wick (10.1016/j.devbrainres.2003.09.022_BIB49) 2002; 22
Krum (10.1016/j.devbrainres.2003.09.022_BIB23) 2002; 110
Svensson (10.1016/j.devbrainres.2003.09.022_BIB45) 2002; 22
Louissaint (10.1016/j.devbrainres.2003.09.022_BIB25) 2002; 34
Silverman (10.1016/j.devbrainres.2003.09.022_BIB42) 1999; 90
Jin (10.1016/j.devbrainres.2003.09.022_BIB18) 2000; 97
Matsuzaki (10.1016/j.devbrainres.2003.09.022_BIB27) 2001; 15
Caviness (10.1016/j.devbrainres.2003.09.022_BIB6) 1995; 18
Gerber (10.1016/j.devbrainres.2003.09.022_BIB14) 1998; 273
Oosthuyse (10.1016/j.devbrainres.2003.09.022_BIB32) 2001; 28
Fuh (10.1016/j.devbrainres.2003.09.022_BIB12) 2000; 275
Hiratsuka (10.1016/j.devbrainres.2003.09.022_BIB17) 1998; 95
Garner (10.1016/j.devbrainres.2003.09.022_BIB13) 1988; 336
Carmeliet (10.1016/j.devbrainres.2003.09.022_BIB5) 1996; 380
Dotti (10.1016/j.devbrainres.2003.09.022_BIB8) 1988; 8
Matus (10.1016/j.devbrainres.2003.09.022_BIB28) 1988; 11
Eddleston (10.1016/j.devbrainres.2003.09.022_BIB9) 1993; 92
Fong (10.1016/j.devbrainres.2003.09.022_BIB11) 1995; 376
Quinn (10.1016/j.devbrainres.2003.09.022_BIB36) 1993; 90
Tucker (10.1016/j.devbrainres.2003.09.022_BIB46) 1990; 15
Wang (10.1016/j.devbrainres.2003.09.022_BIB48) 1998; 2
Ogunshola (10.1016/j.devbrainres.2003.09.022_BIB30) 2000; 119
Robertson (10.1016/j.devbrainres.2003.09.022_BIB37) 1985; 355
Yang (10.1016/j.devbrainres.2003.09.022_BIB50) 1996; 16
Bernatchez (10.1016/j.devbrainres.2003.09.022_BIB2) 1999; 274
References_xml – volume: 160
  start-page: 348
  year: 1999
  end-page: 360
  ident: BIB22
  article-title: Transient coexpression of nestin, GFAP, and vascular endothelial growth factor in mature reactive astroglia following neural grafting or brain wounds
  publication-title: Exp. Neurol.
– volume: 11
  start-page: 29
  year: 1988
  end-page: 44
  ident: BIB28
  article-title: Microtubule-associated proteins: their potential role in determining neuronal morphology
  publication-title: Annu. Rev. Neurosci.
– volume: 119
  start-page: 139
  year: 2000
  end-page: 153
  ident: BIB30
  article-title: Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain
  publication-title: Dev. Brain Res.
– volume: 271
  start-page: 17629
  year: 1996
  end-page: 17634
  ident: BIB7
  article-title: The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis
  publication-title: J. Biol. Chem.
– volume: 376
  start-page: 66
  year: 1995
  end-page: 70
  ident: BIB11
  article-title: Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium
  publication-title: Nature
– volume: 22
  start-page: 1170
  year: 2002
  end-page: 1175
  ident: BIB45
  article-title: Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an antiexcitotoxic, caspase-independent mechanism
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 380
  start-page: 435
  year: 1996
  end-page: 439
  ident: BIB5
  article-title: Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele
  publication-title: Nature
– volume: 16
  start-page: 6089
  year: 1996
  end-page: 6099
  ident: BIB50
  article-title: Flk-1, a receptor for vascular endothelial growth factor (VEGF), is expressed by retinal progenitor cells
  publication-title: J. Neurosci.
– volume: 108
  start-page: 351
  year: 2001
  end-page: 358
  ident: BIB19
  article-title: Caspase-3 and the regulation of hypoxic neuronal death by vascular endothelial growth factor
  publication-title: Neuroscience
– volume: 27
  start-page: 138
  year: 2001
  ident: BIB26
  article-title: Neuronal effects of VEGF
  publication-title: Abstr.-Soc. Neurosci.
