The Vestibular Drive for Balance Control Is Dependent on Multiple Sensory Cues of Gravity

Vestibular signals, which encode head movement in space as well as orientation relative to gravity, contribute to the ongoing muscle activity required to stand. The strength of this vestibular contribution changes with the presence and quality of sensory cues of balance. Here we investigate whether...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physiology Vol. 10; p. 476
Main Authors Arntz, Anne I., van der Putte, Daphne A. M., Jonker, Zeb D., Hauwert, Christopher M., Frens, Maarten A., Forbes, Patrick A.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 30.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vestibular signals, which encode head movement in space as well as orientation relative to gravity, contribute to the ongoing muscle activity required to stand. The strength of this vestibular contribution changes with the presence and quality of sensory cues of balance. Here we investigate whether the vestibular drive for standing balance also depends on different sensory cues of gravity by examining vestibular-evoked muscle responses when independently varying load and gravity conditions. Standing subjects were braced by a backboard structure that limited whole-body sway to the sagittal plane while load and vestibular cues of gravity were manipulated by: (a) loading the body downward at 1.5 and 2 times body weight (i.e., load cues), and/or (b) exposing subjects to brief periods (20 s) of micro- (<0.05 g) and hyper-gravity (∼1.8 g) during parabolic flights (i.e., vestibular cues). A stochastic electrical vestibular stimulus (0-25 Hz) delivered during these tasks evoked a vestibular-error signal and corrective muscles responses that were used to assess the vestibular drive to standing balance. With additional load, the magnitude of the vestibular-evoked muscle responses progressively increased, however, when these responses were normalized by the ongoing muscle activity, they decreased and plateaued at 1.5 times body weight. This demonstrates that the increased muscle activity necessary to stand with additional load is accompanied a proportionally smaller increase in vestibular input. This reduction in the relative vestibular contribution to balance was also observed when we varied the vestibular cues of gravity, but only during an absence (<0.05 g) and not an excess (∼1.8 g) of gravity when compared to conditions with normal 1 g gravity signals and equivalent load signals. Despite these changes, vestibular-evoked responses were observed in all conditions, indicating that vestibular cues of balance contribute to upright standing even in the near absence of a vestibular signal of gravity (i.e., micro-gravity). Overall, these experiments provide evidence that both load and vestibular cues of gravity influence the vestibular signal processing for the control of standing balance.
AbstractList Vestibular signals, which encode head movement in space as well as orientation relative to gravity, contribute to the ongoing muscle activity required to stand. The strength of this vestibular contribution changes with the presence and quality of sensory cues of balance. Here we investigate whether the vestibular drive for standing balance also depends on different sensory cues of gravity by examining vestibular-evoked muscle responses when independently varying load and gravity conditions. Standing subjects were braced by a backboard structure that limited whole-body sway to the sagittal plane while load and vestibular cues of gravity were manipulated by: (a) loading the body downward at 1.5 and 2 times body weight (i.e., load cues), and/or (b) exposing subjects to brief periods (20 s) of micro- (<0.05 g) and hyper-gravity (∼1.8 g) during parabolic flights (i.e., vestibular cues). A stochastic electrical vestibular stimulus (0–25 Hz) delivered during these tasks evoked a vestibular-error signal and corrective muscles responses that were used to assess the vestibular drive to standing balance. With additional load, the magnitude of the vestibular-evoked muscle responses progressively increased, however, when these responses were normalized by the ongoing muscle activity, they decreased and plateaued at 1.5 times body weight. This demonstrates that the increased muscle activity necessary to stand with additional load is accompanied a proportionally smaller increase in vestibular input. This reduction in the relative vestibular contribution to balance was also observed when we varied the vestibular cues of gravity, but only during an absence (<0.05 g) and not an excess (∼1.8 g) of gravity when compared to conditions with normal 1 g gravity signals and equivalent load signals. Despite these changes, vestibular-evoked responses were observed in all conditions, indicating that vestibular cues of balance contribute to upright standing even in the near absence of a vestibular signal of gravity (i.e., micro-gravity). Overall, these experiments provide evidence that both load and vestibular cues of gravity influence the vestibular signal processing for the control of standing balance.
Vestibular signals, which encode head movement in space as well as orientation relative to gravity, contribute to the ongoing muscle activity required to stand. The strength of this vestibular contribution changes with the presence and quality of sensory cues of balance. Here we investigate whether the vestibular drive for standing balance also depends on different sensory cues of gravity by examining vestibular-evoked muscle responses when independently varying load and gravity conditions. Standing subjects were braced by a backboard structure that limited whole-body sway to the sagittal plane while load and vestibular cues of gravity were manipulated by: (a) loading the body downward at 1.5 and 2 times body weight (i.e., load cues), and/or (b) exposing subjects to brief periods (20 s) of micro- (<0.05 g) and hyper-gravity (∼1.8 g) during parabolic flights (i.e., vestibular cues). A stochastic electrical vestibular stimulus (0-25 Hz) delivered during these tasks evoked a vestibular-error signal and corrective muscles responses that were used to assess the vestibular drive to standing balance. With additional load, the magnitude of the vestibular-evoked muscle responses progressively increased, however, when these responses were normalized by the ongoing muscle activity, they decreased and plateaued at 1.5 times body weight. This demonstrates that the increased muscle activity necessary to stand with additional load is accompanied a proportionally smaller increase in vestibular input. This reduction in the relative vestibular contribution to balance was also observed when we varied the vestibular cues of gravity, but only during an absence (<0.05 g) and not an excess (∼1.8 g) of gravity when compared to conditions with normal 1 g gravity signals and equivalent load signals. Despite these changes, vestibular-evoked responses were observed in all conditions, indicating that vestibular cues of balance contribute to upright standing even in the near absence of a vestibular signal of gravity (i.e., micro-gravity). Overall, these experiments provide evidence that both load and vestibular cues of gravity influence the vestibular signal processing for the control of standing balance.Vestibular signals, which encode head movement in space as well as orientation relative to gravity, contribute to the ongoing muscle activity required to stand. The strength of this vestibular contribution changes with the presence and quality of sensory cues of balance. Here we investigate whether the vestibular drive for standing balance also depends on different sensory cues of gravity by examining vestibular-evoked muscle responses when independently varying load and gravity conditions. Standing subjects were braced by a backboard structure that limited whole-body sway to the sagittal plane while load and vestibular cues of gravity were manipulated by: (a) loading the body downward at 1.5 and 2 times body weight (i.e., load cues), and/or (b) exposing subjects to brief periods (20 s) of micro- (<0.05 g) and hyper-gravity (∼1.8 g) during parabolic flights (i.e., vestibular cues). A stochastic electrical vestibular stimulus (0-25 Hz) delivered during these tasks evoked a vestibular-error signal and corrective muscles responses that were used to assess the vestibular drive to standing balance. With additional load, the magnitude of the vestibular-evoked muscle responses progressively increased, however, when these responses were normalized by the ongoing muscle activity, they decreased and plateaued at 1.5 times body weight. This demonstrates that the increased muscle activity necessary to stand with additional load is accompanied a proportionally smaller increase in vestibular input. This reduction in the relative vestibular contribution to balance was also observed when we varied the vestibular cues of gravity, but only during an absence (<0.05 g) and not an excess (∼1.8 g) of gravity when compared to conditions with normal 1 g gravity signals and equivalent load signals. Despite these changes, vestibular-evoked responses were observed in all conditions, indicating that vestibular cues of balance contribute to upright standing even in the near absence of a vestibular signal of gravity (i.e., micro-gravity). Overall, these experiments provide evidence that both load and vestibular cues of gravity influence the vestibular signal processing for the control of standing balance.
Author Jonker, Zeb D.
van der Putte, Daphne A. M.
Hauwert, Christopher M.
Arntz, Anne I.
Forbes, Patrick A.
Frens, Maarten A.
AuthorAffiliation 2 Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology , Delft , Netherlands
1 Department of Neuroscience, Erasmus MC, Erasmus University Medical Center , Rotterdam , Netherlands
3 Department of Rehabilitation Medicine, Erasmus MC, Erasmus University Medical Center , Rotterdam , Netherlands
4 Rijndam Rehabilitation Centre , Rotterdam , Netherlands
AuthorAffiliation_xml – name: 4 Rijndam Rehabilitation Centre , Rotterdam , Netherlands
– name: 3 Department of Rehabilitation Medicine, Erasmus MC, Erasmus University Medical Center , Rotterdam , Netherlands
– name: 2 Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology , Delft , Netherlands
– name: 1 Department of Neuroscience, Erasmus MC, Erasmus University Medical Center , Rotterdam , Netherlands
Author_xml – sequence: 1
  givenname: Anne I.
  surname: Arntz
  fullname: Arntz, Anne I.
– sequence: 2
  givenname: Daphne A. M.
  surname: van der Putte
  fullname: van der Putte, Daphne A. M.
– sequence: 3
  givenname: Zeb D.
  surname: Jonker
  fullname: Jonker, Zeb D.
– sequence: 4
  givenname: Christopher M.
  surname: Hauwert
  fullname: Hauwert, Christopher M.
– sequence: 5
  givenname: Maarten A.
  surname: Frens
  fullname: Frens, Maarten A.
– sequence: 6
  givenname: Patrick A.
  surname: Forbes
  fullname: Forbes, Patrick A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31114504$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1vEzEQxS3UipbSOyfkI5cEf63Xe0GCFEqkIg5ECE6WY48bV5v1YjuR8t_jJG3VIuGLLfu938gz7xU6GeIACL2hZMq56t77cbXLU0ZoNyVEtPIFOqdSigkR7NfJk_MZusz5jtQlCCOEvkRnnFIqGiLO0e_FCvBPyCUsN71J-CqFLWAfE_5kejNYwLM4lBR7PM_4CkYYHAwFxwF_2_QljD3gHzDkmHZ4toGMo8fXyWxD2b1Gp970GS7v9wu0-PJ5Mfs6ufl-PZ99vJlYIVmZOOlaB76VbSe8IARcZ0XHzNIR1bZu6ZS3TjHfdowbzq2nHFrpJFXcisbxCzQ_Yl00d3pMYW3STkcT9OEiplttUgm2B62YIabhjBnvhGqVqvaGcOdasF6oPevDkTVulmtwtv40mf4Z9PnLEFb6Nm61rBjayAp4dw9I8U9tR9HrkC30tZMQN1kzxhmRREpWpW-f1nos8jCaKiBHgU0x5wT-UUKJ3gdAHwKg9wHQhwBUi_zHYkMxJewnaEL_f-Nf2GG3Cw
CitedBy_id crossref_primary_10_1007_s00221_024_06923_7
crossref_primary_10_1371_journal_pone_0298625
crossref_primary_10_3390_brainsci10050296
crossref_primary_10_1007_s00421_022_05043_w
crossref_primary_10_1038_s41598_021_97050_8
crossref_primary_10_1152_jn_00171_2023
crossref_primary_10_3390_ijms25168577
Cites_doi 10.1152/japplphysiol.01398.2006
10.1038/s41467-019-09738-1
10.1113/jphysiol.2007.133264
10.1016/0006-8993(74)90276-5
10.1152/jn.00114.2015
10.1152/japplphysiol.00008.2004
10.1113/jphysiol.2002.019513
10.1159/000046815
10.1007/s00221-004-1982-2
10.1113/jphysiol.2004.079525
10.1152/jn.00343.2014
10.1152/jn.00512.2015
10.1007/s00221-011-2549-7
10.1111/j.1748-1716.1983.tb07212.x
10.3389/fneur.2018.00899
10.1007/BF00237753
10.1016/B978-0-444-63916-5.00004-5
10.1007/s00221-011-2600-8
10.1007/s002210100754
10.1113/jphysiol.2005.092544
10.1016/s0079-6107(96)00009-0
10.1523/JNEUROSCI.0733-14.2014
10.1109/ROBOT.2010.5509378
10.1113/jphysiol.2012.230334
10.1126/science.6729475
10.1113/jphysiol.1994.sp020257
10.1523/jneurosci.1902-16.2016
10.1007/BF00230477
10.1113/jphysiol.2002.029991
10.1016/B978-0-444-63916-5.00003-3
10.1371/journal.pone.0124532
10.1152/jn.00881.2009
10.1016/j.brainresbull.2004.07.008
10.1007/s00221-012-3002-2
10.1109/TNSRE.2011.2140332
10.1088/1741-2560/2/3/S07
10.1007/s004220000196
10.1007/s00221-009-2017-9
10.1016/j.exger.2014.09.020
10.1152/jn.1984.51.6.1236
10.1152/jn.1996.76.6.3994
10.1016/j.gaitpost.2015.10.027
10.1007/BF00237748
ContentType Journal Article
Copyright Copyright © 2019 Arntz, van der Putte, Jonker, Hauwert, Frens and Forbes. 2019 Arntz, van der Putte, Jonker, Hauwert, Frens and Forbes
Copyright_xml – notice: Copyright © 2019 Arntz, van der Putte, Jonker, Hauwert, Frens and Forbes. 2019 Arntz, van der Putte, Jonker, Hauwert, Frens and Forbes
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fphys.2019.00476
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1664-042X
ExternalDocumentID oai_doaj_org_article_82a0a5322afd487885d3503dd7ecf48d
PMC6503156
31114504
10_3389_fphys_2019_00476
Genre Journal Article
GrantInformation_xml – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
DIK
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-d6d7def76794f400ed9c492abd0877dbd8fcd82f7923a33cf13e76d6183c45d3
IEDL.DBID M48
ISSN 1664-042X
IngestDate Wed Aug 27 01:31:43 EDT 2025
Thu Aug 21 18:45:36 EDT 2025
Fri Jul 11 11:56:44 EDT 2025
Thu Apr 03 06:56:16 EDT 2025
Thu Apr 24 22:51:14 EDT 2025
Tue Jul 01 04:18:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords vestibular-evoked responses
gravity
electrical vestibular stimulation
balance control
vestibular system
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-d6d7def76794f400ed9c492abd0877dbd8fcd82f7923a33cf13e76d6183c45d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Gilles Clement, Centre National de la Recherche Scientifique (CNRS), France
This article was submitted to Environmental, Aviation and Space Physiology, a section of the journal Frontiers in Physiology
Reviewed by: Rahul Goel, Baylor College of Medicine, United States; Brian H. Dalton, University of British Columbia Okanagan, Canada; Ajitkumar Mulavara, Universities Space Research Association (USRA), United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2019.00476
PMID 31114504
PQID 2232060662
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_82a0a5322afd487885d3503dd7ecf48d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6503156
proquest_miscellaneous_2232060662
pubmed_primary_31114504
crossref_primary_10_3389_fphys_2019_00476
crossref_citationtrail_10_3389_fphys_2019_00476
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-30
PublicationDateYYYYMMDD 2019-04-30
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-30
  day: 30
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in physiology
PublicationTitleAlternate Front Physiol
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Forbes (B14) 2018; 159
Heroux (B19) 2015; 10
Reschke (B37) 1984; 225
Goldberg (B17) 1984; 51
Britton (B2) 1993; 94
Dakin (B6) 2010; 103
Day (B10) 2005; 567
Tribukait (B40) 2001; 6
Fitzpatrick (B12) 1996; 76
Rasman (B36) 2018; 9
Marsden (B30) 2002; 542
Welgampola (B43) 2001; 139
Mildren (B32) 2016; 43
Nashner (B34) 1974; 67
Dakin (B5) 2011; 209
Bacsi (B1) 2005; 160
van der Kooij (B41) 2001; 84
Luu (B27) 2011; 19
Dakin (B7) 2018; 159
Kwan (B24) 2019; 10
Mian (B31) 2014; 34
Watt (B42) 1986; 64
Halliday (B18) 1995; 64
Kuo (B23) 2005; 2
Cathers (B3) 2005; 563
Lund (B26) 1983; 117
Marsden (B29) 2003; 548
Dakin (B8) 2007; 583
Reschke (B38) 1986; 64
Reynolds (B39) 2010; 201
Fitzpatrick (B11) 1994; 478
Dakin (B4) 2016; 115
Huryn (B20) 2010
Forbes (B16) 2014; 112
Dalton (B9) 2014; 60
Kim (B21) 2004; 64
Forbes (B15) 2016; 36
Muise (B33) 2012; 218
Fitzpatrick (B13) 2004; 96
Luu (B28) 2012; 590
Kim (B22) 2011; 210
Peters (B35) 2015; 114
Lee Son (B25) 2008; 105
References_xml – volume: 105
  start-page: 1210
  year: 2008
  ident: B25
  article-title: Short-duration galvanic vestibular stimulation evokes prolonged balance responses.
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01398.2006
– volume: 10
  year: 2019
  ident: B24
  article-title: Neural substrates, dynamics and thresholds of galvanic vestibular stimulation in the behaving primate.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09738-1
– volume: 583
  start-page: 1117
  year: 2007
  ident: B8
  article-title: Frequency response of human vestibular reflexes characterized by stochastic stimuli.
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2007.133264
– volume: 67
  start-page: 255
  year: 1974
  ident: B34
  article-title: Influence of head position and proprioceptive cues on short latency postural reflexes evoked by galvanic stimulation of human labyrinth.
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(74)90276-5
– volume: 114
  start-page: 264
  year: 2015
  ident: B35
  article-title: Gain and phase of perceived virtual rotation evoked by electrical vestibular stimuli.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00114.2015
– volume: 96
  start-page: 2301
  year: 2004
  ident: B13
  article-title: Probing the human vestibular system with galvanic stimulation.
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00008.2004
– volume: 542
  start-page: 323
  year: 2002
  ident: B30
  article-title: Bipedal distribution of human vestibular-evoked postural responses during asymmetrical standing.
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2002.019513
– volume: 6
  start-page: 98
  year: 2001
  ident: B40
  article-title: Directional sensitivity of the human macula utriculi based on morphological characteristics.
  publication-title: Audiol. Neurootol.
  doi: 10.1159/000046815
– volume: 160
  start-page: 22
  year: 2005
  ident: B1
  article-title: Evidence for reflex and perceptual vestibular contributions to postural control.
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-004-1982-2
– volume: 563
  start-page: 229
  year: 2005
  ident: B3
  article-title: Otolith and canal reflexes in human standing.
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2004.079525
– volume: 112
  start-page: 1692
  year: 2014
  ident: B16
  article-title: Vestibulocollic reflexes in the absence of head postural control.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00343.2014
– volume: 115
  start-page: 1289
  year: 2016
  ident: B4
  article-title: Vestibular contribution to balance control in the medial gastrocnemius and soleus.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00512.2015
– volume: 209
  start-page: 345
  year: 2011
  ident: B5
  article-title: Short and medium latency muscle responses evoked by electrical vestibular stimulation are a composite of all stimulus frequencies.
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-011-2549-7
– volume: 117
  start-page: 307
  year: 1983
  ident: B26
  article-title: Effects of different head positions on postural sway in man induced by a reproducible vestibular error signal.
  publication-title: Acta Physiol. Scand.
  doi: 10.1111/j.1748-1716.1983.tb07212.x
– volume: 9
  year: 2018
  ident: B36
  article-title: Sensorimotor manipulations of the balance control loop–beyond imposed external perturbations.
  publication-title: Front Neurol
  doi: 10.3389/fneur.2018.00899
– volume: 64
  start-page: 367
  year: 1986
  ident: B38
  article-title: Vestibulo-spinal response modification as determined with the H-reflex during the Spacelab-1 flight.
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00237753
– volume: 159
  start-page: 61
  year: 2018
  ident: B14
  article-title: Sensorimotor control of standing balance.
  publication-title: Handb. Clin. Neurol.
  doi: 10.1016/B978-0-444-63916-5.00004-5
– volume: 210
  start-page: 643
  year: 2011
  ident: B22
  article-title: Variation in response dynamics of regular and irregular vestibular-nerve afferents during sinusoidal head rotations and currents in the chinchilla.
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-011-2600-8
– volume: 139
  start-page: 345
  year: 2001
  ident: B43
  article-title: Vestibulospinal reflexes: quantitative effects of sensory feedback and postural task.
  publication-title: Exp. Brain Res.
  doi: 10.1007/s002210100754
– volume: 567
  start-page: 591
  year: 2005
  ident: B10
  article-title: Virtual head rotation reveals a process of route reconstruction from human vestibular signals.
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2005.092544
– volume: 64
  start-page: 237
  year: 1995
  ident: B18
  article-title: A framework for the analysis of mixed time series/point process data - Theory and application to the study of physiological tremor, single motor unit discharges and electromyograms.
  publication-title: Prog. Biophys. Mol. Biol.
  doi: 10.1016/s0079-6107(96)00009-0
– volume: 34
  start-page: 7696
  year: 2014
  ident: B31
  article-title: Violation of the craniocentricity principle for vestibularly evoked balance responses under conditions of anisotropic stability.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0733-14.2014
– start-page: 5090
  year: 2010
  ident: B20
  article-title: “Investigating human balance using a robotic motion platform,” in
  publication-title: Proceedings of the 2010 IEEE International Conference on Robotics and Automation
  doi: 10.1109/ROBOT.2010.5509378
– volume: 590
  start-page: 5783
  year: 2012
  ident: B28
  article-title: Human standing is modified by an unconscious integration of congruent sensory and motor signals.
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2012.230334
– volume: 225
  start-page: 212
  year: 1984
  ident: B37
  article-title: Vestibulospinal reflexes as a function of microgravity.
  publication-title: Science
  doi: 10.1126/science.6729475
– volume: 478
  start-page: 363
  year: 1994
  ident: B11
  article-title: Task-dependent reflex responses and movement illusions evoked by galvanic vestibular stimulation in standing humans.
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1994.sp020257
– volume: 36
  start-page: 11510
  year: 2016
  ident: B15
  article-title: Transformation of vestibular signals for the control of standing in humans.
  publication-title: J. Neurosci.
  doi: 10.1523/jneurosci.1902-16.2016
– volume: 94
  start-page: 143
  year: 1993
  ident: B2
  article-title: Postural electromyographic responses in the arm and leg following galvanic vestibular stimulation in man.
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00230477
– volume: 548
  start-page: 949
  year: 2003
  ident: B29
  article-title: Modulation of human vestibular-evoked postural responses by alterations in load.
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2002.029991
– volume: 159
  start-page: 43
  year: 2018
  ident: B7
  article-title: Gravity estimation and verticality perception.
  publication-title: Handb. Clin. Neurol.
  doi: 10.1016/B978-0-444-63916-5.00003-3
– volume: 10
  year: 2015
  ident: B19
  article-title: Cross-modal calibration of vestibular afference for human balance.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0124532
– volume: 103
  start-page: 1048
  year: 2010
  ident: B6
  article-title: Frequency-specific modulation of vestibular-evoked sway responses in humans.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00881.2009
– volume: 64
  start-page: 265
  year: 2004
  ident: B21
  article-title: Responses of primary vestibular neurons to galvanic vestibular stimulation (GVS) in the anaesthetised guinea pig.
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2004.07.008
– volume: 218
  start-page: 63
  year: 2012
  ident: B33
  article-title: Reduced input from foot sole skin through cooling differentially modulates the short latency and medium latency vestibular reflex responses to galvanic vestibular stimulation.
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-012-3002-2
– volume: 19
  start-page: 382
  year: 2011
  ident: B27
  article-title: Validation of a robotic balance system for investigations in the control of human standing balance.
  publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2011.2140332
– volume: 2
  start-page: S235
  year: 2005
  ident: B23
  article-title: An optimal state estimation model of sensory integration in human postural balance.
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/2/3/S07
– volume: 84
  start-page: 103
  year: 2001
  ident: B41
  article-title: An adaptive model of sensory integration in a dynamic environment applied to human stance control.
  publication-title: Biol. Cybern.
  doi: 10.1007/s004220000196
– volume: 201
  start-page: 133
  year: 2010
  ident: B39
  article-title: The effect of voluntary sway control on the early and late components of the vestibular-evoked postural response.
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-009-2017-9
– volume: 60
  start-page: 120
  year: 2014
  ident: B9
  article-title: The altered vestibular-evoked myogenic and whole-body postural responses in old men during standing.
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2014.09.020
– volume: 51
  start-page: 1236
  year: 1984
  ident: B17
  article-title: Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel-monkey.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1984.51.6.1236
– volume: 76
  start-page: 3994
  year: 1996
  ident: B12
  article-title: Loop gain of reflexes controlling human standing measured with the use of postural and vestibular disturbances.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1996.76.6.3994
– volume: 43
  start-page: 87
  year: 2016
  ident: B32
  article-title: Foot sole skin vibration perceptual thresholds are elevated in a standing posture compared to sitting.
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2015.10.027
– volume: 64
  start-page: 308
  year: 1986
  ident: B42
  article-title: M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 3. Effects of prolonged weightlessness on a human otolith-spinal reflex.
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00237748
SSID ssj0000402001
Score 2.2517662
Snippet Vestibular signals, which encode head movement in space as well as orientation relative to gravity, contribute to the ongoing muscle activity required to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 476
SubjectTerms balance control
electrical vestibular stimulation
gravity
Physiology
vestibular system
vestibular-evoked responses
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYuo66O-GEEED2W7bfo6uusb9OIDPZU0k6Cgray7B_-9M2lddkX04jVNSfgySWYyH98Isc-CKYlNra-Vlb6Uuufnqmf8XCsWW7GWWphtcZ2c38nLh_hhqtQXc8IaeeAGuG4WqkDFZHbKIjnXWRZjFAcRYmq0lRny6Ut33lQw5c5gDouCXpOXpCgs71p-KWAqF-tTSpYYmbqHnFz_Tz7md6rk1N1zuiQWW6cRjprJLos5U62IzlFFAfPrBxyAo3G69_GOeKSFh3vWziiZYQrHQzrPgFxT6DOLURsYNOx0uHiH47YE7gjqCq5abiHcUGhbDz9gQJOE2sLZUHGFiVVxe3pyOzj32_oJvpZJOPIxwRSNTRPac5b2qsFcyzxUJbIKIJaYWY1ZaFlCUEWRtr3IpAkmtMu1JJjXxHxVV2ZDgCzR6jJVGRLmpSyzHDnfyr6SNDbKPdH9ArPQrbY4l7h4KSjGYPgLB3_B8BcOfk8cTv54a3Q1funb5_WZ9GNFbNdAdlK0dlL8ZSee2Pta3YJ2EKdFVGXqMQ1ETmXAcVzoifVmtSdDRXQVyDiQnkhn7GBmLrNfqucnp9JNrm9EwfHmf0x-SywwHE0Wa1vMj4Zjs0PO0KjcdXb_CR0yChE
  priority: 102
  providerName: Directory of Open Access Journals
Title The Vestibular Drive for Balance Control Is Dependent on Multiple Sensory Cues of Gravity
URI https://www.ncbi.nlm.nih.gov/pubmed/31114504
https://www.proquest.com/docview/2232060662
https://pubmed.ncbi.nlm.nih.gov/PMC6503156
https://doaj.org/article/82a0a5322afd487885d3503dd7ecf48d
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1BuXBBQPkIH9UgISQOobuJYycHhNotpSCVCy1aTpHjsQGpJJBuJfbfM-OkC4tWiGuSjZ2xxzPPfvsG4KkIpuhgQupsUKlSbppWdurTylkRWwmBrwjb4r0-OlXv5sX899-jRwOeb4R2Uk_qtD978fPH8hU7_EtBnBxvd4NsAghLS6QnldFX4RrHJSNuejwm-3FdFqgU6yFPtRb2RTYfzi03vmQtTkU5_0056N9Uyj9i0-FNuDEmlbg3zIJbcMW3t2F7r2VA_W2JzzDSPOP--TZ84omBH0VboxEGKh70vN4hp664LyxH53E2sNfx7TkejCVyF9i1eDxyD_EDQ9-uX-KMO4ldwDe9lQoUd-Dk8PXJ7Cgd6yukTulskZImQz4YzT4Z2Jc9VU5VmW1IVAKpoTI4KrMgEoM2z12Y5t5o0rwKOFVQfhe22q719wFVQ8E1xpbkgmpUU1Yk57GSSykf8iqB3Utj1m7UHpcSGGc1YxAxfx3NX4v562j-BJ6vfvF90N34x7P7Mj6r50QxO17o-s_16IB1mdmJLXj5soEYpJUlf0AxyYmM5z6XlMCTy9Gt2cPk2MS2vrvghjjpnAjOyxK4N4z2qqmcQ4UqJioBszYP1vqyfqf9-iWqeHNqnDN4fvAf7T6E6_K1wyHWI9ha9Bf-MedCi2Yn7iHsxIn-C9COChg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Vestibular+Drive+for+Balance+Control+Is+Dependent+on+Multiple+Sensory+Cues+of+Gravity&rft.jtitle=Frontiers+in+physiology&rft.au=Arntz%2C+Anne+I&rft.au=van+der+Putte%2C+Daphne+A+M&rft.au=Jonker%2C+Zeb+D&rft.au=Hauwert%2C+Christopher+M&rft.date=2019-04-30&rft.issn=1664-042X&rft.eissn=1664-042X&rft.volume=10&rft.spage=476&rft_id=info:doi/10.3389%2Ffphys.2019.00476&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon