Size- and time-dependent alteration in metabolic activities of human hepatic cytochrome P450 isozymes by gold nanoparticles via microsomal coincubations

Nano-sized particles are known to interfere with drug-metabolizing cytochrome P450 (CYP) enzymes, which can be anticipated to be a potential source of unintended adverse reactions, but the mechanisms underlying the inhibition are still not well understood. Herein we report a systematic investigation...

Full description

Saved in:
Bibliographic Details
Published inNanoscale research letters Vol. 9; no. 1; p. 642
Main Authors Ye, Meiling, Tang, Ling, Luo, Mengjun, Zhou, Jing, Guo, Bin, Liu, Yangyuan, Chen, Bo
Format Journal Article
LanguageEnglish
Published New York Springer New York 28.11.2014
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nano-sized particles are known to interfere with drug-metabolizing cytochrome P450 (CYP) enzymes, which can be anticipated to be a potential source of unintended adverse reactions, but the mechanisms underlying the inhibition are still not well understood. Herein we report a systematic investigation of the impacts of gold nanoparticles (AuNPs) on five major CYP isozymes under in vitro incubations of human liver microsomes (HLMs) with tannic acid (TA)-stabilized AuNPs in the size range of 5 to 100 nm. It is found that smaller AuNPs show more pronounced inhibitory effects on CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in a dose-dependent manner, while 1A2 is the least susceptible to the AuNP inhibition. The size- and dose-dependent CYP-specific inhibition and the nonspecific drug-nanogold binding in the coincubation media can be significantly reduced by increasing the concentration ratio of microsomal proteins to AuNPs, probably via a noncompetitive mode. Remarkably, AuNPs are also found to exhibit a slow time-dependent inactivation of 2D6 and 3A4 in a β -nicotinamide adenine dinucleotide 2′-phosphate reduced tetrasodium salt hydrate (NADPH)-independent manner. During microsomal incubations, UV–vis spectroscopy, dynamic light scattering, and zeta-potential measurements were used to monitor the changes in particle properties under the miscellaneous AuNP/HLM/CYP dispersion system. An improved stability of AuNPs by mixing HLM with the gold nanocolloid reveals that the stabilization via AuNP-HLM interactions may occur on a faster time scale than the salt-induced nanoaggregation by incubation in phosphate buffer. The results suggest that the AuNP induced CYP inhibition can be partially attributed to its adhesion onto the enzymes to alter their structural conformations or onto the HLM membrane therefore impairing the integral membrane proteins. Additionally, AuNPs likely block the substrate pocket on the CYP surface, depending on both the particle characteristics and the structural diversity of the isozymes. These findings may represent additional mechanisms for the differential inhibitory effects arising from the coincubated AuNPs on the metabolic activities of the hepatic CYP isozymes.
AbstractList Nano-sized particles are known to interfere with drug-metabolizing cytochrome P450 (CYP) enzymes, which can be anticipated to be a potential source of unintended adverse reactions, but the mechanisms underlying the inhibition are still not well understood. Herein we report a systematic investigation of the impacts of gold nanoparticles (AuNPs) on five major CYP isozymes under in vitro incubations of human liver microsomes (HLMs) with tannic acid (TA)-stabilized AuNPs in the size range of 5 to 100 nm. It is found that smaller AuNPs show more pronounced inhibitory effects on CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in a dose-dependent manner, while 1A2 is the least susceptible to the AuNP inhibition. The size- and dose-dependent CYP-specific inhibition and the nonspecific drug-nanogold binding in the coincubation media can be significantly reduced by increasing the concentration ratio of microsomal proteins to AuNPs, probably via a noncompetitive mode. Remarkably, AuNPs are also found to exhibit a slow time-dependent inactivation of 2D6 and 3A4 in a β-nicotinamide adenine dinucleotide 2′-phosphate reduced tetrasodium salt hydrate (NADPH)-independent manner. During microsomal incubations, UV–vis spectroscopy, dynamic light scattering, and zeta-potential measurements were used to monitor the changes in particle properties under the miscellaneous AuNP/HLM/CYP dispersion system. An improved stability of AuNPs by mixing HLM with the gold nanocolloid reveals that the stabilization via AuNP-HLM interactions may occur on a faster time scale than the salt-induced nanoaggregation by incubation in phosphate buffer. The results suggest that the AuNP induced CYP inhibition can be partially attributed to its adhesion onto the enzymes to alter their structural conformations or onto the HLM membrane therefore impairing the integral membrane proteins. Additionally, AuNPs likely block the substrate pocket on the CYP surface, depending on both the particle characteristics and the structural diversity of the isozymes. These findings may represent additional mechanisms for the differential inhibitory effects arising from the coincubated AuNPs on the metabolic activities of the hepatic CYP isozymes.
Nano-sized particles are known to interfere with drug-metabolizing cytochrome P450 (CYP) enzymes, which can be anticipated to be a potential source of unintended adverse reactions, but the mechanisms underlying the inhibition are still not well understood. Herein we report a systematic investigation of the impacts of gold nanoparticles (AuNPs) on five major CYP isozymes under in vitro incubations of human liver microsomes (HLMs) with tannic acid (TA)-stabilized AuNPs in the size range of 5 to 100 nm. It is found that smaller AuNPs show more pronounced inhibitory effects on CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in a dose-dependent manner, while 1A2 is the least susceptible to the AuNP inhibition. The size- and dose-dependent CYP-specific inhibition and the nonspecific drug-nanogold binding in the coincubation media can be significantly reduced by increasing the concentration ratio of microsomal proteins to AuNPs, probably via a noncompetitive mode. Remarkably, AuNPs are also found to exhibit a slow time-dependent inactivation of 2D6 and 3A4 in a β -nicotinamide adenine dinucleotide 2′-phosphate reduced tetrasodium salt hydrate (NADPH)-independent manner. During microsomal incubations, UV–vis spectroscopy, dynamic light scattering, and zeta-potential measurements were used to monitor the changes in particle properties under the miscellaneous AuNP/HLM/CYP dispersion system. An improved stability of AuNPs by mixing HLM with the gold nanocolloid reveals that the stabilization via AuNP-HLM interactions may occur on a faster time scale than the salt-induced nanoaggregation by incubation in phosphate buffer. The results suggest that the AuNP induced CYP inhibition can be partially attributed to its adhesion onto the enzymes to alter their structural conformations or onto the HLM membrane therefore impairing the integral membrane proteins. Additionally, AuNPs likely block the substrate pocket on the CYP surface, depending on both the particle characteristics and the structural diversity of the isozymes. These findings may represent additional mechanisms for the differential inhibitory effects arising from the coincubated AuNPs on the metabolic activities of the hepatic CYP isozymes.
Nano-sized particles are known to interfere with drug-metabolizing cytochrome P450 (CYP) enzymes, which can be anticipated to be a potential source of unintended adverse reactions, but the mechanisms underlying the inhibition are still not well understood. Herein we report a systematic investigation of the impacts of gold nanoparticles (AuNPs) on five major CYP isozymes under in vitro incubations of human liver microsomes (HLMs) with tannic acid (TA)-stabilized AuNPs in the size range of 5 to 100 nm. It is found that smaller AuNPs show more pronounced inhibitory effects on CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in a dose-dependent manner, while 1A2 is the least susceptible to the AuNP inhibition. The size- and dose-dependent CYP-specific inhibition and the nonspecific drug-nanogold binding in the coincubation media can be significantly reduced by increasing the concentration ratio of microsomal proteins to AuNPs, probably via a noncompetitive mode. Remarkably, AuNPs are also found to exhibit a slow time-dependent inactivation of 2D6 and 3A4 in a β-nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt hydrate (NADPH)-independent manner. During microsomal incubations, UV-vis spectroscopy, dynamic light scattering, and zeta-potential measurements were used to monitor the changes in particle properties under the miscellaneous AuNP/HLM/CYP dispersion system. An improved stability of AuNPs by mixing HLM with the gold nanocolloid reveals that the stabilization via AuNP-HLM interactions may occur on a faster time scale than the salt-induced nanoaggregation by incubation in phosphate buffer. The results suggest that the AuNP induced CYP inhibition can be partially attributed to its adhesion onto the enzymes to alter their structural conformations or onto the HLM membrane therefore impairing the integral membrane proteins. Additionally, AuNPs likely block the substrate pocket on the CYP surface, depending on both the particle characteristics and the structural diversity of the isozymes. These findings may represent additional mechanisms for the differential inhibitory effects arising from the coincubated AuNPs on the metabolic activities of the hepatic CYP isozymes.Nano-sized particles are known to interfere with drug-metabolizing cytochrome P450 (CYP) enzymes, which can be anticipated to be a potential source of unintended adverse reactions, but the mechanisms underlying the inhibition are still not well understood. Herein we report a systematic investigation of the impacts of gold nanoparticles (AuNPs) on five major CYP isozymes under in vitro incubations of human liver microsomes (HLMs) with tannic acid (TA)-stabilized AuNPs in the size range of 5 to 100 nm. It is found that smaller AuNPs show more pronounced inhibitory effects on CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in a dose-dependent manner, while 1A2 is the least susceptible to the AuNP inhibition. The size- and dose-dependent CYP-specific inhibition and the nonspecific drug-nanogold binding in the coincubation media can be significantly reduced by increasing the concentration ratio of microsomal proteins to AuNPs, probably via a noncompetitive mode. Remarkably, AuNPs are also found to exhibit a slow time-dependent inactivation of 2D6 and 3A4 in a β-nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt hydrate (NADPH)-independent manner. During microsomal incubations, UV-vis spectroscopy, dynamic light scattering, and zeta-potential measurements were used to monitor the changes in particle properties under the miscellaneous AuNP/HLM/CYP dispersion system. An improved stability of AuNPs by mixing HLM with the gold nanocolloid reveals that the stabilization via AuNP-HLM interactions may occur on a faster time scale than the salt-induced nanoaggregation by incubation in phosphate buffer. The results suggest that the AuNP induced CYP inhibition can be partially attributed to its adhesion onto the enzymes to alter their structural conformations or onto the HLM membrane therefore impairing the integral membrane proteins. Additionally, AuNPs likely block the substrate pocket on the CYP surface, depending on both the particle characteristics and the structural diversity of the isozymes. These findings may represent additional mechanisms for the differential inhibitory effects arising from the coincubated AuNPs on the metabolic activities of the hepatic CYP isozymes.
ArticleNumber 642
Author Guo, Bin
Liu, Yangyuan
Luo, Mengjun
Zhou, Jing
Tang, Ling
Chen, Bo
Ye, Meiling
AuthorAffiliation 2 Yiyang Medical College, Yiyang 413000, China
1 Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, 410081, China
AuthorAffiliation_xml – name: 2 Yiyang Medical College, Yiyang 413000, China
– name: 1 Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, 410081, China
Author_xml – sequence: 1
  givenname: Meiling
  surname: Ye
  fullname: Ye, Meiling
  organization: Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University
– sequence: 2
  givenname: Ling
  surname: Tang
  fullname: Tang, Ling
  organization: Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University
– sequence: 3
  givenname: Mengjun
  surname: Luo
  fullname: Luo, Mengjun
  organization: Yiyang Medical College
– sequence: 4
  givenname: Jing
  surname: Zhou
  fullname: Zhou, Jing
  organization: Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University
– sequence: 5
  givenname: Bin
  surname: Guo
  fullname: Guo, Bin
  email: binnguo@126.com
  organization: Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University
– sequence: 6
  givenname: Yangyuan
  surname: Liu
  fullname: Liu, Yangyuan
  organization: Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University
– sequence: 7
  givenname: Bo
  surname: Chen
  fullname: Chen, Bo
  organization: Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25520592$$D View this record in MEDLINE/PubMed
BookMark eNp1kstq3DAUhkVJaS7tursi6KYbN5JsyfKmUEJ6gUALbaE7IcvHMwqyNJXkgcmT9HErZ5IwDWQlcfT9R_-5nKIjHzwg9JqS95RKcU45FxVrxe-qq0TDnqGTh8jRwf0YnaZ0TUjTkla8QMeMc0Z4x07Q3x_2Biqs_YCznaAaYAN-AJ-xdhmizjZ4bD2eIOs-OGuwNtlubbaQcBjxep60x2vYFNJgs8vBrGOYAH9vOME2hZvdVMh-h1fBDdhrHzY6FtaV6NZqPFkTQwqTdtgE683c3_6ZXqLno3YJXt2dZ-jXp8ufF1-qq2-fv158vKpMI1iuBt4aECPo2rRtM3RM8rofjNSSipGNUhMi-kZ0fAShuaSD5KbtGtOajmhT1_UZ-rDPu5n7CQZTSo_aqU20k447FbRV_794u1arsFUNE4ITWRK8u0sQw58ZUlaTTQac0x7CnBQVddd0XEhR0LeP0OswR1_KU7QlkjBJyUK9OXT0YOV-aAXge2DpXIowKmPzbdeKQesUJWpZDrWMXy3jV50qy1F0549096mfVpC9IhXSryAeGH5C8g9b5s6n
CitedBy_id crossref_primary_10_1016_j_aca_2020_02_005
crossref_primary_10_1016_j_ejpb_2019_06_017
crossref_primary_10_2217_nnm_2023_0129
crossref_primary_10_1002_adfm_201504182
crossref_primary_10_1021_acsnano_2c00128
crossref_primary_10_1016_j_tox_2019_152344
crossref_primary_10_22207_JPAM_17_4_03
crossref_primary_10_1007_s00216_016_9915_z
crossref_primary_10_1016_j_taap_2015_12_018
crossref_primary_10_3390_biom14040441
crossref_primary_10_1039_C8NR00226F
crossref_primary_10_1016_j_ejps_2017_03_039
crossref_primary_10_1186_s11671_018_2684_1
crossref_primary_10_1016_j_ijpharm_2018_09_052
crossref_primary_10_1021_acsbiomaterials_6b00497
crossref_primary_10_1080_17435390_2016_1264638
crossref_primary_10_1186_s11671_019_3021_z
crossref_primary_10_2147_IJN_S248194
crossref_primary_10_1080_00498254_2018_1503360
crossref_primary_10_3390_antiox9080697
crossref_primary_10_1186_s43141_023_00481_1
crossref_primary_10_1007_s11051_024_06184_z
crossref_primary_10_1016_j_abb_2025_110369
crossref_primary_10_1002_smll_202000153
crossref_primary_10_3390_ma12244149
crossref_primary_10_1080_09205063_2025_2450150
Cites_doi 10.1088/0957-4484/24/26/265103
10.4155/fmc.10.229
10.1021/nn9011187
10.1021/nl0500555
10.1021/nl202940k
10.3109/00498254.2012.670312
10.1021/am402848q
10.3390/ijms10104198
10.1021/es203661k
10.1021/cr100440g
10.1124/dmd.31.5.606
10.1016/j.chemosphere.2009.12.051
10.1016/j.aca.2012.05.041
10.1016/j.chemosphere.2013.05.004
10.1038/nmat2202
10.1002/anie.200500403
10.1074/jbc.R113.452805
10.1021/cr030440j
10.1073/pnas.0603236103
10.1021/la301104a
10.1039/c3ra40676h
10.1021/ja710321g
10.1073/pnas.0805135105
10.1021/ac8000258
10.1016/j.taap.2009.11.002
10.1073/pnas.0611610104
10.1038/nmat2442
10.1073/pnas.0608582104
10.1124/dmd.105.005579
10.1124/dmd.30.12.1441
10.3923/ijp.2008.492.495
10.1021/nl900437n
10.1124/dmd.109.026716
10.1093/nar/gni183
10.1124/dmd.110.035238
10.1021/nl0516862
10.3923/rjet.2011.58.64
10.1016/j.fct.2007.09.073
10.1021/nn103534d
10.1002/smll.201000134
10.1021/ja0512881
10.1021/la3005213
10.1021/la702091c
10.1021/sc400042h
10.1038/srep00406
ContentType Journal Article
Copyright Ye et al.; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
Copyright Springer Nature B.V. Dec 2014
Copyright © 2014 Ye et al.; licensee Springer. 2014 Ye et al.; licensee Springer.
Copyright_xml – notice: Ye et al.; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
– notice: Copyright Springer Nature B.V. Dec 2014
– notice: Copyright © 2014 Ye et al.; licensee Springer. 2014 Ye et al.; licensee Springer.
DBID C6C
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1186/1556-276X-9-642
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Materials Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database (ProQuest)
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-276X
EndPage 642
ExternalDocumentID PMC4266508
3791788811
25520592
10_1186_1556_276X_9_642
Genre Journal Article
GroupedDBID -A0
.4S
.86
.DC
0R~
123
29M
2WC
4.4
40G
5VS
6NX
8FE
8FG
8FH
AAFWJ
ABJCF
ABMNI
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADINQ
ADRAZ
AEGXH
AENEX
AEUYN
AFGCZ
AFKRA
AFPKN
AFRAH
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARCSS
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BGNMA
BHPHI
C24
C6C
CAG
CCPQU
CS3
D1I
DU5
EBS
EDO
EJD
F5P
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
HYE
HZ~
I09
IPNFZ
IZQ
KB.
KDC
KQ8
LK8
M48
M4Y
M7P
MM.
M~E
NU0
O5R
O5S
O9-
OK1
P2P
PDBOC
PGMZT
PIMPY
PROAC
RIG
RNS
RPM
RPX
RSV
SCM
SDH
SOJ
TR2
TUS
U2A
~KM
AAYXX
CITATION
OVT
2VQ
C1A
COF
NPM
PHGZM
PHGZT
PQGLB
TSK
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c462t-d57ce6fea3c774d92853bdc8a816f2f8a006b4695fe6a581d85c794c7c90ac333
IEDL.DBID M48
ISSN 1556-276X
1931-7573
IngestDate Thu Aug 21 18:34:11 EDT 2025
Fri Jul 11 04:15:31 EDT 2025
Mon Jun 30 09:00:42 EDT 2025
Mon Jul 21 06:00:11 EDT 2025
Tue Jul 01 03:54:24 EDT 2025
Thu Apr 24 23:06:00 EDT 2025
Fri Feb 21 02:38:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Inhibition
Incubation
Nanoprecipitation
Microsome
Cytochrome P450
Gold nanoparticle
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-d57ce6fea3c774d92853bdc8a816f2f8a006b4695fe6a581d85c794c7c90ac333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1556-276X-9-642
PMID 25520592
PQID 1708028106
PQPubID 2034687
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4266508
proquest_miscellaneous_1639495686
proquest_journals_1708028106
pubmed_primary_25520592
crossref_citationtrail_10_1186_1556_276X_9_642
crossref_primary_10_1186_1556_276X_9_642
springer_journals_10_1186_1556_276X_9_642
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-28
PublicationDateYYYYMMDD 2014-11-28
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-28
  day: 28
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Heidelberg
PublicationTitle Nanoscale research letters
PublicationTitleAbbrev Nanoscale Res Lett
PublicationTitleAlternate Nanoscale Res Lett
PublicationYear 2014
Publisher Springer New York
Springer Nature B.V
Springer
Publisher_xml – name: Springer New York
– name: Springer Nature B.V
– name: Springer
References Frohlich, Kueznik, Samberger, Roblegg, Wrighton, Pieber (CR25) 2010; 242
Margolis, Obach (CR29) 2003; 31
Everts, Saini, Leddon, Kok, Stoff-Khalili, Preuss, Millican, Perkins, Brown, Bagaria (CR3) 2006; 6
Verma, Uzun, Hu, Hu, Han, Watson, Chen, Irvine, Stellacci (CR43) 2008; 7
Johnson, Stout (CR40) 2013; 288
Wang, Jensen, Jensen, Shipovskov, Balakrishnan, Otzen, Pedersen, Besenbacher, Sutherland (CR42) 2011; 11
Kalvass, Tess, Giragossian, Linhares, Maurer (CR31) 2001; 29
Li, Lin, Wu, Liu (CR18) 2005; 33
Lamb, Hathaway, Munger, Raucy, Franklin (CR23) 2010; 38
Klein (CR9) 2007; 104
Wu, Zhang, Yan (CR33) 2009; 10
Balaz (CR32) 2009; 109
Kogan, Bastus, Amigo, Grillo-Bosch, Araya, Turiel, Labarta, Giralt, Puntes (CR4) 2006; 6
Lu, Ma, Veinot, Wong (CR26) 2013; 93
Schaffler, Semmler-Behnke, Sarioglu, Takenaka, Wenk, Schleh, Hauck, Johnston, Kreyling (CR13) 2013; 24
Atkinson, Kenny, Grime (CR38) 2005; 33
Vu, Litvinov, Willson (CR16) 2008; 80
Tang, Wang, Guo, Ma, Chen, Zhan, Yao (CR27) 2013; 3
Dominguez-Medina, McDonough, Swanglap, Landes, Link (CR7) 2012; 28
Sanfins, Dairou, Hussain, Busi, Chaffotte, Rodrigues-Lima, Dupret (CR20) 2011; 5
Yao, Chang, Lan, Yeh (CR34) 2008; 46
Hou, Moghadam, Corredor, Westerhoff, Posner (CR44) 2012; 46
Bowman, Ballard, Ackerson, Feldheim, Margolis, Melander (CR1) 2008; 130
Kennedy, Bickford, Lewinski, Coughlin, Hu, Day, West, Drezek (CR2) 2011; 7
Xu, Li, Iwai, Mei, Fujita, Su, Chen, Hanagata (CR12) 2012; 2
Lacerda, Park, Meuse, Pristinski, Becker, Karim, Douglas (CR14) 2009; 4
Li, Huang, Lv, An, Zhang, Zhang, Fan, Hu (CR17) 2005; 44
Cedervall, Lynch, Lindman, Berggard, Thulin, Nilsson, Dawson, Linse (CR10) 2007; 104
Sereemaspun, Hongpiticharoen, Rojanathanes, Maneewattanapinyo, Ekgasit, Warisnoicharoen (CR24) 2008; 4
Wang, Zhang, Zhao, Liu, Xing (CR36) 2010; 79
Grimm, Einolf, Hall, He, Lim, Ling, Lu, Nomeir, Seibert, Skordos (CR37) 2009; 37
Kulthong, Maniratanachote, Kobayashi, Fukami, Yokoi (CR21) 2012; 42
Nel, Mädler, Velegol, Xia, Hoek, Somasundaran, Klaessig, Castranova, Thompson (CR6) 2009; 8
Gay, Roberts, Halpert (CR46) 2010; 2
You, De, Han, Rotello (CR35) 2005; 127
Warisnoicharoen, Hongpiticharoen, Lawanprasert (CR22) 2011; 5
Lundqvist, Stigler, Elia, Lynch, Cedervall, Dawson (CR11) 2008; 105
Mahmoudi, Lynch, Ejtehadi, Monopoli, Bombelli, Laurent (CR5) 2011; 111
Tran, von Moltke, Venkatakrishnan, Granda, Gibbs, Obach, Harmatz, Greenblatt (CR30) 2002; 30
Zhang, Xing, Li, Zhou, Mu, Yan (CR41) 2009; 9
Untener, Comfort, Maurer, Grabinski, Comfort, Hussain (CR45) 2013; 5
Dominguez-Medina, Blankenburg, Olson, Landes, Link (CR8) 2013; 1
Huang, Guo, Wang, Li, Zhu, Chen, Ouyang, Yao (CR28) 2012; 737
Asuri, Bale, Pangule, Shah, Kane, Dordick (CR19) 2007; 23
Gebauer, Malissek, Simon, Knauer, Maskos, Stauber, Peukert, Treuel (CR15) 2012; 28
Ekroos, Sjogren (CR39) 2006; 103
A Verma (2385_CR43) 2008; 7
B Zhang (2385_CR41) 2009; 9
A Sereemaspun (2385_CR24) 2008; 4
E Sanfins (2385_CR20) 2011; 5
S Dominguez-Medina (2385_CR7) 2012; 28
H Li (2385_CR17) 2005; 44
E Frohlich (2385_CR25) 2010; 242
M Ekroos (2385_CR39) 2006; 103
W Warisnoicharoen (2385_CR22) 2011; 5
S Dominguez-Medina (2385_CR8) 2013; 1
MC Bowman (2385_CR1) 2008; 130
M Li (2385_CR18) 2005; 33
K Kulthong (2385_CR21) 2012; 42
C Huang (2385_CR28) 2012; 737
JC Kalvass (2385_CR31) 2001; 29
M Schaffler (2385_CR13) 2013; 24
EA Untener (2385_CR45) 2013; 5
JS Gebauer (2385_CR15) 2012; 28
S Balaz (2385_CR32) 2009; 109
J Wang (2385_CR42) 2011; 11
TH Tran (2385_CR30) 2002; 30
C You (2385_CR35) 2005; 127
LC Kennedy (2385_CR2) 2011; 7
Z Wu (2385_CR33) 2009; 10
A Atkinson (2385_CR38) 2005; 33
J Klein (2385_CR9) 2007; 104
M Lundqvist (2385_CR11) 2008; 105
WC Hou (2385_CR44) 2012; 46
BV Vu (2385_CR16) 2008; 80
JG Lamb (2385_CR23) 2010; 38
M Xu (2385_CR12) 2012; 2
Z Lu (2385_CR26) 2013; 93
SW Grimm (2385_CR37) 2009; 37
H-T Yao (2385_CR34) 2008; 46
M Mahmoudi (2385_CR5) 2011; 111
EF Johnson (2385_CR40) 2013; 288
JM Margolis (2385_CR29) 2003; 31
Z Wang (2385_CR36) 2010; 79
AE Nel (2385_CR6) 2009; 8
M Everts (2385_CR3) 2006; 6
T Cedervall (2385_CR10) 2007; 104
P Asuri (2385_CR19) 2007; 23
L Tang (2385_CR27) 2013; 3
SC Gay (2385_CR46) 2010; 2
MJ Kogan (2385_CR4) 2006; 6
SHDP Lacerda (2385_CR14) 2009; 4
22458323 - Xenobiotica. 2012 Sep;42(9):854-62
16159281 - J Am Chem Soc. 2005 Sep 21;127(37):12873-81
23957848 - ACS Appl Mater Interfaces. 2013 Sep 11;5(17):8366-73
21981115 - Nano Lett. 2011 Nov 9;11(11):4985-91
22524519 - Langmuir. 2012 Jun 26;28(25):9673-9
18809927 - Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14265-70
22586516 - Sci Rep. 2012;2:406
17267609 - Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2050-5
16402797 - Nano Lett. 2006 Jan;6(1):110-5
18558773 - Anal Chem. 2008 Jul 15;80(14):5462-7
22242832 - Environ Sci Technol. 2012 Feb 7;46(3):1869-76
12433817 - Drug Metab Dispos. 2002 Dec;30(12):1441-5
22769039 - Anal Chim Acta. 2012 Aug 6;737:83-98
16954191 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13682-7
19265398 - Chem Rev. 2009 May;109(5):1793-899
16314298 - Nucleic Acids Res. 2005 Nov 27;33(21):e184
11560877 - Drug Metab Dispos. 2001 Oct;29(10):1332-6
21526848 - ACS Nano. 2011 Jun 28;5(6):4504-11
20861156 - Drug Metab Dispos. 2010 Dec;38(12):2246-51
21688848 - Chem Rev. 2011 Sep 14;111(9):5610-37
18500347 - Nat Mater. 2008 Jul;7(7):588-95
12695349 - Drug Metab Dispos. 2003 May;31(5):606-11
21103389 - Future Med Chem. 2010 Sep;2(9):1451-68
19909766 - Toxicol Appl Pharmacol. 2010 Feb 1;242(3):326-32
16608249 - Nano Lett. 2006 Apr;6(4):587-91
17944500 - Langmuir. 2007 Nov 20;23(24):12318-21
21213377 - Small. 2011 Jan 17;7(2):169-83
19408924 - Nano Lett. 2009 Jun;9(6):2280-4
20057940 - Int J Mol Sci. 2009 Nov 20;10(10):4198-209
17284585 - Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2029-30
20089293 - Chemosphere. 2010 Mar;79(1):86-92
23632020 - J Biol Chem. 2013 Jun 14;288(24):17082-90
23914342 - ACS Sustain Chem Eng. 2013 Jul 1;1(7):833-842
16049126 - Drug Metab Dispos. 2005 Nov;33(11):1637-47
19525947 - Nat Mater. 2009 Jul;8(7):543-57
23735821 - Nanotechnology. 2013 Jul 5;24(26):265103
18473457 - J Am Chem Soc. 2008 Jun 4;130(22):6896-7
20020753 - ACS Nano. 2010 Jan 26;4(1):365-79
15942960 - Angew Chem Int Ed Engl. 2005 Aug 12;44(32):5100-3
23763865 - Chemosphere. 2013 Sep;93(1):123-32
22515552 - Langmuir. 2012 Jun 19;28(24):9131-9
19359406 - Drug Metab Dispos. 2009 Jul;37(7):1355-70
17950511 - Food Chem Toxicol. 2008 Feb;46(2):645-53
References_xml – volume: 24
  start-page: 265103
  year: 2013
  end-page: 265113
  ident: CR13
  article-title: Serum protein identification and quantification of the corona of 5, 15 and 80 nm gold nanoparticles
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/26/265103
– volume: 2
  start-page: 1451
  year: 2010
  end-page: 1468
  ident: CR46
  article-title: Structural features of cytochromes P450 and ligands that affect drug metabolism as revealed by X-ray crystallography and NMR
  publication-title: Future Med Chem
  doi: 10.4155/fmc.10.229
– volume: 4
  start-page: 365
  year: 2009
  end-page: 379
  ident: CR14
  article-title: Interaction of gold nanoparticles with common human blood proteins
  publication-title: ACS Nano
  doi: 10.1021/nn9011187
– volume: 6
  start-page: 587
  year: 2006
  end-page: 591
  ident: CR3
  article-title: Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy
  publication-title: Nano Lett
  doi: 10.1021/nl0500555
– volume: 11
  start-page: 4985
  year: 2011
  end-page: 4991
  ident: CR42
  article-title: Soft interactions at nanoparticles alter protein function and conformation in a size dependent manner
  publication-title: Nano Lett
  doi: 10.1021/nl202940k
– volume: 42
  start-page: 854
  year: 2012
  end-page: 862
  ident: CR21
  article-title: Effects of silver nanoparticles on rat hepatic cytochrome P450 enzyme activity
  publication-title: Xenobiotica
  doi: 10.3109/00498254.2012.670312
– volume: 5
  start-page: 8366
  year: 2013
  end-page: 8373
  ident: CR45
  article-title: Tannic acid coated gold nanorods demonstrate a distinctive form of endosomal uptake and unique distribution within cells
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am402848q
– volume: 10
  start-page: 4198
  year: 2009
  end-page: 4209
  ident: CR33
  article-title: Regulation of enzyme activity through interactions with nanoparticles
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms10104198
– volume: 46
  start-page: 1869
  year: 2012
  end-page: 1876
  ident: CR44
  article-title: Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes
  publication-title: Environ Sci Technol
  doi: 10.1021/es203661k
– volume: 111
  start-page: 5610
  year: 2011
  end-page: 5637
  ident: CR5
  article-title: Protein-nanoparticle interactions: opportunities and challenges
  publication-title: Chem Rev
  doi: 10.1021/cr100440g
– volume: 31
  start-page: 606
  year: 2003
  end-page: 611
  ident: CR29
  article-title: Impact of nonspecific binding to microsomes and phospholipid on the inhibition of cytochrome P450 2D6: implications for relating in vitro inhibition data to in vivo drug interactions
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.31.5.606
– volume: 79
  start-page: 86
  year: 2010
  end-page: 92
  ident: CR36
  article-title: Adsorption and inhibition of butyrylcholinesterase by different engineered nanoparticles
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.12.051
– volume: 2
  start-page: 406
  year: 2012
  end-page: 412
  ident: CR12
  article-title: Formation of nano-bio-complex as nanomaterials dispersed in a biological solution for understanding nanobiological interactions
  publication-title: Sci Rep
– volume: 737
  start-page: 83
  year: 2012
  end-page: 98
  ident: CR28
  article-title: A generic approach for expanding homolog-targeted residue screening of sulfonamides using a fast matrix separation and class-specific fragmentation- dependent acquisition with a hybrid quadrupole-linear ion trap mass spectrometer
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2012.05.041
– volume: 93
  start-page: 123
  year: 2013
  end-page: 132
  ident: CR26
  article-title: Disruption of biomolecule function by nanoparticles: how do gold nanoparticles affect Phase I biotransformation of persistent organic pollutants?
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.05.004
– volume: 7
  start-page: 588
  year: 2008
  end-page: 595
  ident: CR43
  article-title: Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles
  publication-title: Nat Mater
  doi: 10.1038/nmat2202
– volume: 44
  start-page: 5100
  year: 2005
  end-page: 5103
  ident: CR17
  article-title: Nanoparticle PCR: nanogold-assisted PCR with enhanced specificity
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200500403
– volume: 288
  start-page: 17082
  year: 2013
  end-page: 17090
  ident: CR40
  article-title: Structural diversity of eukaryotic membrane cytochrome P450s
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R113.452805
– volume: 109
  start-page: 1793
  year: 2009
  end-page: 1899
  ident: CR32
  article-title: Modeling kinetics of subcellular disposition of chemicals
  publication-title: Chem Rev
  doi: 10.1021/cr030440j
– volume: 103
  start-page: 13682
  year: 2006
  end-page: 13687
  ident: CR39
  article-title: Structural basis for ligand promiscuity in cytochrome P450 3A4
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0603236103
– volume: 28
  start-page: 9673
  year: 2012
  end-page: 9679
  ident: CR15
  article-title: Impact of the nanoparticle–protein corona on colloidal stability and protein structure
  publication-title: Langmuir
  doi: 10.1021/la301104a
– volume: 3
  start-page: 15875
  year: 2013
  end-page: 15886
  ident: CR27
  article-title: Salt-triggered liquid phase separation and facile nanoprecipitation of aqueous colloidal gold dispersion in miscible biofluids for direct chromatographic measurement
  publication-title: RSC Adv
  doi: 10.1039/c3ra40676h
– volume: 130
  start-page: 6896
  year: 2008
  end-page: 6897
  ident: CR1
  article-title: Inhibition of HIV fusion with multivalent gold nanoparticles
  publication-title: J Am Chem Soc
  doi: 10.1021/ja710321g
– volume: 105
  start-page: 14265
  year: 2008
  end-page: 14270
  ident: CR11
  article-title: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0805135105
– volume: 80
  start-page: 5462
  year: 2008
  end-page: 5467
  ident: CR16
  article-title: Gold nanoparticle effects in polymerase chain reaction: favoring of smaller products by polymerase adsorption
  publication-title: Anal Chem
  doi: 10.1021/ac8000258
– volume: 242
  start-page: 326
  year: 2010
  end-page: 332
  ident: CR25
  article-title: Size-dependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2009.11.002
– volume: 104
  start-page: 2029
  year: 2007
  end-page: 2030
  ident: CR9
  article-title: Probing the interactions of proteins and nanoparticles
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0611610104
– volume: 8
  start-page: 543
  year: 2009
  end-page: 557
  ident: CR6
  article-title: Understanding biophysicochemical interactions at the nano–bio interface
  publication-title: Nat Mater
  doi: 10.1038/nmat2442
– volume: 104
  start-page: 2050
  year: 2007
  end-page: 2055
  ident: CR10
  article-title: Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0608582104
– volume: 33
  start-page: 1637
  year: 2005
  end-page: 1647
  ident: CR38
  article-title: Automated assessment of time-dependent inhibition of human cytochrome P450 enzymes using liquid chromatography-tandem mass spectrometry analysis
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.105.005579
– volume: 30
  start-page: 1441
  year: 2002
  end-page: 1445
  ident: CR30
  article-title: Microsomal protein concentration modifies the apparent inhibitory potency of CYP3A inhibitors
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.30.12.1441
– volume: 4
  start-page: 492
  year: 2008
  end-page: 495
  ident: CR24
  article-title: Inhibition of human cytochrome P450 enzymes by metallic nanoparticles: a preliminary to nanogenomics
  publication-title: Int J Pharmacol
  doi: 10.3923/ijp.2008.492.495
– volume: 9
  start-page: 2280
  year: 2009
  end-page: 2284
  ident: CR41
  article-title: Functionalized carbon nanotubes specifically bind to α-chymotrypsin's catalytic site and regulate its enzymatic function
  publication-title: Nano Lett
  doi: 10.1021/nl900437n
– volume: 37
  start-page: 1355
  year: 2009
  end-page: 1370
  ident: CR37
  article-title: The conduct of in vitro studies to address time-dependent inhibition of drug-metabolizing enzymes: a perspective of the pharmaceutical research and manufacturers of America
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.109.026716
– volume: 33
  start-page: e184
  year: 2005
  end-page: e194
  ident: CR18
  article-title: Enhancing the efficiency of a PCR using gold nanoparticles
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gni183
– volume: 38
  start-page: 2246
  year: 2010
  end-page: 2251
  ident: CR23
  article-title: Nanosilver particle effects on drug metabolism in vitro
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.110.035238
– volume: 6
  start-page: 110
  year: 2006
  end-page: 115
  ident: CR4
  article-title: Nanoparticle-mediated local and remote manipulation of protein aggregation
  publication-title: Nano Lett
  doi: 10.1021/nl0516862
– volume: 5
  start-page: 58
  year: 2011
  end-page: 64
  ident: CR22
  article-title: Alteration in enzymatic function of human cytochrome P450 by silver nanoparticles
  publication-title: Res J Environ Toxicol
  doi: 10.3923/rjet.2011.58.64
– volume: 46
  start-page: 645
  year: 2008
  end-page: 653
  ident: CR34
  article-title: The inhibitory effect of tannic acid on cytochrome P450 enzymes and NADPH-CYP reductase in rat and human liver microsomes
  publication-title: Food Chem Toxicol
  doi: 10.1016/j.fct.2007.09.073
– volume: 1
  start-page: 833
  year: 2013
  end-page: 842
  ident: CR8
  article-title: Adsorption of a protein monolayer via hydrophobic interactions prevents nanoparticle aggregation under harsh environmental conditions
  publication-title: ACS Sustain Chem Eng
– volume: 29
  start-page: 1332
  year: 2001
  end-page: 1336
  ident: CR31
  article-title: Influence of microsomal concentration on apparent intrinsic clearance: implications for scaling in vitro data
  publication-title: Drug Metab Dispos
– volume: 5
  start-page: 4504
  year: 2011
  end-page: 4511
  ident: CR20
  article-title: Carbon black nanoparticles impair acetylation of aromatic amine carcinogens through inactivation of arylamine N-acetyltransferase enzymes
  publication-title: ACS Nano
  doi: 10.1021/nn103534d
– volume: 7
  start-page: 169
  year: 2011
  end-page: 183
  ident: CR2
  article-title: A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies
  publication-title: Small
  doi: 10.1002/smll.201000134
– volume: 127
  start-page: 12873
  year: 2005
  end-page: 12881
  ident: CR35
  article-title: Tunable inhibition and denaturation of α-chymotrypsin with amino acid-functionalized gold nanoparticles
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0512881
– volume: 28
  start-page: 9131
  year: 2012
  end-page: 9139
  ident: CR7
  article-title: In situ measurement of bovine serum albumin interaction with gold nanospheres
  publication-title: Langmuir
  doi: 10.1021/la3005213
– volume: 23
  start-page: 12318
  year: 2007
  end-page: 12321
  ident: CR19
  article-title: Structure, function, and stability of enzymes covalently attached to single-walled carbon nanotubes
  publication-title: Langmuir
  doi: 10.1021/la702091c
– volume: 8
  start-page: 543
  year: 2009
  ident: 2385_CR6
  publication-title: Nat Mater
  doi: 10.1038/nmat2442
– volume: 288
  start-page: 17082
  year: 2013
  ident: 2385_CR40
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R113.452805
– volume: 31
  start-page: 606
  year: 2003
  ident: 2385_CR29
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.31.5.606
– volume: 7
  start-page: 588
  year: 2008
  ident: 2385_CR43
  publication-title: Nat Mater
  doi: 10.1038/nmat2202
– volume: 737
  start-page: 83
  year: 2012
  ident: 2385_CR28
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2012.05.041
– volume: 127
  start-page: 12873
  year: 2005
  ident: 2385_CR35
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0512881
– volume: 44
  start-page: 5100
  year: 2005
  ident: 2385_CR17
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200500403
– volume: 30
  start-page: 1441
  year: 2002
  ident: 2385_CR30
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.30.12.1441
– volume: 4
  start-page: 365
  year: 2009
  ident: 2385_CR14
  publication-title: ACS Nano
  doi: 10.1021/nn9011187
– volume: 103
  start-page: 13682
  year: 2006
  ident: 2385_CR39
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0603236103
– volume: 5
  start-page: 4504
  year: 2011
  ident: 2385_CR20
  publication-title: ACS Nano
  doi: 10.1021/nn103534d
– volume: 6
  start-page: 110
  year: 2006
  ident: 2385_CR4
  publication-title: Nano Lett
  doi: 10.1021/nl0516862
– volume: 104
  start-page: 2050
  year: 2007
  ident: 2385_CR10
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0608582104
– volume: 5
  start-page: 58
  year: 2011
  ident: 2385_CR22
  publication-title: Res J Environ Toxicol
  doi: 10.3923/rjet.2011.58.64
– volume: 79
  start-page: 86
  year: 2010
  ident: 2385_CR36
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.12.051
– volume: 29
  start-page: 1332
  year: 2001
  ident: 2385_CR31
  publication-title: Drug Metab Dispos
– volume: 46
  start-page: 1869
  year: 2012
  ident: 2385_CR44
  publication-title: Environ Sci Technol
  doi: 10.1021/es203661k
– volume: 33
  start-page: e184
  year: 2005
  ident: 2385_CR18
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gni183
– volume: 130
  start-page: 6896
  year: 2008
  ident: 2385_CR1
  publication-title: J Am Chem Soc
  doi: 10.1021/ja710321g
– volume: 23
  start-page: 12318
  year: 2007
  ident: 2385_CR19
  publication-title: Langmuir
  doi: 10.1021/la702091c
– volume: 4
  start-page: 492
  year: 2008
  ident: 2385_CR24
  publication-title: Int J Pharmacol
  doi: 10.3923/ijp.2008.492.495
– volume: 9
  start-page: 2280
  year: 2009
  ident: 2385_CR41
  publication-title: Nano Lett
  doi: 10.1021/nl900437n
– volume: 5
  start-page: 8366
  year: 2013
  ident: 2385_CR45
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am402848q
– volume: 6
  start-page: 587
  year: 2006
  ident: 2385_CR3
  publication-title: Nano Lett
  doi: 10.1021/nl0500555
– volume: 33
  start-page: 1637
  year: 2005
  ident: 2385_CR38
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.105.005579
– volume: 109
  start-page: 1793
  year: 2009
  ident: 2385_CR32
  publication-title: Chem Rev
  doi: 10.1021/cr030440j
– volume: 11
  start-page: 4985
  year: 2011
  ident: 2385_CR42
  publication-title: Nano Lett
  doi: 10.1021/nl202940k
– volume: 80
  start-page: 5462
  year: 2008
  ident: 2385_CR16
  publication-title: Anal Chem
  doi: 10.1021/ac8000258
– volume: 1
  start-page: 833
  year: 2013
  ident: 2385_CR8
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/sc400042h
– volume: 93
  start-page: 123
  year: 2013
  ident: 2385_CR26
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.05.004
– volume: 46
  start-page: 645
  year: 2008
  ident: 2385_CR34
  publication-title: Food Chem Toxicol
  doi: 10.1016/j.fct.2007.09.073
– volume: 24
  start-page: 265103
  year: 2013
  ident: 2385_CR13
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/26/265103
– volume: 105
  start-page: 14265
  year: 2008
  ident: 2385_CR11
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0805135105
– volume: 42
  start-page: 854
  year: 2012
  ident: 2385_CR21
  publication-title: Xenobiotica
  doi: 10.3109/00498254.2012.670312
– volume: 104
  start-page: 2029
  year: 2007
  ident: 2385_CR9
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0611610104
– volume: 28
  start-page: 9131
  year: 2012
  ident: 2385_CR7
  publication-title: Langmuir
  doi: 10.1021/la3005213
– volume: 38
  start-page: 2246
  year: 2010
  ident: 2385_CR23
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.110.035238
– volume: 37
  start-page: 1355
  year: 2009
  ident: 2385_CR37
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.109.026716
– volume: 7
  start-page: 169
  year: 2011
  ident: 2385_CR2
  publication-title: Small
  doi: 10.1002/smll.201000134
– volume: 242
  start-page: 326
  year: 2010
  ident: 2385_CR25
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2009.11.002
– volume: 10
  start-page: 4198
  year: 2009
  ident: 2385_CR33
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms10104198
– volume: 2
  start-page: 1451
  year: 2010
  ident: 2385_CR46
  publication-title: Future Med Chem
  doi: 10.4155/fmc.10.229
– volume: 2
  start-page: 406
  year: 2012
  ident: 2385_CR12
  publication-title: Sci Rep
  doi: 10.1038/srep00406
– volume: 111
  start-page: 5610
  year: 2011
  ident: 2385_CR5
  publication-title: Chem Rev
  doi: 10.1021/cr100440g
– volume: 28
  start-page: 9673
  year: 2012
  ident: 2385_CR15
  publication-title: Langmuir
  doi: 10.1021/la301104a
– volume: 3
  start-page: 15875
  year: 2013
  ident: 2385_CR27
  publication-title: RSC Adv
  doi: 10.1039/c3ra40676h
– reference: 23763865 - Chemosphere. 2013 Sep;93(1):123-32
– reference: 20089293 - Chemosphere. 2010 Mar;79(1):86-92
– reference: 23957848 - ACS Appl Mater Interfaces. 2013 Sep 11;5(17):8366-73
– reference: 19408924 - Nano Lett. 2009 Jun;9(6):2280-4
– reference: 21688848 - Chem Rev. 2011 Sep 14;111(9):5610-37
– reference: 16954191 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13682-7
– reference: 15942960 - Angew Chem Int Ed Engl. 2005 Aug 12;44(32):5100-3
– reference: 18473457 - J Am Chem Soc. 2008 Jun 4;130(22):6896-7
– reference: 17267609 - Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2050-5
– reference: 20020753 - ACS Nano. 2010 Jan 26;4(1):365-79
– reference: 22524519 - Langmuir. 2012 Jun 26;28(25):9673-9
– reference: 11560877 - Drug Metab Dispos. 2001 Oct;29(10):1332-6
– reference: 23632020 - J Biol Chem. 2013 Jun 14;288(24):17082-90
– reference: 21981115 - Nano Lett. 2011 Nov 9;11(11):4985-91
– reference: 19359406 - Drug Metab Dispos. 2009 Jul;37(7):1355-70
– reference: 22242832 - Environ Sci Technol. 2012 Feb 7;46(3):1869-76
– reference: 20861156 - Drug Metab Dispos. 2010 Dec;38(12):2246-51
– reference: 16159281 - J Am Chem Soc. 2005 Sep 21;127(37):12873-81
– reference: 12695349 - Drug Metab Dispos. 2003 May;31(5):606-11
– reference: 21213377 - Small. 2011 Jan 17;7(2):169-83
– reference: 16402797 - Nano Lett. 2006 Jan;6(1):110-5
– reference: 22515552 - Langmuir. 2012 Jun 19;28(24):9131-9
– reference: 23735821 - Nanotechnology. 2013 Jul 5;24(26):265103
– reference: 21526848 - ACS Nano. 2011 Jun 28;5(6):4504-11
– reference: 18809927 - Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14265-70
– reference: 22769039 - Anal Chim Acta. 2012 Aug 6;737:83-98
– reference: 19525947 - Nat Mater. 2009 Jul;8(7):543-57
– reference: 22458323 - Xenobiotica. 2012 Sep;42(9):854-62
– reference: 21103389 - Future Med Chem. 2010 Sep;2(9):1451-68
– reference: 17284585 - Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2029-30
– reference: 19265398 - Chem Rev. 2009 May;109(5):1793-899
– reference: 18500347 - Nat Mater. 2008 Jul;7(7):588-95
– reference: 12433817 - Drug Metab Dispos. 2002 Dec;30(12):1441-5
– reference: 23914342 - ACS Sustain Chem Eng. 2013 Jul 1;1(7):833-842
– reference: 18558773 - Anal Chem. 2008 Jul 15;80(14):5462-7
– reference: 16049126 - Drug Metab Dispos. 2005 Nov;33(11):1637-47
– reference: 17944500 - Langmuir. 2007 Nov 20;23(24):12318-21
– reference: 16314298 - Nucleic Acids Res. 2005 Nov 27;33(21):e184
– reference: 19909766 - Toxicol Appl Pharmacol. 2010 Feb 1;242(3):326-32
– reference: 16608249 - Nano Lett. 2006 Apr;6(4):587-91
– reference: 17950511 - Food Chem Toxicol. 2008 Feb;46(2):645-53
– reference: 20057940 - Int J Mol Sci. 2009 Nov 20;10(10):4198-209
– reference: 22586516 - Sci Rep. 2012;2:406
SSID ssj0047076
Score 2.2201412
Snippet Nano-sized particles are known to interfere with drug-metabolizing cytochrome P450 (CYP) enzymes, which can be anticipated to be a potential source of...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 642
SubjectTerms Adenine
Chemistry and Materials Science
CYP2D6 protein
Cytochrome
Cytochrome P450
Cytochromes P450
Drug dosages
Enzymes
Gold
Inactivation
Isoenzymes
Light scattering
Liver
Materials Science
Membrane proteins
Membranes
Metabolism
Microsomes
Molecular Medicine
Nano Express
Nanochemistry
Nanoparticles
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Nicotinamide
Nicotinamide adenine dinucleotide
Photon correlation spectroscopy
Proteins
Spectroscopy
Tannic acid
Time dependence
Ultraviolet spectroscopy
Zeta potential
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4s22BRmJAxxM8_ArJwSoVYVEVQGV9hY5Y6cbadcpbLbS9pfwcxlnnaVLgXMmia15feMZzxDyKq-sNpDUrK64Y1zUkhkAx7Kap6CDT7bhHPLziTw-458mYhIP3BaxrHKwib2hti2EM_KDVIVboRojmHcX31mYGhWyq3GExm2ygyZY6xHZ-XB4cvplsMVcJf14OUQpKVNC5bG5T6rlATpSyTIlJ6xgkmfbfukG2LxZM_lH4rT3R0f3yb0IJOn7NecfkFvOPyR3r7UXfER-fm2uHKPGWxpGyLNh4G1H-xx5zxPaeDp3HYrCrAEabjlc9j1WaVvTfn4fnbpQdA0UVl0L09DdgJ5ykdBm0V6t5khZreh5O7PUG48ReCy0o5eNofNQ7bdo57hOaBsPy2p9PviYnB0dfvt4zOIkBgZcZh2zQoGTtTM5IFy0RYZOvrKgjU5lndXaoO5WGGiL2kkjEAJrAajooKBIDOR5_oSMfOvdM0KLtOaZsbwAlfBKAAJUk4tUKqiUctyOyduBDyXENuVhWsas7MMVLcvAuDIwrixKZNyYvN68cLHu0PFv0v2BsWVU1UX5W7DG5OXmMSpZyJwY79ol0iCOC5GkRpqnaznY_AtjsgwxKn5cbUnIhiA08N5-4ptp38g7oCMEyGPyZpCla8v6-xZ2_7-FPXIHER0PlyUzvU9G3Y-le46oqateRNX4BX2zGRo
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXOCAyntLi4zEAQ6GTeJXjtWqVYUEQoJKe4vssc1G2nUQm620_SX9uYyzyWqXlgNnTxIn48l84_F8Q8i7wjptYBxYsNwzLoJkBsCzPPAMdPLJLu1DfvkqLy7556mY9iRJqRZmN3-fafkJ3Z1kuZJTVjKEyvfJA5EVKvVomMjJ8MvlCqPxnrfnjov2Xc4tHHn7OORfOdHO1Zwfksc9RqSnG6U-Ifd8fEoe7TAHPiM33-trz6iJjqbu8GzoZdvSLv3dfW5aR7rwLWp5XgNNBQxXHX0qbQLtWvPRmU_nqYHCum1glogL6DcuxrReNtfrBUraNf3ZzB2NJmJw3Z-ho1e1oYt0kG_ZLHCe0NQRVnaz9fecXJ6f_ZhcsL7JAgMu85Y5ocDL4E0BiARdmaP_tg600ZkMedAGzdJiDC2Cl0YgutUC0IZBQTk2UBTFC3IQm-hfEVpmgefG8RLUmFsBiD1NITKpwCrluRuRj4MeKugZyFMjjHnVRSJaVklxVVJcVVaouBF5v73g14Z849-ix4Niq94Kl1WmUiWxxqh3RN5uh9F-UlLERN-sUAYhWgoSNcq83KyD7bMw3MoRfuLN1d4K2Qokbu79kVjPOo7uBHwQ-47Ih2Et7Uzr7lc4-g_Z1-QhIjeeiiJzfUwO2t8rf4LoqLVvOsv4A9a7DXE
  priority: 102
  providerName: Springer Nature
Title Size- and time-dependent alteration in metabolic activities of human hepatic cytochrome P450 isozymes by gold nanoparticles via microsomal coincubations
URI https://link.springer.com/article/10.1186/1556-276X-9-642
https://www.ncbi.nlm.nih.gov/pubmed/25520592
https://www.proquest.com/docview/1708028106
https://www.proquest.com/docview/1639495686
https://pubmed.ncbi.nlm.nih.gov/PMC4266508
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7R9gIHxJtAiRaJAxy2-LEvHxAqUdMKqVUFRMrNWo_XjaXEhsapSH8JP5fZjR0aGi5cVoo8ie3MjOabfXwfIW_iLNcGgoIVGbeMi0IyA2BZVPAQtKvJuZuHPD2TJyP-eSzGf-SA2j9wvrW1c3pSo8vpwc8fy4-Y8B98wmv5HkuiZJGSY5YwhNM7ZA_LknJyBqd8vaTAVeCV5hCwhEwJFbc8P1t-wBEECxEh8Ig2q9UtCHp7J-Vfy6m-Sg0fkPstvKSHq3h4SO7Y6hG5d4N08DH59bW8toyaKqdOWJ51MrgN9Svn3lO0rOjMNhgg0xKoO_tw5ZlXaV1Qr-pHJ9ZtxQYKy6aGieM8oOdcBLSc19fLGVpmS3pRT3NamQr78nb7Hb0qDZ25PYDzeobPCXVZwSJbzRo-IaPh0bfBCWv1GRhwGTUsFwqsLKyJAUFknkRY-rMctNGhLKJCG8zoDNtvUVhpBAJjLQDTHxQkgYE4jp-S3aqu7HNCk7Dgkcl5AirgmQCErSYWoVSQKWV53iMHnR9SaMnLnYbGNPVNjJap82HqfJgmKfqwR96uv_B9xdvxb9P9zrFpF39pqNwhZI0Nc4-8Xl_G1HPrKaay9QJtEN25_lKjzbNVHKzv1QVQj6iNCFkbOFrvzStVOfH03g4zIWzukXddLN14rO2v8OK_7_KS3EUIyN3pykjvk93mcmFfIcxqsj7Z4cExjnqI496no7PzL_hpIAd9P3GB4_E47Pskw3EUHf4GJ5Eukg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiDcLBYwEEhxMN45jOweEELBs6UNItFJvqTNx2Ei7SWGzRdtfwq_gNzKTTZYuBW49Z_LSfJ75xp4HY0_DNLMO-rnIU-WFinItHIAXMlcBWPLJGe1D7u7p4YH6eBgdrrGfXS0MpVV2NrEx1FkFtEe-GRiqCrUYwbw-_ipoahSdrnYjNBaw2Pbz7xiyTV9tvUP9PpNy8H7_7VC0UwUEKC1rkUUGvM69CwGpTxZLdFhpBtbZQOcytw5xmGLQGOVeuwjpnI0AQQsG4r6DkDZA0eRfUiF6cqpMH3zoLL8y_WaYHXKiQJjIhG0rocDqTXTbWkijD0UstJKrXvActT2fofnHMW3j_QbX2bWWtvI3C5zdYGu-vMmunmlmeIv9-FycesFdmXEaWC-68bo1b07kGwTwouQTXyPwxgVwqqk4aTq68irnzbRAPvKU4g0c5nUFI-qlwD-pqM-LaXU6n6BkOudfqnHGS1divN-m9fGTwvEJ5RZOqwl-J1RFCbN0sRt5mx1ciIbusPWyKv09xuMgV9JlKgbTV2kESIddGAXaQGqMV1mPvez0kEDbFJ1mc4yTJjiyOiHFJaS4JE5QcT32fHnD8aIfyL9FNzrFJq1hmCa_YdxjT5aXcUnTOY0rfTVDGWSNFLdalLm7wMHyXRgBSmTE-HCzgpClALULX71SFqOmbThxMaTjPfaiw9KZz_r7L9z__y88ZpeH-7s7yc7W3vYDdgW5pKIyTWk32Hr9beYfIl-r00fNIuHs6KJX5S9af1T4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELemTkLwgMb_sgFGAgkeTBvXsZ0HhICt2hhUFTCpb5lzsWmkNhk0Heo-CZ-FT8c5TcrKgLc955LYup99v_Od7wh50ktSbaDrmEuEZSJ0khkAy7gTAWhvk1N_DvlhIPePxLtRONogP5u7MD6tstkTq406LcCfkXcC5W-FavRgOq5Oixju9l-dfGW-g5SPtDbtNJYQObSL7-i-zV4e7KKun3Le3_v8dp_VHQYYCMlLloYKrHTW9ABpUBpxNF5JCtroQDrutEFMJuhAhs5KEyK10yEggEFB1DXQ84ehuP1vKu8Vtcjmm73B8GNjB4TqVq3tkCEFTIWqVxcWCrTsoBGXjCs5YhGTgq_bxAtE92K-5h9B28oW9rfI9ZrE0tdL1N0gGza_Sa6dK214i_z4lJ1ZRk2eUt--njXNdktaxecrPNAsp1NbIgwnGVB_w-K0qu9KC0er3oF0bH3CN1BYlAWMfWUFOhRhl2az4mwxRclkQb8Uk5TmJkfvv07yo6eZoVOfaTgrpjhOKLIc5snybPI2OboUHd0hrbzI7T1Co8AJblIRgeqKJAQkx6YXBlJBopQVaZu8aPQQQ10i3XfqmMSVq6Rl7BUXe8XFUYyKa5NnqxdOltVB_i260yg2rreJWfwb1G3yePUYF7iP2pjcFnOUQQ7pvViNMneXOFj9C_1BjvwYP67WELIS8MXD15_k2bgqIu6ZGZLzNnneYOncsP4-hfv_n8IjcgVXZPz-YHC4Ta4isRT-zibXO6RVfpvbB0jeyuRhvUooOb7shfkLzXtaig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Size-+and+time-dependent+alteration+in+metabolic+activities+of+human+hepatic+cytochrome+P450+isozymes+by+gold+nanoparticles+via+microsomal+coincubations&rft.jtitle=Nanoscale+research+letters&rft.au=Ye%2C+Meiling&rft.au=Tang%2C+Ling&rft.au=Luo%2C+Mengjun&rft.au=Zhou%2C+Jing&rft.date=2014-11-28&rft.pub=Springer&rft.issn=1931-7573&rft.eissn=1556-276X&rft.volume=9&rft.issue=1&rft.spage=642&rft.epage=642&rft_id=info:doi/10.1186%2F1556-276X-9-642&rft_id=info%3Apmid%2F25520592&rft.externalDocID=PMC4266508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-276X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-276X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-276X&client=summon