– volume: 90
  start-page: 1529
  year: 1999
  end-page: 1541
  ident: BIB42
  article-title: Vascular, glial and neuronal effects of vascular endothelial growth factor in mesencephalic explant cultures
  publication-title: Neuroscience
– volume: 336
  start-page: 674
  year: 1988
  end-page: 677
  ident: BIB13
  article-title: Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites
  publication-title: Nature
– volume: 110
  start-page: 589
  year: 2002
  end-page: 604
  ident: BIB23
  article-title: Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain
  publication-title: Neuroscience
– volume: 15
  start-page: 1215
  year: 2001
  end-page: 1217
  ident: BIB38
  article-title: Nonvascular role for VEGF: VEGFR-1,2 activity is critical for neural retinal development
  publication-title: FASEB J.
– volume: 12
  start-page: 933
  year: 1995
  end-page: 941
  ident: BIB16
  article-title: Cytoskeletal derangements following central nervous system injury: modulation by neurotrophic gene transfection
  publication-title: J. Neurotrauma
– volume: 274
  start-page: 31047
  year: 1999
  end-page: 31054
  ident: BIB2
  article-title: Vascular endothelial growth factor effect on endothelial cell proliferation, migration, and platelet-activating factor synthesis is Flk-1-dependent
  publication-title: J. Biol. Chem.
– volume: 269
  start-page: 26988
  year: 1994
  end-page: 26995
  ident: BIB47
  article-title: Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor
  publication-title: J. Biol. Chem.
– volume: 355
  start-page: 219
  year: 1985
  end-page: 223
  ident: BIB37
  article-title: Angiogenesis in developing rat brain: an in vivo and in vitro study
  publication-title: Brain Res.
– volume: 19
  start-page: 5731
  year: 1999
  end-page: 5740
  ident: BIB43
  article-title: Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system
  publication-title: J. Neurosci.
– volume: 87
  start-page: 3336
  year: 1996
  end-page: 3343
  ident: BIB1
  article-title: Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1
  publication-title: Blood
– volume: 154
  start-page: 57
  year: 1998
  end-page: 65
  ident: BIB21
  article-title: VEGF mRNA and its receptor flt-1 are expressed in reactive astrocytes following neural grafting and tumor cell implantation in the adult CNS
  publication-title: Exp. Neurol.
– volume: 246
  start-page: 1306
  year: 1989
  end-page: 1309
  ident: BIB24
  article-title: Vascular endothelial growth factor is a secreted angiogenic mitogen
  publication-title: Science
– volume: 25
  start-page: 126
  year: 2000
  end-page: 129
  ident: BIB35
  article-title: The VEGF splice variants: properties, receptors, and usage for the treatment of ischemic diseases
  publication-title: Herz
– volume: 277
  start-page: 11410
  year: 2002
  end-page: 11415
  ident: BIB31
  article-title: Paracrine and autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system
  publication-title: J. Biol. Chem.
– volume: 43
  start-page: 2021
  year: 2002
  end-page: 2026
  ident: BIB3
  article-title: Erythropoietin and VEGF promote neural outgrowth from retinal explants in postnatal rats
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 34
  start-page: 945
  year: 2002
  end-page: 960
  ident: BIB25
  article-title: Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain
  publication-title: Neuron
– volume: 15
  start-page: 101
  year: 1990
  end-page: 120
  ident: BIB46
  article-title: The roles of microtubule-associated proteins in brain morphogenesis: a review
  publication-title: Brains Res. Rev.
– volume: 15
  start-page: 1218
  year: 2001
  end-page: 1220
  ident: BIB27
  article-title: Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades
  publication-title: FASEB J.
– volume: 22
  start-page: 6401
  year: 2002
  end-page: 6407
  ident: BIB49
  article-title: Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt
  publication-title: J. Neurosci.
– volume: 78
  start-page: 1
  year: 1997
  end-page: 5
  ident: BIB15
  article-title: Cytoskeletal maturation in cultured hippocampal slices
  publication-title: Neuroscience
– volume: 95
  start-page: 7086
  year: 1998
  end-page: 7091
  ident: BIB39
  article-title: Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 18
  start-page: 379
  year: 1995
  end-page: 383
  ident: BIB6
  article-title: Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model
  publication-title: Trends Neurosci.
– volume: 90
  start-page: 8915
  year: 1993
  end-page: 8919
  ident: BIB33
  article-title: Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 114
  start-page: 521
  year: 1992
  end-page: 532
  ident: BIB4
  article-title: Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation
  publication-title: Development
– volume: 90
  start-page: 7533
  year: 1993
  end-page: 7537
  ident: BIB36
  article-title: Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 28
  start-page: 131
  year: 2001
  end-page: 138
  ident: BIB32
  article-title: Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration
  publication-title: Nat. Genet.
– volume: 8
  start-page: 1454
  year: 1988
  end-page: 1468
  ident: BIB8
  article-title: The establishment of polarity by hippocampal neurons in culture
  publication-title: J. Neurosci.
– volume: 92
  start-page: 349
  year: 1993
  end-page: 358
  ident: BIB9
  article-title: Astrocytes are the primary source of tissue factor in the murine central nervous system. A role for astrocytes in cerebral hemostasis
  publication-title: J. Clin. Invest.
– volume: 18
  start-page: 4
  year: 1997
  end-page: 25
  ident: BIB10
  article-title: The biology of vascular endothelial growth factor
  publication-title: Endocr. Rev.
– volume: 466
  start-page: 167
  year: 1986
  end-page: 179
  ident: BIB29
  article-title: Microtubule-associated proteins in the developing brain
  publication-title: Ann. N.Y. Acad. Sci.
– volume: 58
  start-page: 313
  year: 1999
  end-page: 320
  ident: BIB34
  article-title: Mechanisms of angiogenesis in the brain
  publication-title: J. Neuropathol. Exp. Neurol.
– volume: 95
  start-page: 9349
  year: 1998
  end-page: 9354
  ident: BIB17
  article-title: Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 97
  start-page: 10242
  year: 2000
  end-page: 10247
  ident: BIB18
  article-title: Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 376
  start-page: 62
  year: 1995
  end-page: 66
  ident: BIB41
  article-title: Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice
  publication-title: Nature
– volume: 273
  start-page: 30336
  year: 1998
  end-page: 30343
  ident: BIB14
  article-title: Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation
  publication-title: J. Biol. Chem.
– volume: 99
  start-page: 11946
  year: 2002
  end-page: 11950
  ident: BIB20
  article-title: Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 433
  start-page: 803
  year: 1997
  end-page: 808
  ident: BIB40
  article-title: Hypoxia and cobalt stimulate vascular endothelial growth factor receptor gene expression in rats
  publication-title: Pflugers Arch.–Eur. J. Physiol.
– volume: 2
  start-page: 199
  year: 1998
  end-page: 208
  ident: BIB48
  article-title: Quantitative analysis of mRNA expression of neuron-specific growth-associated genes in rat primary neurons by competitive RT-PCR
  publication-title: Brain Res. Brain Res. Protoc.
– volume: 12
  start-page: 4243
  year: 2000
  end-page: 4254
  ident: BIB44
  article-title: Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor
  publication-title: Eur. J. Neurosci.
– volume: 275
  start-page: 26690
  year: 2000
  end-page: 26695
  ident: BIB12
  article-title: The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor flt-1
  publication-title: J. Biol. Chem.
– volume: 16
  start-page: 6089
  year: 1996
  ident: 10.1016/j.devbrainres.2003.09.022_BIB50
  article-title: Flk-1, a receptor for vascular endothelial growth factor (VEGF), is expressed by retinal progenitor cells
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-19-06089.1996
– volume: 11
  start-page: 29
  year: 1988
  ident: 10.1016/j.devbrainres.2003.09.022_BIB28
  article-title: Microtubule-associated proteins: their potential role in determining neuronal morphology
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.ne.11.030188.000333
– volume: 18
  start-page: 379
  year: 1995
  ident: 10.1016/j.devbrainres.2003.09.022_BIB6
  article-title: Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model
  publication-title: Trends Neurosci.
  doi: 10.1016/0166-2236(95)93933-O
– volume: 269
  start-page: 26988
  year: 1994
  ident: 10.1016/j.devbrainres.2003.09.022_BIB47
  article-title: Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)47116-5
– volume: 355
  start-page: 219
  year: 1985
  ident: 10.1016/j.devbrainres.2003.09.022_BIB37
  article-title: Angiogenesis in developing rat brain: an in vivo and in vitro study
  publication-title: Brain Res.
  doi: 10.1016/0165-3806(85)90044-6
– volume: 97
  start-page: 10242
  year: 2000
  ident: 10.1016/j.devbrainres.2003.09.022_BIB18
  article-title: Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.97.18.10242
– volume: 246
  start-page: 1306
  year: 1989
  ident: 10.1016/j.devbrainres.2003.09.022_BIB24
  article-title: Vascular endothelial growth factor is a secreted angiogenic mitogen
  publication-title: Science
  doi: 10.1126/science.2479986
– volume: 19
  start-page: 5731
  year: 1999
  ident: 10.1016/j.devbrainres.2003.09.022_BIB43
  article-title: Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.19-14-05731.1999
– volume: 110
  start-page: 589
  year: 2002
  ident: 10.1016/j.devbrainres.2003.09.022_BIB23
  article-title: Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(01)00615-7
– volume: 271
  start-page: 17629
  year: 1996
  ident: 10.1016/j.devbrainres.2003.09.022_BIB7
  article-title: The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.30.17629
– volume: 95
  start-page: 7086
  year: 1998
  ident: 10.1016/j.devbrainres.2003.09.022_BIB39
  article-title: Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.95.12.7086
– volume: 376
  start-page: 62
  year: 1995
  ident: 10.1016/j.devbrainres.2003.09.022_BIB41
  article-title: Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice
  publication-title: Nature
  doi: 10.1038/376062a0
– volume: 34
  start-page: 945
  year: 2002
  ident: 10.1016/j.devbrainres.2003.09.022_BIB25
  article-title: Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00722-5
– volume: 15
  start-page: 1215
  year: 2001
  ident: 10.1016/j.devbrainres.2003.09.022_BIB38
  article-title: Nonvascular role for VEGF: VEGFR-1,2 activity is critical for neural retinal development
  publication-title: FASEB J.
  doi: 10.1096/fj.00-0598fje
– volume: 433
  start-page: 803
  year: 1997
  ident: 10.1016/j.devbrainres.2003.09.022_BIB40
  article-title: Hypoxia and cobalt stimulate vascular endothelial growth factor receptor gene expression in rats
  publication-title: Pflugers Arch.–Eur. J. Physiol.
  doi: 10.1007/s004240050348
– volume: 380
  start-page: 435
  year: 1996
  ident: 10.1016/j.devbrainres.2003.09.022_BIB5
  article-title: Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele
  publication-title: Nature
  doi: 10.1038/380435a0
– volume: 8
  start-page: 1454
  year: 1988
  ident: 10.1016/j.devbrainres.2003.09.022_BIB8
  article-title: The establishment of polarity by hippocampal neurons in culture
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.08-04-01454.1988
– volume: 12
  start-page: 4243
  year: 2000
  ident: 10.1016/j.devbrainres.2003.09.022_BIB44
  article-title: Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor
  publication-title: Eur. J. Neurosci.
  doi: 10.1046/j.0953-816X.2000.01326.x
– volume: 2
  start-page: 199
  year: 1998
  ident: 10.1016/j.devbrainres.2003.09.022_BIB48
  article-title: Quantitative analysis of mRNA expression of neuron-specific growth-associated genes in rat primary neurons by competitive RT-PCR
  publication-title: Brain Res. Brain Res. Protoc.
  doi: 10.1016/S1385-299X(97)00043-3
– volume: 95
  start-page: 9349
  year: 1998
  ident: 10.1016/j.devbrainres.2003.09.022_BIB17
  article-title: Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.95.16.9349
– volume: 92
  start-page: 349
  year: 1993
  ident: 10.1016/j.devbrainres.2003.09.022_BIB9
  article-title: Astrocytes are the primary source of tissue factor in the murine central nervous system. A role for astrocytes in cerebral hemostasis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI116573
– volume: 12
  start-page: 933
  year: 1995
  ident: 10.1016/j.devbrainres.2003.09.022_BIB16
  article-title: Cytoskeletal derangements following central nervous system injury: modulation by neurotrophic gene transfection
  publication-title: J. Neurotrauma
  doi: 10.1089/neu.1995.12.933
– volume: 28
  start-page: 131
  year: 2001
  ident: 10.1016/j.devbrainres.2003.09.022_BIB32
  article-title: Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration
  publication-title: Nat. Genet.
  doi: 10.1038/88842
– volume: 25
  start-page: 126
  year: 2000
  ident: 10.1016/j.devbrainres.2003.09.022_BIB35
  article-title: The VEGF splice variants: properties, receptors, and usage for the treatment of ischemic diseases
  publication-title: Herz
  doi: 10.1007/PL00001950
– volume: 90
  start-page: 8915
  year: 1993
  ident: 10.1016/j.devbrainres.2003.09.022_BIB33
  article-title: Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.90.19.8915
– volume: 22
  start-page: 1170
  year: 2002
  ident: 10.1016/j.devbrainres.2003.09.022_BIB45
  article-title: Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an antiexcitotoxic, caspase-independent mechanism
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1097/00004647-200210000-00003
– volume: 27
  start-page: 138
  year: 2001
  ident: 10.1016/j.devbrainres.2003.09.022_BIB26
  article-title: Neuronal effects of VEGF
  publication-title: Abstr.-Soc. Neurosci.
– volume: 15
  start-page: 101
  year: 1990
  ident: 10.1016/j.devbrainres.2003.09.022_BIB46
  article-title: The roles of microtubule-associated proteins in brain morphogenesis: a review
  publication-title: Brains Res. Rev.
  doi: 10.1016/0165-0173(90)90013-E
– volume: 78
  start-page: 1
  year: 1997
  ident: 10.1016/j.devbrainres.2003.09.022_BIB15
  article-title: Cytoskeletal maturation in cultured hippocampal slices
  publication-title: Neuroscience
– volume: 114
  start-page: 521
  year: 1992
  ident: 10.1016/j.devbrainres.2003.09.022_BIB4
  article-title: Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation
  publication-title: Development
  doi: 10.1242/dev.114.2.521
– volume: 90
  start-page: 1529
  year: 1999
  ident: 10.1016/j.devbrainres.2003.09.022_BIB42
  article-title: Vascular, glial and neuronal effects of vascular endothelial growth factor in mesencephalic explant cultures
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(98)00540-5
– volume: 58
  start-page: 313
  year: 1999
  ident: 10.1016/j.devbrainres.2003.09.022_BIB34
  article-title: Mechanisms of angiogenesis in the brain
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1097/00005072-199904000-00001
– volume: 154
  start-page: 57
  year: 1998
  ident: 10.1016/j.devbrainres.2003.09.022_BIB21
  article-title: VEGF mRNA and its receptor flt-1 are expressed in reactive astrocytes following neural grafting and tumor cell implantation in the adult CNS
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.1998.6930
– volume: 160
  start-page: 348
  year: 1999
  ident: 10.1016/j.devbrainres.2003.09.022_BIB22
  article-title: Transient coexpression of nestin, GFAP, and vascular endothelial growth factor in mature reactive astroglia following neural grafting or brain wounds
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.1999.7222
– volume: 274
  start-page: 31047
  year: 1999
  ident: 10.1016/j.devbrainres.2003.09.022_BIB2
  article-title: Vascular endothelial growth factor effect on endothelial cell proliferation, migration, and platelet-activating factor synthesis is Flk-1-dependent
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.43.31047
– volume: 90
  start-page: 7533
  year: 1993
  ident: 10.1016/j.devbrainres.2003.09.022_BIB36
  article-title: Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.90.16.7533
– volume: 376
  start-page: 66
  year: 1995
  ident: 10.1016/j.devbrainres.2003.09.022_BIB11
  article-title: Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium
  publication-title: Nature
  doi: 10.1038/376066a0
– volume: 466
  start-page: 167
  year: 1986
  ident: 10.1016/j.devbrainres.2003.09.022_BIB29
  article-title: Microtubule-associated proteins in the developing brain
  publication-title: Ann. N.Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1986.tb38393.x
– volume: 275
  start-page: 26690
  year: 2000
  ident: 10.1016/j.devbrainres.2003.09.022_BIB12
  article-title: The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor flt-1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)61431-6
– volume: 108
  start-page: 351
  year: 2001
  ident: 10.1016/j.devbrainres.2003.09.022_BIB19
  article-title: Caspase-3 and the regulation of hypoxic neuronal death by vascular endothelial growth factor
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(01)00154-3
– volume: 336
  start-page: 674
  year: 1988
  ident: 10.1016/j.devbrainres.2003.09.022_BIB13
  article-title: Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites
  publication-title: Nature
  doi: 10.1038/336674a0
– volume: 119
  start-page: 139
  year: 2000
  ident: 10.1016/j.devbrainres.2003.09.022_BIB30
  article-title: Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain
  publication-title: Dev. Brain Res.
  doi: 10.1016/S0165-3806(99)00125-X
– volume: 99
  start-page: 11946
  year: 2002
  ident: 10.1016/j.devbrainres.2003.09.022_BIB20
  article-title: Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.182296499
– volume: 22
  start-page: 6401
  year: 2002
  ident: 10.1016/j.devbrainres.2003.09.022_BIB49
  article-title: Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-15-06401.2002
– volume: 273
  start-page: 30336
  year: 1998
  ident: 10.1016/j.devbrainres.2003.09.022_BIB14
  article-title: Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.46.30336
– volume: 18
  start-page: 4
  year: 1997
  ident: 10.1016/j.devbrainres.2003.09.022_BIB10
  article-title: The biology of vascular endothelial growth factor
  publication-title: Endocr. Rev.
  doi: 10.1210/er.18.1.4
– volume: 15
  start-page: 1218
  year: 2001
  ident: 10.1016/j.devbrainres.2003.09.022_BIB27
  article-title: Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades
  publication-title: FASEB J.
  doi: 10.1096/fj.00-0495fje
– volume: 277
  start-page: 11410
  year: 2002
  ident: 10.1016/j.devbrainres.2003.09.022_BIB31
  article-title: Paracrine and autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111085200
– volume: 87
  start-page: 3336
  year: 1996
  ident: 10.1016/j.devbrainres.2003.09.022_BIB1
  article-title: Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1
  publication-title: Blood
  doi: 10.1182/blood.V87.8.3336.bloodjournal8783336
– volume: 43
  start-page: 2021
  year: 2002
  ident: 10.1016/j.devbrainres.2003.09.022_BIB3
  article-title: Erythropoietin and VEGF promote neural outgrowth from retinal explants in postnatal rats
  publication-title: Invest. Ophthalmol. Vis. Sci.
SSID ssj0001381
Score 1.8921871
Snippet Recent studies have demonstrated that vascular endothelial growth factor (VEGF) and its receptor VEGFR2 (flk-1) are expressed by neurons during development and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 59
SubjectTerms Androstadienes - pharmacology
Animals
Animals, Newborn
Cells, Cultured
Central Nervous System - cytology
Central Nervous System - metabolism
Dendrite
Dose-Response Relationship, Drug
Drug Interactions
Enzyme Inhibitors - pharmacology
Flavonoids - pharmacology
Gene Expression - drug effects
Immunohistochemistry - methods
Map-2
Microtubule-Associated Proteins - metabolism
Neurites - drug effects
Neurites - physiology
Neurons - drug effects
Neurons - physiology
Neurotrophic factor
Oligonucleotides, Antisense - pharmacology
Phosphopyruvate Hydratase - metabolism
Rats
Rats, Wistar
Reverse Transcriptase Polymerase Chain Reaction - methods
RNA, Messenger - biosynthesis
Tubulin - metabolism
Vascular Endothelial Growth Factor A - pharmacology
Vascular Endothelial Growth Factor Receptor-1 - metabolism
Vascular Endothelial Growth Factor Receptor-2 - genetics
Vascular Endothelial Growth Factor Receptor-2 - metabolism
VEGFR1
VEGFR2
Wortmannin
Title Vascular endothelial growth factor promotes neurite maturation in primary CNS neuronal cultures
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0165380603003328
https://dx.doi.org/10.1016/j.devbrainres.2003.09.022
https://www.ncbi.nlm.nih.gov/pubmed/14757519
https://www.proquest.com/docview/17959690
https://www.proquest.com/docview/80127889
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbxQhFCf9SIwXo9aP1VoxMd7GhYEBxvSy2disbtyDtdobgQHsNu20cbcmXvzbfTDMVg-bbOJpkhneBHiPx-_B-0DotTfECsFNUUtbFTweNFnb0CKI7sABEGyMHf40E5MT_vG0Ot1C4z4WJrpVZt3f6fSkrfObYZ7N4fV8PjyOgThMEQFiShgr1TbaLVktQLR3Rx-mk9lKIVOmurKEoioiwR306tbNy_mfNhZjAOM2ZQdNWU_Lct02tQ6Gpu3o6D66l3EkHnVdfYC2fPsQ7Y1asKEvf-E3OHl2piPzPaS_ZndT7FsXI64uQOjwdzDAl2e4K7iDr5Nbnl_gmOASYCi-jBk_E9vwvIXPKSkFHs-OU4uI33GXtcMvHqGTo_dfxpMiF1YoGi7KZeFqyYAZxpeiCaomDswaa8EQsoZWTsSU66RqbGgALTnrnAiOUxkIsZIHxgx7jHbaq9Y_RVh5Sanj8CvjeMO5oSJIJoMzNDRGiQFS_TzqJmcdj8UvLnTvXnau_2JBrIrJNKk1sGCAyhVpHuUmRO96Zuk-thS0oYYNYhPiwxXxP0K4KfnLXjo0LNJ482Jaf3Wz0DRWdBc1Wd8iAgWpVD1ATzqxuh0yl_FurH72f517ju52TkcUtt19tLP8ceNfAJ5a2gO0_fY3PcirJj6nn79N_wDNZCXO
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbxQhEJ_UmqgvRq0f51cxMb6tBwsLrPGludic2t5LW9M3AgvomXbbeFcTX_zbHdjdnj5ccomvLLMBZhhm4DczAK-DpU5KYYtauaoQ6aLJuYYVUXYXDmjBptjhw5mcnohPp9XpFkyGWJgEq-x1f6fTs7buW8b9ao4v5_PxUQrE4ZpKFFPKealvwE2BDWl3vv29wnkwrruihLIqUvdb8GoF8vLhp0ulGNC1zblBc87Tslx3SK0zQvNhtH8P7vZWJNnrBnoftkL7AHb2WvSgz3-RNyTjOvOF-Q6YLz3YlITWp3irMxQ58hXd7-U30pXbIZcZlBcWJKW3RCOUnKd8n5lpZN7i55ySgkxmR7lHst5Jl7MjLB7Cyf6H48m06MsqFI2Q5bLwteLIChtK2URdU49OjXPoBjnLKi9TwnVaNS42aCt5572MXjAVKXVKRM4tfwTb7UUbngDRQTHmBf7KetEIYZmMiqvoLYuN1XIEelhH0_Q5x1PpizMzgMu-m79YkGpickNrgywYQXlN2s9yE6J3A7PMEFmKutDg8bAJ8ftr4n9EcFPy3UE6DG7R9O5i23BxtTAs1XOXNV3fI5kJSut6BI87sVpNWaj0MlY__b_B7cLt6fHhgTn4OPv8DO508COGB_Bz2F7-uAov0LJaupd55_wBF-sk7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vascular+endothelial+growth+factor+promotes+neurite+maturation+in+primary+CNS+neuronal+cultures&rft.jtitle=Brain+research.+Developmental+brain+research&rft.au=Khaibullina%2C+A+A&rft.au=Rosenstein%2C+J+M&rft.au=Krum%2C+J+M&rft.date=2004-01-31&rft.issn=0165-3806&rft.volume=148&rft.issue=1&rft.spage=59&rft.epage=68&rft_id=info:doi/10.1016%2Fj.devbrainres.2003.09.022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-3806&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-3806&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-3806&client=summon