Multi-Branch Mutual-Distillation Transformer for EEG-Based Seizure Subtype Classification
Cross-subject electroencephalogram (EEG) based seizure subtype classification is very important in precise epilepsy diagnostics. Deep learning is a promising solution, due to its ability to automatically extract latent patterns. However, it usually requires a large amount of training data, which may...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 831 - 839 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cross-subject electroencephalogram (EEG) based seizure subtype classification is very important in precise epilepsy diagnostics. Deep learning is a promising solution, due to its ability to automatically extract latent patterns. However, it usually requires a large amount of training data, which may not always be available in clinical practice. This paper proposes Multi-Branch Mutual-Distillation (MBMD) Transformer for cross-subject EEG-based seizure subtype classification, which can be effectively trained from small labeled data. MBMD Transformer replaces all even-numbered encoder blocks of the vanilla Vision Transformer by our designed multi-branch encoder blocks. A mutual-distillation strategy is proposed to transfer knowledge between the raw EEG data and its wavelets of different frequency bands. Experiments on two public EEG datasets demonstrated that our proposed MBMD Transformer outperformed several traditional machine learning and state-of-the-art deep learning approaches. To our knowledge, this is the first work on knowledge distillation for EEG-based seizure subtype classification. |
---|---|
AbstractList | Cross-subject electroencephalogram (EEG) based seizure subtype classification is very important in precise epilepsy diagnostics. Deep learning is a promising solution, due to its ability to automatically extract latent patterns. However, it usually requires a large amount of training data, which may not always be available in clinical practice. This paper proposes Multi-Branch Mutual-Distillation (MBMD) Transformer for cross-subject EEG-based seizure subtype classification, which can be effectively trained from small labeled data. MBMD Transformer replaces all even-numbered encoder blocks of the vanilla Vision Transformer by our designed multi-branch encoder blocks. A mutual-distillation strategy is proposed to transfer knowledge between the raw EEG data and its wavelets of different frequency bands. Experiments on two public EEG datasets demonstrated that our proposed MBMD Transformer outperformed several traditional machine learning and state-of-the-art deep learning approaches. To our knowledge, this is the first work on knowledge distillation for EEG-based seizure subtype classification. Cross-subject electroencephalogram (EEG) based seizure subtype classification is very important in precise epilepsy diagnostics. Deep learning is a promising solution, due to its ability to automatically extract latent patterns. However, it usually requires a large amount of training data, which may not always be available in clinical practice. This paper proposes Multi-Branch Mutual-Distillation (MBMD) Transformer for cross-subject EEG-based seizure subtype classification, which can be effectively trained from small labeled data. MBMD Transformer replaces all even-numbered encoder blocks of the vanilla Vision Transformer by our designed multi-branch encoder blocks. A mutual-distillation strategy is proposed to transfer knowledge between the raw EEG data and its wavelets of different frequency bands. Experiments on two public EEG datasets demonstrated that our proposed MBMD Transformer outperformed several traditional machine learning and state-of-the-art deep learning approaches. To our knowledge, this is the first work on knowledge distillation for EEG-based seizure subtype classification.Cross-subject electroencephalogram (EEG) based seizure subtype classification is very important in precise epilepsy diagnostics. Deep learning is a promising solution, due to its ability to automatically extract latent patterns. However, it usually requires a large amount of training data, which may not always be available in clinical practice. This paper proposes Multi-Branch Mutual-Distillation (MBMD) Transformer for cross-subject EEG-based seizure subtype classification, which can be effectively trained from small labeled data. MBMD Transformer replaces all even-numbered encoder blocks of the vanilla Vision Transformer by our designed multi-branch encoder blocks. A mutual-distillation strategy is proposed to transfer knowledge between the raw EEG data and its wavelets of different frequency bands. Experiments on two public EEG datasets demonstrated that our proposed MBMD Transformer outperformed several traditional machine learning and state-of-the-art deep learning approaches. To our knowledge, this is the first work on knowledge distillation for EEG-based seizure subtype classification. |
Author | Wu, Dongrui Zhao, Changming Luo, Jingwei Liu, Wenzhong Chen, Xinxing Peng, Ruimin Du, Zhenbang |
Author_xml | – sequence: 1 givenname: Ruimin orcidid: 0000-0002-4869-1328 surname: Peng fullname: Peng, Ruimin organization: Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: Zhenbang orcidid: 0000-0002-1386-8381 surname: Du fullname: Du, Zhenbang organization: Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan, China – sequence: 3 givenname: Changming surname: Zhao fullname: Zhao, Changming organization: AI Platform, Software Engineering Research Center, Dongfeng Corporation Research and Development Institute, Wuhan, China – sequence: 4 givenname: Jingwei surname: Luo fullname: Luo, Jingwei organization: China Electronic System Technology Company Ltd., Beijing, China – sequence: 5 givenname: Wenzhong orcidid: 0000-0003-0474-0770 surname: Liu fullname: Liu, Wenzhong organization: Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan, China – sequence: 6 givenname: Xinxing orcidid: 0000-0002-6265-1226 surname: Chen fullname: Chen, Xinxing email: chenxx@sustech.edu.cn organization: Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China – sequence: 7 givenname: Dongrui orcidid: 0000-0002-7153-9703 surname: Wu fullname: Wu, Dongrui email: drwu@hust.edu.cn organization: Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38349833$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vEzEQhi1URNvAH0AIrcSFywZ_rL32kYZQKrUgkXDgZHntWXC0WQfbeyi_HuejCPXAaUb2876amfcSnY1hBIReEjwnBKt368-rr8s5xbSZMyZ4S9gTdEE4lzWmBJ_te9bUDaP4HF2mtMGYtAV7hs6ZZI2SjF2g73fTkH19Fc1of1Z3U57MUH_wKfthMNmHsVqXr9SHuIVYlVItl9f1lUngqhX431OEajV1-X4H1WIwKfne24PwOXramyHBi1OdoW8fl-vFp_r2y_XN4v1tbRtBc-2E6KxTljfcclV6cNhZ0TrVQsuV4tiCKDthENg1Xa8w6S2TIAUB0mPJZujm6OuC2ehd9FsT73UwXh8eQvyhTczeDqCZ6iRzQFmnRNMrqYwSbQ_CCE4FsV3xenv02sXwa4KU9dYnC-UUI4QpaapoQRVXbUHfPEI3YYpj2XRPKcqlKuefodcnauq24P6O9xBAAeQRsDGkFKHX1ufD_XI0ftAE633W-pC13metT1kXKX0kfXD_r-jVUeQB4B9Bw1grJfsDIbiz2A |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_3390_s25051293 crossref_primary_10_1016_j_bspc_2024_107112 crossref_primary_10_1109_TIM_2025_3527489 crossref_primary_10_1007_s11571_025_10239_9 crossref_primary_10_1016_j_inffus_2024_102697 crossref_primary_10_1177_16878132251327059 crossref_primary_10_1088_1741_2552_adaef3 crossref_primary_10_1088_1741_2552_adb998 crossref_primary_10_1038_s41598_025_89249_w |
Cites_doi | 10.48550/ARXIV.1706.03762 10.1088/1741-2552/aace8c 10.1111/epi.13709 10.1016/j.compbiomed.2013.04.002 10.1109/ICASSP48485.2024.10448352 10.1109/CVPR.2018.00716 10.1109/CVPR.2017.15 10.7555/JBR.33.20190016 10.1109/TBME.2014.2360101 10.1109/ICASSP49357.2023.10097183 10.1016/j.eswa.2006.02.005 10.1111/epi.13670 10.1109/TNSRE.2019.2940485 10.1109/ICCV.2019.00110 10.1109/ICCV.2019.00381 10.1007/978-3-031-20053-3_31 10.1109/CVPR.2018.00454 10.1016/j.bspc.2019.101702 10.3390/ijerph18115780 10.1016/j.eswa.2007.02.006 10.1109/CVPR.2016.90 10.3389/fninf.2018.00083 10.1609/aaai.v33i01.33015565 10.1002/epi4.12704 10.1109/IDICAIEI58380.2023.10406610 10.1109/CVPR42600.2020.01389 10.48550/arXiv.1503.02531 10.1109/TNSRE.2023.3274563 10.1109/UEMCON.2017.8249018 10.1109/TNSRE.2022.3204540 10.1109/ICPR.2010.764 10.1109/CVPR.2018.00745 10.18653/v1/2022.nlppower-1.4 10.1109/TNSRE.2020.2973434 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 DOA |
DOI | 10.1109/TNSRE.2024.3365713 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 839 |
ExternalDocumentID | oai_doaj_org_article_39b83de23b964f989a967fe6a65261cb 38349833 10_1109_TNSRE_2024_3365713 10433788 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2022YFE0204700 funderid: 10.13039/501100012166 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c462t-d66bcd9c545c596bced0dc67d97e759950ce65580e60d4bf901fc38e861e1f083 |
IEDL.DBID | DOA |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:28:04 EDT 2025 Fri Jul 11 01:47:03 EDT 2025 Sun Jul 13 04:39:57 EDT 2025 Wed Feb 19 01:58:20 EST 2025 Tue Jul 01 00:43:30 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 Wed Aug 27 02:02:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-d66bcd9c545c596bced0dc67d97e759950ce65580e60d4bf901fc38e861e1f083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7153-9703 0000-0002-1386-8381 0000-0003-0474-0770 0000-0002-6265-1226 0000-0002-4869-1328 |
OpenAccessLink | https://doaj.org/article/39b83de23b964f989a967fe6a65261cb |
PMID | 38349833 |
PQID | 2929258915 |
PQPubID | 85423 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1109_TNSRE_2024_3365713 crossref_primary_10_1109_TNSRE_2024_3365713 doaj_primary_oai_doaj_org_article_39b83de23b964f989a967fe6a65261cb pubmed_primary_38349833 ieee_primary_10433788 proquest_journals_2929258915 proquest_miscellaneous_2926529597 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref37 ref31 ref30 ref11 ref33 ref10 Zhang (ref35) ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Blalock (ref12) Dosovitskiy (ref27) ref24 ref23 ref26 ref25 Tang (ref4) ref20 ref41 Polino (ref14) ref22 ref44 ref21 ref28 ref29 ref8 ref7 ref9 ref3 ref6 ref5 Ge (ref34) Allen-Zhu (ref36) 2020 ref40 Shazeer (ref42) Laine (ref43) Lan (ref32) |
