Enzyme Cascade Electrode Reactions with Nanomaterials and Their Applicability towards Biosensor and Biofuel Cells
Nanomaterials, including carbon nanotubes, graphene oxide, metal–organic frameworks, metal nanoparticles, and porous carbon, play a crucial role as efficient carriers to enhance enzyme activity through substrate channeling while improving enzyme stability and reusability. However, there are signific...
Saved in:
Published in | Biosensors (Basel) Vol. 13; no. 12; p. 1018 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanomaterials, including carbon nanotubes, graphene oxide, metal–organic frameworks, metal nanoparticles, and porous carbon, play a crucial role as efficient carriers to enhance enzyme activity through substrate channeling while improving enzyme stability and reusability. However, there are significant debates surrounding aspects such as enzyme orientation, enzyme loading, retention of enzyme activity, and immobilization techniques. Consequently, these subjects have become the focus of intensive research in the realm of multi-enzyme cascade reactions. Researchers have undertaken the challenge of creating functional in vitro multi-enzyme systems, drawing inspiration from natural multi-enzyme processes within living organisms. Substantial progress has been achieved in designing multi-step reactions that harness the synthetic capabilities of various enzymes, particularly in applications such as biomarker detection (e.g., biosensors) and the development of biofuel cells. This review provides an overview of recent developments in concurrent and sequential approaches involving two or more enzymes in sequence. It delves into the intricacies of multi-enzyme cascade reactions conducted on nanostructured electrodes, addressing both the challenges encountered and the innovative solutions devised in this field. |
---|---|
AbstractList | Nanomaterials, including carbon nanotubes, graphene oxide, metal–organic frameworks, metal nanoparticles, and porous carbon, play a crucial role as efficient carriers to enhance enzyme activity through substrate channeling while improving enzyme stability and reusability. However, there are significant debates surrounding aspects such as enzyme orientation, enzyme loading, retention of enzyme activity, and immobilization techniques. Consequently, these subjects have become the focus of intensive research in the realm of multi-enzyme cascade reactions. Researchers have undertaken the challenge of creating functional in vitro multi-enzyme systems, drawing inspiration from natural multi-enzyme processes within living organisms. Substantial progress has been achieved in designing multi-step reactions that harness the synthetic capabilities of various enzymes, particularly in applications such as biomarker detection (e.g., biosensors) and the development of biofuel cells. This review provides an overview of recent developments in concurrent and sequential approaches involving two or more enzymes in sequence. It delves into the intricacies of multi-enzyme cascade reactions conducted on nanostructured electrodes, addressing both the challenges encountered and the innovative solutions devised in this field. Nanomaterials, including carbon nanotubes, graphene oxide, metal-organic frameworks, metal nanoparticles, and porous carbon, play a crucial role as efficient carriers to enhance enzyme activity through substrate channeling while improving enzyme stability and reusability. However, there are significant debates surrounding aspects such as enzyme orientation, enzyme loading, retention of enzyme activity, and immobilization techniques. Consequently, these subjects have become the focus of intensive research in the realm of multi-enzyme cascade reactions. Researchers have undertaken the challenge of creating functional in vitro multi-enzyme systems, drawing inspiration from natural multi-enzyme processes within living organisms. Substantial progress has been achieved in designing multi-step reactions that harness the synthetic capabilities of various enzymes, particularly in applications such as biomarker detection (e.g., biosensors) and the development of biofuel cells. This review provides an overview of recent developments in concurrent and sequential approaches involving two or more enzymes in sequence. It delves into the intricacies of multi-enzyme cascade reactions conducted on nanostructured electrodes, addressing both the challenges encountered and the innovative solutions devised in this field.Nanomaterials, including carbon nanotubes, graphene oxide, metal-organic frameworks, metal nanoparticles, and porous carbon, play a crucial role as efficient carriers to enhance enzyme activity through substrate channeling while improving enzyme stability and reusability. However, there are significant debates surrounding aspects such as enzyme orientation, enzyme loading, retention of enzyme activity, and immobilization techniques. Consequently, these subjects have become the focus of intensive research in the realm of multi-enzyme cascade reactions. Researchers have undertaken the challenge of creating functional in vitro multi-enzyme systems, drawing inspiration from natural multi-enzyme processes within living organisms. Substantial progress has been achieved in designing multi-step reactions that harness the synthetic capabilities of various enzymes, particularly in applications such as biomarker detection (e.g., biosensors) and the development of biofuel cells. This review provides an overview of recent developments in concurrent and sequential approaches involving two or more enzymes in sequence. It delves into the intricacies of multi-enzyme cascade reactions conducted on nanostructured electrodes, addressing both the challenges encountered and the innovative solutions devised in this field. |
Audience | Academic |
Author | Ariga, Kotoko Hossain, Md. Motaher Kalyana Sundaram, Shalini devi Tsujimura, Seiya Rezki, Muhammad |
Author_xml | – sequence: 1 givenname: Shalini devi surname: Kalyana Sundaram fullname: Kalyana Sundaram, Shalini devi – sequence: 2 givenname: Md. Motaher surname: Hossain fullname: Hossain, Md. Motaher – sequence: 3 givenname: Muhammad surname: Rezki fullname: Rezki, Muhammad – sequence: 4 givenname: Kotoko surname: Ariga fullname: Ariga, Kotoko – sequence: 5 givenname: Seiya orcidid: 0000-0001-9603-2418 surname: Tsujimura fullname: Tsujimura, Seiya |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38131778$$D View this record in MEDLINE/PubMed |
BookMark | eNptktFrFDEQxhep2Fr75rMEfPHBq8kmu9k8Xo9TC0VB6nOYTSZtjt3NNclSzr_eXK-VUszLJMNvvszwzdvqaAoTVtV7Rs85V_RL70NinNWMsu5VdVJTqRYtl-Lo2f24OktpQ8uRQiou31THvCtFUnYn1d16-rMbkawgGbBI1gOaHEO5_UIw2YcpkXufb8kPmMIIGaOHIRGYLLm-RR_JcrsdvIHeDz7vSA73EG0iF6UvnFKID2R5uRkHssJhSO-q165I4NljPK1-f11fr74vrn5-u1wtrxZGtHVeWMWgNIxSKWpRWNU3nWKuY7KpBTbU9ao1KChI0TmKruUGOHWcWWNsh4yfVpcHXRtgo7fRjxB3OoDXD4kQbzTE7M2AmkqgNVJwTV8LKQw407eON9DarlVOFa1PB61tDHczpqxHn0yZBiYMc9K1ok1T0xIK-vEFuglznMqke0rIpmuatlDnB-oGyv9-ciFHMLC3YPSmeOx8yS-llEJJxkQp-PAoO_cj2n_zPDlZgPoAmBhSiui08Rn2BhZlP2hG9X5j9PONKUWfXxQ96f4X_wuxqcFm |
CitedBy_id | crossref_primary_10_1016_j_inoche_2025_114076 crossref_primary_10_35848_1347_4065_ad4ad8 crossref_primary_10_1039_D4SC05575F crossref_primary_10_3390_molecules29133168 crossref_primary_10_1007_s10904_024_03065_9 crossref_primary_10_3389_fbael_2024_1422400 crossref_primary_10_3390_ijms25052746 crossref_primary_10_3390_mi15020282 crossref_primary_10_1002_rpm_20240011 crossref_primary_10_1038_s43246_024_00557_6 crossref_primary_10_1002_adhm_202401834 crossref_primary_10_1039_D4CC03243H crossref_primary_10_1016_j_electacta_2024_145054 crossref_primary_10_1021_acsnano_4c08186 crossref_primary_10_1002_anbr_202400136 crossref_primary_10_1039_D4NR00609G crossref_primary_10_3390_ma17235918 crossref_primary_10_3390_ma17040936 crossref_primary_10_3390_ma17010271 crossref_primary_10_1039_D4CP00724G crossref_primary_10_1088_1361_648X_ad906c crossref_primary_10_1002_cphc_202400596 crossref_primary_10_1039_D3CC04952C crossref_primary_10_1016_j_cis_2025_103420 crossref_primary_10_1002_chem_202401256 crossref_primary_10_34133_research_0624 |
Cites_doi | 10.1021/acsami.9b18702 10.1002/anie.201710418 10.1002/btpr.2010 10.1039/D1CC01707A 10.1246/cl.210064 10.1039/C3RA45991H 10.1016/j.coelec.2022.101049 10.1016/j.ijhydene.2015.06.108 10.1021/ja072410u 10.1016/j.cej.2019.01.138 10.1021/acsenergylett.7b00134 10.1016/S0022-0728(97)00393-8 10.1021/acssensors.3c00490 10.1038/nprot.2016.139 10.3390/bios11020041 10.1016/j.bios.2013.07.021 10.1126/sciadv.adh1415 10.1038/s41467-022-33122-1 10.1039/C9CC04661E 10.1007/s00253-022-12315-0 10.1039/b313149a 10.1016/j.jelechem.2017.12.041 10.1126/science.1214081 10.1021/acs.analchem.7b02210 10.1002/elan.201800487 10.1021/acsami.8b12374 10.1515/znc-2018-0146 10.1002/adsc.201100256 10.1016/j.bios.2020.112827 10.1002/celc.201600864 10.1038/s41565-019-0542-7 10.1021/ac202647z 10.1002/celc.201800370 10.1146/annurev-physchem-090519-050109 10.1039/D3GC01898A 10.1016/j.jelechem.2019.04.012 10.1016/j.aca.2020.07.051 10.3390/s20123517 10.2116/analsci.17.945 10.1126/science.aam5488 10.1021/acs.analchem.8b05407 10.1021/acsnano.9b01025 10.1002/chem.202301351 10.1038/s41929-020-00524-7 10.1016/j.copbio.2007.03.007 10.1038/nchem.2459 10.3390/bios11010016 10.1039/c3py21118e 10.1002/celc.202100843 10.1149/2.0931809jes 10.1021/acs.chemrev.7b00033 10.1016/j.carbon.2010.03.064 10.3390/molecules27196309 10.1016/j.coelec.2019.03.003 10.1002/jctb.6296 10.1016/j.jpowsour.2021.229935 10.1016/j.jpowsour.2019.04.064 10.1021/cs4003832 10.1002/anie.201108199 10.1021/acs.chemrev.9b00115 10.1038/s43586-020-00009-8 10.1038/nature22504 10.1016/j.ijbiomac.2018.09.144 10.1021/acsami.7b12295 10.1002/adfm.202215023 10.1038/s41929-018-0117-2 10.1039/c3gc42545b 10.1021/acsami.1c04680 10.1021/jz1002007 10.1039/C5CC05136C 10.1021/acsami.0c11186 10.1002/adfm.202211669 10.1021/jacsau.1c00387 10.1016/j.jelechem.2017.09.001 10.1021/acs.langmuir.3c00879 10.1021/ja101326b 10.1039/c0cp00556h 10.1039/C7CC04465H 10.1002/tcr.202000067 10.1016/j.talanta.2019.03.060 10.1016/j.bios.2018.06.047 10.1021/ac3035794 10.1038/s41467-022-27983-9 10.1016/j.electacta.2017.05.077 10.1021/jacs.3c08020 10.1039/D1SC04267J 10.1016/j.bios.2023.115272 10.1039/D0SC03584J 10.1146/annurev-anchem-062011-143049 10.1038/s41392-021-00727-9 10.1021/acsomega.0c05521 10.1021/acsomega.2c05310 10.1021/acscatal.5b00958 10.1016/j.cej.2019.05.141 10.1021/ja900718m 10.1002/biot.201600039 10.1016/j.aca.2012.12.052 10.1149/2.0761414jes 10.1021/ja00188a091 10.1021/acs.chemrev.2c00397 10.1021/acscatal.3c01962 10.1002/anie.201300718 10.1039/b809009b 10.1016/j.coelec.2017.07.010 10.1016/j.bios.2016.06.078 10.1177/193229681100500507 10.1016/j.bios.2016.12.017 10.1021/acscatal.8b04921 10.1002/smll.202301413 10.5796/electrochemistry.81.981 10.1021/acsnano.9b05746 10.1039/D3CP00540B 10.1016/j.bioelechem.2022.108254 10.1002/cphc.201400058 10.1038/nnano.2009.50 10.1149/2.0321606jes 10.1021/jacs.8b03914 10.1039/b925377g 10.1016/j.coelec.2020.100658 10.1021/cr050569o 10.1016/j.bioelechem.2018.05.011 10.1016/j.coelec.2017.06.007 10.1021/ja029510e |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 3V. 7QL 7T5 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.3390/bios13121018 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Immunology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-6374 |
ExternalDocumentID | oai_doaj_org_article_07a02e0af5b2474cafcb6f35a6d869f9 A777497114 38131778 10_3390_bios13121018 |
Genre | Journal Article Review |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 22F20049 – fundername: Ministry of Education, Culture, Sports, Science and Technology grantid: 223216 |
GroupedDBID | .4S .DC 2XV 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAYXX ABUWG ADBBV ADMLS AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM TUS UKHRP NPM PMFND 3V. 7QL 7T5 7XB 8FK AZQEC C1K DWQXO GNUQQ H94 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c462t-d91a074e7990de4d9b5891f817524e50fb96ce40a748f0ef63ca30f31dccd8e13 |
IEDL.DBID | M48 |
ISSN | 2079-6374 |
IngestDate | Wed Aug 27 01:01:33 EDT 2025 Fri Jul 11 10:07:31 EDT 2025 Fri Jul 25 10:46:43 EDT 2025 Tue Jun 10 21:02:02 EDT 2025 Thu Apr 03 07:04:29 EDT 2025 Tue Jul 01 02:24:42 EDT 2025 Thu Apr 24 22:52:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | electrode biofuel cell nanomaterials biosensor enzyme cascade |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-d91a074e7990de4d9b5891f817524e50fb96ce40a748f0ef63ca30f31dccd8e13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9603-2418 0000-0001-6427-1385 |
OpenAccessLink | https://www.proquest.com/docview/2904758556?pq-origsite=%requestingapplication% |
PMID | 38131778 |
PQID | 2904758556 |
PQPubID | 2032424 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_07a02e0af5b2474cafcb6f35a6d869f9 proquest_miscellaneous_2905520290 proquest_journals_2904758556 gale_infotracacademiconefile_A777497114 pubmed_primary_38131778 crossref_citationtrail_10_3390_bios13121018 crossref_primary_10_3390_bios13121018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Biosensors (Basel) |
PublicationTitleAlternate | Biosensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Qin (ref_58) 2023; 33 Macazo (ref_17) 2017; 5 Ferri (ref_104) 2011; 5 Yasujima (ref_38) 2018; 5 Wu (ref_82) 2015; 51 Lee (ref_15) 2021; 72 Shitanda (ref_24) 2021; 50 ref_16 Dey (ref_48) 2021; 1 Niiyama (ref_23) 2019; 427 Bisogno (ref_4) 2010; 8 Song (ref_45) 2019; 363 Douglas (ref_60) 2012; 335 Zhou (ref_56) 2018; 140 Nakata (ref_61) 2012; 51 Chhabra (ref_63) 2007; 129 Vasylieva (ref_99) 2013; 85 Wang (ref_79) 2020; 1131 Nakabayashi (ref_119) 2001; 17 Hossain (ref_94) 2021; 57 Hyeon (ref_12) 2016; 11 Zebda (ref_92) 2018; 124 Maffeis (ref_46) 2021; 12 Wang (ref_5) 2022; 13 Toda (ref_102) 2021; 8 Gracia (ref_111) 2013; 4 Ge (ref_68) 2019; 11 ref_124 Shitanda (ref_19) 2023; 8 Hickey (ref_116) 2013; 3 Franco (ref_34) 2018; 165 Qiao (ref_95) 2023; 25 Bauler (ref_96) 2010; 1 Man (ref_86) 2022; 13 Piperberg (ref_74) 2009; 131 Ricca (ref_9) 2011; 353 Fu (ref_64) 2016; 11 ref_72 Devi (ref_11) 2017; 244 Kou (ref_65) 2017; 89 Xiao (ref_93) 2019; 119 ref_77 Zhang (ref_42) 2020; 95 Campbell (ref_113) 2016; 86 Kopiec (ref_121) 2018; 117 Fu (ref_91) 2018; 30 Minteer (ref_106) 2007; 18 Wang (ref_70) 2019; 91 Ruff (ref_123) 2017; 4 Armstrong (ref_1) 2023; 123 Kou (ref_55) 2021; 12 Wang (ref_71) 2020; 12 Lau (ref_117) 2015; 40 Wu (ref_37) 2017; 9 Morishita (ref_21) 2010; 48 Chen (ref_83) 2018; 1 Liang (ref_80) 2020; 20 Sehl (ref_8) 2013; 52 Tasis (ref_29) 2006; 106 Adachi (ref_28) 2023; 13 Zafar (ref_120) 2011; 84 Zor (ref_27) 2017; 53 Lin (ref_51) 2023; 33 Mao (ref_122) 2003; 125 Barbosa (ref_98) 2014; 4 Calvente (ref_20) 2021; 26 ref_50 Song (ref_76) 2020; 11 Chu (ref_69) 2023; 19 Zhao (ref_41) 2014; 16 Fernando (ref_84) 2023; 39 Xia (ref_85) 2021; 13 Ren (ref_44) 2019; 373 Heller (ref_112) 2004; 6 Engelhardt (ref_49) 2019; 13 Contaldo (ref_33) 2023; 29 Adeel (ref_39) 2018; 120 Giroud (ref_78) 2014; 161 Hwang (ref_43) 2019; 9 Yusuf (ref_81) 2022; 7 Kahn (ref_54) 2022; 2 Peters (ref_2) 2019; 74 Du (ref_30) 2015; 31 Praetorius (ref_62) 2017; 355 Neto (ref_97) 2018; 812 Degani (ref_114) 1989; 111 Schrittwieser (ref_3) 2018; 118 Ouyang (ref_6) 2023; 145 Yuan (ref_115) 2019; 15 Ngo (ref_47) 2019; 55 Zhao (ref_87) 2019; 200 Zhang (ref_89) 2023; 9 Cooney (ref_105) 2008; 1 Moehlenbrock (ref_103) 2010; 132 Kostrz (ref_53) 2019; 14 Palmore (ref_18) 1998; 443 Xia (ref_75) 2017; 2 Wheeldon (ref_101) 2016; 8 Handa (ref_36) 2014; 15 Zhang (ref_32) 2016; 163 Siritanaratkul (ref_100) 2023; 25 Wang (ref_13) 2017; 91 Zore (ref_40) 2015; 5 ref_35 Krall (ref_66) 2017; 546 Wang (ref_7) 2020; 3 Ruff (ref_107) 2017; 5 Wilner (ref_59) 2009; 4 Klein (ref_67) 2019; 13 Du (ref_52) 2023; 107 Meredith (ref_73) 2012; 5 Nieh (ref_118) 2013; 767 Wang (ref_90) 2017; 56 Mazurenko (ref_22) 2018; 812 ref_108 Ma (ref_57) 2021; 6 Yimamumaimaiti (ref_88) 2020; 12 Shitanda (ref_25) 2021; 498 Kawai (ref_26) 2019; 841 Sakai (ref_110) 2013; 81 Matsumoto (ref_109) 2010; 12 Blank (ref_10) 2022; 35 Lang (ref_31) 2014; 51 Sasaki (ref_14) 2020; 5 |
References_xml | – volume: 12 start-page: 2871 year: 2020 ident: ref_71 article-title: Lattice-Like DNA Tetrahedron Nanostructure as Scaffold to Locate Gox and Hrp Enzymes for Highly Efficient Enzyme Cascade Reaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b18702 – volume: 56 start-page: 16082 year: 2017 ident: ref_90 article-title: GOx@ZIF-8(NiPd) Nanoflower: An Artificial Enzyme System for Tandem Catalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710418 – volume: 31 start-page: 42 year: 2015 ident: ref_30 article-title: A Two-Enzyme Immobilization Approach Using Carbon Nanotubes/Silica as Support publication-title: Biotechnol. Prog. doi: 10.1002/btpr.2010 – volume: 57 start-page: 6999 year: 2021 ident: ref_94 article-title: Designing a Cross-Linked Redox Network for a Mediated Enzyme-Based Electrode publication-title: Chem. Commun. doi: 10.1039/D1CC01707A – volume: 50 start-page: 1160 year: 2021 ident: ref_24 article-title: High Capacity Lactate Biofuel Cell Using Enzyme Cascade without Nad publication-title: Chem. Lett. doi: 10.1246/cl.210064 – volume: 4 start-page: 1583 year: 2014 ident: ref_98 article-title: Glutaraldehyde in Bio-Catalysts Design: A Useful Crosslinker and a Versatile Tool in Enzyme Immobilization publication-title: RSC Adv. doi: 10.1039/C3RA45991H – volume: 35 start-page: 101049 year: 2022 ident: ref_10 article-title: Electrochemical Cascade Reactions for Electro-Organic Synthesis publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2022.101049 – volume: 40 start-page: 14661 year: 2015 ident: ref_117 article-title: Paper Based Biofuel Cells: Incorporating Enzymatic Cascades for Ethanol and Methanol Oxidation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.06.108 – volume: 129 start-page: 10304 year: 2007 ident: ref_63 article-title: Spatially Addressable Multiprotein Nanoarrays Templated by Aptamer-Tagged DNA Nanoarchitectures publication-title: J. Am. Chem. Soc. doi: 10.1021/ja072410u – volume: 363 start-page: 174 year: 2019 ident: ref_45 article-title: Construction of Multiple Enzyme Metal–Organic Frameworks Biocatalyst Via DNA Scaffold: A Promising Strategy for Enzyme Encapsulation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.138 – volume: 2 start-page: 1435 year: 2017 ident: ref_75 article-title: Improving the Performance of Methanol Biofuel Cells Utilizing an Enzyme Cascade Bioanode with DNA-Bridged Substrate Channeling publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00134 – volume: 443 start-page: 155 year: 1998 ident: ref_18 article-title: A Methanol/Dioxygen Biofuel Cell That Uses Nad+-Dependent Dehydrogenases as Catalysts: Application of an Electro-Enzymatic Method to Regenerate Nicotinamide Adenine Dinucleotide at Low Overpotentials publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(97)00393-8 – volume: 8 start-page: 2368 year: 2023 ident: ref_19 article-title: Air-Bubble-Insensitive Microfluidic Lactate Biosensor for Continuous Monitoring of Lactate in Sweat publication-title: ACS Sens. doi: 10.1021/acssensors.3c00490 – volume: 11 start-page: 2243 year: 2016 ident: ref_64 article-title: Assembly of Multienzyme Complexes on DNA Nanostructures publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.139 – ident: ref_16 doi: 10.3390/bios11020041 – volume: 51 start-page: 158 year: 2014 ident: ref_31 article-title: Co-Immobilization of Glucoamylase and Glucose Oxidase for Electrochemical Sequential Enzyme Electrode for Starch Biosensor and Biofuel Cell publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.07.021 – volume: 9 start-page: eadh1415 year: 2023 ident: ref_89 article-title: Self-Powered Enzyme-Linked Microneedle Patch for Scar-Prevention Healing of Diabetic Wounds publication-title: Sci. Adv. doi: 10.1126/sciadv.adh1415 – volume: 13 start-page: 5436 year: 2022 ident: ref_5 article-title: Enzymatic Synthesis of Benzylisoquinoline Alkaloids Using a Parallel Cascade Strategy and Tyrosinase Variants publication-title: Nat. Commun. doi: 10.1038/s41467-022-33122-1 – volume: 55 start-page: 12428 year: 2019 ident: ref_47 article-title: Protein Adaptors Assemble Functional Proteins on DNA Scaffolds publication-title: Chem. Commun. doi: 10.1039/C9CC04661E – volume: 107 start-page: 9 year: 2023 ident: ref_52 article-title: Nucleic Acid-Based Scaffold Systems and Application in Enzyme Cascade Catalysis publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-022-12315-0 – volume: 6 start-page: 209 year: 2004 ident: ref_112 article-title: Miniature Biofuel Cells publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b313149a – volume: 812 start-page: 221 year: 2018 ident: ref_22 article-title: Pore Size Effect of Mgo-Templated Carbon on Enzymatic H2 Oxidation by the Hyperthermophilic Hydrogenase from Aquifex Aeolicus publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2017.12.041 – volume: 335 start-page: 831 year: 2012 ident: ref_60 article-title: A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads publication-title: Science doi: 10.1126/science.1214081 – volume: 89 start-page: 9383 year: 2017 ident: ref_65 article-title: PtNPs as Scaffolds to Regulate Interenzyme Distance for Construction of Efficient Enzyme Cascade Amplification for Ultrasensitive Electrochemical Detection of MMP-2 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b02210 – volume: 30 start-page: 2535 year: 2018 ident: ref_91 article-title: Recent Advances in the Construction of Biofuel Cells Based Self-Powered Electrochemical Biosensors: A Review publication-title: Electroanalysis doi: 10.1002/elan.201800487 – volume: 11 start-page: 13881 year: 2019 ident: ref_68 article-title: Constructing Submonolayer DNA Origami Scaffold on Gold Electrode for Wiring of Redox Enzymatic Cascade Pathways publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b12374 – volume: 74 start-page: 63 year: 2019 ident: ref_2 article-title: Linear Enzyme Cascade for the Production of (–)-Iso-Isopulegol publication-title: Z. Für Naturforschung C doi: 10.1515/znc-2018-0146 – volume: 353 start-page: 2239 year: 2011 ident: ref_9 article-title: Multi-Enzymatic Cascade Reactions: Overview and Perspectives publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201100256 – ident: ref_77 doi: 10.1016/j.bios.2020.112827 – volume: 4 start-page: 890 year: 2017 ident: ref_123 article-title: A Self-Powered Ethanol Biosensor publication-title: ChemElectroChem doi: 10.1002/celc.201600864 – volume: 14 start-page: 988 year: 2019 ident: ref_53 article-title: A Modular DNA Scaffold to Study Protein–Protein Interactions at Single-Molecule Resolution publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0542-7 – volume: 84 start-page: 334 year: 2011 ident: ref_120 article-title: Electron-Transfer Studies with a New Flavin Adenine Dinucleotide Dependent Glucose Dehydrogenase and Osmium Polymers of Different Redox Potentials publication-title: Anal. Chem. doi: 10.1021/ac202647z – volume: 5 start-page: 2271 year: 2018 ident: ref_38 article-title: Multi-Enzyme Immobilized Anodes Utilizing Maltose Fuel for Biofuel Cell Applications publication-title: ChemElectroChem doi: 10.1002/celc.201800370 – volume: 72 start-page: 467 year: 2021 ident: ref_15 article-title: Cascaded Biocatalysis and Bioelectrocatalysis: Overview and Recent Advances publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-090519-050109 – volume: 25 start-page: 7547 year: 2023 ident: ref_95 article-title: Designing an Enzyme Assembly Line for Green Cascade Processes Using Bio-Orthogonal Chemistry publication-title: Green Chem. doi: 10.1039/D3GC01898A – volume: 841 start-page: 73 year: 2019 ident: ref_26 article-title: Performance Analysis of an Oxidase/Peroxidase-Based Mediatorless Amperometric Biosensor publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2019.04.012 – volume: 1131 start-page: 118 year: 2020 ident: ref_79 article-title: Catalase Active Metal-Organic Framework Synthesized by Ligand Regulation for the Dual Detection of Glucose and Cysteine publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2020.07.051 – ident: ref_124 doi: 10.3390/s20123517 – volume: 17 start-page: 945 year: 2001 ident: ref_119 article-title: Evaluation of Osmium(II) Complexes as Electron Transfer Mediators Accessible for Amperometric Glucose Sensors publication-title: Anal. Sci. doi: 10.2116/analsci.17.945 – volume: 355 start-page: eaam5488 year: 2017 ident: ref_62 article-title: Self-Assembly of Genetically Encoded DNA-Protein Hybrid Nanoscale Shapes publication-title: Science doi: 10.1126/science.aam5488 – volume: 91 start-page: 3561 year: 2019 ident: ref_70 article-title: Precise Regulation of Enzyme Cascade Catalytic Efficiency with DNA Tetrahedron as Scaffold for Ultrasensitive Electrochemical Detection of DNA publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b05407 – volume: 13 start-page: 5015 year: 2019 ident: ref_49 article-title: Custom-Size, Functional, and Durable DNA Origami with Design-Specific Scaffolds publication-title: ACS Nano doi: 10.1021/acsnano.9b01025 – volume: 29 start-page: e202301351 year: 2023 ident: ref_33 article-title: Optimising Electrical Interfacing between the Trimeric Copper Nitrite Reductase and Carbon Nanotubes publication-title: Chem.–A Eur. J. doi: 10.1002/chem.202301351 – volume: 3 start-page: 941 year: 2020 ident: ref_7 article-title: Controlling Biocatalytic Cascades with Enzyme–DNA Dynamic Networks publication-title: Nat. Catal. doi: 10.1038/s41929-020-00524-7 – volume: 18 start-page: 228 year: 2007 ident: ref_106 article-title: Enzyme-Based Biofuel Cells publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2007.03.007 – volume: 8 start-page: 299 year: 2016 ident: ref_101 article-title: Substrate Channelling as an Approach to Cascade Reactions publication-title: Nat. Chem. doi: 10.1038/nchem.2459 – ident: ref_35 doi: 10.3390/bios11010016 – volume: 4 start-page: 2206 year: 2013 ident: ref_111 article-title: Polymers with Redox Properties: Materials for Batteries, Biosensors and More publication-title: Polym. Chem. doi: 10.1039/c3py21118e – volume: 8 start-page: 4199 year: 2021 ident: ref_102 article-title: Multi-Enzyme-Modified Bioanode Utilising Starch as a Fuel publication-title: ChemElectroChem doi: 10.1002/celc.202100843 – volume: 165 start-page: H575 year: 2018 ident: ref_34 article-title: Product Analysis of Operating an Ethanol/O2 Biofuel Cell Shows the Synergy between Enzymes within an Enzymatic Cascade publication-title: J. Electrochem. Soc. doi: 10.1149/2.0931809jes – volume: 118 start-page: 270 year: 2018 ident: ref_3 article-title: Artificial Biocatalytic Linear Cascades for Preparation of Organic Molecules publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00033 – volume: 48 start-page: 2690 year: 2010 ident: ref_21 article-title: A Review of the Control of Pore Structure in Mgo-Templated Nanoporous Carbons publication-title: Carbon doi: 10.1016/j.carbon.2010.03.064 – ident: ref_50 doi: 10.3390/molecules27196309 – volume: 15 start-page: 1 year: 2019 ident: ref_115 article-title: Redox Polymers in Electrochemical Systems: From Methods of Mediation to Energy Storage publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2019.03.003 – volume: 95 start-page: 1116 year: 2020 ident: ref_42 article-title: Co-Immobilization of Cellulase and Glucose Oxidase on Graphene Oxide by Covalent Bonds: A Biocatalytic System for One-Pot Conversion of Gluconic Acid from Carboxymethyl Cellulose publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.6296 – volume: 498 start-page: 229935 year: 2021 ident: ref_25 article-title: High-Performance, Two-Step/Bi-Enzyme Lactate Biofuel Cell with Lactate Oxidase and Pyruvate Oxidase publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.229935 – volume: 427 start-page: 49 year: 2019 ident: ref_23 article-title: High-Performance Enzymatic Biofuel Cell Based on Flexible Carbon Cloth Modified with Mgo-Templated Porous Carbon publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.04.064 – volume: 3 start-page: 2729 year: 2013 ident: ref_116 article-title: Enzyme Cascade for Catalyzing Sucrose Oxidation in a Biofuel Cell publication-title: ACS Catal. doi: 10.1021/cs4003832 – volume: 51 start-page: 2421 year: 2012 ident: ref_61 article-title: Zinc-Finger Proteins for Site-Specific Protein Positioning on DNA-Origami Structures publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201108199 – volume: 119 start-page: 9509 year: 2019 ident: ref_93 article-title: Tackling the Challenges of Enzymatic (Bio)Fuel Cells publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00115 – volume: 1 start-page: 13 year: 2021 ident: ref_48 article-title: DNA Origami publication-title: Nat. Rev. Methods Primers doi: 10.1038/s43586-020-00009-8 – volume: 546 start-page: 357 year: 2017 ident: ref_66 article-title: Division Enzyme Regulates Metabolism publication-title: Nature doi: 10.1038/nature22504 – volume: 120 start-page: 1430 year: 2018 ident: ref_39 article-title: Graphene and Graphene Oxide: Functionalization and Nano-Bio-Catalytic System for Enzyme Immobilization and Biotechnological Perspective publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.09.144 – volume: 9 start-page: 40978 year: 2017 ident: ref_37 article-title: Methanol/Oxygen Enzymatic Biofuel Cell Using Laccase and Nad+-Dependent Dehydrogenase Cascades as Biocatalysts on Carbon Nanodots Electrodes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b12295 – volume: 33 start-page: 2215023 year: 2023 ident: ref_51 article-title: Dynamic Assembly of Cascade Enzymes by the Shape Transformation of a DNA Scaffold publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202215023 – volume: 1 start-page: 689 year: 2018 ident: ref_83 article-title: Biocatalytic Cascades Driven by Enzymes Encapsulated in Metal–Organic Framework Nanoparticles publication-title: Nat. Catal. doi: 10.1038/s41929-018-0117-2 – volume: 16 start-page: 2558 year: 2014 ident: ref_41 article-title: Co-Immobilization of Multi-Enzyme on Control-Reduced Graphene Oxide by Non-Covalent Bonds: An Artificial Biocatalytic System for the One-Pot Production of Gluconic Acid from Starch publication-title: Green Chem. doi: 10.1039/c3gc42545b – volume: 13 start-page: 22240 year: 2021 ident: ref_85 article-title: Enzymatic Cascade Reactions Mediated by Highly Efficient Biomimetic Quasi Metal–Organic Frameworks publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c04680 – volume: 1 start-page: 1332 year: 2010 ident: ref_96 article-title: Channeling by Proximity: The Catalytic Advantages of Active Site Colocalization Using Brownian Dynamics publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz1002007 – volume: 51 start-page: 13408 year: 2015 ident: ref_82 article-title: Facile Synthesis of Multiple Enzyme-Containing Metal–Organic Frameworks in a Biomolecule-Friendly Environment publication-title: Chem. Commun. doi: 10.1039/C5CC05136C – volume: 12 start-page: 41429 year: 2020 ident: ref_88 article-title: Efficient Blood-Toleration Enzymatic Biofuel Cell Via in situ Protection of an Enzyme Catalyst publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c11186 – volume: 33 start-page: 2211669 year: 2023 ident: ref_58 article-title: DNA-Based Materials Inspired by Natural Extracellular DNA publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202211669 – volume: 2 start-page: 357 year: 2022 ident: ref_54 article-title: Cascaded Enzyme Reactions over a Three-Dimensional, Wireframe DNA Origami Scaffold publication-title: JACS Au doi: 10.1021/jacsau.1c00387 – volume: 812 start-page: 153 year: 2018 ident: ref_97 article-title: Developing Ethanol Bioanodes Using a Hydrophobically Modified Linear Polyethylenimine Hydrogel for Immobilizing an Enzyme Cascade publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2017.09.001 – volume: 39 start-page: 7979 year: 2023 ident: ref_84 article-title: In situ Immobilization of Multi-Enzymes for Enhanced Substrate Channeling of Enzyme Cascade Reactions: A Nanoarchitectonics Approach by Directed Metal–Organic Frameworks publication-title: Langmuir doi: 10.1021/acs.langmuir.3c00879 – volume: 132 start-page: 6288 year: 2010 ident: ref_103 article-title: Metabolon Catalyzed Pyruvate/Air Biofuel Cell publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101326b – volume: 12 start-page: 13904 year: 2010 ident: ref_109 article-title: A Liposome-Based Energy Conversion System for Accelerating the Multi-Enzyme Reactions publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp00556h – volume: 53 start-page: 9839 year: 2017 ident: ref_27 article-title: H2-Driven Biocatalytic Hydrogenation in Continuous Flow Using Enzyme-Modified Carbon Nanotube Columns publication-title: Chem. Commun. doi: 10.1039/C7CC04465H – volume: 20 start-page: 1100 year: 2020 ident: ref_80 article-title: Multi-Enzyme Cascade Reactions in Metal-Organic Frameworks publication-title: Chem. Rec. doi: 10.1002/tcr.202000067 – volume: 200 start-page: 293 year: 2019 ident: ref_87 article-title: Adsorption of Cholesterol Oxidase and Entrapment of Horseradish Peroxidase in Metal-Organic Frameworks for the Colorimetric Biosensing of Cholesterol publication-title: Talanta doi: 10.1016/j.talanta.2019.03.060 – volume: 117 start-page: 501 year: 2018 ident: ref_121 article-title: Bioelectrocatalytic and Electrochemical Cascade for Phosphate Sensing with up to 6 Electrons Per Analyte Molecule publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.06.047 – volume: 85 start-page: 2507 year: 2013 ident: ref_99 article-title: Immobilization Method to Preserve Enzyme Specificity in Biosensors: Consequences for Brain Glutamate Detection publication-title: Anal. Chem. doi: 10.1021/ac3035794 – volume: 13 start-page: 305 year: 2022 ident: ref_86 article-title: Hierarchically Encapsulating Enzymes with Multi-Shelled Metal-Organic Frameworks for Tandem Biocatalytic Reactions publication-title: Nat. Commun. doi: 10.1038/s41467-022-27983-9 – volume: 244 start-page: 26 year: 2017 ident: ref_11 article-title: Unexpected Co-Immobilization of Lactoferrin and Methylene Blue from Milk Solution on a Nafion/Mwcnt Modified Electrode and Application to Hydrogen Peroxide and Lactoferrin Biosensing publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2017.05.077 – volume: 145 start-page: 22135 year: 2023 ident: ref_6 article-title: Dynamic DNA Networks-Guided Directional and Orthogonal Transient Biocatalytic Cascades publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c08020 – volume: 12 start-page: 12274 year: 2021 ident: ref_46 article-title: Clustering of Catalytic Nanocompartments for Enhancing an Extracellular Non-Native Cascade Reaction publication-title: Chem. Sci. doi: 10.1039/D1SC04267J – ident: ref_72 doi: 10.1016/j.bios.2023.115272 – volume: 12 start-page: 407 year: 2021 ident: ref_55 article-title: A DNA Nanopillar as a Scaffold to Regulate the Ratio and Distance of Mimic Enzymes for an Efficient Cascade Catalytic Platform publication-title: Chem. Sci. doi: 10.1039/D0SC03584J – volume: 5 start-page: 157 year: 2012 ident: ref_73 article-title: Biofuel Cells: Enhanced Enzymatic Bioelectrocatalysis publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev-anchem-062011-143049 – volume: 6 start-page: 351 year: 2021 ident: ref_57 article-title: The Biological Applications of DNA Nanomaterials: Current Challenges and Future Directions publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-021-00727-9 – volume: 5 start-page: 32844 year: 2020 ident: ref_14 article-title: Constructive Optimization of a Multienzymatic Film Based on a Cascade Reaction for Electrochemical Biosensors publication-title: ACS Omega doi: 10.1021/acsomega.0c05521 – volume: 7 start-page: 44507 year: 2022 ident: ref_81 article-title: Review on Metal–Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment publication-title: ACS Omega doi: 10.1021/acsomega.2c05310 – volume: 5 start-page: 4979 year: 2015 ident: ref_40 article-title: Bienzyme–Polymer–Graphene Oxide Quaternary Hybrid Biocatalysts: Efficient Substrate Channeling under Chemically and Thermally Denaturing Conditions publication-title: ACS Catal. doi: 10.1021/acscatal.5b00958 – volume: 373 start-page: 1254 year: 2019 ident: ref_44 article-title: Recent Progress in Multienzymes Co-Immobilization and Multienzyme System Applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.141 – volume: 131 start-page: 8724 year: 2009 ident: ref_74 article-title: Control of Bioelectrocatalytic Transformations on DNA Scaffolds publication-title: J. Am. Chem. Soc. doi: 10.1021/ja900718m – volume: 11 start-page: 1386 year: 2016 ident: ref_12 article-title: Design of Nanoscale Enzyme Complexes Based on Various Scaffolding Materials for Biomass Conversion and Immobilization publication-title: Biotechnol. J. doi: 10.1002/biot.201600039 – volume: 767 start-page: 128 year: 2013 ident: ref_118 article-title: Amperometric Biosensor Based on Reductive H2O2 Detection Using Pentacyanoferrate-Bound Polymer for Creatinine Determination publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2012.12.052 – volume: 161 start-page: H930 year: 2014 ident: ref_78 article-title: Improved Bioelectrocatalytic Oxidation of Sucrose in a Biofuel Cell with an Enzyme Cascade Assembled on a DNA Scaffold publication-title: J. Electrochem. Soc. doi: 10.1149/2.0761414jes – volume: 111 start-page: 2357 year: 1989 ident: ref_114 article-title: Electrical Communication between Redox Centers of Glucose Oxidase and Electrodes Via Electrostatically and Covalently Bound Redox Polymers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00188a091 – volume: 123 start-page: 5421 year: 2023 ident: ref_1 article-title: From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00397 – volume: 13 start-page: 7955 year: 2023 ident: ref_28 article-title: Experimental and Theoretical Insights into Bienzymatic Cascade for Mediatorless Bioelectrochemical Ethanol Oxidation with Alcohol and Aldehyde Dehydrogenases publication-title: ACS Catal. doi: 10.1021/acscatal.3c01962 – volume: 52 start-page: 6772 year: 2013 ident: ref_8 article-title: Two Steps in One Pot: Enzyme Cascade for the Synthesis of nor(Pseudo)Ephedrine from Inexpensive Starting Materials publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201300718 – volume: 1 start-page: 320 year: 2008 ident: ref_105 article-title: Enzyme Catalysed Biofuel Cells publication-title: Energy Environ. Sci. doi: 10.1039/b809009b – volume: 5 start-page: 114 year: 2017 ident: ref_17 article-title: Enzyme Cascades in Biofuel Cells publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2017.07.010 – volume: 86 start-page: 446 year: 2016 ident: ref_113 article-title: Polymer-Based Protein Engineering Grown Ferrocene-Containing Redox Polymers Improve Current Generation in an Enzymatic Biofuel Cell publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.06.078 – volume: 5 start-page: 1068 year: 2011 ident: ref_104 article-title: Review of Glucose Oxidases and Glucose Dehydrogenases: A Bird’s Eye View of Glucose Sensing Enzymes publication-title: J. Diabetes Sci. Technol. doi: 10.1177/193229681100500507 – volume: 91 start-page: 183 year: 2017 ident: ref_13 article-title: Ultrasensitive Electrochemical DNA Biosensor Based on Functionalized Gold Clusters/Graphene Nanohybrids Coupling with Exonuclease Iii-Aided Cascade Target Recycling publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.12.017 – volume: 9 start-page: 4402 year: 2019 ident: ref_43 article-title: Multienzymatic Cascade Reactions via Enzyme Complex by Immobilization publication-title: ACS Catal. doi: 10.1021/acscatal.8b04921 – volume: 19 start-page: 2301413 year: 2023 ident: ref_69 article-title: Co-Immobilization of God & Hrp on Y-Shaped DNA Scaffold and the Regulation of Inter-Enzyme Distance publication-title: Small doi: 10.1002/smll.202301413 – volume: 81 start-page: 981 year: 2013 ident: ref_110 article-title: Re-Construction of Pentose Phosphate Pathway Coupled with a Bioelectrocatalytic NADPH Oxidation System for Bioanodes of Biofuel Cells publication-title: Electrochemistry doi: 10.5796/electrochemistry.81.981 – volume: 13 start-page: 13677 year: 2019 ident: ref_67 article-title: Enhanced Catalysis from Multienzyme Cascades Assembled on a DNA Origami Triangle publication-title: ACS Nano doi: 10.1021/acsnano.9b05746 – volume: 25 start-page: 9357 year: 2023 ident: ref_100 article-title: Design Principles for a Nanoconfined Enzyme Cascade Electrode Via Reaction–Diffusion Modelling publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D3CP00540B – ident: ref_108 doi: 10.1016/j.bioelechem.2022.108254 – volume: 11 start-page: 138 year: 2020 ident: ref_76 article-title: Programming Bulk Enzyme Heterojunctions for Biosensor Development with Tetrahedral DNA Framework publication-title: Nat. Commun. – volume: 15 start-page: 2145 year: 2014 ident: ref_36 article-title: Fabrication of Carbon-Felt-Based Multi-Enzyme Immobilized Anodes to Oxidize Sucrose for Biofuel Cells publication-title: ChemPhysChem doi: 10.1002/cphc.201400058 – volume: 4 start-page: 249 year: 2009 ident: ref_59 article-title: Enzyme Cascades Activated on Topologically Programmed DNA Scaffolds publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.50 – volume: 163 start-page: F449 year: 2016 ident: ref_32 article-title: Layer-by-Layer Assembly of Carbon Nanotubes Modified with Invertase/Glucose Dehydrogenase Cascade for Sucrose/O2 Biofuel Cell publication-title: J. Electrochem. Soc. doi: 10.1149/2.0321606jes – volume: 140 start-page: 8074 year: 2018 ident: ref_56 article-title: Selective in situ Assembly of Viral Protein onto DNA Origami publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b03914 – volume: 8 start-page: 1431 year: 2010 ident: ref_4 article-title: Biocatalysed Concurrent Production of Enantioenriched Compounds through Parallel Interconnected Kinetic Asymmetric Transformations publication-title: Org. Biomol. Chem. doi: 10.1039/b925377g – volume: 26 start-page: 100658 year: 2021 ident: ref_20 article-title: Immobilizing Redox Enzymes at Mesoporous and Nanostructured Electrodes publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2020.100658 – volume: 106 start-page: 1105 year: 2006 ident: ref_29 article-title: Chemistry of Carbon Nanotubes publication-title: Chem. Rev. doi: 10.1021/cr050569o – volume: 124 start-page: 57 year: 2018 ident: ref_92 article-title: Challenges for Successful Implantation of Biofuel Cells publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2018.05.011 – volume: 5 start-page: 66 year: 2017 ident: ref_107 article-title: Redox Polymers in Bioelectrochemistry: Common Playgrounds and Novel Concepts publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2017.06.007 – volume: 125 start-page: 4951 year: 2003 ident: ref_122 article-title: Long Tethers Binding Redox Centers to Polymer Backbones Enhance Electron Transport in Enzyme “Wiring” Hydrogels publication-title: J. Am. Chem. Soc. doi: 10.1021/ja029510e |
SSID | ssj0000747937 |
Score | 2.4405887 |
SecondaryResourceType | review_article |
Snippet | Nanomaterials, including carbon nanotubes, graphene oxide, metal–organic frameworks, metal nanoparticles, and porous carbon, play a crucial role as efficient... Nanomaterials, including carbon nanotubes, graphene oxide, metal-organic frameworks, metal nanoparticles, and porous carbon, play a crucial role as efficient... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 1018 |
SubjectTerms | Adsorption Biocatalysts Biochemical fuel cells Biodiesel fuels biofuel cell Biofuels Biomarkers biosensor Biosensors Carbon Carbon nanotubes Cascade chemical reactions Catalysis Dehydrogenases Electrochemical apparatus electrode Electrodes Electrons Enzymatic activity Enzyme activity enzyme cascade Enzymes Graphene Immobilization Materials science Metal-organic frameworks Nanomaterials Nanoparticles Nanotechnology Nanotubes Oxidation Physiological aspects Polymers Pore size Substrates Textiles |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yJz2I31ZXiaB4kLJpmybN8e3jLYugB9mFvZV8TEB4trp977D-9c4k3UdRxIunNu0ckswkM5PM_Iaxt1K7GtkeSonas5TWidKAgtJpraCrvJGBDvQ_fVbnl_LjVXu1KPVFMWEZHjhP3InQVtQgbGxdLbX0NnqnYtNaFTplYkrdQ523cKbSHqzpxEjnSPcG_foT93Wcqobgsqi-x0IHJaj-Pzfk38zMpG7OHrD7s53IV7l_D9kdGB6xewv0wMfsx2b4efMN-NpOFOTON7miDb59gZyuMHE6ZuW4g45omGZZ43YI_IKuB_gqX16n8NgbvksBtBM_xSGgbzteJ0psxT1s-Rq22-kJuzzbXKzPy7mCQumlqndlMJXFqQCNOieADMZREcHYoc1QS2hFdEZ5kMJq2UUBUTXeNiI2VfA-dFA1T9nRMA7wnHHjDSWT1NFVVjpriQmhlZFYQ-2Cfbid097P8OJU5WLbo5tBHOiXHCjYuwP19wyr8Re6U2LPgYbAsNMHFJF-FpH-XyJSsPfE3J6WLHbJ2znzAAdG4Ff9SqMNbDR6hgU7vuV_P6_lqa-NkORVtapgbw6_cRXS1YodYNwnmratBT4K9izLzaHPaBOhkaa7F_9jLC_ZXSp4nwNqjtnR7noPr9As2rnXaQX8Aku4DIE priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAaHkFSmUkEAcU1UkcOz6h7WqrCgkOqJX2FvmJkJak3eweyq9nxvGGFYie8hpFtsf2fB6PvyHkHZemBLW7nIP1zLk2LFde-NxIKXxTWMUdOvS_fBUXV_zzsl4mh9uQwip3c2KcqF1v0Ud-WirGEdvW4tP1TY5Zo3B3NaXQuE8eIHUZhnTJpZx8LEgOD-Z3jHevYHV_an70Q1EhaRZm-dizRJGw_99p-S-wGY3O-RPyOKFFOhvVe0ju-e6IPNrjEHxKbhbdr9ufns71gKHudDHmtYG7b348tDBQdLZSmEd7gKdjj6O6c_QSNwnobNzCjkGyt3QTw2gHegZVgBVuv46S8BS2fkXnfrUanpGr88Xl_CJPeRRyy0W5yZ0qNDSFl2B5nOdOGUwlGBpADiX3NQtGCes505I3gfkgKqsrFqrCWesaX1TPyUHXd_4locoqPFJSBlNobrQ2IlSu5sEzHfA5Ix93bdraRDKOuS5WLSw2UAPtvgYy8n6Svh7JNf4jd4bqmWSQEju-6Nff2zTCWiY1K7EctSm55FYHi6WrtXCNUEFl5AMqt8WBC0WyOp0_gIohBVY7k4CElYT1YUaOd_pv04ge2j_9LyNvp88wFnGDRXe-30aZui4ZXDLyYuw3U5kBGQFUk82ru3_-mjzEhPZjwMwxOdist_4NwJ6NOYl9-zeYqAM- priority: 102 providerName: ProQuest |
Title | Enzyme Cascade Electrode Reactions with Nanomaterials and Their Applicability towards Biosensor and Biofuel Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38131778 https://www.proquest.com/docview/2904758556 https://www.proquest.com/docview/2905520290 https://doaj.org/article/07a02e0af5b2474cafcb6f35a6d869f9 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdR1ri9NAcLgHyPlBfBs9ywqKHySaxyab_SDSlh6HcIccV-i3sE8RYuI1LVh_vTNJWornfUo2O4HZndmdx87OALzlQidIdhtylJ4hVzoKpctdqIXIXREbyS059C8u8_M5_7rIFgewrTY6TGD7X9OO6knNl9XH3zebL7jgP5PFiSb7J_2jaeOUMmHFxSEco0wStEQvBkW_25MFeZBEH_l-66cTuIeCCyUpFVvbE09dFv_be_U_Gmgnic4ewoNBhWTjnuaP4MDVj-H-XmLBJ3Azq_9sfjo2VS3Fv7NZX-wG365cf5OhZeSBZbi5Nqiz9mzIVG3ZNZ0csHF_rt1Fzm7YqoutbdkER4Nmb7PsILHl165iU1dV7VOYn82up-fhUFwhNDxPVqGVscJZcQLFkXXcSk31BX2B6kTCXRZ5LXPjeKQEL3zkfJ4alUY-ja0xtnBx-gyO6qZ2L4BJI-meSeJ1rLhWSuc-tRn3LlKe2gF82M5paYbM41QAoyrRAiFilPvECODdDvpXn3HjDrgJkWcHQ3myuw_N8ns5LLsyEipKCI9MJ1xwo7wh7DKV2yKXXgbwnohbEn8hSkYNlxJwYJQXqxwLVI-lQKMxgNMt_cstl5aJjDgZXFkewJtdNy5QOnVRtWvWHUyWJRE-Anje880O5y3Xvbyz5xWcUIH7PoDmFI5Wy7V7jWrQSo_gUCzECI4ns8tvV6POmTDquP4vzhUJGA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFTSA3BAvDEUWCQqDsiqH-vHHhBKQqqUthGqUqk3s0-EFOw2ToTCR_GNzNhOiEBw68lee7Sa3Zmdx-7sDMBrnqkIyW58jtrT51IFvrCp9VWWpTYPteCGNvRPJ-n4nH-8SC524Of6LgyFVa5lYiOoTaVpj_wgEgEn2zZJ319e-VQ1ik5X1yU0WrY4tqvv6LLV744-IH33o-hwNB2O_a6qgK95Gi18I0KJetNmKIeN5UYoKqznctSjEbdJ4JRIteWBzHjuAuvSWMs4cHFotDa5DWPs9wbs8hhdmR7sDkaTT2ebXR1KR48Kv42wj2MRHKivVR3GlKaL6ops6b6mRMDfiuAP87ZRc4d34U5nn7J-y1D3YMeW9-H2VtbCB3A1Kn-svlk2lDUF17NRW0kH385se02iZrS9y1ByV2gQtzzOZGnYlI4lWL89NG_Cclds0QTu1myAQ0Cfupo3kNhySztjQzub1Q_h_Frm-BH0yqq0T4AJLegSS-RUKLmSUqUuNgl3NpCO2h68Xc9pobu05lRdY1age0MUKLYp4MH-BvqyTefxD7gBkWcDQ0m4mw_V_EvRrekiyGQQER6JinjGtXSasEtkavJUOOHBGyJuQaICUdKyu_GAA6OkW0U_Q9tbZOiRerC3pn_RyZC6-M3xHrza_MbVT0c6srTVsoFJkijAhwePW77Z4Iy2GBqHWf70_52_hJvj6elJcXI0OX4Gt7CzuA3X2YPeYr60z9HoWqgXHacz-Hzdi-sX9opBwQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BpDQvCAuBMYYCQmHlBUJ3Hi-AGhrmu1MZgQ2qS-Zb6iSV2yNa1Q-TS-jnNyKRUI3vaUODmybJ-r7XMh5A0XOga025CD9gy50iyULnOhFiJzeWQkt3ig__k4OzjlH6fpdIv87GNh0K2yl4mNoLaVwTPyQSwZR9s2zQa-c4v4sj_5cHkVYgUpvGnty2m0JHLkVt9h-1a_P9wHXO_G8WR8MjoIuwoDoeFZvAitjBToUCdAJlvHrdRYZM_noFNj7lLmtcyM40wJnnvmfJYYlTCfRNYYm7sogX5vkJsiSSPkMTEV6_MdTEwPqr_1tU8SyQb6vKqjBBN2YYWRDS3YFAv4WyX8Yeg2Cm9yj9ztLFU6bEnrPtly5QNyZyN_4UNyNS5_rC4cHaka3ezpuK2pA29fXRswUVM86KUgwyswjVtqp6q09AQvKOiwvT5vHHRXdNG48NZ0D6YAu-tq3kBCyy_djI7cbFY_IqfXssKPyXZZle4podJIDGeJvY4U10rpzCc25d4x5bEdkHf9mhamS3COdTZmBWx0EAPFJgYCsruGvmwTe_wDbg_Rs4bBdNzNh2r-rei4u2BCsRjHkeqYC26UNzi6VGU2z6SXAXmLyC1QaMCQjOpiH2BimH6rGAqwwqWAvWlAdnr8F500qYvftB-Q1-vfIAfwckeVrlo2MGkaM3gE5ElLN-sxg1UGZqLIn_2_81fkFrBU8enw-Og5uQ19Ja3fzg7ZXsyX7gVYXwv9siFzSs6um69-AUJoRJE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzyme+Cascade+Electrode+Reactions+with+Nanomaterials+and+Their+Applicability+towards+Biosensor+and+Biofuel+Cells&rft.jtitle=Biosensors+%28Basel%29&rft.au=Kalyana+Sundaram%2C+Shalini+Devi&rft.au=Hossain%2C+Md+Motaher&rft.au=Rezki%2C+Muhammad&rft.au=Ariga%2C+Kotoko&rft.date=2023-12-01&rft.eissn=2079-6374&rft.volume=13&rft.issue=12&rft_id=info:doi/10.3390%2Fbios13121018&rft_id=info%3Apmid%2F38131778&rft.externalDocID=38131778 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-6374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-6374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-6374&client=summon |