The Role of Sirt6 in Obesity and Diabetes

Sirt6 is one of the sirtuin family members, a kind of NAD+-dependent histone deacetylase and ADP-ribose transferase enzyme. It has an important role in physiological and pathological processes, regulating aging, cancer, obesity, insulin resistance, inflammation, and energy metabolism. Recent studies...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physiology Vol. 9; p. 135
Main Authors Kuang, Jiangying, Chen, Lei, Tang, Qin, Zhang, Jinhang, Li, Yanping, He, Jinhan
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 27.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sirt6 is one of the sirtuin family members, a kind of NAD+-dependent histone deacetylase and ADP-ribose transferase enzyme. It has an important role in physiological and pathological processes, regulating aging, cancer, obesity, insulin resistance, inflammation, and energy metabolism. Recent studies have suggested that reduced Sirt6 action is related to obesity and diabetes. Aging and overnutrition, two major risk factors for obesity and diabetes, lead to decreased Sirt6 level and function, which results in abnormal glucose and lipid metabolism. Whole-body ablation of Sirt6 in mice results in severe hypoglycemia. Sirt6 deficiency leads to liver steatosis and promotes diet-induced obesity and insulin resistance. Sirt6 has a protective effect on obesity and diabetes. This review surveys evidence for an emerging role of Sirt6 as a regulator of metabolism in mammals and summarizes its major functions in obesity and diabetes.
AbstractList Sirt6 is one of the sirtuin family members, a kind of NAD+-dependent histone deacetylase and ADP-ribose transferase enzyme. It has an important role in physiological and pathological processes, regulating aging, cancer, obesity, insulin resistance, inflammation, and energy metabolism. Recent studies have suggested that reduced Sirt6 action is related to obesity and diabetes. Aging and overnutrition, two major risk factors for obesity and diabetes, lead to decreased Sirt6 level and function, which results in abnormal glucose and lipid metabolism. Whole-body ablation of Sirt6 in mice results in severe hypoglycemia. Sirt6 deficiency leads to liver steatosis and promotes diet-induced obesity and insulin resistance. Sirt6 has a protective effect on obesity and diabetes. This review surveys evidence for an emerging role of Sirt6 as a regulator of metabolism in mammals and summarizes its major functions in obesity and diabetes.Sirt6 is one of the sirtuin family members, a kind of NAD+-dependent histone deacetylase and ADP-ribose transferase enzyme. It has an important role in physiological and pathological processes, regulating aging, cancer, obesity, insulin resistance, inflammation, and energy metabolism. Recent studies have suggested that reduced Sirt6 action is related to obesity and diabetes. Aging and overnutrition, two major risk factors for obesity and diabetes, lead to decreased Sirt6 level and function, which results in abnormal glucose and lipid metabolism. Whole-body ablation of Sirt6 in mice results in severe hypoglycemia. Sirt6 deficiency leads to liver steatosis and promotes diet-induced obesity and insulin resistance. Sirt6 has a protective effect on obesity and diabetes. This review surveys evidence for an emerging role of Sirt6 as a regulator of metabolism in mammals and summarizes its major functions in obesity and diabetes.
Sirt6 is one of the sirtuin family members, a kind of NAD+-dependent histone deacetylase and ADP-ribose transferase enzyme. It has an important role in physiological and pathological processes, regulating aging, cancer, obesity, insulin resistance, inflammation, and energy metabolism. Recent studies have suggested that reduced Sirt6 action is related to obesity and diabetes. Aging and overnutrition, two major risk factors for obesity and diabetes, lead to decreased Sirt6 level and function, which results in abnormal glucose and lipid metabolism. Whole-body ablation of Sirt6 in mice results in severe hypoglycemia. Sirt6 deficiency leads to liver steatosis and promotes diet-induced obesity and insulin resistance. Sirt6 has a protective effect on obesity and diabetes. This review surveys evidence for an emerging role of Sirt6 as a regulator of metabolism in mammals and summarizes its major functions in obesity and diabetes.
Author Kuang, Jiangying
He, Jinhan
Tang, Qin
Chen, Lei
Zhang, Jinhang
Li, Yanping
AuthorAffiliation 1 State Key Laboratory of Biotherapy, Department of Pharmacy, West China Hospital, Sichuan University , Chengdu , China
2 Department of Cardiology, The Second Hospital of Shandong University, Shandong University , Jinan , China
3 Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University , Chengdu , China
AuthorAffiliation_xml – name: 2 Department of Cardiology, The Second Hospital of Shandong University, Shandong University , Jinan , China
– name: 1 State Key Laboratory of Biotherapy, Department of Pharmacy, West China Hospital, Sichuan University , Chengdu , China
– name: 3 Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University , Chengdu , China
Author_xml – sequence: 1
  givenname: Jiangying
  surname: Kuang
  fullname: Kuang, Jiangying
– sequence: 2
  givenname: Lei
  surname: Chen
  fullname: Chen, Lei
– sequence: 3
  givenname: Qin
  surname: Tang
  fullname: Tang, Qin
– sequence: 4
  givenname: Jinhang
  surname: Zhang
  fullname: Zhang, Jinhang
– sequence: 5
  givenname: Yanping
  surname: Li
  fullname: Li, Yanping
– sequence: 6
  givenname: Jinhan
  surname: He
  fullname: He, Jinhan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29535637$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtrGzEUhUVJaNI0-67KLNuFHT1GGs2mUNJXIBBIU-hOXElXscJ45EpywP--YzspSSHaSFyd8x245w05GNOIhLxjdC6E7s_CarEpc06ZnlPKhHxFjplS7Yy2_PfBk_cROS3ljk6npXxSviZHvJdCKtEdk483C2yu04BNCs3PmKtq4thcWSyxbhoYffMlgsWK5S05DDAUPH24T8ivb19vzn_MLq--X5x_vpy5VvE685wLCBxD4AF611lGHXove8n6zvE-WNcDZ1qjpD50nvUeuNXYMWuDaltxQi72XJ_gzqxyXELemATR7AYp3xrINboBTeiEYg7QMcta2XFtpbOguFK8ZUrDxPq0Z63Wdone4VgzDM-gz3_GuDC36d5ILSQVdAJ8eADk9GeNpZplLA6HAUZM62Km7YtOK7mTvn-a9S_kcdeTQO0FLqdSMgbjYoUa0zY6DoZRs-3V7HrdkrXZ9ToZ6X_GR_aLlr_0b6Vz
CitedBy_id crossref_primary_10_3390_ijms22031430
crossref_primary_10_1002_jcp_30185
crossref_primary_10_1002_rco2_27
crossref_primary_10_3389_fendo_2018_00802
crossref_primary_10_1016_j_neo_2018_11_008
crossref_primary_10_1007_s10565_022_09735_z
crossref_primary_10_3389_fendo_2018_00724
crossref_primary_10_3390_biomedicines11020354
crossref_primary_10_3390_ijms26010183
crossref_primary_10_3390_biom11111692
crossref_primary_10_1155_2018_6256052
crossref_primary_10_1016_j_bbrc_2025_151567
crossref_primary_10_3390_ijms24119540
crossref_primary_10_1016_j_ijbiomac_2023_128270
crossref_primary_10_3389_fphar_2019_01270
crossref_primary_10_3390_ijms23010356
crossref_primary_10_3389_fnagi_2019_00352
crossref_primary_10_2147_NSS_S363437
crossref_primary_10_1038_s41387_021_00168_x
crossref_primary_10_1016_j_lfs_2024_122474
crossref_primary_10_1089_jmf_2018_4261
crossref_primary_10_1172_jci_insight_147692
crossref_primary_10_1016_j_cbi_2019_01_018
crossref_primary_10_1016_j_phymed_2024_156134
crossref_primary_10_3389_fendo_2019_00187
crossref_primary_10_1080_1061186X_2022_2085729
crossref_primary_10_3389_fphys_2021_753501
crossref_primary_10_1016_j_jcyt_2021_09_001
crossref_primary_10_1016_j_phymed_2022_154276
crossref_primary_10_3389_fendo_2019_00266
crossref_primary_10_1002_jcb_28033
crossref_primary_10_3389_fphys_2023_1207133
crossref_primary_10_3390_cells10061340
crossref_primary_10_1186_s12964_024_02025_7
crossref_primary_10_1016_j_intimp_2020_107206
crossref_primary_10_1016_j_gendis_2021_12_024
crossref_primary_10_3390_ijms20051153
crossref_primary_10_3390_ijms22084180
crossref_primary_10_1016_j_jgr_2020_07_005
crossref_primary_10_1016_j_mito_2024_101932
crossref_primary_10_1155_2021_6641128
crossref_primary_10_3389_fimmu_2022_826880
crossref_primary_10_1007_s00018_021_04061_9
crossref_primary_10_1016_j_jgr_2022_11_006
crossref_primary_10_1002_jcp_28500
crossref_primary_10_1097_MD_0000000000041613
crossref_primary_10_1002_2211_5463_13452
crossref_primary_10_1016_j_celrep_2021_110155
crossref_primary_10_1074_jbc_RA118_005309
crossref_primary_10_1016_j_jep_2024_118646
crossref_primary_10_1016_j_lfs_2023_122187
crossref_primary_10_1007_s11357_023_01015_w
crossref_primary_10_3389_fendo_2018_00748
crossref_primary_10_1016_j_ejphar_2020_173158
crossref_primary_10_3892_etm_2023_12019
crossref_primary_10_1016_j_domaniend_2020_106513
crossref_primary_10_1016_j_biopha_2022_114048
crossref_primary_10_1590_1414_431x2022e11795
crossref_primary_10_1016_j_abb_2020_108260
crossref_primary_10_3390_ph18010041
crossref_primary_10_1016_j_ejphar_2021_174289
crossref_primary_10_1042_BSR20181881
crossref_primary_10_1080_0886022X_2024_2377785
crossref_primary_10_1080_09513590_2023_2250003
crossref_primary_10_1002_bies_201900147
crossref_primary_10_1016_j_bbrc_2023_149293
crossref_primary_10_3389_fphar_2022_868365
crossref_primary_10_1016_j_phymed_2021_153857
crossref_primary_10_1021_acsomega_3c04859
crossref_primary_10_1089_rej_2022_0002
crossref_primary_10_1155_2020_7374086
crossref_primary_10_1016_j_ijbiomac_2023_127003
crossref_primary_10_1016_j_celrep_2019_11_067
crossref_primary_10_1080_07388551_2021_2025034
crossref_primary_10_2147_DMSO_S287287
crossref_primary_10_1039_D0FO03467C
crossref_primary_10_1155_2022_2174758
crossref_primary_10_1016_j_molmet_2020_100994
crossref_primary_10_3389_fendo_2021_681356
crossref_primary_10_1038_s41467_021_22567_5
crossref_primary_10_1016_j_apsb_2023_11_014
crossref_primary_10_1002_cbdv_202400245
crossref_primary_10_3390_cells12152009
crossref_primary_10_1186_s10020_023_00676_9
crossref_primary_10_1096_fj_202002607
crossref_primary_10_1186_s13072_024_00536_8
crossref_primary_10_2139_ssrn_4201648
crossref_primary_10_3389_fphar_2020_598326
crossref_primary_10_1016_j_fsi_2020_01_029
crossref_primary_10_1186_s12986_022_00653_9
crossref_primary_10_1016_j_intimp_2021_107926
crossref_primary_10_3390_ijms22094558
crossref_primary_10_1038_s41598_024_81878_x
crossref_primary_10_1089_dna_2023_0102
Cites_doi 10.1038/nature01667
10.1155/2012/597514
10.1371/journal.pone.0099049
10.1074/jbc.M109.053942
10.1016/j.cell.2012.05.016
10.1152/ajpendo.00600.2009
10.1016/j.cmet.2010.03.007
10.1073/pnas.1016306107
10.1042/BJ20070140
10.1073/pnas.1411026111
10.1016/S0092-8674(00)81410-5
10.1074/jbc.M413296200
10.1126/science.1160809
10.1016/j.cell.2009.12.041
10.1093/nar/gkw1202
10.1016/j.celrep.2017.06.069
10.1038/ncomms1127
10.1016/j.cmet.2007.08.006
10.1016/j.mrfmmm.2004.05.011
10.2337/db16-1225
10.1210/en.2008-0944
10.1074/jbc.M110.168039
10.1016/j.jhep.2013.04.030
10.1371/journal.pone.0017057
10.1038/nature04303
10.1128/MCB.26.9.3514-3526.2006
10.3324/haematol.2017.176248
10.1080/14728222.2017.1265507
10.1016/j.cmet.2007.09.006
10.1016/j.cell.2016.04.033
10.1172/JCI200112876
10.1016/j.cell.2014.06.050
10.1016/j.molcel.2008.09.013
10.1074/jbc.M113.481473
10.1128/MCB.24.7.3057-3067.2004
10.1159/000315086
10.1016/j.cell.2006.04.031
10.1016/j.tibs.2013.12.002
10.1016/j.tem.2016.10.002
10.1038/35093131
10.1038/nature06736
10.4161/cc.8.16.9367
10.1038/nature10815
10.1016/j.febslet.2008.01.019
10.1016/j.celrep.2013.08.006
10.1091/mbc.E05-01-0033
10.1073/pnas.0601416103
10.4161/rna.18827
10.1074/jbc.M112.415182
10.4161/rna.1.2.1066
10.1038/35007527
10.1038/srep30321
10.1016/j.molcel.2012.09.030
10.1006/bbrc.1999.0897
10.1016/j.celrep.2017.03.006
10.1016/j.cmet.2006.04.013
10.1038/nm.2961
10.1172/JCI115997
10.1016/j.cmet.2006.01.012
10.1016/j.molcel.2012.06.026
10.1038/ncb2069
10.1111/j.1474-9726.2009.00544.x
10.1016/j.cell.2005.11.044
10.1126/science.1094637
10.1016/j.arr.2016.10.008
10.1056/NEJMoa0810780
10.1016/j.cmet.2006.01.005
10.1016/j.cmet.2006.02.002
10.1016/j.cmet.2010.06.009
10.1038/nsmb.3202
10.1016/j.cmet.2014.10.008
10.1016/j.cell.2008.10.052
10.1038/nature05288
10.1126/science.1100747
10.1007/s00125-017-4542-6
10.1371/journal.pone.0162082
10.4161/cc.8.16.9329
10.1530/JOE-16-0317
10.1016/j.celrep.2015.12.023
10.1530/JOE-17-0033
10.1016/j.cmet.2008.10.001
ContentType Journal Article
Copyright Copyright © 2018 Kuang, Chen, Tang, Zhang, Li and He. 2018 Kuang, Chen, Tang, Zhang, Li and He
Copyright_xml – notice: Copyright © 2018 Kuang, Chen, Tang, Zhang, Li and He. 2018 Kuang, Chen, Tang, Zhang, Li and He
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fphys.2018.00135
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (on DOAJ site, click on "ARTICLES" to view)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1664-042X
ExternalDocumentID oai_doaj_org_article_f7361caec1b145728b5cba626624168a
PMC5835030
29535637
10_3389_fphys_2018_00135
Genre Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 81471068; 81270926
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
DIK
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-d223af2eff2fa9c7b10cedd595197c29fbc9a2188e50df7d19da2b8e71bbf6443
IEDL.DBID M48
ISSN 1664-042X
IngestDate Wed Aug 27 01:24:47 EDT 2025
Thu Aug 21 18:32:43 EDT 2025
Fri Jul 11 06:39:59 EDT 2025
Thu Apr 03 07:08:23 EDT 2025
Tue Jul 01 04:18:22 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords LiPo
diabetes mellitus
type 2
Sirt6
gluconeogenesis
obesity
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-d223af2eff2fa9c7b10cedd595197c29fbc9a2188e50df7d19da2b8e71bbf6443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Dechun Feng, National Institute on Alcohol Abuse and Alcoholism, United States
Reviewed by: Hua Wang, Anhui Medical University, China; ZIyi Liu, National Institutes of Health (NIH), United States
This article was submitted to Clinical and Translational Physiology, a section of the journal Frontiers in Physiology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2018.00135
PMID 29535637
PQID 2013786530
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_f7361caec1b145728b5cba626624168a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5835030
proquest_miscellaneous_2013786530
pubmed_primary_29535637
crossref_citationtrail_10_3389_fphys_2018_00135
crossref_primary_10_3389_fphys_2018_00135
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-27
PublicationDateYYYYMMDD 2018-02-27
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-27
  day: 27
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in physiology
PublicationTitleAlternate Front Physiol
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Papandreou (B50) 2006; 3
Matsumoto (B42) 2007; 6
Blasiak (B5) 2004; 554
Vitiello (B66) 2017; 35
Yamagata (B72) 2008; 32
Michishita (B44) 2008; 452
Bhattacharyya (B4) 2006; 125
Masri (B41) 2014; 158
Kanfi (B25) 2008; 582
Luo (B39) 2014; 9
Xiao (B68) 2010; 285
Schwer (B58) 2010; 107
Nakae (B48) 2001; 108
Vander Heiden (B65) 2009; 324
Krützfeldt (B31) 2005; 438
Lowell (B38) 2000; 404
Chen (B10) 2017; 18
Tasselli (B63); 23
Xiao (B69) 2012; 287
Demir (B12) 2017; 21
Herzig (B20) 2001; 413
Michishita (B46) 2005; 16
Kugel (B33) 2014; 39
Mostoslavsky (B47) 2006; 124
Lerin (B36) 2006; 3
Lappas (B35) 2012; 2012
Tasselli (B64); 28
Cypess (B11) 2009; 360
Tao (B62) 2013; 288
Hu (B21) 2006; 26
Aragonés (B1) 2009; 9
Rizzo (B56) 2017; 45
Michishita (B45) 2009; 8
Shimizu (B59) 2014; 20
Zhao (B79) 2010; 12
Qin (B54) 2018
Zhong (B80) 2010; 140
Kim (B28) 2006; 3
Chang (B9) 2004; 1
Kiyohara (B29) 2006; 103
Yang (B74) 2011; 6
Puigserver (B52) 2003; 423
Brunet (B6) 2004; 303
Barbatelli (B2) 2010; 298
Nedergaard (B49) 2010; 11
Grindel (B19) 2016; 11
Zimmermann (B81) 2004; 306
Kugel (B34) 2016; 165
Kim (B27) 2010; 12
Feng (B17) 2012; 47
Yao (B75) 2017; 20
Elhanati (B15) 2013; 4
Kohsaka (B30) 2007; 6
Yang (B73) 2009; 8
Petrovic (B51) 2010; 285
Zhang (B78) 2014; 111
Elhanati (B14) 2016; 14
Kuang (B32) 2017; 66
Zhang (B77) 2013; 59
Michan (B43) 2007; 404
Wu (B67) 2012; 150
Sundaresan (B61) 2012; 18
Xiong (B70) 2016; 231
Magnusson (B40) 1992; 90
Kanfi (B23) 2012; 483
Kawahara (B26) 2009; 136
Frye (B18) 1999; 260
Xiong (B71) 2017; 233
Barnea (B3) 2009; 150
Jopling (B22) 2012; 9
Liszt (B37) 2005; 280
Song (B60) 2016; 6
Yoshihara (B76) 2010; 1
Rani (B55) 2010; 25
Cagnetta (B7) 2018; 103
Dominy (B13) 2012; 48
Schilling (B57) 2006; 443
Cao (B8) 2004; 24
Kanfi (B24) 2010; 9
Esau (B16) 2006; 3
Puigserver (B53) 1998; 92
References_xml – volume: 423
  start-page: 550
  year: 2003
  ident: B52
  article-title: Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction
  publication-title: Nature
  doi: 10.1038/nature01667
– volume: 2012
  start-page: 597514
  year: 2012
  ident: B35
  article-title: Anti-inflammatory properties of sirtuin 6 in human umbilical vein endothelial cells
  publication-title: Mediators Inflamm.
  doi: 10.1155/2012/597514
– volume: 9
  start-page: e99049
  year: 2014
  ident: B39
  article-title: Transcription factor Ets1 regulates expression of thioredoxin-interacting protein and inhibits insulin secretion in pancreatic beta-cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0099049
– volume: 285
  start-page: 7153
  year: 2010
  ident: B51
  article-title: Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.053942
– volume: 150
  start-page: 366
  year: 2012
  ident: B67
  article-title: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.016
– volume: 298
  start-page: E1244
  year: 2010
  ident: B2
  article-title: The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00600.2009
– volume: 11
  start-page: 268
  year: 2010
  ident: B49
  article-title: The changed metabolic world with human brown adipose tissue: therapeutic visions
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2010.03.007
– volume: 107
  start-page: 21790
  year: 2010
  ident: B58
  article-title: Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1016306107
– volume: 404
  start-page: 1
  year: 2007
  ident: B43
  article-title: Sirtuins in mammals: insights into their biological function
  publication-title: Biochem. J.
  doi: 10.1042/BJ20070140
– volume: 111
  start-page: 10684
  year: 2014
  ident: B78
  article-title: Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1411026111
– volume: 92
  start-page: 829
  year: 1998
  ident: B53
  article-title: A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81410-5
– volume: 280
  start-page: 21313
  year: 2005
  ident: B37
  article-title: Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M413296200
– volume: 324
  start-page: 1029
  year: 2009
  ident: B65
  article-title: Understanding the warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
  doi: 10.1126/science.1160809
– volume: 140
  start-page: 280
  year: 2010
  ident: B80
  article-title: The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha
  publication-title: Cell
  doi: 10.1016/j.cell.2009.12.041
– volume: 45
  start-page: 1820
  year: 2017
  ident: B56
  article-title: SIRT6 interacts with TRF2 and promotes its degradation in response to DNA damage
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1202
– volume: 20
  start-page: 641
  year: 2017
  ident: B75
  article-title: Cold-inducible SIRT6 Regulates thermogenesis of brown and beige fat
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.06.069
– volume: 1
  start-page: 127
  year: 2010
  ident: B76
  article-title: Disruption of TBP-2 ameliorates insulin sensitivity and secretion without affecting obesity
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1127
– volume: 6
  start-page: 208
  year: 2007
  ident: B42
  article-title: Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2007.08.006
– volume: 554
  start-page: 297
  year: 2004
  ident: B5
  article-title: DNA damage and repair in type 2 diabetes mellitus
  publication-title: Mutat. Res.
  doi: 10.1016/j.mrfmmm.2004.05.011
– volume: 66
  start-page: 1159
  year: 2017
  ident: B32
  article-title: Fat-specific Sirt6 ablation sensitizes mice to high-fat diet-induced obesity and insulin resistance by inhibiting lipolysis
  publication-title: Diabetes
  doi: 10.2337/db16-1225
– volume: 150
  start-page: 161
  year: 2009
  ident: B3
  article-title: High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver
  publication-title: Endocrinology
  doi: 10.1210/en.2008-0944
– volume: 285
  start-page: 36776
  year: 2010
  ident: B68
  article-title: SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.168039
– volume: 59
  start-page: 557
  year: 2013
  ident: B77
  article-title: Irisin is inversely associated with intrahepatic triglyceride contents in obese adults
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2013.04.030
– volume: 6
  start-page: e17057
  year: 2011
  ident: B74
  article-title: Activation of peroxisome proliferator-activated receptor gamma by rosiglitazone increases sirt6 expression and ameliorates hepatic steatosis in rats
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0017057
– volume: 438
  start-page: 685
  year: 2005
  ident: B31
  article-title: Silencing of microRNAs in vivo with ‘antagomirs’
  publication-title: Nature
  doi: 10.1038/nature04303
– volume: 26
  start-page: 3514
  year: 2006
  ident: B21
  article-title: Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1alpha) and HIF-2alpha in stem cells
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.26.9.3514-3526.2006
– volume: 103
  start-page: 80
  year: 2018
  ident: B7
  article-title: Depletion of SIRT6 enzymatic activity increases acute myeloid leukemia cells' vulnerability to DNA-damaging agents
  publication-title: Haematologica
  doi: 10.3324/haematol.2017.176248
– volume: 21
  start-page: 1
  year: 2017
  ident: B12
  article-title: Epigenomic therapies: the potential of targeting SIRT6 for the treatment of pancreatic cancer
  publication-title: Expert Opin. Ther. Targets
  doi: 10.1080/14728222.2017.1265507
– volume: 6
  start-page: 414
  year: 2007
  ident: B30
  article-title: High-fat diet disrupts behavioral and molecular circadian rhythms in mice
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2007.09.006
– volume: 165
  start-page: 1401
  year: 2016
  ident: B34
  article-title: SIRT6 suppresses pancreatic cancer through control of Lin28b
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.033
– volume: 108
  start-page: 1359
  year: 2001
  ident: B48
  article-title: The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI200112876
– volume: 158
  start-page: 659
  year: 2014
  ident: B41
  article-title: Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism
  publication-title: Cell
  doi: 10.1016/j.cell.2014.06.050
– volume: 32
  start-page: 221
  year: 2008
  ident: B72
  article-title: Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.09.013
– volume: 288
  start-page: 29252
  year: 2013
  ident: B62
  article-title: FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.481473
– volume: 24
  start-page: 3057
  year: 2004
  ident: B8
  article-title: p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.7.3057-3067.2004
– volume: 25
  start-page: 667
  year: 2010
  ident: B55
  article-title: Decreasing Txnip mRNA and protein levels in pancreatic MIN6 cells reduces reactive oxygen species and restores glucose regulated insulin secretion
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000315086
– volume: 125
  start-page: 1111
  year: 2006
  ident: B4
  article-title: Relief of microRNA-mediated translational repression in human cells subjected to stress
  publication-title: Cell
  doi: 10.1016/j.cell.2006.04.031
– volume: 39
  start-page: 72
  year: 2014
  ident: B33
  article-title: Chromatin and beyond: the multitasking roles for SIRT6
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2013.12.002
– volume: 28
  start-page: 168
  ident: B64
  article-title: SIRT6: novel mechanisms and links to aging and disease
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2016.10.002
– volume: 413
  start-page: 179
  year: 2001
  ident: B20
  article-title: CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
  publication-title: Nature
  doi: 10.1038/35093131
– volume: 452
  start-page: 492
  year: 2008
  ident: B44
  article-title: SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin
  publication-title: Nature
  doi: 10.1038/nature06736
– volume: 8
  start-page: 2664
  year: 2009
  ident: B45
  article-title: Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6
  publication-title: Cell Cycle
  doi: 10.4161/cc.8.16.9367
– volume: 483
  start-page: 218
  year: 2012
  ident: B23
  article-title: The sirtuin SIRT6 regulates lifespan in male mice
  publication-title: Nature
  doi: 10.1038/nature10815
– volume: 582
  start-page: 543
  year: 2008
  ident: B25
  article-title: Regulation of SIRT6 protein levels by nutrient availability
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2008.01.019
– volume: 4
  start-page: 905
  year: 2013
  ident: B15
  article-title: Multiple regulatory layers of SREBP1/2 by SIRT6
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.08.006
– volume: 16
  start-page: 4623
  year: 2005
  ident: B46
  article-title: Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E05-01-0033
– volume: 103
  start-page: 10074
  year: 2006
  ident: B29
  article-title: The BMAL1 C terminus regulates the circadian transcription feedback loop
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0601416103
– volume: 9
  start-page: 137
  year: 2012
  ident: B22
  article-title: Liver-specific microRNA-122: biogenesis and function
  publication-title: RNA Biol.
  doi: 10.4161/rna.18827
– volume: 287
  start-page: 41903
  year: 2012
  ident: B69
  article-title: Progression of chronic liver inflammation and fibrosis driven by activation of c-JUN signaling in Sirt6 mutant mice
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.415182
– volume: 1
  start-page: 106
  year: 2004
  ident: B9
  article-title: miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1
  publication-title: RNA Biol.
  doi: 10.4161/rna.1.2.1066
– volume: 404
  start-page: 652
  year: 2000
  ident: B38
  article-title: Towards a molecular understanding of adaptive thermogenesis
  publication-title: Nature
  doi: 10.1038/35007527
– volume: 6
  start-page: 30321
  year: 2016
  ident: B60
  article-title: Insulin secretion impairment in Sirt6 knockout pancreatic beta cells is mediated by suppression of the FoxO1-Pdx1-Glut2 pathway
  publication-title: Sci. Rep.
  doi: 10.1038/srep30321
– volume: 48
  start-page: 900
  year: 2012
  ident: B13
  article-title: The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.09.030
– volume: 260
  start-page: 273
  year: 1999
  ident: B18
  article-title: Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1999.0897
– volume: 18
  start-page: 3155
  year: 2017
  ident: B10
  article-title: SIRT6 is essential for adipocyte differentiation by regulating mitotic clonal expansion
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.03.006
– volume: 3
  start-page: 429
  year: 2006
  ident: B36
  article-title: GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.04.013
– volume: 18
  start-page: 1643
  year: 2012
  ident: B61
  article-title: The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun
  publication-title: Nat. Med.
  doi: 10.1038/nm.2961
– volume: 90
  start-page: 1323
  year: 1992
  ident: B40
  article-title: Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI115997
– volume: 3
  start-page: 187
  year: 2006
  ident: B50
  article-title: HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.01.012
– volume: 47
  start-page: 158
  year: 2012
  ident: B17
  article-title: Clocks, metabolism, and the epigenome
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.06.026
– volume: 12
  start-page: 665
  year: 2010
  ident: B79
  article-title: Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2069
– volume: 9
  start-page: 162
  year: 2010
  ident: B24
  article-title: SIRT6 protects against pathological damage caused by diet-induced obesity
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2009.00544.x
– volume: 124
  start-page: 315
  year: 2006
  ident: B47
  article-title: Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
  publication-title: Cell
  doi: 10.1016/j.cell.2005.11.044
– volume: 303
  start-page: 2011
  year: 2004
  ident: B6
  article-title: Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
  publication-title: Science
  doi: 10.1126/science.1094637
– volume: 35
  start-page: 301
  year: 2017
  ident: B66
  article-title: Multiple pathways of SIRT6 at the crossroads in the control of longevity, cancer, and cardiovascular diseases
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2016.10.008
– volume: 360
  start-page: 1509
  year: 2009
  ident: B11
  article-title: Identification and importance of brown adipose tissue in adult humans
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0810780
– volume: 3
  start-page: 87
  year: 2006
  ident: B16
  article-title: miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.01.005
– volume: 3
  start-page: 177
  year: 2006
  ident: B28
  article-title: HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.02.002
– volume: 12
  start-page: 224
  year: 2010
  ident: B27
  article-title: Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2010.06.009
– volume: 23
  start-page: 434
  ident: B63
  article-title: SIRT6 deacetylates H3K18ac at pericentric chromatin to prevent mitotic errors and cellular senescence
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3202
– volume: 20
  start-page: 967
  year: 2014
  ident: B59
  article-title: DNA damage response and metabolic disease
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.10.008
– volume: 136
  start-page: 62
  year: 2009
  ident: B26
  article-title: SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span
  publication-title: Cell
  doi: 10.1016/j.cell.2008.10.052
– volume: 443
  start-page: E10
  year: 2006
  ident: B57
  article-title: Gluconeogenesis: re-evaluating the FOXO1-PGC-1alpha connection
  publication-title: Nature
  doi: 10.1038/nature05288
– volume: 306
  start-page: 1383
  year: 2004
  ident: B81
  article-title: Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase
  publication-title: Science
  doi: 10.1126/science.1100747
– year: 2018
  ident: B54
  article-title: SIRT6-mediated transcriptional suppression of Txnip is critical for pancreatic beta cell function and survival in mice
  publication-title: Diabetologia
  doi: 10.1007/s00125-017-4542-6
– volume: 11
  start-page: e0162082
  year: 2016
  ident: B19
  article-title: Oxidative stress, DNA damage and DNA repair in female patients with diabetes mellitus type 2
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0162082
– volume: 8
  start-page: 2662
  year: 2009
  ident: B73
  article-title: The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability
  publication-title: Cell Cycle
  doi: 10.4161/cc.8.16.9329
– volume: 231
  start-page: 159
  year: 2016
  ident: B70
  article-title: SIRT6 protects against palmitate-induced pancreatic beta-cell dysfunction and apoptosis
  publication-title: J. Endocrinol.
  doi: 10.1530/JOE-16-0317
– volume: 14
  start-page: 234
  year: 2016
  ident: B14
  article-title: Reciprocal regulation between SIRT6 and miR-122 controls liver metabolism and predicts hepatocarcinoma prognosis
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.12.023
– volume: 233
  start-page: 307
  year: 2017
  ident: B71
  article-title: Fabp4-Cre-mediated Sirt6 deletion impairs adipose tissue function and metabolic homeostasis in mice
  publication-title: J. Endocrinol.
  doi: 10.1530/JOE-17-0033
– volume: 9
  start-page: 11
  year: 2009
  ident: B1
  article-title: Oxygen sensors at the crossroad of metabolism
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2008.10.001
SSID ssj0000402001
Score 2.4755163
SecondaryResourceType review_article
Snippet Sirt6 is one of the sirtuin family members, a kind of NAD+-dependent histone deacetylase and ADP-ribose transferase enzyme. It has an important role in...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 135
SubjectTerms diabetes mellitus
gluconeogenesis
LiPo
obesity
Physiology
Sirt6
type 2
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iyYuo80f9RQQRdihr0iZpj1McQ9CDOtitJGmCg9nK7A7-976k3dxE9OK1TUn6vSTve-3L9xC65MbRcEZDrRMeJtZVA2QiDqWyNuUsMdaXb7t_4MNRcjdm45VSXy4nrJEHboDrWRFzoqXRRJGECZoqppUEGs7B9_DUUyPweSvBlN-DXVgUkea_JERhWc-6LwUulcvlThJf3e3LD3m5_p845vdUyRXfM9hB2y1pxP1msLtow5R7qNMvIWB-_cBX2Kdx-u_jHdQFw-PHampwZfHTZFZzPClxq_-PZVngNgnmfR-NBrfPN8OwrYcQAo60Dgtw5dJSYy21MtNCkUibomCZO3yqaWaVziS47NSwqLCiIFkhqUqNIEpZ4D3xAdosq9IcIZw5IUKjosRInmiuJGEigfVNYkMjJUSAegt0ct2KhbuaFdMcggaHZ-7xzB2eucczQN3lE2-NUMYvba8d4Mt2TuLaXwDD563h878MH6CLhblyWBLuP4csTTX3HcUCJlocBeiwMd-yK5qxmPEYXlCsGXZtLOt3ysmLl91mQFZhSzz-j8GfoC0Hhz8bL07RZj2bmzNgN7U69xP5E8i09lY
  priority: 102
  providerName: Directory of Open Access Journals
Title The Role of Sirt6 in Obesity and Diabetes
URI https://www.ncbi.nlm.nih.gov/pubmed/29535637
https://www.proquest.com/docview/2013786530
https://pubmed.ncbi.nlm.nih.gov/PMC5835030
https://doaj.org/article/f7361caec1b145728b5cba626624168a
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwELagvOwFMQFbgE1G4qUPobET28nDNAGiqpDKA1Cpb5Ht2KNSlYwslbZ_z52TlhYVXhPHTr47--7i832EvJMO3XDBY2szGWce2QCFSmNtvM-lyJwP9G3zr3K2yL4sxfLP8egBwLujoR3ySS3a9fv7Xw_XMOGvMOIEezvx-BMAs7QwLZKl4jF5AnZJIZ_BfHD2w7qMoVLgQ2ZSYvYFX_b7lkc7wSrBhUiFRIb0PZMVKvsfc0f_zqrcM1PTZ-Tp4F_SD71CnJJHrn5OxqAM9FuzdrTx9Puq7SRd1XTgBKC6ruiQGHP3giymn398msUDR0IM2PIursC8a8-d99zrwirDEuuqShR4INXywhtbaDDjuRNJ5VXFikpzkzvFjPHgC6UvyahuandOaIHFCZ1JMqdlZqXRTKgM5jxLHU-MUhGZbGEo7VBAHHks1iUEEohhGTAsEcMyYBiR8e6J2754xn_afkRkd-2w7HW40LQ35TCLSq9Syax2lhmWCcVzI6zREJNJELjMdUTebuVSwjTBvQ9du2YTBkoVKF-aROSsl9NuqK2cI6IOJHjwLod36tXPUIpbgAMLy-Srf_b5mpzgN4ZD8OoNGXXtxl2AG9OZyxD-XwYd_Q3zb-0b
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Sirt6+in+Obesity+and+Diabetes&rft.jtitle=Frontiers+in+physiology&rft.au=Kuang%2C+Jiangying&rft.au=Chen%2C+Lei&rft.au=Tang%2C+Qin&rft.au=Zhang%2C+Jinhang&rft.date=2018-02-27&rft.issn=1664-042X&rft.eissn=1664-042X&rft.volume=9&rft.spage=135&rft_id=info:doi/10.3389%2Ffphys.2018.00135&rft_id=info%3Apmid%2F29535637&rft.externalDocID=29535637
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon