Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor κB and Mitogen-Activated Protein Kinase Pathways
Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of structurally related proteins that transduces signals from members of TNFR superfamily and various other immune receptors. Major downstream signaling events mediated by the TRAF molecules include activation of the trans...
Saved in:
Published in | Frontiers in immunology Vol. 9; p. 1849 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
09.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of structurally related proteins that transduces signals from members of TNFR superfamily and various other immune receptors. Major downstream signaling events mediated by the TRAF molecules include activation of the transcription factor nuclear factor κB (NF-κB) and the mitogen-activated protein kinases (MAPKs). In addition, some TRAF family members, particularly TRAF2 and TRAF3, serve as negative regulators of specific signaling pathways, such as the noncanonical NF-κB and proinflammatory toll-like receptor pathways. Thus, TRAFs possess important and complex signaling functions in the immune system and play an important role in regulating immune and inflammatory responses. This review will focus on the role of TRAF proteins in the regulation of NF-κB and MAPK signaling pathways. |
---|---|
AbstractList | Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of structurally related proteins that transduces signals from members of TNFR superfamily and various other immune receptors. Major downstream signaling events mediated by the TRAF molecules include activation of the transcription factor nuclear factor κB (NF-κB) and the mitogen-activated protein kinases (MAPKs). In addition, some TRAF family members, particularly TRAF2 and TRAF3, serve as negative regulators of specific signaling pathways, such as the noncanonical NF-κB and proinflammatory toll-like receptor pathways. Thus, TRAFs possess important and complex signaling functions in the immune system and play an important role in regulating immune and inflammatory responses. This review will focus on the role of TRAF proteins in the regulation of NF-κB and MAPK signaling pathways. Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of structurally related proteins that transduces signals from members of TNFR superfamily and various other immune receptors. Major downstream signaling events mediated by the TRAF molecules include activation of the transcription factor nuclear factor κB (NF-κB) and the mitogen-activated protein kinases (MAPKs). In addition, some TRAF family members, particularly TRAF2 and TRAF3, serve as negative regulators of specific signaling pathways, such as the noncanonical NF-κB and proinflammatory toll-like receptor pathways. Thus, TRAFs possess important and complex signaling functions in the immune system and play an important role in regulating immune and inflammatory responses. This review will focus on the role of TRAF proteins in the regulation of NF-κB and MAPK signaling pathways.Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of structurally related proteins that transduces signals from members of TNFR superfamily and various other immune receptors. Major downstream signaling events mediated by the TRAF molecules include activation of the transcription factor nuclear factor κB (NF-κB) and the mitogen-activated protein kinases (MAPKs). In addition, some TRAF family members, particularly TRAF2 and TRAF3, serve as negative regulators of specific signaling pathways, such as the noncanonical NF-κB and proinflammatory toll-like receptor pathways. Thus, TRAFs possess important and complex signaling functions in the immune system and play an important role in regulating immune and inflammatory responses. This review will focus on the role of TRAF proteins in the regulation of NF-κB and MAPK signaling pathways. |
Author | Sun, Shao-Cong Shi, Jian-Hong |
AuthorAffiliation | 1 Central Laboratory, Affiliated Hospital of Hebei University , Baoding , China 2 Department of Immunology, The University of Texas MD Anderson Cancer Center , Houston, TX , United States |
AuthorAffiliation_xml | – name: 1 Central Laboratory, Affiliated Hospital of Hebei University , Baoding , China – name: 2 Department of Immunology, The University of Texas MD Anderson Cancer Center , Houston, TX , United States |
Author_xml | – sequence: 1 givenname: Jian-Hong surname: Shi fullname: Shi, Jian-Hong – sequence: 2 givenname: Shao-Cong surname: Sun fullname: Sun, Shao-Cong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30140268$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Uk1v1DAQtVAR_aB3TihHLlns2HGSC9JSUagopULlbE2c8dZVEi-2U9QT_6s_gt-EN9uWFgnLlseeN29svbdPdkY3IiGvGF1wXjdvjR2GaVFQVi_SEs0zssekFDkvCrHzKN4lhyFc0TREwzkvX5BdTpmghaz3yK-LaXA-O0PtXbAhOwYd0_kbalynIF-G4LSFiN3f1GrqIVo3Zs5kZ5PuEfx98vft-wzGLvtio1vhmC91tNdz9bl3Ee2YfbYjBMzOIV7-hJvwkjw30Ac8vNsPyPfjDxdHn_LTrx9PjpanuRayiLk2pjYV0LqUVYVd-olhsqQIwMDItmhbTbvCpFkLI3RNy0KIBttKVqCRcX5ATra8nYMrtfZ2AH-jHFg1Xzi_UuCjTZ9RgmnemJKVQqfmvIUSWUFLAIpN3ZQbrndbrvXUDthpHKOH_gnp08xoL9XKXStJm0RYJ4I3dwTe_ZgwRDXYoLHvYUQ3BVXQJBRLGokEff2410OTewUTgG4BGwGDR_MAYVRtfKJmn6iNT9Tsk1Qi_ynRNs6Kptfa_v-FfwBAV8Yj |
CitedBy_id | crossref_primary_10_3389_fmolb_2021_681526 crossref_primary_10_3390_cells9051118 crossref_primary_10_1021_acs_jafc_0c01159 crossref_primary_10_3390_cancers14205029 crossref_primary_10_3390_ijms22115871 crossref_primary_10_1039_D2SC05511B crossref_primary_10_1007_s43440_021_00255_x crossref_primary_10_1038_s12276_023_01133_7 crossref_primary_10_3390_cells13070581 crossref_primary_10_1186_s13578_018_0268_5 crossref_primary_10_3389_fneur_2021_746486 crossref_primary_10_3390_ijms23126743 crossref_primary_10_1002_mco2_349 crossref_primary_10_3390_molecules28073057 crossref_primary_10_4049_jimmunol_2001220 crossref_primary_10_1038_s41598_022_23545_7 crossref_primary_10_3389_fphar_2019_00583 crossref_primary_10_1111_bjd_21612 crossref_primary_10_3390_cancers14010176 crossref_primary_10_1007_s12013_022_01064_6 crossref_primary_10_1126_sciadv_adi4162 crossref_primary_10_1016_j_cyto_2024_156616 crossref_primary_10_3724_abbs_2024035 crossref_primary_10_1073_pnas_2411234121 crossref_primary_10_1152_ajpheart_00606_2020 crossref_primary_10_3390_ijms20092346 crossref_primary_10_1126_scisignal_abn5507 crossref_primary_10_3389_fimmu_2023_1160116 crossref_primary_10_1021_acsnano_3c01308 crossref_primary_10_1128_mBio_01723_21 crossref_primary_10_3390_biomedicines9091260 crossref_primary_10_3390_ijms23073655 crossref_primary_10_26693_jmbs05_06_329 crossref_primary_10_3389_fmed_2022_832713 crossref_primary_10_1002_jsfa_11423 crossref_primary_10_1111_cei_13365 crossref_primary_10_3390_ijms24031927 crossref_primary_10_3389_fphys_2021_826697 crossref_primary_10_1016_j_envres_2023_116600 crossref_primary_10_4103_1673_5374_332128 crossref_primary_10_1016_j_ibror_2020_08_005 crossref_primary_10_3389_fimmu_2019_02024 crossref_primary_10_3389_fmolb_2022_922428 crossref_primary_10_3390_pr8121566 crossref_primary_10_3389_fvets_2023_1141561 crossref_primary_10_1038_s41423_020_00583_7 crossref_primary_10_3390_cells11101673 crossref_primary_10_3390_ijms25137275 crossref_primary_10_1080_07357907_2020_1721523 crossref_primary_10_3389_fimmu_2023_1192821 crossref_primary_10_3390_ijms21030999 crossref_primary_10_1016_j_clim_2020_108423 crossref_primary_10_1128_mSystems_00336_21 crossref_primary_10_5847_wjem_j_1920_8642_2023_079 crossref_primary_10_3390_genes11121509 crossref_primary_10_2147_JIR_S448091 crossref_primary_10_1038_s41598_021_86585_5 crossref_primary_10_3390_biomedicines11072075 crossref_primary_10_1186_s12935_020_01595_z crossref_primary_10_1016_j_oor_2024_100384 crossref_primary_10_3390_cells9040897 crossref_primary_10_1111_jfb_15126 crossref_primary_10_1016_j_molimm_2022_10_015 crossref_primary_10_1016_j_jtos_2020_12_007 crossref_primary_10_1007_s00018_025_05631_x crossref_primary_10_1126_sciimmunol_abd1287 crossref_primary_10_1042_BSR20231418 crossref_primary_10_1111_cbdd_14574 crossref_primary_10_1093_intimm_dxab058 crossref_primary_10_1007_s11064_025_04332_y crossref_primary_10_3390_life11090988 crossref_primary_10_3803_EnM_2023_501 crossref_primary_10_1186_s13567_021_01005_w crossref_primary_10_1080_15476286_2020_1845505 crossref_primary_10_1016_j_jep_2021_114626 crossref_primary_10_1084_jem_20240806 crossref_primary_10_1111_1440_1681_13625 crossref_primary_10_3390_ijms231911065 crossref_primary_10_1016_j_crbiot_2024_100204 crossref_primary_10_1074_jbc_RA120_015960 crossref_primary_10_1016_j_bcp_2021_114733 crossref_primary_10_3390_cimb46100638 crossref_primary_10_1111_cns_14749 crossref_primary_10_1289_EHP5550 crossref_primary_10_3389_fimmu_2021_623256 crossref_primary_10_3390_cells10123309 crossref_primary_10_1155_2020_9020219 crossref_primary_10_1111_jcmm_18097 crossref_primary_10_1016_j_abb_2022_109464 crossref_primary_10_3389_fimmu_2024_1481699 crossref_primary_10_1038_s41598_021_87795_7 crossref_primary_10_3390_v15051163 crossref_primary_10_3389_fimmu_2021_640837 crossref_primary_10_4103_1735_5362_343084 crossref_primary_10_1038_s41598_020_73912_5 crossref_primary_10_1080_02713683_2020_1772831 crossref_primary_10_1016_j_lfs_2024_122896 crossref_primary_10_3389_fimmu_2022_944528 crossref_primary_10_1186_s12885_023_11468_z crossref_primary_10_1080_15384101_2021_2014653 crossref_primary_10_3233_JAD_201551 crossref_primary_10_1007_s10753_021_01420_3 crossref_primary_10_1038_s41418_023_01194_1 crossref_primary_10_1186_s10020_021_00415_y crossref_primary_10_1248_bpb_b21_00561 crossref_primary_10_1155_2021_3431245 crossref_primary_10_1096_fj_201902547R crossref_primary_10_1080_15569527_2022_2081702 crossref_primary_10_1128_mbio_01746_22 crossref_primary_10_3390_jcm10143061 crossref_primary_10_1126_scitranslmed_abm1463 crossref_primary_10_1038_s41392_020_00421_2 crossref_primary_10_1016_j_lfs_2022_121310 crossref_primary_10_1111_exd_14365 crossref_primary_10_1177_10998004221115863 crossref_primary_10_3389_fphar_2023_1021535 crossref_primary_10_1016_j_physbeh_2023_114180 crossref_primary_10_1096_fj_201903073R crossref_primary_10_17116_hirurgia2024041112 crossref_primary_10_3390_ijms222413475 crossref_primary_10_1042_BCJ20240058 crossref_primary_10_1093_intimm_dxac061 crossref_primary_10_1038_s41598_023_49254_3 crossref_primary_10_1038_s42255_020_00271_w crossref_primary_10_1016_j_yjmcc_2022_04_013 crossref_primary_10_1007_s10495_024_02005_9 crossref_primary_10_4014_jmb_2107_07001 crossref_primary_10_32604_or_2023_044473 crossref_primary_10_1016_j_ydbio_2024_08_010 crossref_primary_10_1038_s41467_023_41549_3 crossref_primary_10_1155_2019_9528584 crossref_primary_10_1097_PCC_0000000000002860 crossref_primary_10_1016_j_fsi_2022_01_018 crossref_primary_10_1016_j_jconrel_2024_11_070 crossref_primary_10_3389_fncel_2022_982074 crossref_primary_10_1016_j_biopha_2023_115746 crossref_primary_10_1016_j_canlet_2022_215667 crossref_primary_10_3390_nu13082697 crossref_primary_10_1186_s43094_021_00262_y crossref_primary_10_1007_s12012_022_09743_9 crossref_primary_10_3389_fimmu_2022_824664 crossref_primary_10_1016_j_arr_2023_101855 crossref_primary_10_1242_jcs_259161 crossref_primary_10_1016_j_imlet_2022_08_005 crossref_primary_10_3390_ijms23094885 crossref_primary_10_3389_fcell_2021_710967 crossref_primary_10_3389_fcell_2021_635636 crossref_primary_10_3390_ijms21083000 crossref_primary_10_1111_bcp_15495 crossref_primary_10_1016_j_jep_2024_118764 crossref_primary_10_1186_s12906_022_03504_5 crossref_primary_10_1002_ddr_70031 crossref_primary_10_1155_2019_6710759 crossref_primary_10_3389_fimmu_2019_01107 crossref_primary_10_1371_journal_pone_0229395 crossref_primary_10_3389_fimmu_2019_00815 crossref_primary_10_1111_bph_14759 crossref_primary_10_3390_ijms252312848 crossref_primary_10_1016_j_foodres_2022_111742 crossref_primary_10_1038_s41419_022_04619_w crossref_primary_10_3389_fonc_2021_798425 crossref_primary_10_4111_icu_20230294 crossref_primary_10_1111_febs_15782 crossref_primary_10_1016_j_jaci_2022_01_016 crossref_primary_10_1016_j_preteyeres_2021_100998 crossref_primary_10_1016_j_ijbiomac_2024_131645 crossref_primary_10_1371_journal_pone_0271950 crossref_primary_10_1016_j_bbrc_2022_08_031 crossref_primary_10_1111_cas_14523 crossref_primary_10_3390_cells9122710 crossref_primary_10_1016_j_exphem_2020_08_010 crossref_primary_10_4049_jimmunol_2200300 crossref_primary_10_1021_jacs_1c01045 crossref_primary_10_7554_eLife_92719 crossref_primary_10_3389_fmars_2023_1092732 crossref_primary_10_1016_j_mehy_2021_110612 crossref_primary_10_1093_jhered_esad017 crossref_primary_10_3390_biomedicines9080889 crossref_primary_10_1007_s13105_024_01056_5 crossref_primary_10_3389_fchbi_2024_1503390 crossref_primary_10_3892_mmr_2023_13092 crossref_primary_10_3389_fcvm_2020_00115 crossref_primary_10_1038_s41419_024_07325_x crossref_primary_10_1172_jci_insight_150833 crossref_primary_10_18632_oncotarget_28232 crossref_primary_10_1038_s41467_022_30207_9 crossref_primary_10_3389_fphar_2021_652860 crossref_primary_10_3390_v13061160 crossref_primary_10_1016_j_bbrc_2022_07_114 crossref_primary_10_3892_mmr_2022_12863 crossref_primary_10_5650_jos_ess21258 crossref_primary_10_3390_v13040584 crossref_primary_10_3389_fimmu_2021_675751 crossref_primary_10_3390_toxins13050315 crossref_primary_10_1016_j_nbd_2022_105964 crossref_primary_10_3390_nu16172996 crossref_primary_10_1016_j_micpath_2022_105436 crossref_primary_10_3389_fphar_2022_1014173 crossref_primary_10_1080_13880209_2023_2215849 crossref_primary_10_3390_molecules25245932 crossref_primary_10_3389_fonc_2022_855139 crossref_primary_10_1007_s13205_024_04202_4 crossref_primary_10_3389_fonc_2021_775250 crossref_primary_10_1016_j_neo_2020_12_006 crossref_primary_10_1111_mec_16908 crossref_primary_10_54817_IC_v63n4a03 crossref_primary_10_1177_2040622320956429 crossref_primary_10_1007_s13105_020_00772_y crossref_primary_10_3390_cancers16142609 crossref_primary_10_3389_fviro_2022_972156 crossref_primary_10_1002_jmv_70210 crossref_primary_10_1038_s41467_023_35801_z crossref_primary_10_3389_fphar_2025_1563435 crossref_primary_10_1038_s41423_020_0362_6 crossref_primary_10_3389_fmicb_2024_1393646 crossref_primary_10_1016_j_expneurol_2022_114154 crossref_primary_10_1016_j_jhazmat_2022_130643 crossref_primary_10_3390_microorganisms9071509 crossref_primary_10_3390_pharmaceutics14030621 crossref_primary_10_1007_s10528_022_10265_w crossref_primary_10_1126_scisignal_abc7611 crossref_primary_10_3389_fcimb_2021_619081 crossref_primary_10_1016_j_jep_2024_117862 crossref_primary_10_1126_sciadv_abg2697 crossref_primary_10_3389_fmolb_2023_1168250 crossref_primary_10_3389_fmolb_2024_1349509 crossref_primary_10_1016_j_phymed_2019_153166 crossref_primary_10_3389_fcell_2022_698233 crossref_primary_10_1080_17460441_2024_2335210 crossref_primary_10_1016_j_biopha_2020_110770 crossref_primary_10_1038_s41598_021_90287_3 crossref_primary_10_3390_ijms24054674 crossref_primary_10_3390_ijms19113576 |
Cites_doi | 10.1016/j.molcel.2009.10.002 10.1074/jbc.M404206200 10.1146/annurev.immunol.021908.132641 10.1016/0092-8674(94)90532-0 10.1038/ni.1990 10.1038/nri3495 10.1038/sigtrans.2017.23 10.1038/cr.2016.40 10.1038/ncomms14278 10.1038/ncb1821 10.1111/j.1600-065X.2011.01088.x 10.1084/jem.191.7.1233 10.1038/nature04369 10.7150/ijms.5457 10.1146/annurev.biochem.78.101807.093809 10.1111/1751-2980.12044 10.1038/emboj.2012.240 10.1074/jbc.M112.350538 10.1016/j.cell.2007.10.030 10.1016/S0092-8674(03)00521-X 10.1016/j.immuni.2008.01.009 10.7554/eLife.00785 10.1186/1750-2187-8-7 10.15252/embr.201642140 10.1038/ni1255 10.1038/cr.2010.170 10.1002/bies.10352 10.1016/j.cell.2013.05.014 10.1038/nri1184 10.1101/gad.312561.118 10.1006/bbrc.1997.6509 10.1128/JVI.00079-11 10.1016/j.cell.2008.01.020 10.1074/jbc.M403286200 10.1146/annurev.biochem.76.060605.122847 10.1038/ni1014 10.1038/nsmb.1731 10.1042/BJ20140444 10.1038/nm.3111 10.1016/j.molcel.2006.03.026 10.1038/cr.2013.21 10.1084/jem.20100703 10.1021/bi901462e 10.1016/j.febslet.2009.09.028 10.1161/CIRCRESAHA.111.300119 10.1038/nature04374 10.1074/jbc.M111.221853 10.1126/science.7544915 10.1016/j.cyto.2013.07.022 10.1038/nri2998 10.1038/cr.2010.173 10.1038/89769 10.1074/jbc.M111.328187 10.1126/scisignal.2000387 10.1128/MCB.01538-13 10.1038/ni.1685 10.1042/BJ20040544 10.1128/MCB.24.13.6040-6048.2004 10.1084/jem.194.8.1021 10.1016/S1097-2765(01)00187-3 10.1038/nature09128 10.1038/emboj.2012.241 10.1074/jbc.M512908200 10.1016/j.it.2008.07.003 10.1128/MCB.23.14.4739-4752.2003 10.1016/j.molcel.2009.01.012 10.1073/pnas.93.24.13973 10.1074/jbc.M111423200 10.1016/j.it.2013.01.004 10.1038/ni.1678 10.1093/jmcb/mjs024 10.1074/jbc.M112.347195 10.1073/pnas.0711122105 10.1038/19110 10.1073/pnas.230436397 10.1073/pnas.1702367114 10.1016/S1097-2765(03)00070-4 10.1038/ncomms6930 10.1016/S1074-7613(00)80391-X 10.1038/ni.1863 10.1016/j.cell.2007.10.037 10.4049/jimmunol.1401548 10.1111/imr.12311 10.1146/annurev.immunol.23.021704.115839 10.1074/jbc.M113.464081 10.1084/jem.20101123 10.1016/S0092-8674(00)00126-4 10.1016/j.immuni.2015.09.010 10.1016/0092-8674(95)90070-5 10.1074/jbc.M211796200 10.1038/ni.1676 10.1128/MCB.25.6.2130-2137.2005 10.1101/gad.1329805 10.1074/jbc.M609503200 10.7554/eLife.22416 10.1038/nature08247 10.1016/j.immuni.2007.07.012 10.1146/annurev.immunol.20.091301.131133 10.1016/j.bbamcr.2005.12.010 10.1016/j.molcel.2004.08.008 10.1074/jbc.M104837200 10.1038/ni.3097 10.1016/j.molcel.2017.09.001 10.1038/nature03308 10.1016/j.immuni.2016.04.019 10.1038/ncb1384 10.1002/0471142735.im1109ds87 10.1111/imr.12308 10.1016/S0014-5793(03)00998-0 10.1016/j.molcel.2008.05.014 10.1074/jbc.M109.072256 10.1038/nm.4229 10.1016/S0092-8674(00)80984-8 10.1038/s41388-018-0167-6 10.1074/jbc.C800128200 10.1038/ni.2378 10.1128/MCB.00564-12 10.2217/imt-2017-0185 10.1016/j.immuni.2004.09.011 10.1073/pnas.0805186105 10.1038/ni.1819 10.1101/gad.183434.111 10.1016/j.molcel.2013.06.004 10.1016/j.molcel.2010.03.009 10.1038/sj.onc.1211042 10.1128/MCB.24.21.9658-9667.2004 10.1038/nri.2017.52 10.1074/jbc.M609039200 10.1084/jem.20061166 10.1038/nature00888 10.1111/gtc.12128 10.1016/j.molcel.2009.10.013 10.1371/journal.pone.0004064 10.1016/j.jmb.2017.10.026 10.1042/BJ20111358 10.1126/science.1062677 10.1038/ncb1780 10.1016/j.cell.2009.03.007 10.1016/j.trsl.2015.06.018 10.1016/S0092-8674(00)81409-9 10.1074/jbc.M507807200 10.1038/nri2337 10.1016/0092-8674(95)90149-3 10.1038/385540a0 |
ContentType | Journal Article |
Copyright | Copyright © 2018 Shi and Sun. 2018 Shi and Sun |
Copyright_xml | – notice: Copyright © 2018 Shi and Sun. 2018 Shi and Sun |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3389/fimmu.2018.01849 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-3224 |
ExternalDocumentID | oai_doaj_org_article_41c39f5154cc463ba5e1205aa0e98953 PMC6094638 30140268 10_3389_fimmu_2018_01849 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM084459 – fundername: NIAID NIH HHS grantid: R01 AI104519 – fundername: NIAID NIH HHS grantid: R01 AI057555 – fundername: NIAID NIH HHS grantid: R37 AI064639 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM CGR CUY CVF ECM EIF IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c462t-cff8f7a085677ed049f1650eaa1af6b2bbc0d2fd2f84f4c8052449eb767ace133 |
IEDL.DBID | M48 |
ISSN | 1664-3224 |
IngestDate | Wed Aug 27 01:32:04 EDT 2025 Thu Aug 21 14:07:02 EDT 2025 Thu Jul 10 21:15:28 EDT 2025 Thu Apr 03 07:09:15 EDT 2025 Thu Apr 24 22:56:57 EDT 2025 Tue Jul 01 01:35:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | tumor necrosis factor receptor-associated factor nuclear factor κB tumor necrosis factor receptors toll-like receptors inflammation mitogen-activated protein kinases |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-cff8f7a085677ed049f1650eaa1af6b2bbc0d2fd2f84f4c8052449eb767ace133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Specialty section: This article was submitted to Molecular Innate Immunity, a section of the journal Frontiers in Immunology Reviewed by: Hasem Habelhah, University of Iowa, United States; Ping Xie, Rutgers University, The State University of New Jersey, United States; Weizhou Zhang, University of Iowa, United States Edited by: Gail Abendroth Bishop, University of Iowa, United States |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fimmu.2018.01849 |
PMID | 30140268 |
PQID | 2093310144 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_41c39f5154cc463ba5e1205aa0e98953 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6094638 proquest_miscellaneous_2093310144 pubmed_primary_30140268 crossref_primary_10_3389_fimmu_2018_01849 crossref_citationtrail_10_3389_fimmu_2018_01849 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-09 |
PublicationDateYYYYMMDD | 2018-08-09 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in immunology |
PublicationTitleAlternate | Front Immunol |
PublicationYear | 2018 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Piao (B132) 2011; 286 Gardam (B114) 2008; 28 Rothe (B103) 1995; 83 Beinke (B35) 2003; 23 Lin (B14) 1998; 92 Ye (B45) 2002; 418 Shen (B134) 2013; 6 Shi (B82) 2003; 278 Yang (B22) 2001; 2 Sriskantharajah (B15) 2009; 10 Vince (B119) 2007; 131 Jin (B126) 2015; 6 Qiao (B133) 2013; 14 Wagner (B52) 2008; 27 Schwandner (B40) 2000; 191 Huang (B23) 2004; 5 Fujita (B96) 2014; 34 Waterfield (B36) 2003; 11 Xiao (B17) 2001; 7 Tokunaga (B101) 2012; 31 Jensen (B59) 2003; 553 Chesi (B123) 2016; 22 Takiuchi (B100) 2014; 19 Kawai (B47) 2010; 11 Shen (B135) 2013; 10 Tokunaga (B92) 2009; 11 Liu (B46) 2013; 2 Takaoka (B143) 2005; 434 Qin (B25) 2006; 281 Waterfield (B38) 2004; 24 Rothe (B6) 1994; 78 Yao (B71) 2018; 37 Xie (B113) 2007; 27 Hacker (B5) 2011; 11 Fiil (B98) 2013; 50 Ea (B49) 2006; 22 Jiao (B70) 2015; 16 Lee (B86) 2004; 279 Wu (B41) 2003; 25 Luong le (B64) 2013; 112 Ha (B1) 2009 Yang (B9) 2015; 266 He (B63) 2013; 5 Rothe (B104) 1995; 269 Hsu (B74) 1996; 84 Haas (B91) 2009; 36 Xie (B2) 2013; 8 Boucher (B105) 1997; 233 Grumont (B141) 2001; 194 Yao (B26) 2007; 282 Sasaki (B115) 2008; 105 Eames (B145) 2016; 167 Yasunaga (B61) 2011; 85 Zheng (B127) 2010; 38 Xia (B57) 2009; 461 Sasaki (B89) 2015; 266 Varfolomeev (B118) 2007; 131 Lo (B53) 2009; 33 Strickson (B58) 2017; 114 Lamothe (B55) 2007; 282 Yoshikawa (B54) 2009; 583 Hayden (B10) 2008; 132 Dougan (B122) 2010; 207 Liu (B19) 2011; 21 Schimmack (B67) 2017; 6 Hayden (B30) 2012; 26 Zhou (B66) 2012; 287 Grech (B117) 2004; 21 Beinke (B37) 2004; 24 Walsh (B56) 2008; 3 Xu (B80) 2009; 36 Zhang (B69) 2013; 23 Shan (B81) 2018; 32 Sun (B28) 2013; 34 Xiao (B137) 2013; 19 Alvarez (B84) 2010; 465 Panda (B65) 2015; 43 Zhu (B138) 2010; 207 Kim (B108) 2005; 25 Gantke (B34) 2011; 21 Sorrentino (B43) 2008; 10 Gu (B44) 2013; 64 Sun (B60) 2008; 8 He (B112) 2006; 203 Sato (B21) 2005; 6 Wu (B50) 2006; 8 Babu (B39) 2006; 1763 Vallabhapurapu (B120) 2008; 9 Häcker (B129) 2006; 439 Xia (B85) 2002; 277 Zarnegar (B121) 2008; 9 Micheau (B77) 2003; 114 Zhang (B97) 2014; 461 Malinin (B116) 1997; 385 Liu (B8) 2017; 2 Yin (B83) 2009; 48 Park (B106) 1999; 398 Verhelst (B102) 2012; 31 Sun (B18) 2017; 17 Dong (B33) 2002; 20 Kanayama (B48) 2004; 15 Shu (B75) 1996; 93 Hauenstein (B95) 2017; 429 Deng (B4) 2000; 103 Tada (B73) 2001; 276 Tseng (B136) 2010; 11 Hrdinka (B90) 2017; 68 Schneider (B68) 2012; 13 Yeh (B72) 1997; 7 Watts (B109) 2005; 23 Liao (B32) 2004; 279 McPherson (B110) 2012; 287 Aggarwal (B107) 2003; 3 Sun (B13) 2008; 29 Yang (B16) 2012; 32 Beug (B124) 2017; 8 Sanjabi (B140) 2000; 97 Kulathu (B51) 2009; 16 Oganesyan (B130) 2006; 439 Sanjabi (B142) 2005; 19 Keusekotten (B99) 2013; 153 Choudhary (B128) 2013; 288 Deshaies (B3) 2009; 78 Beinke (B12) 2004; 382 Kensche (B94) 2012; 287 Vallabhapurapu (B11) 2009; 27 Xiao (B62) 2012; 441 Lalani (B131) 2015; 194 Krausgruber (B144) 2011; 12 Senftleben (B29) 2001; 293 Rahighi (B93) 2009; 136 Sun (B31) 2012; 246 Hu (B20) 2016; 26 Bertrand (B78) 2008; 30 Ward-Kavanagh (B111) 2016; 44 Arthur (B7) 2013; 13 Blonska (B24) 2005; 280 Lee (B42) 2007; 76 Dougan (B125) 2018; 10 Ma (B139) 2017; 18 Hsu (B76) 1995; 81 Mahoney (B79) 2008; 105 Varfolomeev (B88) 2008; 283 Yamazaki (B27) 2009; 2 Vince (B87) 2009; 284 |
References_xml | – volume: 36 start-page: 302 year: 2009 ident: B80 article-title: A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-1beta publication-title: Mol Cell doi: 10.1016/j.molcel.2009.10.002 – volume: 279 start-page: 33185 year: 2004 ident: B86 article-title: The kinase activity of Rip1 is not required for tumor necrosis factor-alpha-induced IkappaB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2 publication-title: J Biol Chem doi: 10.1074/jbc.M404206200 – volume: 27 start-page: 693 year: 2009 ident: B11 article-title: Regulation and function of NF-kappaB transcription factors in the immune system publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.021908.132641 – volume: 78 start-page: 681 year: 1994 ident: B6 article-title: A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor publication-title: Cell doi: 10.1016/0092-8674(94)90532-0 – volume: 12 start-page: 231 year: 2011 ident: B144 article-title: IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses publication-title: Nat Immunol doi: 10.1038/ni.1990 – volume: 13 start-page: 679 year: 2013 ident: B7 article-title: Mitogen-activated protein kinases in innate immunity publication-title: Nat Rev Immunol doi: 10.1038/nri3495 – volume: 2 start-page: 17023 year: 2017 ident: B8 article-title: NF-kappaB signaling in inflammation publication-title: Signal Transduct Target Ther doi: 10.1038/sigtrans.2017.23 – volume: 26 start-page: 457 year: 2016 ident: B20 article-title: Ubiquitin signaling in immune responses publication-title: Cell Res doi: 10.1038/cr.2016.40 – volume: 8 start-page: 14278 year: 2017 ident: B124 article-title: Smac mimetics synergize with immune checkpoint inhibitors to promote tumour immunity against glioblastoma publication-title: Nat Commun doi: 10.1038/ncomms14278 – volume: 11 start-page: 123 year: 2009 ident: B92 article-title: Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation publication-title: Nat Cell Biol doi: 10.1038/ncb1821 – volume: 246 start-page: 125 year: 2012 ident: B31 article-title: The noncanonical NF-kappaB pathway publication-title: Immunol Rev doi: 10.1111/j.1600-065X.2011.01088.x – volume: 191 start-page: 1233 year: 2000 ident: B40 article-title: Requirement of tumor necrosis factor receptor-associated factor (TRAF)6 in interleukin 17 signal transduction publication-title: J Exp Med doi: 10.1084/jem.191.7.1233 – volume: 439 start-page: 204 year: 2006 ident: B129 article-title: Specificity in toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6 publication-title: Nature doi: 10.1038/nature04369 – volume: 10 start-page: 156 year: 2013 ident: B135 article-title: Up-regulation and pre-activation of TRAF3 and TRAF5 in inflammatory bowel disease publication-title: Int J Med Sci doi: 10.7150/ijms.5457 – volume: 78 start-page: 399 year: 2009 ident: B3 article-title: RING domain E3 ubiquitin ligases publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.78.101807.093809 – volume: 14 start-page: 244 year: 2013 ident: B133 article-title: Gene expression of tumor necrosis factor receptor associated-factor (TRAF)-1 and TRAF-2 in inflammatory bowel disease publication-title: J Dig Dis doi: 10.1111/1751-2980.12044 – volume: 31 start-page: 3845 year: 2012 ident: B102 article-title: A20 inhibits LUBAC-mediated NF-kappaB activation by binding linear polyubiquitin chains via its zinc finger 7 publication-title: EMBO J doi: 10.1038/emboj.2012.240 – volume: 287 start-page: 23010 year: 2012 ident: B110 article-title: Opposing roles for TRAF1 in the alternative versus classical NF-kappaB pathway in T cells publication-title: J Biol Chem doi: 10.1074/jbc.M112.350538 – volume: 131 start-page: 669 year: 2007 ident: B118 article-title: IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis publication-title: Cell doi: 10.1016/j.cell.2007.10.030 – volume: 114 start-page: 181 year: 2003 ident: B77 article-title: Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes publication-title: Cell doi: 10.1016/S0092-8674(03)00521-X – volume: 28 start-page: 391 year: 2008 ident: B114 article-title: TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor publication-title: Immunity doi: 10.1016/j.immuni.2008.01.009 – volume: 2 start-page: e00785 year: 2013 ident: B46 article-title: MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades publication-title: Elife doi: 10.7554/eLife.00785 – volume: 8 start-page: 7 year: 2013 ident: B2 article-title: TRAF molecules in cell signaling and in human diseases publication-title: J Mol Signal doi: 10.1186/1750-2187-8-7 – volume: 18 start-page: 586 year: 2017 ident: B139 article-title: NDR1 protein kinase promotes IL-17- and TNF-alpha-mediated inflammation by competitively binding TRAF3 publication-title: EMBO Rep doi: 10.15252/embr.201642140 – volume: 6 start-page: 1987 year: 2005 ident: B21 article-title: Essential function for the kinase TAK1 in innate and adaptive immune responses publication-title: Nat Immunol doi: 10.1038/ni1255 – volume: 21 start-page: 6 year: 2011 ident: B19 article-title: Expanding role of ubiquitination in NF-κB signaling publication-title: Cell Res doi: 10.1038/cr.2010.170 – volume: 25 start-page: 1096 year: 2003 ident: B41 article-title: TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology publication-title: Bioessays doi: 10.1002/bies.10352 – volume: 153 start-page: 1312 year: 2013 ident: B99 article-title: OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin publication-title: Cell doi: 10.1016/j.cell.2013.05.014 – volume: 3 start-page: 745 year: 2003 ident: B107 article-title: Signalling pathways of the TNF superfamily: a double-edged sword publication-title: Nat Rev Immunol doi: 10.1038/nri1184 – volume: 32 start-page: 327 year: 2018 ident: B81 article-title: Necroptosis in development and diseases publication-title: Genes Dev doi: 10.1101/gad.312561.118 – volume: 233 start-page: 592 year: 1997 ident: B105 article-title: Binding sites of cytoplasmic effectors TRAF1, 2, and 3 on CD30 and other members of the TNF receptor superfamily publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1997.6509 – volume: 85 start-page: 6212 year: 2011 ident: B61 article-title: Ubiquitin-specific peptidase 20 targets TRAF6 and human T cell leukemia virus type 1 tax to negatively regulate NF-kappaB signaling publication-title: J Virol doi: 10.1128/JVI.00079-11 – volume: 132 start-page: 344 year: 2008 ident: B10 article-title: Shared principles in NF-kappaB signaling publication-title: Cell doi: 10.1016/j.cell.2008.01.020 – volume: 279 start-page: 26243 year: 2004 ident: B32 article-title: Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation publication-title: J Biol Chem doi: 10.1074/jbc.M403286200 – volume: 76 start-page: 447 year: 2007 ident: B42 article-title: Signaling pathways downstream of pattern-recognition receptors and their cross talk publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.76.060605.122847 – volume: 5 start-page: 98 year: 2004 ident: B23 article-title: Differential regulation of interleukin 1 receptor and toll-like receptor signaling by MEKK3 publication-title: Nat Immunol doi: 10.1038/ni1014 – volume: 16 start-page: 1328 year: 2009 ident: B51 article-title: Two-sided ubiquitin binding explains specificity of the TAB 2 NZF domain publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1731 – volume: 461 start-page: 531 year: 2014 ident: B97 article-title: An unexpected twist to the activation of IKKbeta: TAK1 primes IKKbeta for activation by autophosphorylation publication-title: Biochem J doi: 10.1042/BJ20140444 – volume: 19 start-page: 595 year: 2013 ident: B137 article-title: Peli1 promotes microglia-mediated CNS inflammation by regulating TRAF3 degradation publication-title: Nat Med doi: 10.1038/nm.3111 – volume: 22 start-page: 245 year: 2006 ident: B49 article-title: Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO publication-title: Mol Cell doi: 10.1016/j.molcel.2006.03.026 – volume: 23 start-page: 366 year: 2013 ident: B69 article-title: UBE2O negatively regulates TRAF6-mediated NF-kappaB activation by inhibiting TRAF6 polyubiquitination publication-title: Cell Res doi: 10.1038/cr.2013.21 – volume: 207 start-page: 2647 year: 2010 ident: B138 article-title: Modulation of experimental autoimmune encephalomyelitis through TRAF3-mediated suppression of interleukin 17 receptor signaling publication-title: J Exp Med doi: 10.1084/jem.20100703 – volume: 48 start-page: 10558 year: 2009 ident: B83 article-title: Structural basis for the lack of E2 interaction in the RING domain of TRAF2 publication-title: Biochemistry doi: 10.1021/bi901462e – volume: 583 start-page: 3317 year: 2009 ident: B54 article-title: Crystal structure of the NEMO ubiquitin-binding domain in complex with Lys 63-linked di-ubiquitin publication-title: FEBS Lett doi: 10.1016/j.febslet.2009.09.028 – volume: 112 start-page: 1583 year: 2013 ident: B64 article-title: Cezanne regulates inflammatory responses to hypoxia in endothelial cells by targeting TRAF6 for deubiquitination publication-title: Circ Res doi: 10.1161/CIRCRESAHA.111.300119 – volume: 439 start-page: 208 year: 2006 ident: B130 article-title: Critical role of TRAF3 in the toll-like receptor-dependent and -independent antiviral response publication-title: Nature doi: 10.1038/nature04374 – volume: 286 start-page: 17879 year: 2011 ident: B132 article-title: Tumor necrosis factor receptor-associated factor (TRAF) 2 controls homeostasis of the colon to prevent spontaneous development of murine inflammatory bowel disease publication-title: J Biol Chem doi: 10.1074/jbc.M111.221853 – volume: 269 start-page: 1424 year: 1995 ident: B104 article-title: TRAF2-mediated activation of NF-kB by TNF receptor 2 and CD40 publication-title: Science doi: 10.1126/science.7544915 – volume: 64 start-page: 477 year: 2013 ident: B44 article-title: IL-17 family: cytokines, receptors and signaling publication-title: Cytokine doi: 10.1016/j.cyto.2013.07.022 – volume: 11 start-page: 457 year: 2011 ident: B5 article-title: Expanding TRAF function: TRAF3 as a tri-faced immune regulator publication-title: Nat Rev Immunol doi: 10.1038/nri2998 – volume: 21 start-page: 131 year: 2011 ident: B34 article-title: Regulation and function of TPL-2, an IkappaB kinase-regulated MAP kinase kinase kinase publication-title: Cell Res doi: 10.1038/cr.2010.173 – volume: 2 start-page: 620 year: 2001 ident: B22 article-title: The essential role of MEKK3 in TNF-induced NF-kappaB activation publication-title: Nat Immunol doi: 10.1038/89769 – volume: 287 start-page: 11002 year: 2012 ident: B66 article-title: Ubiquitin-specific protease 4 mitigates toll-like/interleukin-1 receptor signaling and regulates innate immune activation publication-title: J Biol Chem doi: 10.1074/jbc.M111.328187 – volume: 2 start-page: ra66 year: 2009 ident: B27 article-title: Two mechanistically and temporally distinct NF-kappaB activation pathways in IL-1 signaling publication-title: Sci Signal doi: 10.1126/scisignal.2000387 – volume: 34 start-page: 1322 year: 2014 ident: B96 article-title: Mechanism underlying IkappaB kinase activation mediated by the linear ubiquitin chain assembly complex publication-title: Mol Cell Biol doi: 10.1128/MCB.01538-13 – volume: 10 start-page: 38 year: 2009 ident: B15 article-title: Proteolysis of NF-kappaB1 p105 is essential for T cell antigen receptor-induced proliferation publication-title: Nat Immunol doi: 10.1038/ni.1685 – volume: 382 start-page: 393 year: 2004 ident: B12 article-title: Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology publication-title: Biochem J doi: 10.1042/BJ20040544 – volume: 24 start-page: 6040 year: 2004 ident: B38 article-title: IKKb is an essential component of the Tpl2 signaling pathway publication-title: Mol Cell Biol doi: 10.1128/MCB.24.13.6040-6048.2004 – volume: 194 start-page: 1021 year: 2001 ident: B141 article-title: c-Rel regulates interleukin 12 p70 expression in CD8(+) dendritic cells by specifically inducing p35 gene transcription publication-title: J Exp Med doi: 10.1084/jem.194.8.1021 – volume: 7 start-page: 401 year: 2001 ident: B17 article-title: NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100 publication-title: Mol Cell doi: 10.1016/S1097-2765(01)00187-3 – volume: 465 start-page: 1084 year: 2010 ident: B84 article-title: Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2 publication-title: Nature doi: 10.1038/nature09128 – volume: 31 start-page: 3856 year: 2012 ident: B101 article-title: Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-kappaB regulation publication-title: EMBO J doi: 10.1038/emboj.2012.241 – volume: 281 start-page: 21013 year: 2006 ident: B25 article-title: TLR8-mediated NF-kappaB and JNK activation are TAK1-independent and MEKK3-dependent publication-title: J Biol Chem doi: 10.1074/jbc.M512908200 – volume: 29 start-page: 469 year: 2008 ident: B13 article-title: New insights into NF-kappaB regulation and function publication-title: Trends Immunol doi: 10.1016/j.it.2008.07.003 – volume: 23 start-page: 4739 year: 2003 ident: B35 article-title: NF-kappaB1 p105 negatively regulates TPL-2 MEK kinase activity publication-title: Mol Cell Biol doi: 10.1128/MCB.23.14.4739-4752.2003 – volume: 33 start-page: 602 year: 2009 ident: B53 article-title: Structural basis for recognition of diubiquitins by NEMO publication-title: Mol Cell doi: 10.1016/j.molcel.2009.01.012 – volume: 93 start-page: 13973 year: 1996 ident: B75 article-title: The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.93.24.13973 – volume: 277 start-page: 7996 year: 2002 ident: B85 article-title: Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-alpha signaling publication-title: J Biol Chem doi: 10.1074/jbc.M111423200 – volume: 34 start-page: 282 year: 2013 ident: B28 article-title: Regulation of nuclear factor-kappaB in autoimmunity publication-title: Trends Immunol doi: 10.1016/j.it.2013.01.004 – volume: 9 start-page: 1364 year: 2008 ident: B120 article-title: Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling publication-title: Nat Immunol doi: 10.1038/ni.1678 – volume: 5 start-page: 39 year: 2013 ident: B63 article-title: USP2a negatively regulates IL-1beta- and virus-induced NF-kappaB activation by deubiquitinating TRAF6 publication-title: J Mol Cell Biol doi: 10.1093/jmcb/mjs024 – volume: 287 start-page: 23626 year: 2012 ident: B94 article-title: Analysis of nuclear factor-kappaB (NF-kappaB) essential modulator (NEMO) binding to linear and lysine-linked ubiquitin chains and its role in the activation of NF-kappaB publication-title: J Biol Chem doi: 10.1074/jbc.M112.347195 – volume: 105 start-page: 11778 year: 2008 ident: B79 article-title: Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0711122105 – volume: 398 start-page: 533 year: 1999 ident: B106 article-title: Structural basis for self-association and receptor recognition of human TRAF2 publication-title: Nature doi: 10.1038/19110 – volume: 97 start-page: 12705 year: 2000 ident: B140 article-title: Selective requirement for c-Rel during IL-12 P40 gene induction in macrophages publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.230436397 – volume: 114 start-page: E3481 year: 2017 ident: B58 article-title: Roles of the TRAF6 and pellino E3 ligases in MyD88 and RANKL signaling publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1702367114 – volume: 11 start-page: 685 year: 2003 ident: B36 article-title: NF-kappaB1/p105 regulates lipopolysaccharide-stimulated MAP kinase signaling by governing the stability and function of the Tpl2 kinase publication-title: Mol Cell doi: 10.1016/S1097-2765(03)00070-4 – volume: 6 start-page: 5930 year: 2015 ident: B126 article-title: Proinflammatory TLR signalling is regulated by a TRAF2-dependent proteolysis mechanism in macrophages publication-title: Nat Commun doi: 10.1038/ncomms6930 – volume: 7 start-page: 715 year: 1997 ident: B72 article-title: Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice publication-title: Immunity doi: 10.1016/S1074-7613(00)80391-X – volume: 11 start-page: 373 year: 2010 ident: B47 article-title: The role of pattern-recognition receptors in innate immunity: update on toll-like receptors publication-title: Nat Immunol doi: 10.1038/ni.1863 – volume: 131 start-page: 682 year: 2007 ident: B119 article-title: IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis publication-title: Cell doi: 10.1016/j.cell.2007.10.037 – volume: 194 start-page: 334 year: 2015 ident: B131 article-title: Myeloid cell TRAF3 regulates immune responses and inhibits inflammation and tumor development in mice publication-title: J Immunol doi: 10.4049/jimmunol.1401548 – volume: 266 start-page: 56 year: 2015 ident: B9 article-title: Targeting signaling factors for degradation, an emerging mechanism for TRAF functions publication-title: Immunol Rev doi: 10.1111/imr.12311 – volume: 23 start-page: 23 year: 2005 ident: B109 article-title: Tnf/Tnfr family members in costimulation of T cell responses publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.23.021704.115839 – volume: 288 start-page: 14612 year: 2013 ident: B128 article-title: Inducible tumor necrosis factor (TNF) receptor-associated factor-1 expression couples the canonical to the non-canonical NF-kappaB pathway in TNF stimulation publication-title: J Biol Chem doi: 10.1074/jbc.M113.464081 – volume: 207 start-page: 2195 year: 2010 ident: B122 article-title: IAP inhibitors enhance co-stimulation to promote tumor immunity publication-title: J Exp Med doi: 10.1084/jem.20101123 – volume: 103 start-page: 351 year: 2000 ident: B4 article-title: Activation of the IkB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain publication-title: Cell doi: 10.1016/S0092-8674(00)00126-4 – volume: 43 start-page: 647 year: 2015 ident: B65 article-title: Deubiquitinase MYSM1 regulates innate immunity through inactivation of TRAF3 and TRAF6 complexes publication-title: Immunity doi: 10.1016/j.immuni.2015.09.010 – volume: 81 start-page: 495 year: 1995 ident: B76 article-title: The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation publication-title: Cell doi: 10.1016/0092-8674(95)90070-5 – volume: 278 start-page: 15429 year: 2003 ident: B82 article-title: TNF-induced GCKR and SAPK activation depends upon the E2/E3 complex Ubc13-Uev1A/TRAF2 publication-title: J Biol Chem doi: 10.1074/jbc.M211796200 – volume: 9 start-page: 1371 year: 2008 ident: B121 article-title: Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK publication-title: Nat Immunol doi: 10.1038/ni.1676 – volume: 25 start-page: 2130 year: 2005 ident: B108 article-title: TRAF2 plays a key, nonredundant role in LIGHT-lymphotoxin beta receptor signaling publication-title: Mol Biol Cell doi: 10.1128/MCB.25.6.2130-2137.2005 – volume: 19 start-page: 2138 year: 2005 ident: B142 article-title: A c-Rel subdomain responsible for enhanced DNA-binding affinity and selective gene activation publication-title: Genes Dev doi: 10.1101/gad.1329805 – volume: 282 start-page: 4102 year: 2007 ident: B55 article-title: Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I kappa B kinase activation publication-title: J Biol Chem doi: 10.1074/jbc.M609503200 – volume: 6 start-page: e22416 year: 2017 ident: B67 article-title: YOD1/TRAF6 association balances p62-dependent IL-1 signaling to NF-kappaB publication-title: Elife doi: 10.7554/eLife.22416 – volume: 461 start-page: 114 year: 2009 ident: B57 article-title: Direct activation of protein kinases by unanchored polyubiquitin chains publication-title: Nature doi: 10.1038/nature08247 – volume: 27 start-page: 253 year: 2007 ident: B113 article-title: Tumor necrosis factor receptor-associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs publication-title: Immunity doi: 10.1016/j.immuni.2007.07.012 – volume: 20 start-page: 55 year: 2002 ident: B33 article-title: MAP kinases in the immune response publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.20.091301.131133 – volume: 1763 start-page: 174 year: 2006 ident: B39 article-title: Phosphorylation of NF-kappaB1/p105 by oncoprotein kinase Tpl2: implications for a novel mechanism of Tpl2 regulation publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2005.12.010 – volume: 15 start-page: 535 year: 2004 ident: B48 article-title: TAB 2 and TAB 3 activate the NF-kappaB pathway through binding to polyubiquitin chains publication-title: Mol Cell doi: 10.1016/j.molcel.2004.08.008 – volume: 276 start-page: 36530 year: 2001 ident: B73 article-title: Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-kappa B activation and protection from cell death publication-title: J Biol Chem doi: 10.1074/jbc.M104837200 – volume: 16 start-page: 246 year: 2015 ident: B70 article-title: The kinase MST4 limits inflammatory responses through direct phosphorylation of the adaptor TRAF6 publication-title: Nat Immunol doi: 10.1038/ni.3097 – volume: 68 start-page: 265 year: 2017 ident: B90 article-title: The Met1-linked ubiquitin machinery: emerging themes of (De)regulation publication-title: Mol Cell doi: 10.1016/j.molcel.2017.09.001 – volume: 434 start-page: 243 year: 2005 ident: B143 article-title: Integral role of IRF-5 in the gene induction programme activated by toll-like receptors publication-title: Nature doi: 10.1038/nature03308 – volume: 44 start-page: 1005 year: 2016 ident: B111 article-title: The TNF receptor superfamily in co-stimulating and co-inhibitory responses publication-title: Immunity doi: 10.1016/j.immuni.2016.04.019 – volume: 8 start-page: 398 year: 2006 ident: B50 article-title: Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation publication-title: Nat Cell Biol doi: 10.1038/ncb1384 – year: 2009 ident: B1 article-title: TRAF-mediated TNFR-family signaling publication-title: Curr Protoc Immunol doi: 10.1002/0471142735.im1109ds87 – volume: 266 start-page: 175 year: 2015 ident: B89 article-title: Roles of linear ubiquitinylation, a crucial regulator of NF-kappaB and cell death, in the immune system publication-title: Immunol Rev doi: 10.1111/imr.12308 – volume: 553 start-page: 190 year: 2003 ident: B59 article-title: Ubiquitin activated tumor necrosis factor receptor associated factor-6 (TRAF6) is recycled via deubiquitination publication-title: FEBS Lett doi: 10.1016/S0014-5793(03)00998-0 – volume: 30 start-page: 689 year: 2008 ident: B78 article-title: cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination publication-title: Mol Cell doi: 10.1016/j.molcel.2008.05.014 – volume: 284 start-page: 35906 year: 2009 ident: B87 article-title: TRAF2 must bind to cellular inhibitors of apoptosis for tumor necrosis factor (TNF) to efficiently activate NF-{kappa}B and to prevent TNF-induced apoptosis publication-title: J Biol Chem doi: 10.1074/jbc.M109.072256 – volume: 22 start-page: 1411 year: 2016 ident: B123 article-title: IAP antagonists induce anti-tumor immunity in multiple myeloma publication-title: Nat Med doi: 10.1038/nm.4229 – volume: 84 start-page: 299 year: 1996 ident: B74 article-title: TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways publication-title: Cell doi: 10.1016/S0092-8674(00)80984-8 – volume: 37 start-page: 3501 year: 2018 ident: B71 article-title: RSK2 is required for TRAF6 phosphorylation-mediated colon inflammation publication-title: Oncogene doi: 10.1038/s41388-018-0167-6 – volume: 283 start-page: 24295 year: 2008 ident: B88 article-title: c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation publication-title: J Biol Chem doi: 10.1074/jbc.C800128200 – volume: 13 start-page: 823 year: 2012 ident: B68 article-title: The innate immune sensor NLRC3 attenuates toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-kappaB publication-title: Nat Immunol doi: 10.1038/ni.2378 – volume: 32 start-page: 3438 year: 2012 ident: B16 article-title: Coordinate regulation of TPL-2 and NF-kappaB signaling in macrophages by NF-kappaB1 p105 publication-title: Mol Cell Biol doi: 10.1128/MCB.00564-12 – volume: 10 start-page: 787 year: 2018 ident: B125 article-title: Regulation of innate and adaptive antitumor immunity by IAP antagonists publication-title: Immunotherapy doi: 10.2217/imt-2017-0185 – volume: 6 start-page: 917 year: 2013 ident: B134 article-title: Intestinal protein expression profile identifies inflammatory bowel disease and predicts relapse publication-title: Int J Clin Exp Pathol – volume: 21 start-page: 629 year: 2004 ident: B117 article-title: TRAF2 differentially regulates the canonical and noncanonical pathways of NF-kappaB activation in mature B cells publication-title: Immunity doi: 10.1016/j.immuni.2004.09.011 – volume: 105 start-page: 10883 year: 2008 ident: B115 article-title: NIK overexpression amplifies, whereas ablation of its TRAF3-binding domain replaces BAFF:BAFF-R-mediated survival signals in B cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0805186105 – volume: 11 start-page: 70 year: 2010 ident: B136 article-title: Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines publication-title: Nat Immunol doi: 10.1038/ni.1819 – volume: 26 start-page: 203 year: 2012 ident: B30 article-title: NF-kappaB, the first quarter-century: remarkable progress and outstanding questions publication-title: Genes Dev doi: 10.1101/gad.183434.111 – volume: 50 start-page: 818 year: 2013 ident: B98 article-title: OTULIN restricts Met1-linked ubiquitination to control innate immune signaling publication-title: Mol Cell doi: 10.1016/j.molcel.2013.06.004 – volume: 38 start-page: 101 year: 2010 ident: B127 article-title: Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation publication-title: Mol Cell doi: 10.1016/j.molcel.2010.03.009 – volume: 27 start-page: 3739 year: 2008 ident: B52 article-title: Ubiquitin binding mediates the NF-kB inhibitory potential of ABINs publication-title: Oncogene doi: 10.1038/sj.onc.1211042 – volume: 24 start-page: 9658 year: 2004 ident: B37 article-title: Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IkappaB kinase-induced proteolysis of NF-kappaB1 p105 publication-title: Mol Cell Biol doi: 10.1128/MCB.24.21.9658-9667.2004 – volume: 17 start-page: 545 year: 2017 ident: B18 article-title: The non-canonical NF-kappaB pathway in immunity and inflammation publication-title: Nat Rev Immunol doi: 10.1038/nri.2017.52 – volume: 282 start-page: 6075 year: 2007 ident: B26 article-title: Interleukin-1 (IL-1)-induced TAK1-dependent versus MEKK3-dependent NFkappaB activation pathways bifurcate at IL-1 receptor-associated kinase modification publication-title: J Biol Chem doi: 10.1074/jbc.M609039200 – volume: 203 start-page: 2413 year: 2006 ident: B112 article-title: Rescue of TRAF3-null mice by p100 NF-kappa B deficiency publication-title: J Exp Med doi: 10.1084/jem.20061166 – volume: 418 start-page: 443 year: 2002 ident: B45 article-title: Distinct molecular mechanism for initiating TRAF6 signalling publication-title: Nature doi: 10.1038/nature00888 – volume: 19 start-page: 254 year: 2014 ident: B100 article-title: Suppression of LUBAC-mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN publication-title: Genes Cells doi: 10.1111/gtc.12128 – volume: 36 start-page: 831 year: 2009 ident: B91 article-title: Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction publication-title: Mol Cell doi: 10.1016/j.molcel.2009.10.013 – volume: 3 start-page: e4064 year: 2008 ident: B56 article-title: TRAF6 autoubiquitination-independent activation of the NFkappaB and MAPK pathways in response to IL-1 and RANKL publication-title: PLoS One doi: 10.1371/journal.pone.0004064 – volume: 429 start-page: 3793 year: 2017 ident: B95 article-title: Evidence for M1-linked polyubiquitin-mediated conformational change in NEMO publication-title: J Mol Biol doi: 10.1016/j.jmb.2017.10.026 – volume: 441 start-page: 979 year: 2012 ident: B62 article-title: Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFalpha-induced cancer cell migration publication-title: Biochem J doi: 10.1042/BJ20111358 – volume: 293 start-page: 1495 year: 2001 ident: B29 article-title: Activation of IKKa of a second, evolutionary conserved, NF-kB signaling pathway publication-title: Science doi: 10.1126/science.1062677 – volume: 10 start-page: 1199 year: 2008 ident: B43 article-title: The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner publication-title: Nat Cell Biol doi: 10.1038/ncb1780 – volume: 136 start-page: 1098 year: 2009 ident: B93 article-title: Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation publication-title: Cell doi: 10.1016/j.cell.2009.03.007 – volume: 167 start-page: 167 year: 2016 ident: B145 article-title: Interferon regulatory factor 5 in human autoimmunity and murine models of autoimmune disease publication-title: Transl Res doi: 10.1016/j.trsl.2015.06.018 – volume: 92 start-page: 819 year: 1998 ident: B14 article-title: Cotranslational biogenesis of NF-kappaB p50 by the 26S proteasome publication-title: Cell doi: 10.1016/S0092-8674(00)81409-9 – volume: 280 start-page: 43056 year: 2005 ident: B24 article-title: TAK1 is recruited to the tumor necrosis factor-alpha (TNF-alpha) receptor 1 complex in a receptor-interacting protein (RIP)-dependent manner and cooperates with MEKK3 leading to NF-kappaB activation publication-title: J Biol Chem doi: 10.1074/jbc.M507807200 – volume: 8 start-page: 501 year: 2008 ident: B60 article-title: Deubiquitylation and regulation of the immune response publication-title: Nat Rev Immunol doi: 10.1038/nri2337 – volume: 83 start-page: 1243 year: 1995 ident: B103 article-title: The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins publication-title: Cell doi: 10.1016/0092-8674(95)90149-3 – volume: 385 start-page: 540 year: 1997 ident: B116 article-title: MAP3K-related kinase involved in NF-kB induction by TNF, CD95 and IL-1 publication-title: Nature doi: 10.1038/385540a0 |
SSID | ssj0000493335 |
Score | 2.5958269 |
SecondaryResourceType | review_article |
Snippet | Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of structurally related proteins that transduces signals from members of TNFR... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1849 |
SubjectTerms | Animals Humans Immunology inflammation Inflammation - metabolism Inflammation Mediators - metabolism mitogen-activated protein kinases Mitogen-Activated Protein Kinases - metabolism NF-kappa B - metabolism nuclear factor κB Signal Transduction TNF Receptor-Associated Factor 2 - metabolism TNF Receptor-Associated Factor 3 - metabolism TNF Receptor-Associated Factor 6 - metabolism toll-like receptors tumor necrosis factor receptor-associated factor Tumor Necrosis Factor Receptor-Associated Peptides and Proteins - metabolism tumor necrosis factor receptors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA0iCG7Et_VFBDcu6nTatE2WKg6iOLhQcFeSNNGK0xnmgbjyv_wIv8l70844I6IboYXSpE3Ivek9l6TnEHIotMkDY5UfaJb4TITGVznXkLVynnNcGArwb-TrdnJxxy7v4_spqS_cE1bRA1cD12BNHQkLUZdpeFukZGyaYRBLGRjBRex4PiHmTSVTTxXujaIortYlIQsTDVt0OiPcysWP4UTqzKk45Oj6f8KY37dKTsWe1jJZqkEjPak6u0LmTLlKFioZydc18nY76nT7tG2wqWJAW05DhwIiND248McmMPlX0UMt20W7lraR01j2x4Uf76dUljm9hskO7uWfaCeBBk_fIKlDUdKrooTgR28APb7I18E6uWud355d-LWwgg9DGA59bS23qQS0laQp2IoJ2wSkZqRsSpuoUCkd5KGFgzPLNKoeMCaMSpNUagNZ7QaZL7ul2SIUPglKQVUBaQyL80QFmucAC0KVwtu19EhjPMyZrlnHUfziOYPsAw2TOcNkaJjMGcYjR5MnehXjxi91T9Fyk3rIle1ugAdltQdlf3mQRw7Gds9gbuGCiSxNdzSAhsCLUMyYeWSz8oNJUy41DRPukXTGQ2b6MltSFo-OvzuBlBo-e9v_0fkdsojD4bYkil0yP-yPzB7ApKHadzPiE22kE1k priority: 102 providerName: Directory of Open Access Journals |
Title | Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor κB and Mitogen-Activated Protein Kinase Pathways |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30140268 https://www.proquest.com/docview/2093310144 https://pubmed.ncbi.nlm.nih.gov/PMC6094638 https://doaj.org/article/41c39f5154cc463ba5e1205aa0e98953 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLVgCIkXxDdhYzISLzxky4fj2A8IbYgygVrtYZX6FtmOvQWtyUhbsT7xv_gR_Kbd66QdRRUSUlu1tRM3Pte-59bOPYS8lcaWkXU6jAzjIZOJDXUpDEStQpQCF4YivBt5OOInY_Zlkk1ub4_uO3C2NbRDPalxe3lw_X35AQb8e4w4wd8eumo6XeAuLXEATybvknvgl3LUMxj2ZP9bx4XT1CtuxpyzECyZdeuWW0-y4ad8Ov9tHPTvrZR_-KbBI_KwJ5X0qLOCx-SOrZ-Q-53M5PIp-Xm2mDYtHVlsqprRgdfYocAY7RW8CVcQ2fK26LyX9aKNoyPMeazaVeHvX8dU1SUdwmQA5hceGS-RBkefYtKHqqZfqxqcIz0FdvlDLWfPyHjw6ezjSdgLL4QAWDIPjXPC5QrYGM9zwJJJFwOTs0rFynGdaG2iMnHwEMwxg6oIjEmrc54rYyHqfU526qa2LwmFKUNrqCohzGFZyXVkRAk9n-gczm5UQA5X3VyYPis5imNcFhCdIDCFB6ZAYAoPTEDerY-46jJy_KPuMSK3roe5tP0XTXte9EOzYLFJpQNexwxcfqpVZuMkypSKrBQySwPyZoV7AWMPF1RUbZvFDBoCi0KxYxaQF50drJvyoWvCRUDyDQvZ-C2bJXV14fN7cwi5YVp89R8Xukse4Ae_M1HukZ15u7CvgS3N9b7_lwFeP0_ifT8gbgBHshcj |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+Necrosis+Factor+Receptor-Associated+Factor+Regulation+of+Nuclear+Factor+%CE%BAB+and+Mitogen-Activated+Protein+Kinase+Pathways&rft.jtitle=Frontiers+in+immunology&rft.au=Shi%2C+Jian-Hong&rft.au=Sun%2C+Shao-Cong&rft.date=2018-08-09&rft.issn=1664-3224&rft.eissn=1664-3224&rft.volume=9&rft_id=info:doi/10.3389%2Ffimmu.2018.01849&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fimmu_2018_01849 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |