Multi-Branch Mutual-Distillation Transformer for EEG-Based Seizure Subtype Classification

Cross-subject electroencephalogram (EEG) based seizure subtype classification is very important in precise epilepsy diagnostics. Deep learning is a promising solution, due to its ability to automatically extract latent patterns. However, it usually requires a large amount of training data, which may...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 831 - 839
Main Authors Peng, Ruimin, Du, Zhenbang, Zhao, Changming, Luo, Jingwei, Liu, Wenzhong, Chen, Xinxing, Wu, Dongrui
Format Journal Article
LanguageEnglish
Published United States IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cross-subject electroencephalogram (EEG) based seizure subtype classification is very important in precise epilepsy diagnostics. Deep learning is a promising solution, due to its ability to automatically extract latent patterns. However, it usually requires a large amount of training data, which may not always be available in clinical practice. This paper proposes Multi-Branch Mutual-Distillation (MBMD) Transformer for cross-subject EEG-based seizure subtype classification, which can be effectively trained from small labeled data. MBMD Transformer replaces all even-numbered encoder blocks of the vanilla Vision Transformer by our designed multi-branch encoder blocks. A mutual-distillation strategy is proposed to transfer knowledge between the raw EEG data and its wavelets of different frequency bands. Experiments on two public EEG datasets demonstrated that our proposed MBMD Transformer outperformed several traditional machine learning and state-of-the-art deep learning approaches. To our knowledge, this is the first work on knowledge distillation for EEG-based seizure subtype classification.
AbstractList Cross-subject electroencephalogram (EEG) based seizure subtype classification is very important in precise epilepsy diagnostics. Deep learning is a promising solution, due to its ability to automatically extract latent patterns. However, it usually requires a large amount of training data, which may not always be available in clinical practice. This paper proposes Multi-Branch Mutual-Distillation (MBMD) Transformer for cross-subject EEG-based seizure subtype classification, which can be effectively trained from small labeled data. MBMD Transformer replaces all even-numbered encoder blocks of the vanilla Vision Transformer by our designed multi-branch encoder blocks. A mutual-distillation strategy is proposed to transfer knowledge between the raw EEG data and its wavelets of different frequency bands. Experiments on two public EEG datasets demonstrated that our proposed MBMD Transformer outperformed several traditional machine learning and state-of-the-art deep learning approaches. To our knowledge, this is the first work on knowledge distillation for EEG-based seizure subtype classification.
Cross-subject electroencephalogram (EEG) based seizure subtype classification is very important in precise epilepsy diagnostics. Deep learning is a promising solution, due to its ability to automatically extract latent patterns. However, it usually requires a large amount of training data, which may not always be available in clinical practice. This paper proposes Multi-Branch Mutual-Distillation (MBMD) Transformer for cross-subject EEG-based seizure subtype classification, which can be effectively trained from small labeled data. MBMD Transformer replaces all even-numbered encoder blocks of the vanilla Vision Transformer by our designed multi-branch encoder blocks. A mutual-distillation strategy is proposed to transfer knowledge between the raw EEG data and its wavelets of different frequency bands. Experiments on two public EEG datasets demonstrated that our proposed MBMD Transformer outperformed several traditional machine learning and state-of-the-art deep learning approaches. To our knowledge, this is the first work on knowledge distillation for EEG-based seizure subtype classification.Cross-subject electroencephalogram (EEG) based seizure subtype classification is very important in precise epilepsy diagnostics. Deep learning is a promising solution, due to its ability to automatically extract latent patterns. However, it usually requires a large amount of training data, which may not always be available in clinical practice. This paper proposes Multi-Branch Mutual-Distillation (MBMD) Transformer for cross-subject EEG-based seizure subtype classification, which can be effectively trained from small labeled data. MBMD Transformer replaces all even-numbered encoder blocks of the vanilla Vision Transformer by our designed multi-branch encoder blocks. A mutual-distillation strategy is proposed to transfer knowledge between the raw EEG data and its wavelets of different frequency bands. Experiments on two public EEG datasets demonstrated that our proposed MBMD Transformer outperformed several traditional machine learning and state-of-the-art deep learning approaches. To our knowledge, this is the first work on knowledge distillation for EEG-based seizure subtype classification.
Author Wu, Dongrui
Zhao, Changming
Luo, Jingwei
Liu, Wenzhong
Chen, Xinxing
Peng, Ruimin
Du, Zhenbang
Author_xml – sequence: 1
  givenname: Ruimin
  orcidid: 0000-0002-4869-1328
  surname: Peng
  fullname: Peng, Ruimin
  organization: Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Zhenbang
  orcidid: 0000-0002-1386-8381
  surname: Du
  fullname: Du, Zhenbang
  organization: Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Changming
  surname: Zhao
  fullname: Zhao, Changming
  organization: AI Platform, Software Engineering Research Center, Dongfeng Corporation Research and Development Institute, Wuhan, China
– sequence: 4
  givenname: Jingwei
  surname: Luo
  fullname: Luo, Jingwei
  organization: China Electronic System Technology Company Ltd., Beijing, China
– sequence: 5
  givenname: Wenzhong
  orcidid: 0000-0003-0474-0770
  surname: Liu
  fullname: Liu, Wenzhong
  organization: Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan, China
– sequence: 6
  givenname: Xinxing
  orcidid: 0000-0002-6265-1226
  surname: Chen
  fullname: Chen, Xinxing
  email: chenxx@sustech.edu.cn
  organization: Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China
– sequence: 7
  givenname: Dongrui
  orcidid: 0000-0002-7153-9703
  surname: Wu
  fullname: Wu, Dongrui
  email: drwu@hust.edu.cn
  organization: Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38349833$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi1URNvAH0AIrcSFywZ_rL32kYZQKrUgkXDgZHntWXC0WQfbeyi_HuejCPXAaUb2876amfcSnY1hBIReEjwnBKt368-rr8s5xbSZMyZ4S9gTdEE4lzWmBJ_te9bUDaP4HF2mtMGYtAV7hs6ZZI2SjF2g73fTkH19Fc1of1Z3U57MUH_wKfthMNmHsVqXr9SHuIVYlVItl9f1lUngqhX431OEajV1-X4H1WIwKfne24PwOXramyHBi1OdoW8fl-vFp_r2y_XN4v1tbRtBc-2E6KxTljfcclV6cNhZ0TrVQsuV4tiCKDthENg1Xa8w6S2TIAUB0mPJZujm6OuC2ehd9FsT73UwXh8eQvyhTczeDqCZ6iRzQFmnRNMrqYwSbQ_CCE4FsV3xenv02sXwa4KU9dYnC-UUI4QpaapoQRVXbUHfPEI3YYpj2XRPKcqlKuefodcnauq24P6O9xBAAeQRsDGkFKHX1ufD_XI0ftAE633W-pC13metT1kXKX0kfXD_r-jVUeQB4B9Bw1grJfsDIbiz2A
CODEN ITNSB3
CitedBy_id crossref_primary_10_3390_s25051293
crossref_primary_10_1016_j_bspc_2024_107112
crossref_primary_10_1109_TIM_2025_3527489
crossref_primary_10_1007_s11571_025_10239_9
crossref_primary_10_1016_j_inffus_2024_102697
crossref_primary_10_1177_16878132251327059
crossref_primary_10_1088_1741_2552_adaef3
crossref_primary_10_1088_1741_2552_adb998
crossref_primary_10_1038_s41598_025_89249_w
Cites_doi 10.48550/ARXIV.1706.03762
10.1088/1741-2552/aace8c
10.1111/epi.13709
10.1016/j.compbiomed.2013.04.002
10.1109/ICASSP48485.2024.10448352
10.1109/CVPR.2018.00716
10.1109/CVPR.2017.15
10.7555/JBR.33.20190016
10.1109/TBME.2014.2360101
10.1109/ICASSP49357.2023.10097183
10.1016/j.eswa.2006.02.005
10.1111/epi.13670
10.1109/TNSRE.2019.2940485
10.1109/ICCV.2019.00110
10.1109/ICCV.2019.00381
10.1007/978-3-031-20053-3_31
10.1109/CVPR.2018.00454
10.1016/j.bspc.2019.101702
10.3390/ijerph18115780
10.1016/j.eswa.2007.02.006
10.1109/CVPR.2016.90
10.3389/fninf.2018.00083
10.1609/aaai.v33i01.33015565
10.1002/epi4.12704
10.1109/IDICAIEI58380.2023.10406610
10.1109/CVPR42600.2020.01389
10.48550/arXiv.1503.02531
10.1109/TNSRE.2023.3274563
10.1109/UEMCON.2017.8249018
10.1109/TNSRE.2022.3204540
10.1109/ICPR.2010.764
10.1109/CVPR.2018.00745
10.18653/v1/2022.nlppower-1.4
10.1109/TNSRE.2020.2973434
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2024.3365713
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 839
ExternalDocumentID oai_doaj_org_article_39b83de23b964f989a967fe6a65261cb
38349833
10_1109_TNSRE_2024_3365713
10433788
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2022YFE0204700
  funderid: 10.13039/501100012166
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c462t-d66bcd9c545c596bced0dc67d97e759950ce65580e60d4bf901fc38e861e1f083
IEDL.DBID DOA
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:28:04 EDT 2025
Fri Jul 11 01:47:03 EDT 2025
Sun Jul 13 04:39:57 EDT 2025
Wed Feb 19 01:58:20 EST 2025
Tue Jul 01 00:43:30 EDT 2025
Thu Apr 24 23:00:11 EDT 2025
Wed Aug 27 02:02:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-d66bcd9c545c596bced0dc67d97e759950ce65580e60d4bf901fc38e861e1f083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7153-9703
0000-0002-1386-8381
0000-0003-0474-0770
0000-0002-6265-1226
0000-0002-4869-1328
OpenAccessLink https://doaj.org/article/39b83de23b964f989a967fe6a65261cb
PMID 38349833
PQID 2929258915
PQPubID 85423
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_TNSRE_2024_3365713
crossref_primary_10_1109_TNSRE_2024_3365713
doaj_primary_oai_doaj_org_article_39b83de23b964f989a967fe6a65261cb
pubmed_primary_38349833
ieee_primary_10433788
proquest_journals_2929258915
proquest_miscellaneous_2926529597
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref37
ref31
ref30
ref11
ref33
ref10
Zhang (ref35)
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Blalock (ref12)
Dosovitskiy (ref27)
ref24
ref23
ref26
ref25
Tang (ref4)
ref20
ref41
Polino (ref14)
ref22
ref44
ref21
ref28
ref29
ref8
ref7
ref9
ref3
ref6
ref5
Ge (ref34)
Allen-Zhu (ref36) 2020
ref40
Shazeer (ref42)
Laine (ref43)
Lan (ref32)
References_xml – start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref4
  article-title: Self-supervised graph neural networks for improved electroencephalographic seizure analysis
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref14
  article-title: Model compression via distillation and quantization
– ident: ref11
  doi: 10.48550/ARXIV.1706.03762
– ident: ref25
  doi: 10.1088/1741-2552/aace8c
– ident: ref5
  doi: 10.1111/epi.13709
– ident: ref8
  doi: 10.1016/j.compbiomed.2013.04.002
– ident: ref44
  doi: 10.1109/ICASSP48485.2024.10448352
– ident: ref15
  doi: 10.1109/CVPR.2018.00716
– ident: ref13
  doi: 10.1109/CVPR.2017.15
– ident: ref19
  doi: 10.7555/JBR.33.20190016
– ident: ref9
  doi: 10.1109/TBME.2014.2360101
– ident: ref26
  doi: 10.1109/ICASSP49357.2023.10097183
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref35
  article-title: mixup: Beyond empirical risk minimization
– ident: ref40
  doi: 10.1016/j.eswa.2006.02.005
– ident: ref6
  doi: 10.1111/epi.13670
– ident: ref20
  doi: 10.1109/TNSRE.2019.2940485
– ident: ref33
  doi: 10.1109/ICCV.2019.00110
– start-page: 1
  volume-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
  ident: ref34
  article-title: Self-distillation with batch knowledge ensembling improves ImageNet classification
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref27
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
– ident: ref31
  doi: 10.1109/ICCV.2019.00381
– ident: ref18
  doi: 10.1007/978-3-031-20053-3_31
– ident: ref17
  doi: 10.1109/CVPR.2018.00454
– ident: ref7
  doi: 10.1016/j.bspc.2019.101702
– ident: ref10
  doi: 10.3390/ijerph18115780
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref32
  article-title: Knowledge distillation by on-the-fly native ensemble
– ident: ref41
  doi: 10.1016/j.eswa.2007.02.006
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref43
  article-title: Temporal ensembling for semi-supervised learning
– ident: ref29
  doi: 10.1109/CVPR.2016.90
– ident: ref37
  doi: 10.3389/fninf.2018.00083
– ident: ref28
  doi: 10.1609/aaai.v33i01.33015565
– ident: ref2
  doi: 10.1002/epi4.12704
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref42
  article-title: Outrageously large neural networks: The sparsely-gated mixture-of-experts layer
– ident: ref3
  doi: 10.1109/IDICAIEI58380.2023.10406610
– start-page: 129
  volume-title: Proc. Mach. Learn. Syst.
  ident: ref12
  article-title: What is the state of neural network pruning?
– ident: ref30
  doi: 10.1109/CVPR42600.2020.01389
– ident: ref16
  doi: 10.48550/arXiv.1503.02531
– ident: ref21
  doi: 10.1109/TNSRE.2023.3274563
– ident: ref1
  doi: 10.1109/UEMCON.2017.8249018
– ident: ref24
  doi: 10.1109/TNSRE.2022.3204540
– year: 2020
  ident: ref36
  article-title: Towards understanding ensemble, knowledge distillation and self-distillation in deep learning
  publication-title: arXiv:2012.09816
– ident: ref38
  doi: 10.1109/ICPR.2010.764
– ident: ref23
  doi: 10.1109/CVPR.2018.00745
– ident: ref39
  doi: 10.18653/v1/2022.nlppower-1.4
– ident: ref22
  doi: 10.1109/TNSRE.2020.2973434
SSID ssj0017657
Score 2.452498
Snippet Cross-subject electroencephalogram (EEG) based seizure subtype classification is very important in precise epilepsy diagnostics. Deep learning is a promising...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 831
SubjectTerms Brain modeling
Classification
Coders
Deep learning
Distillation
EEG
Electric Power Supplies
Electroencephalography
Epilepsy
Feature extraction
Frequencies
Humans
knowledge distillation
Knowledge management
Machine Learning
seizure subtype classification
Seizures
Seizures - diagnosis
Training
Transformer
Transformers
Wavelet transforms
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT1x4FggUZCTggrwksWPHRxa2VEjdQ7uVyimK7bFAVLto2Vz665lxHmqRirgkVmLHsWbGnrFnvmHsTcxbQoULonVVKZRxRri2tCJGUzjCX48pQu5kqY_P1deL6mIIVk-xMACQnM9gRsV0lh82vqOtMpRwJQn_fI_t4bUP1pqODIxOsJ4owUooWeZjhExuP6yWZ6cLtAVLNZMSqxWUPQdNM2VrKW8sSAm3f0i0crvOmdaeo_tsOf5173Lyc9bt3Mxf_QXo-N_DesDuDVoo_9izzUN2B9aP2NvriMN81cMN8Hf89AaY92P2LQXtijml5PjOTzqKQBGfaa647B3r-GrUhmHL8cYXiy9ijstl4Gfw46rbAsf5ijZ_ecrJSd5KqeEBOz9arD4diyFDg_BKlzsRtHY-WI9qmK8sliHkwWsTrAFDUGa5B11VdQ46D8pFVD6ilzXUuoAiovb3hO2vN2t4xrgtwHgt87bQWplYWemgqMFGjyZjG4qMFSOZGj-MmLJoXDbJjMltk6jcEJWbgcoZez-1-dWDd_yz9pyoP9Uk4O30AInVDHLcSOtqGaCUzmoVbW1bq00E3eoKbVHvMnZABL7WXU_bjB2OzNQMs8TvpkTdtKS0jlXGXk-vUb7p0KZdw6ZLdTQdxlqTsac9E04fH1n4-S2dvmB3aYD9jtEh299tO3iJOtTOvUqy8wd24RTM
  priority: 102
  providerName: IEEE
Title Multi-Branch Mutual-Distillation Transformer for EEG-Based Seizure Subtype Classification
URI https://ieeexplore.ieee.org/document/10433788
https://www.ncbi.nlm.nih.gov/pubmed/38349833
https://www.proquest.com/docview/2929258915
https://www.proquest.com/docview/2926529597
https://doaj.org/article/39b83de23b964f989a967fe6a65261cb
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp15QH9CmpciVChfkYseOHR-77VJUCQ6wSPRkxfZYRUJLtd299NfX4ySr5dBy4ZQoGSeOZyb-_JhvCPmYeIescJF1vqmZMt4w39WWpWSER_71VCLkzi_02bX6ftPcbKT6wj1hPT1w33An0vpWRqilt1ol29rOapNAd7rJ4D94_PvmPm8cTA3rB0YXjs_szoopWfMxXIbbk9nF1eU0Dwxr9UnKLCbkgy6pMPcPqVb-jTpL73P6nOwMsJF-7qv7gmzB_CU53KQIprOeH4Ae0csH7NuvyI8SZcsmmEPjJz1fYcgI-4rOfdfvhKOzEb7CguYDnU6_sUnu3yK9gts_qwXQ_IPB2Vpakmji9qJScJdcn05nX87YkFKBBaXrJYta-xBtyLgpNDafQ-QxaBOtAYPcYzyAbpqWg-ZR-ZTRQgqyhVYLECnDtT2yPb-fwxtCrQATtOSd0FqZ1FjpQbRgU8hjvC6KioixVV0YvhjTXty5Mu7g1hVNONSEGzRRkeN1mV8928Z_pSeorLUkMmWXC9l-3GA_7jH7qcguqnrjdUoix35F9kfdu8Gtf7s6g8ka8zA2Ffmwvp0dEldZujncr4qMxtVTayryureZ9cNlK5VtpXz7FDV_R55ha_TzQftke7lYwfuMkJb-oDjDQQlm_Avauwnq
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHOBSXgUCBYwEXJCXJHbs-MjClgW6e2hTqZyi2B6LimoXLZtLfz0e56EWqYhTrMSJY30ee8ae-YaQ1z5tkBXOscYUORPKKGaaXDPvVWaQf93HCLnFUs5PxNfT4rQPVo-xMAAQnc9ggsV4lu_WtsWtsiDhgiP_-U1yKyz8RdaFa42HBkpGYs8gw4IJnqdDjEyq31fL46NZsAZzMeE8VMswf04wzoQuOb-yJEXm_j7VyvVaZ1x9Du6S5fDfndPJz0m7NRN78Rel43937B7Z7fVQ-qEbOPfJDVg9IG8ucw7TqiMcoG_p0RU674fkewzbZVNMyvGDLlqMQWGfcLY471zraDXow7Ch4UJns89sGhZMR4_h7KLdAA0zFm7_0piVE_2V4ot75ORgVn2csz5HA7NC5lvmpDTWaRvwsIUOZXCps1I5rUAhmVlqQRZFmYJMnTA-qB_e8hJKmUHmg_73iOys1it4QqjOQFnJ0yaTUihfaG4gK0F7G4zGxmUJyQaYatv3GPNonNfRkEl1HVGuEeW6Rzkh78Z3fnX0Hf-sPUX0x5pIvR1vBLDqXpJrrk3JHeTcaCm8LnWjpfIgG1kEa9SahOwhwJea67BNyP4wmOp-nvhd50E7zTGxY5GQV-PjIOF4bNOsYN3GOhKPY7VKyONuEI4fH4bw02safUluz6vFYX34ZfntGbmDne32j_bJznbTwvOgUW3NiyhHfwAF5hgV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Branch+Mutual-Distillation+Transformer+for+EEG-Based+Seizure+Subtype+Classification&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Peng%2C+Ruimin&rft.au=Du%2C+Zhenbang&rft.au=Zhao%2C+Changming&rft.au=Luo%2C+Jingwei&rft.date=2024&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=32&rft.spage=831&rft.epage=839&rft_id=info:doi/10.1109%2FTNSRE.2024.3365713&rft_id=info%3Apmid%2F38349833&rft.externalDocID=10433788
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon