Enzyme Cascade Electrode Reactions with Nanomaterials and Their Applicability towards Biosensor and Biofuel Cells

Nanomaterials, including carbon nanotubes, graphene oxide, metal–organic frameworks, metal nanoparticles, and porous carbon, play a crucial role as efficient carriers to enhance enzyme activity through substrate channeling while improving enzyme stability and reusability. However, there are signific...

Full description

Saved in:
Bibliographic Details
Published inBiosensors (Basel) Vol. 13; no. 12; p. 1018
Main Authors Kalyana Sundaram, Shalini devi, Hossain, Md. Motaher, Rezki, Muhammad, Ariga, Kotoko, Tsujimura, Seiya
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanomaterials, including carbon nanotubes, graphene oxide, metal–organic frameworks, metal nanoparticles, and porous carbon, play a crucial role as efficient carriers to enhance enzyme activity through substrate channeling while improving enzyme stability and reusability. However, there are significant debates surrounding aspects such as enzyme orientation, enzyme loading, retention of enzyme activity, and immobilization techniques. Consequently, these subjects have become the focus of intensive research in the realm of multi-enzyme cascade reactions. Researchers have undertaken the challenge of creating functional in vitro multi-enzyme systems, drawing inspiration from natural multi-enzyme processes within living organisms. Substantial progress has been achieved in designing multi-step reactions that harness the synthetic capabilities of various enzymes, particularly in applications such as biomarker detection (e.g., biosensors) and the development of biofuel cells. This review provides an overview of recent developments in concurrent and sequential approaches involving two or more enzymes in sequence. It delves into the intricacies of multi-enzyme cascade reactions conducted on nanostructured electrodes, addressing both the challenges encountered and the innovative solutions devised in this field.
AbstractList Nanomaterials, including carbon nanotubes, graphene oxide, metal–organic frameworks, metal nanoparticles, and porous carbon, play a crucial role as efficient carriers to enhance enzyme activity through substrate channeling while improving enzyme stability and reusability. However, there are significant debates surrounding aspects such as enzyme orientation, enzyme loading, retention of enzyme activity, and immobilization techniques. Consequently, these subjects have become the focus of intensive research in the realm of multi-enzyme cascade reactions. Researchers have undertaken the challenge of creating functional in vitro multi-enzyme systems, drawing inspiration from natural multi-enzyme processes within living organisms. Substantial progress has been achieved in designing multi-step reactions that harness the synthetic capabilities of various enzymes, particularly in applications such as biomarker detection (e.g., biosensors) and the development of biofuel cells. This review provides an overview of recent developments in concurrent and sequential approaches involving two or more enzymes in sequence. It delves into the intricacies of multi-enzyme cascade reactions conducted on nanostructured electrodes, addressing both the challenges encountered and the innovative solutions devised in this field.
Nanomaterials, including carbon nanotubes, graphene oxide, metal-organic frameworks, metal nanoparticles, and porous carbon, play a crucial role as efficient carriers to enhance enzyme activity through substrate channeling while improving enzyme stability and reusability. However, there are significant debates surrounding aspects such as enzyme orientation, enzyme loading, retention of enzyme activity, and immobilization techniques. Consequently, these subjects have become the focus of intensive research in the realm of multi-enzyme cascade reactions. Researchers have undertaken the challenge of creating functional in vitro multi-enzyme systems, drawing inspiration from natural multi-enzyme processes within living organisms. Substantial progress has been achieved in designing multi-step reactions that harness the synthetic capabilities of various enzymes, particularly in applications such as biomarker detection (e.g., biosensors) and the development of biofuel cells. This review provides an overview of recent developments in concurrent and sequential approaches involving two or more enzymes in sequence. It delves into the intricacies of multi-enzyme cascade reactions conducted on nanostructured electrodes, addressing both the challenges encountered and the innovative solutions devised in this field.Nanomaterials, including carbon nanotubes, graphene oxide, metal-organic frameworks, metal nanoparticles, and porous carbon, play a crucial role as efficient carriers to enhance enzyme activity through substrate channeling while improving enzyme stability and reusability. However, there are significant debates surrounding aspects such as enzyme orientation, enzyme loading, retention of enzyme activity, and immobilization techniques. Consequently, these subjects have become the focus of intensive research in the realm of multi-enzyme cascade reactions. Researchers have undertaken the challenge of creating functional in vitro multi-enzyme systems, drawing inspiration from natural multi-enzyme processes within living organisms. Substantial progress has been achieved in designing multi-step reactions that harness the synthetic capabilities of various enzymes, particularly in applications such as biomarker detection (e.g., biosensors) and the development of biofuel cells. This review provides an overview of recent developments in concurrent and sequential approaches involving two or more enzymes in sequence. It delves into the intricacies of multi-enzyme cascade reactions conducted on nanostructured electrodes, addressing both the challenges encountered and the innovative solutions devised in this field.
Audience Academic
Author Ariga, Kotoko
Hossain, Md. Motaher
Kalyana Sundaram, Shalini devi
Tsujimura, Seiya
Rezki, Muhammad
Author_xml – sequence: 1
  givenname: Shalini devi
  surname: Kalyana Sundaram
  fullname: Kalyana Sundaram, Shalini devi
– sequence: 2
  givenname: Md. Motaher
  surname: Hossain
  fullname: Hossain, Md. Motaher
– sequence: 3
  givenname: Muhammad
  surname: Rezki
  fullname: Rezki, Muhammad
– sequence: 4
  givenname: Kotoko
  surname: Ariga
  fullname: Ariga, Kotoko
– sequence: 5
  givenname: Seiya
  orcidid: 0000-0001-9603-2418
  surname: Tsujimura
  fullname: Tsujimura, Seiya
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38131778$$D View this record in MEDLINE/PubMed
BookMark eNptktFrFDEQxhep2Fr75rMEfPHBq8kmu9k8Xo9TC0VB6nOYTSZtjt3NNclSzr_eXK-VUszLJMNvvszwzdvqaAoTVtV7Rs85V_RL70NinNWMsu5VdVJTqRYtl-Lo2f24OktpQ8uRQiou31THvCtFUnYn1d16-rMbkawgGbBI1gOaHEO5_UIw2YcpkXufb8kPmMIIGaOHIRGYLLm-RR_JcrsdvIHeDz7vSA73EG0iF6UvnFKID2R5uRkHssJhSO-q165I4NljPK1-f11fr74vrn5-u1wtrxZGtHVeWMWgNIxSKWpRWNU3nWKuY7KpBTbU9ao1KChI0TmKruUGOHWcWWNsh4yfVpcHXRtgo7fRjxB3OoDXD4kQbzTE7M2AmkqgNVJwTV8LKQw407eON9DarlVOFa1PB61tDHczpqxHn0yZBiYMc9K1ok1T0xIK-vEFuglznMqke0rIpmuatlDnB-oGyv9-ciFHMLC3YPSmeOx8yS-llEJJxkQp-PAoO_cj2n_zPDlZgPoAmBhSiui08Rn2BhZlP2hG9X5j9PONKUWfXxQ96f4X_wuxqcFm
CitedBy_id crossref_primary_10_1016_j_inoche_2025_114076
crossref_primary_10_35848_1347_4065_ad4ad8
crossref_primary_10_1039_D4SC05575F
crossref_primary_10_3390_molecules29133168
crossref_primary_10_1007_s10904_024_03065_9
crossref_primary_10_3389_fbael_2024_1422400
crossref_primary_10_3390_ijms25052746
crossref_primary_10_3390_mi15020282
crossref_primary_10_1002_rpm_20240011
crossref_primary_10_1038_s43246_024_00557_6
crossref_primary_10_1002_adhm_202401834
crossref_primary_10_1039_D4CC03243H
crossref_primary_10_1016_j_electacta_2024_145054
crossref_primary_10_1021_acsnano_4c08186
crossref_primary_10_1002_anbr_202400136
crossref_primary_10_1039_D4NR00609G
crossref_primary_10_3390_ma17235918
crossref_primary_10_3390_ma17040936
crossref_primary_10_3390_ma17010271
crossref_primary_10_1039_D4CP00724G
crossref_primary_10_1088_1361_648X_ad906c
crossref_primary_10_1002_cphc_202400596
crossref_primary_10_1039_D3CC04952C
crossref_primary_10_1016_j_cis_2025_103420
crossref_primary_10_1002_chem_202401256
crossref_primary_10_34133_research_0624
Cites_doi 10.1021/acsami.9b18702
10.1002/anie.201710418
10.1002/btpr.2010
10.1039/D1CC01707A
10.1246/cl.210064
10.1039/C3RA45991H
10.1016/j.coelec.2022.101049
10.1016/j.ijhydene.2015.06.108
10.1021/ja072410u
10.1016/j.cej.2019.01.138
10.1021/acsenergylett.7b00134
10.1016/S0022-0728(97)00393-8
10.1021/acssensors.3c00490
10.1038/nprot.2016.139
10.3390/bios11020041
10.1016/j.bios.2013.07.021
10.1126/sciadv.adh1415
10.1038/s41467-022-33122-1
10.1039/C9CC04661E
10.1007/s00253-022-12315-0
10.1039/b313149a
10.1016/j.jelechem.2017.12.041
10.1126/science.1214081
10.1021/acs.analchem.7b02210
10.1002/elan.201800487
10.1021/acsami.8b12374
10.1515/znc-2018-0146
10.1002/adsc.201100256
10.1016/j.bios.2020.112827
10.1002/celc.201600864
10.1038/s41565-019-0542-7
10.1021/ac202647z
10.1002/celc.201800370
10.1146/annurev-physchem-090519-050109
10.1039/D3GC01898A
10.1016/j.jelechem.2019.04.012
10.1016/j.aca.2020.07.051
10.3390/s20123517
10.2116/analsci.17.945
10.1126/science.aam5488
10.1021/acs.analchem.8b05407
10.1021/acsnano.9b01025
10.1002/chem.202301351
10.1038/s41929-020-00524-7
10.1016/j.copbio.2007.03.007
10.1038/nchem.2459
10.3390/bios11010016
10.1039/c3py21118e
10.1002/celc.202100843
10.1149/2.0931809jes
10.1021/acs.chemrev.7b00033
10.1016/j.carbon.2010.03.064
10.3390/molecules27196309
10.1016/j.coelec.2019.03.003
10.1002/jctb.6296
10.1016/j.jpowsour.2021.229935
10.1016/j.jpowsour.2019.04.064
10.1021/cs4003832
10.1002/anie.201108199
10.1021/acs.chemrev.9b00115
10.1038/s43586-020-00009-8
10.1038/nature22504
10.1016/j.ijbiomac.2018.09.144
10.1021/acsami.7b12295
10.1002/adfm.202215023
10.1038/s41929-018-0117-2
10.1039/c3gc42545b
10.1021/acsami.1c04680
10.1021/jz1002007
10.1039/C5CC05136C
10.1021/acsami.0c11186
10.1002/adfm.202211669
10.1021/jacsau.1c00387
10.1016/j.jelechem.2017.09.001
10.1021/acs.langmuir.3c00879
10.1021/ja101326b
10.1039/c0cp00556h
10.1039/C7CC04465H
10.1002/tcr.202000067
10.1016/j.talanta.2019.03.060
10.1016/j.bios.2018.06.047
10.1021/ac3035794
10.1038/s41467-022-27983-9
10.1016/j.electacta.2017.05.077
10.1021/jacs.3c08020
10.1039/D1SC04267J
10.1016/j.bios.2023.115272
10.1039/D0SC03584J
10.1146/annurev-anchem-062011-143049
10.1038/s41392-021-00727-9
10.1021/acsomega.0c05521
10.1021/acsomega.2c05310
10.1021/acscatal.5b00958
10.1016/j.cej.2019.05.141
10.1021/ja900718m
10.1002/biot.201600039
10.1016/j.aca.2012.12.052
10.1149/2.0761414jes
10.1021/ja00188a091
10.1021/acs.chemrev.2c00397
10.1021/acscatal.3c01962
10.1002/anie.201300718
10.1039/b809009b
10.1016/j.coelec.2017.07.010
10.1016/j.bios.2016.06.078
10.1177/193229681100500507
10.1016/j.bios.2016.12.017
10.1021/acscatal.8b04921
10.1002/smll.202301413
10.5796/electrochemistry.81.981
10.1021/acsnano.9b05746
10.1039/D3CP00540B
10.1016/j.bioelechem.2022.108254
10.1002/cphc.201400058
10.1038/nnano.2009.50
10.1149/2.0321606jes
10.1021/jacs.8b03914
10.1039/b925377g
10.1016/j.coelec.2020.100658
10.1021/cr050569o
10.1016/j.bioelechem.2018.05.011
10.1016/j.coelec.2017.06.007
10.1021/ja029510e
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7QL
7T5
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/bios13121018
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-6374
ExternalDocumentID oai_doaj_org_article_07a02e0af5b2474cafcb6f35a6d869f9
A777497114
38131778
10_3390_bios13121018
Genre Journal Article
Review
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 22F20049
– fundername: Ministry of Education, Culture, Sports, Science and Technology
  grantid: 223216
GroupedDBID .4S
.DC
2XV
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAYXX
ABUWG
ADBBV
ADMLS
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
TUS
UKHRP
NPM
PMFND
3V.
7QL
7T5
7XB
8FK
AZQEC
C1K
DWQXO
GNUQQ
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c462t-d91a074e7990de4d9b5891f817524e50fb96ce40a748f0ef63ca30f31dccd8e13
IEDL.DBID M48
ISSN 2079-6374
IngestDate Wed Aug 27 01:01:33 EDT 2025
Fri Jul 11 10:07:31 EDT 2025
Fri Jul 25 10:46:43 EDT 2025
Tue Jun 10 21:02:02 EDT 2025
Thu Apr 03 07:04:29 EDT 2025
Tue Jul 01 02:24:42 EDT 2025
Thu Apr 24 22:52:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords electrode
biofuel cell
nanomaterials
biosensor
enzyme cascade
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-d91a074e7990de4d9b5891f817524e50fb96ce40a748f0ef63ca30f31dccd8e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9603-2418
0000-0001-6427-1385
OpenAccessLink https://www.proquest.com/docview/2904758556?pq-origsite=%requestingapplication%
PMID 38131778
PQID 2904758556
PQPubID 2032424
ParticipantIDs doaj_primary_oai_doaj_org_article_07a02e0af5b2474cafcb6f35a6d869f9
proquest_miscellaneous_2905520290
proquest_journals_2904758556
gale_infotracacademiconefile_A777497114
pubmed_primary_38131778
crossref_citationtrail_10_3390_bios13121018
crossref_primary_10_3390_bios13121018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biosensors (Basel)
PublicationTitleAlternate Biosensors (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Qin (ref_58) 2023; 33
Macazo (ref_17) 2017; 5
Ferri (ref_104) 2011; 5
Yasujima (ref_38) 2018; 5
Wu (ref_82) 2015; 51
Lee (ref_15) 2021; 72
Shitanda (ref_24) 2021; 50
ref_16
Dey (ref_48) 2021; 1
Niiyama (ref_23) 2019; 427
Bisogno (ref_4) 2010; 8
Song (ref_45) 2019; 363
Douglas (ref_60) 2012; 335
Zhou (ref_56) 2018; 140
Nakata (ref_61) 2012; 51
Chhabra (ref_63) 2007; 129
Vasylieva (ref_99) 2013; 85
Wang (ref_79) 2020; 1131
Nakabayashi (ref_119) 2001; 17
Hossain (ref_94) 2021; 57
Hyeon (ref_12) 2016; 11
Zebda (ref_92) 2018; 124
Maffeis (ref_46) 2021; 12
Wang (ref_5) 2022; 13
Toda (ref_102) 2021; 8
Gracia (ref_111) 2013; 4
Ge (ref_68) 2019; 11
ref_124
Shitanda (ref_19) 2023; 8
Hickey (ref_116) 2013; 3
Franco (ref_34) 2018; 165
Qiao (ref_95) 2023; 25
Bauler (ref_96) 2010; 1
Man (ref_86) 2022; 13
Piperberg (ref_74) 2009; 131
Ricca (ref_9) 2011; 353
Fu (ref_64) 2016; 11
ref_72
Devi (ref_11) 2017; 244
Kou (ref_65) 2017; 89
Xiao (ref_93) 2019; 119
ref_77
Zhang (ref_42) 2020; 95
Campbell (ref_113) 2016; 86
Kopiec (ref_121) 2018; 117
Fu (ref_91) 2018; 30
Minteer (ref_106) 2007; 18
Wang (ref_70) 2019; 91
Ruff (ref_123) 2017; 4
Armstrong (ref_1) 2023; 123
Kou (ref_55) 2021; 12
Wang (ref_71) 2020; 12
Lau (ref_117) 2015; 40
Wu (ref_37) 2017; 9
Morishita (ref_21) 2010; 48
Chen (ref_83) 2018; 1
Liang (ref_80) 2020; 20
Sehl (ref_8) 2013; 52
Tasis (ref_29) 2006; 106
Adachi (ref_28) 2023; 13
Zafar (ref_120) 2011; 84
Zor (ref_27) 2017; 53
Lin (ref_51) 2023; 33
Mao (ref_122) 2003; 125
Barbosa (ref_98) 2014; 4
Calvente (ref_20) 2021; 26
ref_50
Song (ref_76) 2020; 11
Chu (ref_69) 2023; 19
Zhao (ref_41) 2014; 16
Fernando (ref_84) 2023; 39
Xia (ref_85) 2021; 13
Ren (ref_44) 2019; 373
Heller (ref_112) 2004; 6
Engelhardt (ref_49) 2019; 13
Contaldo (ref_33) 2023; 29
Adeel (ref_39) 2018; 120
Giroud (ref_78) 2014; 161
Hwang (ref_43) 2019; 9
Yusuf (ref_81) 2022; 7
Kahn (ref_54) 2022; 2
Peters (ref_2) 2019; 74
Du (ref_30) 2015; 31
Praetorius (ref_62) 2017; 355
Neto (ref_97) 2018; 812
Degani (ref_114) 1989; 111
Schrittwieser (ref_3) 2018; 118
Ouyang (ref_6) 2023; 145
Yuan (ref_115) 2019; 15
Ngo (ref_47) 2019; 55
Zhao (ref_87) 2019; 200
Zhang (ref_89) 2023; 9
Cooney (ref_105) 2008; 1
Moehlenbrock (ref_103) 2010; 132
Kostrz (ref_53) 2019; 14
Palmore (ref_18) 1998; 443
Xia (ref_75) 2017; 2
Wheeldon (ref_101) 2016; 8
Handa (ref_36) 2014; 15
Zhang (ref_32) 2016; 163
Siritanaratkul (ref_100) 2023; 25
Wang (ref_13) 2017; 91
Zore (ref_40) 2015; 5
ref_35
Krall (ref_66) 2017; 546
Wang (ref_7) 2020; 3
Ruff (ref_107) 2017; 5
Wilner (ref_59) 2009; 4
Klein (ref_67) 2019; 13
Du (ref_52) 2023; 107
Meredith (ref_73) 2012; 5
Nieh (ref_118) 2013; 767
Wang (ref_90) 2017; 56
Mazurenko (ref_22) 2018; 812
ref_108
Ma (ref_57) 2021; 6
Yimamumaimaiti (ref_88) 2020; 12
Shitanda (ref_25) 2021; 498
Kawai (ref_26) 2019; 841
Sakai (ref_110) 2013; 81
Matsumoto (ref_109) 2010; 12
Blank (ref_10) 2022; 35
Lang (ref_31) 2014; 51
Sasaki (ref_14) 2020; 5
References_xml – volume: 12
  start-page: 2871
  year: 2020
  ident: ref_71
  article-title: Lattice-Like DNA Tetrahedron Nanostructure as Scaffold to Locate Gox and Hrp Enzymes for Highly Efficient Enzyme Cascade Reaction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b18702
– volume: 56
  start-page: 16082
  year: 2017
  ident: ref_90
  article-title: GOx@ZIF-8(NiPd) Nanoflower: An Artificial Enzyme System for Tandem Catalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201710418
– volume: 31
  start-page: 42
  year: 2015
  ident: ref_30
  article-title: A Two-Enzyme Immobilization Approach Using Carbon Nanotubes/Silica as Support
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.2010
– volume: 57
  start-page: 6999
  year: 2021
  ident: ref_94
  article-title: Designing a Cross-Linked Redox Network for a Mediated Enzyme-Based Electrode
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC01707A
– volume: 50
  start-page: 1160
  year: 2021
  ident: ref_24
  article-title: High Capacity Lactate Biofuel Cell Using Enzyme Cascade without Nad
  publication-title: Chem. Lett.
  doi: 10.1246/cl.210064
– volume: 4
  start-page: 1583
  year: 2014
  ident: ref_98
  article-title: Glutaraldehyde in Bio-Catalysts Design: A Useful Crosslinker and a Versatile Tool in Enzyme Immobilization
  publication-title: RSC Adv.
  doi: 10.1039/C3RA45991H
– volume: 35
  start-page: 101049
  year: 2022
  ident: ref_10
  article-title: Electrochemical Cascade Reactions for Electro-Organic Synthesis
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2022.101049
– volume: 40
  start-page: 14661
  year: 2015
  ident: ref_117
  article-title: Paper Based Biofuel Cells: Incorporating Enzymatic Cascades for Ethanol and Methanol Oxidation
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.06.108
– volume: 129
  start-page: 10304
  year: 2007
  ident: ref_63
  article-title: Spatially Addressable Multiprotein Nanoarrays Templated by Aptamer-Tagged DNA Nanoarchitectures
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja072410u
– volume: 363
  start-page: 174
  year: 2019
  ident: ref_45
  article-title: Construction of Multiple Enzyme Metal–Organic Frameworks Biocatalyst Via DNA Scaffold: A Promising Strategy for Enzyme Encapsulation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.138
– volume: 2
  start-page: 1435
  year: 2017
  ident: ref_75
  article-title: Improving the Performance of Methanol Biofuel Cells Utilizing an Enzyme Cascade Bioanode with DNA-Bridged Substrate Channeling
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00134
– volume: 443
  start-page: 155
  year: 1998
  ident: ref_18
  article-title: A Methanol/Dioxygen Biofuel Cell That Uses Nad+-Dependent Dehydrogenases as Catalysts: Application of an Electro-Enzymatic Method to Regenerate Nicotinamide Adenine Dinucleotide at Low Overpotentials
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(97)00393-8
– volume: 8
  start-page: 2368
  year: 2023
  ident: ref_19
  article-title: Air-Bubble-Insensitive Microfluidic Lactate Biosensor for Continuous Monitoring of Lactate in Sweat
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.3c00490
– volume: 11
  start-page: 2243
  year: 2016
  ident: ref_64
  article-title: Assembly of Multienzyme Complexes on DNA Nanostructures
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.139
– ident: ref_16
  doi: 10.3390/bios11020041
– volume: 51
  start-page: 158
  year: 2014
  ident: ref_31
  article-title: Co-Immobilization of Glucoamylase and Glucose Oxidase for Electrochemical Sequential Enzyme Electrode for Starch Biosensor and Biofuel Cell
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.07.021
– volume: 9
  start-page: eadh1415
  year: 2023
  ident: ref_89
  article-title: Self-Powered Enzyme-Linked Microneedle Patch for Scar-Prevention Healing of Diabetic Wounds
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adh1415
– volume: 13
  start-page: 5436
  year: 2022
  ident: ref_5
  article-title: Enzymatic Synthesis of Benzylisoquinoline Alkaloids Using a Parallel Cascade Strategy and Tyrosinase Variants
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33122-1
– volume: 55
  start-page: 12428
  year: 2019
  ident: ref_47
  article-title: Protein Adaptors Assemble Functional Proteins on DNA Scaffolds
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC04661E
– volume: 107
  start-page: 9
  year: 2023
  ident: ref_52
  article-title: Nucleic Acid-Based Scaffold Systems and Application in Enzyme Cascade Catalysis
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-022-12315-0
– volume: 6
  start-page: 209
  year: 2004
  ident: ref_112
  article-title: Miniature Biofuel Cells
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b313149a
– volume: 812
  start-page: 221
  year: 2018
  ident: ref_22
  article-title: Pore Size Effect of Mgo-Templated Carbon on Enzymatic H2 Oxidation by the Hyperthermophilic Hydrogenase from Aquifex Aeolicus
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2017.12.041
– volume: 335
  start-page: 831
  year: 2012
  ident: ref_60
  article-title: A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads
  publication-title: Science
  doi: 10.1126/science.1214081
– volume: 89
  start-page: 9383
  year: 2017
  ident: ref_65
  article-title: PtNPs as Scaffolds to Regulate Interenzyme Distance for Construction of Efficient Enzyme Cascade Amplification for Ultrasensitive Electrochemical Detection of MMP-2
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b02210
– volume: 30
  start-page: 2535
  year: 2018
  ident: ref_91
  article-title: Recent Advances in the Construction of Biofuel Cells Based Self-Powered Electrochemical Biosensors: A Review
  publication-title: Electroanalysis
  doi: 10.1002/elan.201800487
– volume: 11
  start-page: 13881
  year: 2019
  ident: ref_68
  article-title: Constructing Submonolayer DNA Origami Scaffold on Gold Electrode for Wiring of Redox Enzymatic Cascade Pathways
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b12374
– volume: 74
  start-page: 63
  year: 2019
  ident: ref_2
  article-title: Linear Enzyme Cascade for the Production of (–)-Iso-Isopulegol
  publication-title: Z. Für Naturforschung C
  doi: 10.1515/znc-2018-0146
– volume: 353
  start-page: 2239
  year: 2011
  ident: ref_9
  article-title: Multi-Enzymatic Cascade Reactions: Overview and Perspectives
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201100256
– ident: ref_77
  doi: 10.1016/j.bios.2020.112827
– volume: 4
  start-page: 890
  year: 2017
  ident: ref_123
  article-title: A Self-Powered Ethanol Biosensor
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201600864
– volume: 14
  start-page: 988
  year: 2019
  ident: ref_53
  article-title: A Modular DNA Scaffold to Study Protein–Protein Interactions at Single-Molecule Resolution
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0542-7
– volume: 84
  start-page: 334
  year: 2011
  ident: ref_120
  article-title: Electron-Transfer Studies with a New Flavin Adenine Dinucleotide Dependent Glucose Dehydrogenase and Osmium Polymers of Different Redox Potentials
  publication-title: Anal. Chem.
  doi: 10.1021/ac202647z
– volume: 5
  start-page: 2271
  year: 2018
  ident: ref_38
  article-title: Multi-Enzyme Immobilized Anodes Utilizing Maltose Fuel for Biofuel Cell Applications
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201800370
– volume: 72
  start-page: 467
  year: 2021
  ident: ref_15
  article-title: Cascaded Biocatalysis and Bioelectrocatalysis: Overview and Recent Advances
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-090519-050109
– volume: 25
  start-page: 7547
  year: 2023
  ident: ref_95
  article-title: Designing an Enzyme Assembly Line for Green Cascade Processes Using Bio-Orthogonal Chemistry
  publication-title: Green Chem.
  doi: 10.1039/D3GC01898A
– volume: 841
  start-page: 73
  year: 2019
  ident: ref_26
  article-title: Performance Analysis of an Oxidase/Peroxidase-Based Mediatorless Amperometric Biosensor
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2019.04.012
– volume: 1131
  start-page: 118
  year: 2020
  ident: ref_79
  article-title: Catalase Active Metal-Organic Framework Synthesized by Ligand Regulation for the Dual Detection of Glucose and Cysteine
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2020.07.051
– ident: ref_124
  doi: 10.3390/s20123517
– volume: 17
  start-page: 945
  year: 2001
  ident: ref_119
  article-title: Evaluation of Osmium(II) Complexes as Electron Transfer Mediators Accessible for Amperometric Glucose Sensors
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.17.945
– volume: 355
  start-page: eaam5488
  year: 2017
  ident: ref_62
  article-title: Self-Assembly of Genetically Encoded DNA-Protein Hybrid Nanoscale Shapes
  publication-title: Science
  doi: 10.1126/science.aam5488
– volume: 91
  start-page: 3561
  year: 2019
  ident: ref_70
  article-title: Precise Regulation of Enzyme Cascade Catalytic Efficiency with DNA Tetrahedron as Scaffold for Ultrasensitive Electrochemical Detection of DNA
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b05407
– volume: 13
  start-page: 5015
  year: 2019
  ident: ref_49
  article-title: Custom-Size, Functional, and Durable DNA Origami with Design-Specific Scaffolds
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01025
– volume: 29
  start-page: e202301351
  year: 2023
  ident: ref_33
  article-title: Optimising Electrical Interfacing between the Trimeric Copper Nitrite Reductase and Carbon Nanotubes
  publication-title: Chem.–A Eur. J.
  doi: 10.1002/chem.202301351
– volume: 3
  start-page: 941
  year: 2020
  ident: ref_7
  article-title: Controlling Biocatalytic Cascades with Enzyme–DNA Dynamic Networks
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00524-7
– volume: 18
  start-page: 228
  year: 2007
  ident: ref_106
  article-title: Enzyme-Based Biofuel Cells
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2007.03.007
– volume: 8
  start-page: 299
  year: 2016
  ident: ref_101
  article-title: Substrate Channelling as an Approach to Cascade Reactions
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2459
– ident: ref_35
  doi: 10.3390/bios11010016
– volume: 4
  start-page: 2206
  year: 2013
  ident: ref_111
  article-title: Polymers with Redox Properties: Materials for Batteries, Biosensors and More
  publication-title: Polym. Chem.
  doi: 10.1039/c3py21118e
– volume: 8
  start-page: 4199
  year: 2021
  ident: ref_102
  article-title: Multi-Enzyme-Modified Bioanode Utilising Starch as a Fuel
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202100843
– volume: 165
  start-page: H575
  year: 2018
  ident: ref_34
  article-title: Product Analysis of Operating an Ethanol/O2 Biofuel Cell Shows the Synergy between Enzymes within an Enzymatic Cascade
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0931809jes
– volume: 118
  start-page: 270
  year: 2018
  ident: ref_3
  article-title: Artificial Biocatalytic Linear Cascades for Preparation of Organic Molecules
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00033
– volume: 48
  start-page: 2690
  year: 2010
  ident: ref_21
  article-title: A Review of the Control of Pore Structure in Mgo-Templated Nanoporous Carbons
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.03.064
– ident: ref_50
  doi: 10.3390/molecules27196309
– volume: 15
  start-page: 1
  year: 2019
  ident: ref_115
  article-title: Redox Polymers in Electrochemical Systems: From Methods of Mediation to Energy Storage
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2019.03.003
– volume: 95
  start-page: 1116
  year: 2020
  ident: ref_42
  article-title: Co-Immobilization of Cellulase and Glucose Oxidase on Graphene Oxide by Covalent Bonds: A Biocatalytic System for One-Pot Conversion of Gluconic Acid from Carboxymethyl Cellulose
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.6296
– volume: 498
  start-page: 229935
  year: 2021
  ident: ref_25
  article-title: High-Performance, Two-Step/Bi-Enzyme Lactate Biofuel Cell with Lactate Oxidase and Pyruvate Oxidase
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.229935
– volume: 427
  start-page: 49
  year: 2019
  ident: ref_23
  article-title: High-Performance Enzymatic Biofuel Cell Based on Flexible Carbon Cloth Modified with Mgo-Templated Porous Carbon
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.04.064
– volume: 3
  start-page: 2729
  year: 2013
  ident: ref_116
  article-title: Enzyme Cascade for Catalyzing Sucrose Oxidation in a Biofuel Cell
  publication-title: ACS Catal.
  doi: 10.1021/cs4003832
– volume: 51
  start-page: 2421
  year: 2012
  ident: ref_61
  article-title: Zinc-Finger Proteins for Site-Specific Protein Positioning on DNA-Origami Structures
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201108199
– volume: 119
  start-page: 9509
  year: 2019
  ident: ref_93
  article-title: Tackling the Challenges of Enzymatic (Bio)Fuel Cells
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00115
– volume: 1
  start-page: 13
  year: 2021
  ident: ref_48
  article-title: DNA Origami
  publication-title: Nat. Rev. Methods Primers
  doi: 10.1038/s43586-020-00009-8
– volume: 546
  start-page: 357
  year: 2017
  ident: ref_66
  article-title: Division Enzyme Regulates Metabolism
  publication-title: Nature
  doi: 10.1038/nature22504
– volume: 120
  start-page: 1430
  year: 2018
  ident: ref_39
  article-title: Graphene and Graphene Oxide: Functionalization and Nano-Bio-Catalytic System for Enzyme Immobilization and Biotechnological Perspective
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.09.144
– volume: 9
  start-page: 40978
  year: 2017
  ident: ref_37
  article-title: Methanol/Oxygen Enzymatic Biofuel Cell Using Laccase and Nad+-Dependent Dehydrogenase Cascades as Biocatalysts on Carbon Nanodots Electrodes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b12295
– volume: 33
  start-page: 2215023
  year: 2023
  ident: ref_51
  article-title: Dynamic Assembly of Cascade Enzymes by the Shape Transformation of a DNA Scaffold
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202215023
– volume: 1
  start-page: 689
  year: 2018
  ident: ref_83
  article-title: Biocatalytic Cascades Driven by Enzymes Encapsulated in Metal–Organic Framework Nanoparticles
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0117-2
– volume: 16
  start-page: 2558
  year: 2014
  ident: ref_41
  article-title: Co-Immobilization of Multi-Enzyme on Control-Reduced Graphene Oxide by Non-Covalent Bonds: An Artificial Biocatalytic System for the One-Pot Production of Gluconic Acid from Starch
  publication-title: Green Chem.
  doi: 10.1039/c3gc42545b
– volume: 13
  start-page: 22240
  year: 2021
  ident: ref_85
  article-title: Enzymatic Cascade Reactions Mediated by Highly Efficient Biomimetic Quasi Metal–Organic Frameworks
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c04680
– volume: 1
  start-page: 1332
  year: 2010
  ident: ref_96
  article-title: Channeling by Proximity: The Catalytic Advantages of Active Site Colocalization Using Brownian Dynamics
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz1002007
– volume: 51
  start-page: 13408
  year: 2015
  ident: ref_82
  article-title: Facile Synthesis of Multiple Enzyme-Containing Metal–Organic Frameworks in a Biomolecule-Friendly Environment
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC05136C
– volume: 12
  start-page: 41429
  year: 2020
  ident: ref_88
  article-title: Efficient Blood-Toleration Enzymatic Biofuel Cell Via in situ Protection of an Enzyme Catalyst
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c11186
– volume: 33
  start-page: 2211669
  year: 2023
  ident: ref_58
  article-title: DNA-Based Materials Inspired by Natural Extracellular DNA
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202211669
– volume: 2
  start-page: 357
  year: 2022
  ident: ref_54
  article-title: Cascaded Enzyme Reactions over a Three-Dimensional, Wireframe DNA Origami Scaffold
  publication-title: JACS Au
  doi: 10.1021/jacsau.1c00387
– volume: 812
  start-page: 153
  year: 2018
  ident: ref_97
  article-title: Developing Ethanol Bioanodes Using a Hydrophobically Modified Linear Polyethylenimine Hydrogel for Immobilizing an Enzyme Cascade
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2017.09.001
– volume: 39
  start-page: 7979
  year: 2023
  ident: ref_84
  article-title: In situ Immobilization of Multi-Enzymes for Enhanced Substrate Channeling of Enzyme Cascade Reactions: A Nanoarchitectonics Approach by Directed Metal–Organic Frameworks
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.3c00879
– volume: 132
  start-page: 6288
  year: 2010
  ident: ref_103
  article-title: Metabolon Catalyzed Pyruvate/Air Biofuel Cell
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101326b
– volume: 12
  start-page: 13904
  year: 2010
  ident: ref_109
  article-title: A Liposome-Based Energy Conversion System for Accelerating the Multi-Enzyme Reactions
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp00556h
– volume: 53
  start-page: 9839
  year: 2017
  ident: ref_27
  article-title: H2-Driven Biocatalytic Hydrogenation in Continuous Flow Using Enzyme-Modified Carbon Nanotube Columns
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC04465H
– volume: 20
  start-page: 1100
  year: 2020
  ident: ref_80
  article-title: Multi-Enzyme Cascade Reactions in Metal-Organic Frameworks
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.202000067
– volume: 200
  start-page: 293
  year: 2019
  ident: ref_87
  article-title: Adsorption of Cholesterol Oxidase and Entrapment of Horseradish Peroxidase in Metal-Organic Frameworks for the Colorimetric Biosensing of Cholesterol
  publication-title: Talanta
  doi: 10.1016/j.talanta.2019.03.060
– volume: 117
  start-page: 501
  year: 2018
  ident: ref_121
  article-title: Bioelectrocatalytic and Electrochemical Cascade for Phosphate Sensing with up to 6 Electrons Per Analyte Molecule
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.06.047
– volume: 85
  start-page: 2507
  year: 2013
  ident: ref_99
  article-title: Immobilization Method to Preserve Enzyme Specificity in Biosensors: Consequences for Brain Glutamate Detection
  publication-title: Anal. Chem.
  doi: 10.1021/ac3035794
– volume: 13
  start-page: 305
  year: 2022
  ident: ref_86
  article-title: Hierarchically Encapsulating Enzymes with Multi-Shelled Metal-Organic Frameworks for Tandem Biocatalytic Reactions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-27983-9
– volume: 244
  start-page: 26
  year: 2017
  ident: ref_11
  article-title: Unexpected Co-Immobilization of Lactoferrin and Methylene Blue from Milk Solution on a Nafion/Mwcnt Modified Electrode and Application to Hydrogen Peroxide and Lactoferrin Biosensing
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2017.05.077
– volume: 145
  start-page: 22135
  year: 2023
  ident: ref_6
  article-title: Dynamic DNA Networks-Guided Directional and Orthogonal Transient Biocatalytic Cascades
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c08020
– volume: 12
  start-page: 12274
  year: 2021
  ident: ref_46
  article-title: Clustering of Catalytic Nanocompartments for Enhancing an Extracellular Non-Native Cascade Reaction
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC04267J
– ident: ref_72
  doi: 10.1016/j.bios.2023.115272
– volume: 12
  start-page: 407
  year: 2021
  ident: ref_55
  article-title: A DNA Nanopillar as a Scaffold to Regulate the Ratio and Distance of Mimic Enzymes for an Efficient Cascade Catalytic Platform
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC03584J
– volume: 5
  start-page: 157
  year: 2012
  ident: ref_73
  article-title: Biofuel Cells: Enhanced Enzymatic Bioelectrocatalysis
  publication-title: Annu. Rev. Anal. Chem.
  doi: 10.1146/annurev-anchem-062011-143049
– volume: 6
  start-page: 351
  year: 2021
  ident: ref_57
  article-title: The Biological Applications of DNA Nanomaterials: Current Challenges and Future Directions
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-021-00727-9
– volume: 5
  start-page: 32844
  year: 2020
  ident: ref_14
  article-title: Constructive Optimization of a Multienzymatic Film Based on a Cascade Reaction for Electrochemical Biosensors
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c05521
– volume: 7
  start-page: 44507
  year: 2022
  ident: ref_81
  article-title: Review on Metal–Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c05310
– volume: 5
  start-page: 4979
  year: 2015
  ident: ref_40
  article-title: Bienzyme–Polymer–Graphene Oxide Quaternary Hybrid Biocatalysts: Efficient Substrate Channeling under Chemically and Thermally Denaturing Conditions
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00958
– volume: 373
  start-page: 1254
  year: 2019
  ident: ref_44
  article-title: Recent Progress in Multienzymes Co-Immobilization and Multienzyme System Applications
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.141
– volume: 131
  start-page: 8724
  year: 2009
  ident: ref_74
  article-title: Control of Bioelectrocatalytic Transformations on DNA Scaffolds
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja900718m
– volume: 11
  start-page: 1386
  year: 2016
  ident: ref_12
  article-title: Design of Nanoscale Enzyme Complexes Based on Various Scaffolding Materials for Biomass Conversion and Immobilization
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201600039
– volume: 767
  start-page: 128
  year: 2013
  ident: ref_118
  article-title: Amperometric Biosensor Based on Reductive H2O2 Detection Using Pentacyanoferrate-Bound Polymer for Creatinine Determination
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2012.12.052
– volume: 161
  start-page: H930
  year: 2014
  ident: ref_78
  article-title: Improved Bioelectrocatalytic Oxidation of Sucrose in a Biofuel Cell with an Enzyme Cascade Assembled on a DNA Scaffold
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0761414jes
– volume: 111
  start-page: 2357
  year: 1989
  ident: ref_114
  article-title: Electrical Communication between Redox Centers of Glucose Oxidase and Electrodes Via Electrostatically and Covalently Bound Redox Polymers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00188a091
– volume: 123
  start-page: 5421
  year: 2023
  ident: ref_1
  article-title: From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00397
– volume: 13
  start-page: 7955
  year: 2023
  ident: ref_28
  article-title: Experimental and Theoretical Insights into Bienzymatic Cascade for Mediatorless Bioelectrochemical Ethanol Oxidation with Alcohol and Aldehyde Dehydrogenases
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c01962
– volume: 52
  start-page: 6772
  year: 2013
  ident: ref_8
  article-title: Two Steps in One Pot: Enzyme Cascade for the Synthesis of nor(Pseudo)Ephedrine from Inexpensive Starting Materials
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201300718
– volume: 1
  start-page: 320
  year: 2008
  ident: ref_105
  article-title: Enzyme Catalysed Biofuel Cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b809009b
– volume: 5
  start-page: 114
  year: 2017
  ident: ref_17
  article-title: Enzyme Cascades in Biofuel Cells
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2017.07.010
– volume: 86
  start-page: 446
  year: 2016
  ident: ref_113
  article-title: Polymer-Based Protein Engineering Grown Ferrocene-Containing Redox Polymers Improve Current Generation in an Enzymatic Biofuel Cell
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.06.078
– volume: 5
  start-page: 1068
  year: 2011
  ident: ref_104
  article-title: Review of Glucose Oxidases and Glucose Dehydrogenases: A Bird’s Eye View of Glucose Sensing Enzymes
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/193229681100500507
– volume: 91
  start-page: 183
  year: 2017
  ident: ref_13
  article-title: Ultrasensitive Electrochemical DNA Biosensor Based on Functionalized Gold Clusters/Graphene Nanohybrids Coupling with Exonuclease Iii-Aided Cascade Target Recycling
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.12.017
– volume: 9
  start-page: 4402
  year: 2019
  ident: ref_43
  article-title: Multienzymatic Cascade Reactions via Enzyme Complex by Immobilization
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04921
– volume: 19
  start-page: 2301413
  year: 2023
  ident: ref_69
  article-title: Co-Immobilization of God & Hrp on Y-Shaped DNA Scaffold and the Regulation of Inter-Enzyme Distance
  publication-title: Small
  doi: 10.1002/smll.202301413
– volume: 81
  start-page: 981
  year: 2013
  ident: ref_110
  article-title: Re-Construction of Pentose Phosphate Pathway Coupled with a Bioelectrocatalytic NADPH Oxidation System for Bioanodes of Biofuel Cells
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.81.981
– volume: 13
  start-page: 13677
  year: 2019
  ident: ref_67
  article-title: Enhanced Catalysis from Multienzyme Cascades Assembled on a DNA Origami Triangle
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05746
– volume: 25
  start-page: 9357
  year: 2023
  ident: ref_100
  article-title: Design Principles for a Nanoconfined Enzyme Cascade Electrode Via Reaction–Diffusion Modelling
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D3CP00540B
– ident: ref_108
  doi: 10.1016/j.bioelechem.2022.108254
– volume: 11
  start-page: 138
  year: 2020
  ident: ref_76
  article-title: Programming Bulk Enzyme Heterojunctions for Biosensor Development with Tetrahedral DNA Framework
  publication-title: Nat. Commun.
– volume: 15
  start-page: 2145
  year: 2014
  ident: ref_36
  article-title: Fabrication of Carbon-Felt-Based Multi-Enzyme Immobilized Anodes to Oxidize Sucrose for Biofuel Cells
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201400058
– volume: 4
  start-page: 249
  year: 2009
  ident: ref_59
  article-title: Enzyme Cascades Activated on Topologically Programmed DNA Scaffolds
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.50
– volume: 163
  start-page: F449
  year: 2016
  ident: ref_32
  article-title: Layer-by-Layer Assembly of Carbon Nanotubes Modified with Invertase/Glucose Dehydrogenase Cascade for Sucrose/O2 Biofuel Cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0321606jes
– volume: 140
  start-page: 8074
  year: 2018
  ident: ref_56
  article-title: Selective in situ Assembly of Viral Protein onto DNA Origami
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b03914
– volume: 8
  start-page: 1431
  year: 2010
  ident: ref_4
  article-title: Biocatalysed Concurrent Production of Enantioenriched Compounds through Parallel Interconnected Kinetic Asymmetric Transformations
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/b925377g
– volume: 26
  start-page: 100658
  year: 2021
  ident: ref_20
  article-title: Immobilizing Redox Enzymes at Mesoporous and Nanostructured Electrodes
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2020.100658
– volume: 106
  start-page: 1105
  year: 2006
  ident: ref_29
  article-title: Chemistry of Carbon Nanotubes
  publication-title: Chem. Rev.
  doi: 10.1021/cr050569o
– volume: 124
  start-page: 57
  year: 2018
  ident: ref_92
  article-title: Challenges for Successful Implantation of Biofuel Cells
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2018.05.011
– volume: 5
  start-page: 66
  year: 2017
  ident: ref_107
  article-title: Redox Polymers in Bioelectrochemistry: Common Playgrounds and Novel Concepts
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2017.06.007
– volume: 125
  start-page: 4951
  year: 2003
  ident: ref_122
  article-title: Long Tethers Binding Redox Centers to Polymer Backbones Enhance Electron Transport in Enzyme “Wiring” Hydrogels
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja029510e
SSID ssj0000747937
Score 2.4405887
SecondaryResourceType review_article
Snippet Nanomaterials, including carbon nanotubes, graphene oxide, metal–organic frameworks, metal nanoparticles, and porous carbon, play a crucial role as efficient...
Nanomaterials, including carbon nanotubes, graphene oxide, metal-organic frameworks, metal nanoparticles, and porous carbon, play a crucial role as efficient...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 1018
SubjectTerms Adsorption
Biocatalysts
Biochemical fuel cells
Biodiesel fuels
biofuel cell
Biofuels
Biomarkers
biosensor
Biosensors
Carbon
Carbon nanotubes
Cascade chemical reactions
Catalysis
Dehydrogenases
Electrochemical apparatus
electrode
Electrodes
Electrons
Enzymatic activity
Enzyme activity
enzyme cascade
Enzymes
Graphene
Immobilization
Materials science
Metal-organic frameworks
Nanomaterials
Nanoparticles
Nanotechnology
Nanotubes
Oxidation
Physiological aspects
Polymers
Pore size
Substrates
Textiles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yJz2I31ZXiaB4kLJpmybN8e3jLYugB9mFvZV8TEB4trp977D-9c4k3UdRxIunNu0ckswkM5PM_Iaxt1K7GtkeSonas5TWidKAgtJpraCrvJGBDvQ_fVbnl_LjVXu1KPVFMWEZHjhP3InQVtQgbGxdLbX0NnqnYtNaFTplYkrdQ523cKbSHqzpxEjnSPcG_foT93Wcqobgsqi-x0IHJaj-Pzfk38zMpG7OHrD7s53IV7l_D9kdGB6xewv0wMfsx2b4efMN-NpOFOTON7miDb59gZyuMHE6ZuW4g45omGZZ43YI_IKuB_gqX16n8NgbvksBtBM_xSGgbzteJ0psxT1s-Rq22-kJuzzbXKzPy7mCQumlqndlMJXFqQCNOieADMZREcHYoc1QS2hFdEZ5kMJq2UUBUTXeNiI2VfA-dFA1T9nRMA7wnHHjDSWT1NFVVjpriQmhlZFYQ-2Cfbid097P8OJU5WLbo5tBHOiXHCjYuwP19wyr8Re6U2LPgYbAsNMHFJF-FpH-XyJSsPfE3J6WLHbJ2znzAAdG4Ff9SqMNbDR6hgU7vuV_P6_lqa-NkORVtapgbw6_cRXS1YodYNwnmratBT4K9izLzaHPaBOhkaa7F_9jLC_ZXSp4nwNqjtnR7noPr9As2rnXaQX8Aku4DIE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAaHkFSmUkEAcU1UkcOz6h7WqrCgkOqJX2FvmJkJak3eweyq9nxvGGFYie8hpFtsf2fB6PvyHkHZemBLW7nIP1zLk2LFde-NxIKXxTWMUdOvS_fBUXV_zzsl4mh9uQwip3c2KcqF1v0Ud-WirGEdvW4tP1TY5Zo3B3NaXQuE8eIHUZhnTJpZx8LEgOD-Z3jHevYHV_an70Q1EhaRZm-dizRJGw_99p-S-wGY3O-RPyOKFFOhvVe0ju-e6IPNrjEHxKbhbdr9ufns71gKHudDHmtYG7b348tDBQdLZSmEd7gKdjj6O6c_QSNwnobNzCjkGyt3QTw2gHegZVgBVuv46S8BS2fkXnfrUanpGr88Xl_CJPeRRyy0W5yZ0qNDSFl2B5nOdOGUwlGBpADiX3NQtGCes505I3gfkgKqsrFqrCWesaX1TPyUHXd_4locoqPFJSBlNobrQ2IlSu5sEzHfA5Ix93bdraRDKOuS5WLSw2UAPtvgYy8n6Svh7JNf4jd4bqmWSQEju-6Nff2zTCWiY1K7EctSm55FYHi6WrtXCNUEFl5AMqt8WBC0WyOp0_gIohBVY7k4CElYT1YUaOd_pv04ge2j_9LyNvp88wFnGDRXe-30aZui4ZXDLyYuw3U5kBGQFUk82ru3_-mjzEhPZjwMwxOdist_4NwJ6NOYl9-zeYqAM-
  priority: 102
  providerName: ProQuest
Title Enzyme Cascade Electrode Reactions with Nanomaterials and Their Applicability towards Biosensor and Biofuel Cells
URI https://www.ncbi.nlm.nih.gov/pubmed/38131778
https://www.proquest.com/docview/2904758556
https://www.proquest.com/docview/2905520290
https://doaj.org/article/07a02e0af5b2474cafcb6f35a6d869f9
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdR1ri9NAcLgHyPlBfBs9ywqKHySaxyab_SDSlh6HcIccV-i3sE8RYuI1LVh_vTNJWornfUo2O4HZndmdx87OALzlQidIdhtylJ4hVzoKpctdqIXIXREbyS059C8u8_M5_7rIFgewrTY6TGD7X9OO6knNl9XH3zebL7jgP5PFiSb7J_2jaeOUMmHFxSEco0wStEQvBkW_25MFeZBEH_l-66cTuIeCCyUpFVvbE09dFv_be_U_Gmgnic4ewoNBhWTjnuaP4MDVj-H-XmLBJ3Azq_9sfjo2VS3Fv7NZX-wG365cf5OhZeSBZbi5Nqiz9mzIVG3ZNZ0csHF_rt1Fzm7YqoutbdkER4Nmb7PsILHl165iU1dV7VOYn82up-fhUFwhNDxPVqGVscJZcQLFkXXcSk31BX2B6kTCXRZ5LXPjeKQEL3zkfJ4alUY-ja0xtnBx-gyO6qZ2L4BJI-meSeJ1rLhWSuc-tRn3LlKe2gF82M5paYbM41QAoyrRAiFilPvECODdDvpXn3HjDrgJkWcHQ3myuw_N8ns5LLsyEipKCI9MJ1xwo7wh7DKV2yKXXgbwnohbEn8hSkYNlxJwYJQXqxwLVI-lQKMxgNMt_cstl5aJjDgZXFkewJtdNy5QOnVRtWvWHUyWJRE-Anje880O5y3Xvbyz5xWcUIH7PoDmFI5Wy7V7jWrQSo_gUCzECI4ns8tvV6POmTDquP4vzhUJGA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFTSA3BAvDEUWCQqDsiqH-vHHhBKQqqUthGqUqk3s0-EFOw2ToTCR_GNzNhOiEBw68lee7Sa3Zmdx-7sDMBrnqkIyW58jtrT51IFvrCp9VWWpTYPteCGNvRPJ-n4nH-8SC524Of6LgyFVa5lYiOoTaVpj_wgEgEn2zZJ319e-VQ1ik5X1yU0WrY4tqvv6LLV744-IH33o-hwNB2O_a6qgK95Gi18I0KJetNmKIeN5UYoKqznctSjEbdJ4JRIteWBzHjuAuvSWMs4cHFotDa5DWPs9wbs8hhdmR7sDkaTT2ebXR1KR48Kv42wj2MRHKivVR3GlKaL6ops6b6mRMDfiuAP87ZRc4d34U5nn7J-y1D3YMeW9-H2VtbCB3A1Kn-svlk2lDUF17NRW0kH385se02iZrS9y1ByV2gQtzzOZGnYlI4lWL89NG_Cclds0QTu1myAQ0Cfupo3kNhySztjQzub1Q_h_Frm-BH0yqq0T4AJLegSS-RUKLmSUqUuNgl3NpCO2h68Xc9pobu05lRdY1age0MUKLYp4MH-BvqyTefxD7gBkWcDQ0m4mw_V_EvRrekiyGQQER6JinjGtXSasEtkavJUOOHBGyJuQaICUdKyu_GAA6OkW0U_Q9tbZOiRerC3pn_RyZC6-M3xHrza_MbVT0c6srTVsoFJkijAhwePW77Z4Iy2GBqHWf70_52_hJvj6elJcXI0OX4Gt7CzuA3X2YPeYr60z9HoWqgXHacz-Hzdi-sX9opBwQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BpDQvCAuBMYYCQmHlBUJ3Hi-AGhrmu1MZgQ2qS-Zb6iSV2yNa1Q-TS-jnNyKRUI3vaUODmybJ-r7XMh5A0XOga025CD9gy50iyULnOhFiJzeWQkt3ig__k4OzjlH6fpdIv87GNh0K2yl4mNoLaVwTPyQSwZR9s2zQa-c4v4sj_5cHkVYgUpvGnty2m0JHLkVt9h-1a_P9wHXO_G8WR8MjoIuwoDoeFZvAitjBToUCdAJlvHrdRYZM_noFNj7lLmtcyM40wJnnvmfJYYlTCfRNYYm7sogX5vkJsiSSPkMTEV6_MdTEwPqr_1tU8SyQb6vKqjBBN2YYWRDS3YFAv4WyX8Yeg2Cm9yj9ztLFU6bEnrPtly5QNyZyN_4UNyNS5_rC4cHaka3ezpuK2pA29fXRswUVM86KUgwyswjVtqp6q09AQvKOiwvT5vHHRXdNG48NZ0D6YAu-tq3kBCyy_djI7cbFY_IqfXssKPyXZZle4podJIDGeJvY4U10rpzCc25d4x5bEdkHf9mhamS3COdTZmBWx0EAPFJgYCsruGvmwTe_wDbg_Rs4bBdNzNh2r-rei4u2BCsRjHkeqYC26UNzi6VGU2z6SXAXmLyC1QaMCQjOpiH2BimH6rGAqwwqWAvWlAdnr8F500qYvftB-Q1-vfIAfwckeVrlo2MGkaM3gE5ElLN-sxg1UGZqLIn_2_81fkFrBU8enw-Og5uQ19Ja3fzg7ZXsyX7gVYXwv9siFzSs6um69-AUJoRJE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzyme+Cascade+Electrode+Reactions+with+Nanomaterials+and+Their+Applicability+towards+Biosensor+and+Biofuel+Cells&rft.jtitle=Biosensors+%28Basel%29&rft.au=Kalyana+Sundaram%2C+Shalini+Devi&rft.au=Hossain%2C+Md+Motaher&rft.au=Rezki%2C+Muhammad&rft.au=Ariga%2C+Kotoko&rft.date=2023-12-01&rft.eissn=2079-6374&rft.volume=13&rft.issue=12&rft_id=info:doi/10.3390%2Fbios13121018&rft_id=info%3Apmid%2F38131778&rft.externalDocID=38131778
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-6374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-6374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-6374&client=summon