References_xml | – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref4 article-title: Self-supervised graph neural networks for improved electroencephalographic seizure analysis – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref14 article-title: Model compression via distillation and quantization – ident: ref11 doi: 10.48550/ARXIV.1706.03762 – ident: ref25 doi: 10.1088/1741-2552/aace8c – ident: ref5 doi: 10.1111/epi.13709 – ident: ref8 doi: 10.1016/j.compbiomed.2013.04.002 – ident: ref44 doi: 10.1109/ICASSP48485.2024.10448352 – ident: ref15 doi: 10.1109/CVPR.2018.00716 – ident: ref13 doi: 10.1109/CVPR.2017.15 – ident: ref19 doi: 10.7555/JBR.33.20190016 – ident: ref9 doi: 10.1109/TBME.2014.2360101 – ident: ref26 doi: 10.1109/ICASSP49357.2023.10097183 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref35 article-title: mixup: Beyond empirical risk minimization – ident: ref40 doi: 10.1016/j.eswa.2006.02.005 – ident: ref6 doi: 10.1111/epi.13670 – ident: ref20 doi: 10.1109/TNSRE.2019.2940485 – ident: ref33 doi: 10.1109/ICCV.2019.00110 – start-page: 1 volume-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. ident: ref34 article-title: Self-distillation with batch knowledge ensembling improves ImageNet classification – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref27 article-title: An image is worth 16×16 words: Transformers for image recognition at scale – ident: ref31 doi: 10.1109/ICCV.2019.00381 – ident: ref18 doi: 10.1007/978-3-031-20053-3_31 – ident: ref17 doi: 10.1109/CVPR.2018.00454 – ident: ref7 doi: 10.1016/j.bspc.2019.101702 – ident: ref10 doi: 10.3390/ijerph18115780 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref32 article-title: Knowledge distillation by on-the-fly native ensemble – ident: ref41 doi: 10.1016/j.eswa.2007.02.006 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref43 article-title: Temporal ensembling for semi-supervised learning – ident: ref29 doi: 10.1109/CVPR.2016.90 – ident: ref37 doi: 10.3389/fninf.2018.00083 – ident: ref28 doi: 10.1609/aaai.v33i01.33015565 – ident: ref2 doi: 10.1002/epi4.12704 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref42 article-title: Outrageously large neural networks: The sparsely-gated mixture-of-experts layer – ident: ref3 doi: 10.1109/IDICAIEI58380.2023.10406610 – start-page: 129 volume-title: Proc. Mach. Learn. Syst. ident: ref12 article-title: What is the state of neural network pruning? – ident: ref30 doi: 10.1109/CVPR42600.2020.01389 – ident: ref16 doi: 10.48550/arXiv.1503.02531 – ident: ref21 doi: 10.1109/TNSRE.2023.3274563 – ident: ref1 doi: 10.1109/UEMCON.2017.8249018 – ident: ref24 doi: 10.1109/TNSRE.2022.3204540 – year: 2020 ident: ref36 article-title: Towards understanding ensemble, knowledge distillation and self-distillation in deep learning publication-title: arXiv:2012.09816 – ident: ref38 doi: 10.1109/ICPR.2010.764 – ident: ref23 doi: 10.1109/CVPR.2018.00745 – ident: ref39 doi: 10.18653/v1/2022.nlppower-1.4 – ident: ref22 doi: 10.1109/TNSRE.2020.2973434 |
SSID | ssj0017657 |
Score | 2.452498 |
Snippet | Cross-subject electroencephalogram (EEG) based seizure subtype classification is very important in precise epilepsy diagnostics. Deep learning is a promising... |
SourceID | doaj proquest pubmed crossref ieee |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 831 |
SubjectTerms | Brain modeling Classification Coders Deep learning Distillation EEG Electric Power Supplies Electroencephalography Epilepsy Feature extraction Frequencies Humans knowledge distillation Knowledge management Machine Learning seizure subtype classification Seizures Seizures - diagnosis Training Transformer Transformers Wavelet transforms |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT1x4FggUZCTggrwksWPHRxa2VEjdQ7uVyimK7bFAVLto2Vz665lxHmqRirgkVmLHsWbGnrFnvmHsTcxbQoULonVVKZRxRri2tCJGUzjCX48pQu5kqY_P1deL6mIIVk-xMACQnM9gRsV0lh82vqOtMpRwJQn_fI_t4bUP1pqODIxOsJ4owUooWeZjhExuP6yWZ6cLtAVLNZMSqxWUPQdNM2VrKW8sSAm3f0i0crvOmdaeo_tsOf5173Lyc9bt3Mxf_QXo-N_DesDuDVoo_9izzUN2B9aP2NvriMN81cMN8Hf89AaY92P2LQXtijml5PjOTzqKQBGfaa647B3r-GrUhmHL8cYXiy9ijstl4Gfw46rbAsf5ijZ_ecrJSd5KqeEBOz9arD4diyFDg_BKlzsRtHY-WI9qmK8sliHkwWsTrAFDUGa5B11VdQ46D8pFVD6ilzXUuoAiovb3hO2vN2t4xrgtwHgt87bQWplYWemgqMFGjyZjG4qMFSOZGj-MmLJoXDbJjMltk6jcEJWbgcoZez-1-dWDd_yz9pyoP9Uk4O30AInVDHLcSOtqGaCUzmoVbW1bq00E3eoKbVHvMnZABL7WXU_bjB2OzNQMs8TvpkTdtKS0jlXGXk-vUb7p0KZdw6ZLdTQdxlqTsac9E04fH1n4-S2dvmB3aYD9jtEh299tO3iJOtTOvUqy8wd24RTM priority: 102 providerName: IEEE |
Title | Multi-Branch Mutual-Distillation Transformer for EEG-Based Seizure Subtype Classification |
URI | https://ieeexplore.ieee.org/document/10433788 https://www.ncbi.nlm.nih.gov/pubmed/38349833 https://www.proquest.com/docview/2929258915 https://www.proquest.com/docview/2926529597 https://doaj.org/article/39b83de23b964f989a967fe6a65261cb |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp15QH9CmpciVChfkYseOHR-77VJUCQ6wSPRkxfZYRUJLtd299NfX4ySr5dBy4ZQoGSeOZyb-_JhvCPmYeIescJF1vqmZMt4w39WWpWSER_71VCLkzi_02bX6ftPcbKT6wj1hPT1w33An0vpWRqilt1ol29rOapNAd7rJ4D94_PvmPm8cTA3rB0YXjs_szoopWfMxXIbbk9nF1eU0Dwxr9UnKLCbkgy6pMPcPqVb-jTpL73P6nOwMsJF-7qv7gmzB_CU53KQIprOeH4Ae0csH7NuvyI8SZcsmmEPjJz1fYcgI-4rOfdfvhKOzEb7CguYDnU6_sUnu3yK9gts_qwXQ_IPB2Vpakmji9qJScJdcn05nX87YkFKBBaXrJYta-xBtyLgpNDafQ-QxaBOtAYPcYzyAbpqWg-ZR-ZTRQgqyhVYLECnDtT2yPb-fwxtCrQATtOSd0FqZ1FjpQbRgU8hjvC6KioixVV0YvhjTXty5Mu7g1hVNONSEGzRRkeN1mV8928Z_pSeorLUkMmWXC9l-3GA_7jH7qcguqnrjdUoix35F9kfdu8Gtf7s6g8ka8zA2Ffmwvp0dEldZujncr4qMxtVTayryureZ9cNlK5VtpXz7FDV_R55ha_TzQftke7lYwfuMkJb-oDjDQQlm_Avauwnq |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHOBSXgUCBYwEXJCXJHbs-MjClgW6e2hTqZyi2B6LimoXLZtLfz0e56EWqYhTrMSJY30ee8ae-YaQ1z5tkBXOscYUORPKKGaaXDPvVWaQf93HCLnFUs5PxNfT4rQPVo-xMAAQnc9ggsV4lu_WtsWtsiDhgiP_-U1yKyz8RdaFa42HBkpGYs8gw4IJnqdDjEyq31fL46NZsAZzMeE8VMswf04wzoQuOb-yJEXm_j7VyvVaZ1x9Du6S5fDfndPJz0m7NRN78Rel43937B7Z7fVQ-qEbOPfJDVg9IG8ucw7TqiMcoG_p0RU674fkewzbZVNMyvGDLlqMQWGfcLY471zraDXow7Ch4UJns89sGhZMR4_h7KLdAA0zFm7_0piVE_2V4ot75ORgVn2csz5HA7NC5lvmpDTWaRvwsIUOZXCps1I5rUAhmVlqQRZFmYJMnTA-qB_e8hJKmUHmg_73iOys1it4QqjOQFnJ0yaTUihfaG4gK0F7G4zGxmUJyQaYatv3GPNonNfRkEl1HVGuEeW6Rzkh78Z3fnX0Hf-sPUX0x5pIvR1vBLDqXpJrrk3JHeTcaCm8LnWjpfIgG1kEa9SahOwhwJea67BNyP4wmOp-nvhd50E7zTGxY5GQV-PjIOF4bNOsYN3GOhKPY7VKyONuEI4fH4bw02safUluz6vFYX34ZfntGbmDne32j_bJznbTwvOgUW3NiyhHfwAF5hgV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Branch+Mutual-Distillation+Transformer+for+EEG-Based+Seizure+Subtype+Classification&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Peng%2C+Ruimin&rft.au=Du%2C+Zhenbang&rft.au=Zhao%2C+Changming&rft.au=Luo%2C+Jingwei&rft.date=2024&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=32&rft.spage=831&rft.epage=839&rft_id=info:doi/10.1109%2FTNSRE.2024.3365713&rft_id=info%3Apmid%2F38349833&rft.externalDocID=10433788 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |