Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor κB and Mitogen-Activated Protein Kinase Pathways

Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of structurally related proteins that transduces signals from members of TNFR superfamily and various other immune receptors. Major downstream signaling events mediated by the TRAF molecules include activation of the trans...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in immunology Vol. 9; p. 1849
Main Authors Shi, Jian-Hong, Sun, Shao-Cong
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 09.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of structurally related proteins that transduces signals from members of TNFR superfamily and various other immune receptors. Major downstream signaling events mediated by the TRAF molecules include activation of the transcription factor nuclear factor κB (NF-κB) and the mitogen-activated protein kinases (MAPKs). In addition, some TRAF family members, particularly TRAF2 and TRAF3, serve as negative regulators of specific signaling pathways, such as the noncanonical NF-κB and proinflammatory toll-like receptor pathways. Thus, TRAFs possess important and complex signaling functions in the immune system and play an important role in regulating immune and inflammatory responses. This review will focus on the role of TRAF proteins in the regulation of NF-κB and MAPK signaling pathways.
AbstractList Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of structurally related proteins that transduces signals from members of TNFR superfamily and various other immune receptors. Major downstream signaling events mediated by the TRAF molecules include activation of the transcription factor nuclear factor κB (NF-κB) and the mitogen-activated protein kinases (MAPKs). In addition, some TRAF family members, particularly TRAF2 and TRAF3, serve as negative regulators of specific signaling pathways, such as the noncanonical NF-κB and proinflammatory toll-like receptor pathways. Thus, TRAFs possess important and complex signaling functions in the immune system and play an important role in regulating immune and inflammatory responses. This review will focus on the role of TRAF proteins in the regulation of NF-κB and MAPK signaling pathways.
Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of structurally related proteins that transduces signals from members of TNFR superfamily and various other immune receptors. Major downstream signaling events mediated by the TRAF molecules include activation of the transcription factor nuclear factor κB (NF-κB) and the mitogen-activated protein kinases (MAPKs). In addition, some TRAF family members, particularly TRAF2 and TRAF3, serve as negative regulators of specific signaling pathways, such as the noncanonical NF-κB and proinflammatory toll-like receptor pathways. Thus, TRAFs possess important and complex signaling functions in the immune system and play an important role in regulating immune and inflammatory responses. This review will focus on the role of TRAF proteins in the regulation of NF-κB and MAPK signaling pathways.Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of structurally related proteins that transduces signals from members of TNFR superfamily and various other immune receptors. Major downstream signaling events mediated by the TRAF molecules include activation of the transcription factor nuclear factor κB (NF-κB) and the mitogen-activated protein kinases (MAPKs). In addition, some TRAF family members, particularly TRAF2 and TRAF3, serve as negative regulators of specific signaling pathways, such as the noncanonical NF-κB and proinflammatory toll-like receptor pathways. Thus, TRAFs possess important and complex signaling functions in the immune system and play an important role in regulating immune and inflammatory responses. This review will focus on the role of TRAF proteins in the regulation of NF-κB and MAPK signaling pathways.
Author Sun, Shao-Cong
Shi, Jian-Hong
AuthorAffiliation 1 Central Laboratory, Affiliated Hospital of Hebei University , Baoding , China
2 Department of Immunology, The University of Texas MD Anderson Cancer Center , Houston, TX , United States
AuthorAffiliation_xml – name: 1 Central Laboratory, Affiliated Hospital of Hebei University , Baoding , China
– name: 2 Department of Immunology, The University of Texas MD Anderson Cancer Center , Houston, TX , United States
Author_xml – sequence: 1
  givenname: Jian-Hong
  surname: Shi
  fullname: Shi, Jian-Hong
– sequence: 2
  givenname: Shao-Cong
  surname: Sun
  fullname: Sun, Shao-Cong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30140268$$D View this record in MEDLINE/PubMed
BookMark eNp1Uk1v1DAQtVAR_aB3TihHLlns2HGSC9JSUagopULlbE2c8dZVEi-2U9QT_6s_gt-EN9uWFgnLlseeN29svbdPdkY3IiGvGF1wXjdvjR2GaVFQVi_SEs0zssekFDkvCrHzKN4lhyFc0TREwzkvX5BdTpmghaz3yK-LaXA-O0PtXbAhOwYd0_kbalynIF-G4LSFiN3f1GrqIVo3Zs5kZ5PuEfx98vft-wzGLvtio1vhmC91tNdz9bl3Ee2YfbYjBMzOIV7-hJvwkjw30Ac8vNsPyPfjDxdHn_LTrx9PjpanuRayiLk2pjYV0LqUVYVd-olhsqQIwMDItmhbTbvCpFkLI3RNy0KIBttKVqCRcX5ATra8nYMrtfZ2AH-jHFg1Xzi_UuCjTZ9RgmnemJKVQqfmvIUSWUFLAIpN3ZQbrndbrvXUDthpHKOH_gnp08xoL9XKXStJm0RYJ4I3dwTe_ZgwRDXYoLHvYUQ3BVXQJBRLGokEff2410OTewUTgG4BGwGDR_MAYVRtfKJmn6iNT9Tsk1Qi_ynRNs6Kptfa_v-FfwBAV8Yj
CitedBy_id crossref_primary_10_3389_fmolb_2021_681526
crossref_primary_10_3390_cells9051118
crossref_primary_10_1021_acs_jafc_0c01159
crossref_primary_10_3390_cancers14205029
crossref_primary_10_3390_ijms22115871
crossref_primary_10_1039_D2SC05511B
crossref_primary_10_1007_s43440_021_00255_x
crossref_primary_10_1038_s12276_023_01133_7
crossref_primary_10_3390_cells13070581
crossref_primary_10_1186_s13578_018_0268_5
crossref_primary_10_3389_fneur_2021_746486
crossref_primary_10_3390_ijms23126743
crossref_primary_10_1002_mco2_349
crossref_primary_10_3390_molecules28073057
crossref_primary_10_4049_jimmunol_2001220
crossref_primary_10_1038_s41598_022_23545_7
crossref_primary_10_3389_fphar_2019_00583
crossref_primary_10_1111_bjd_21612
crossref_primary_10_3390_cancers14010176
crossref_primary_10_1007_s12013_022_01064_6
crossref_primary_10_1126_sciadv_adi4162
crossref_primary_10_1016_j_cyto_2024_156616
crossref_primary_10_3724_abbs_2024035
crossref_primary_10_1073_pnas_2411234121
crossref_primary_10_1152_ajpheart_00606_2020
crossref_primary_10_3390_ijms20092346
crossref_primary_10_1126_scisignal_abn5507
crossref_primary_10_3389_fimmu_2023_1160116
crossref_primary_10_1021_acsnano_3c01308
crossref_primary_10_1128_mBio_01723_21
crossref_primary_10_3390_biomedicines9091260
crossref_primary_10_3390_ijms23073655
crossref_primary_10_26693_jmbs05_06_329
crossref_primary_10_3389_fmed_2022_832713
crossref_primary_10_1002_jsfa_11423
crossref_primary_10_1111_cei_13365
crossref_primary_10_3390_ijms24031927
crossref_primary_10_3389_fphys_2021_826697
crossref_primary_10_1016_j_envres_2023_116600
crossref_primary_10_4103_1673_5374_332128
crossref_primary_10_1016_j_ibror_2020_08_005
crossref_primary_10_3389_fimmu_2019_02024
crossref_primary_10_3389_fmolb_2022_922428
crossref_primary_10_3390_pr8121566
crossref_primary_10_3389_fvets_2023_1141561
crossref_primary_10_1038_s41423_020_00583_7
crossref_primary_10_3390_cells11101673
crossref_primary_10_3390_ijms25137275
crossref_primary_10_1080_07357907_2020_1721523
crossref_primary_10_3389_fimmu_2023_1192821
crossref_primary_10_3390_ijms21030999
crossref_primary_10_1016_j_clim_2020_108423
crossref_primary_10_1128_mSystems_00336_21
crossref_primary_10_5847_wjem_j_1920_8642_2023_079
crossref_primary_10_3390_genes11121509
crossref_primary_10_2147_JIR_S448091
crossref_primary_10_1038_s41598_021_86585_5
crossref_primary_10_3390_biomedicines11072075
crossref_primary_10_1186_s12935_020_01595_z
crossref_primary_10_1016_j_oor_2024_100384
crossref_primary_10_3390_cells9040897
crossref_primary_10_1111_jfb_15126
crossref_primary_10_1016_j_molimm_2022_10_015
crossref_primary_10_1016_j_jtos_2020_12_007
crossref_primary_10_1007_s00018_025_05631_x
crossref_primary_10_1126_sciimmunol_abd1287
crossref_primary_10_1042_BSR20231418
crossref_primary_10_1111_cbdd_14574
crossref_primary_10_1093_intimm_dxab058
crossref_primary_10_1007_s11064_025_04332_y
crossref_primary_10_3390_life11090988
crossref_primary_10_3803_EnM_2023_501
crossref_primary_10_1186_s13567_021_01005_w
crossref_primary_10_1080_15476286_2020_1845505
crossref_primary_10_1016_j_jep_2021_114626
crossref_primary_10_1084_jem_20240806
crossref_primary_10_1111_1440_1681_13625
crossref_primary_10_3390_ijms231911065
crossref_primary_10_1016_j_crbiot_2024_100204
crossref_primary_10_1074_jbc_RA120_015960
crossref_primary_10_1016_j_bcp_2021_114733
crossref_primary_10_3390_cimb46100638
crossref_primary_10_1111_cns_14749
crossref_primary_10_1289_EHP5550
crossref_primary_10_3389_fimmu_2021_623256
crossref_primary_10_3390_cells10123309
crossref_primary_10_1155_2020_9020219
crossref_primary_10_1111_jcmm_18097
crossref_primary_10_1016_j_abb_2022_109464
crossref_primary_10_3389_fimmu_2024_1481699
crossref_primary_10_1038_s41598_021_87795_7
crossref_primary_10_3390_v15051163
crossref_primary_10_3389_fimmu_2021_640837
crossref_primary_10_4103_1735_5362_343084
crossref_primary_10_1038_s41598_020_73912_5
crossref_primary_10_1080_02713683_2020_1772831
crossref_primary_10_1016_j_lfs_2024_122896
crossref_primary_10_3389_fimmu_2022_944528
crossref_primary_10_1186_s12885_023_11468_z
crossref_primary_10_1080_15384101_2021_2014653
crossref_primary_10_3233_JAD_201551
crossref_primary_10_1007_s10753_021_01420_3
crossref_primary_10_1038_s41418_023_01194_1
crossref_primary_10_1186_s10020_021_00415_y
crossref_primary_10_1248_bpb_b21_00561
crossref_primary_10_1155_2021_3431245
crossref_primary_10_1096_fj_201902547R
crossref_primary_10_1080_15569527_2022_2081702
crossref_primary_10_1128_mbio_01746_22
crossref_primary_10_3390_jcm10143061
crossref_primary_10_1126_scitranslmed_abm1463
crossref_primary_10_1038_s41392_020_00421_2
crossref_primary_10_1016_j_lfs_2022_121310
crossref_primary_10_1111_exd_14365
crossref_primary_10_1177_10998004221115863
crossref_primary_10_3389_fphar_2023_1021535
crossref_primary_10_1016_j_physbeh_2023_114180
crossref_primary_10_1096_fj_201903073R
crossref_primary_10_17116_hirurgia2024041112
crossref_primary_10_3390_ijms222413475
crossref_primary_10_1042_BCJ20240058
crossref_primary_10_1093_intimm_dxac061
crossref_primary_10_1038_s41598_023_49254_3
crossref_primary_10_1038_s42255_020_00271_w
crossref_primary_10_1016_j_yjmcc_2022_04_013
crossref_primary_10_1007_s10495_024_02005_9
crossref_primary_10_4014_jmb_2107_07001
crossref_primary_10_32604_or_2023_044473
crossref_primary_10_1016_j_ydbio_2024_08_010
crossref_primary_10_1038_s41467_023_41549_3
crossref_primary_10_1155_2019_9528584
crossref_primary_10_1097_PCC_0000000000002860
crossref_primary_10_1016_j_fsi_2022_01_018
crossref_primary_10_1016_j_jconrel_2024_11_070
crossref_primary_10_3389_fncel_2022_982074
crossref_primary_10_1016_j_biopha_2023_115746
crossref_primary_10_1016_j_canlet_2022_215667
crossref_primary_10_3390_nu13082697
crossref_primary_10_1186_s43094_021_00262_y
crossref_primary_10_1007_s12012_022_09743_9
crossref_primary_10_3389_fimmu_2022_824664
crossref_primary_10_1016_j_arr_2023_101855
crossref_primary_10_1242_jcs_259161
crossref_primary_10_1016_j_imlet_2022_08_005
crossref_primary_10_3390_ijms23094885
crossref_primary_10_3389_fcell_2021_710967
crossref_primary_10_3389_fcell_2021_635636
crossref_primary_10_3390_ijms21083000
crossref_primary_10_1111_bcp_15495
crossref_primary_10_1016_j_jep_2024_118764
crossref_primary_10_1186_s12906_022_03504_5
crossref_primary_10_1002_ddr_70031
crossref_primary_10_1155_2019_6710759
crossref_primary_10_3389_fimmu_2019_01107
crossref_primary_10_1371_journal_pone_0229395
crossref_primary_10_3389_fimmu_2019_00815
crossref_primary_10_1111_bph_14759
crossref_primary_10_3390_ijms252312848
crossref_primary_10_1016_j_foodres_2022_111742
crossref_primary_10_1038_s41419_022_04619_w
crossref_primary_10_3389_fonc_2021_798425
crossref_primary_10_4111_icu_20230294
crossref_primary_10_1111_febs_15782
crossref_primary_10_1016_j_jaci_2022_01_016
crossref_primary_10_1016_j_preteyeres_2021_100998
crossref_primary_10_1016_j_ijbiomac_2024_131645
crossref_primary_10_1371_journal_pone_0271950
crossref_primary_10_1016_j_bbrc_2022_08_031
crossref_primary_10_1111_cas_14523
crossref_primary_10_3390_cells9122710
crossref_primary_10_1016_j_exphem_2020_08_010
crossref_primary_10_4049_jimmunol_2200300
crossref_primary_10_1021_jacs_1c01045
crossref_primary_10_7554_eLife_92719
crossref_primary_10_3389_fmars_2023_1092732
crossref_primary_10_1016_j_mehy_2021_110612
crossref_primary_10_1093_jhered_esad017
crossref_primary_10_3390_biomedicines9080889
crossref_primary_10_1007_s13105_024_01056_5
crossref_primary_10_3389_fchbi_2024_1503390
crossref_primary_10_3892_mmr_2023_13092
crossref_primary_10_3389_fcvm_2020_00115
crossref_primary_10_1038_s41419_024_07325_x
crossref_primary_10_1172_jci_insight_150833
crossref_primary_10_18632_oncotarget_28232
crossref_primary_10_1038_s41467_022_30207_9
crossref_primary_10_3389_fphar_2021_652860
crossref_primary_10_3390_v13061160
crossref_primary_10_1016_j_bbrc_2022_07_114
crossref_primary_10_3892_mmr_2022_12863
crossref_primary_10_5650_jos_ess21258
crossref_primary_10_3390_v13040584
crossref_primary_10_3389_fimmu_2021_675751
crossref_primary_10_3390_toxins13050315
crossref_primary_10_1016_j_nbd_2022_105964
crossref_primary_10_3390_nu16172996
crossref_primary_10_1016_j_micpath_2022_105436
crossref_primary_10_3389_fphar_2022_1014173
crossref_primary_10_1080_13880209_2023_2215849
crossref_primary_10_3390_molecules25245932
crossref_primary_10_3389_fonc_2022_855139
crossref_primary_10_1007_s13205_024_04202_4
crossref_primary_10_3389_fonc_2021_775250
crossref_primary_10_1016_j_neo_2020_12_006
crossref_primary_10_1111_mec_16908
crossref_primary_10_54817_IC_v63n4a03
crossref_primary_10_1177_2040622320956429
crossref_primary_10_1007_s13105_020_00772_y
crossref_primary_10_3390_cancers16142609
crossref_primary_10_3389_fviro_2022_972156
crossref_primary_10_1002_jmv_70210
crossref_primary_10_1038_s41467_023_35801_z
crossref_primary_10_3389_fphar_2025_1563435
crossref_primary_10_1038_s41423_020_0362_6
crossref_primary_10_3389_fmicb_2024_1393646
crossref_primary_10_1016_j_expneurol_2022_114154
crossref_primary_10_1016_j_jhazmat_2022_130643
crossref_primary_10_3390_microorganisms9071509
crossref_primary_10_3390_pharmaceutics14030621
crossref_primary_10_1007_s10528_022_10265_w
crossref_primary_10_1126_scisignal_abc7611
crossref_primary_10_3389_fcimb_2021_619081
crossref_primary_10_1016_j_jep_2024_117862
crossref_primary_10_1126_sciadv_abg2697
crossref_primary_10_3389_fmolb_2023_1168250
crossref_primary_10_3389_fmolb_2024_1349509
crossref_primary_10_1016_j_phymed_2019_153166
crossref_primary_10_3389_fcell_2022_698233
crossref_primary_10_1080_17460441_2024_2335210
crossref_primary_10_1016_j_biopha_2020_110770
crossref_primary_10_1038_s41598_021_90287_3
crossref_primary_10_3390_ijms24054674
crossref_primary_10_3390_ijms19113576
Cites_doi 10.1016/j.molcel.2009.10.002
10.1074/jbc.M404206200
10.1146/annurev.immunol.021908.132641
10.1016/0092-8674(94)90532-0
10.1038/ni.1990
10.1038/nri3495
10.1038/sigtrans.2017.23
10.1038/cr.2016.40
10.1038/ncomms14278
10.1038/ncb1821
10.1111/j.1600-065X.2011.01088.x
10.1084/jem.191.7.1233
10.1038/nature04369
10.7150/ijms.5457
10.1146/annurev.biochem.78.101807.093809
10.1111/1751-2980.12044
10.1038/emboj.2012.240
10.1074/jbc.M112.350538
10.1016/j.cell.2007.10.030
10.1016/S0092-8674(03)00521-X
10.1016/j.immuni.2008.01.009
10.7554/eLife.00785
10.1186/1750-2187-8-7
10.15252/embr.201642140
10.1038/ni1255
10.1038/cr.2010.170
10.1002/bies.10352
10.1016/j.cell.2013.05.014
10.1038/nri1184
10.1101/gad.312561.118
10.1006/bbrc.1997.6509
10.1128/JVI.00079-11
10.1016/j.cell.2008.01.020
10.1074/jbc.M403286200
10.1146/annurev.biochem.76.060605.122847
10.1038/ni1014
10.1038/nsmb.1731
10.1042/BJ20140444
10.1038/nm.3111
10.1016/j.molcel.2006.03.026
10.1038/cr.2013.21
10.1084/jem.20100703
10.1021/bi901462e
10.1016/j.febslet.2009.09.028
10.1161/CIRCRESAHA.111.300119
10.1038/nature04374
10.1074/jbc.M111.221853
10.1126/science.7544915
10.1016/j.cyto.2013.07.022
10.1038/nri2998
10.1038/cr.2010.173
10.1038/89769
10.1074/jbc.M111.328187
10.1126/scisignal.2000387
10.1128/MCB.01538-13
10.1038/ni.1685
10.1042/BJ20040544
10.1128/MCB.24.13.6040-6048.2004
10.1084/jem.194.8.1021
10.1016/S1097-2765(01)00187-3
10.1038/nature09128
10.1038/emboj.2012.241
10.1074/jbc.M512908200
10.1016/j.it.2008.07.003
10.1128/MCB.23.14.4739-4752.2003
10.1016/j.molcel.2009.01.012
10.1073/pnas.93.24.13973
10.1074/jbc.M111423200
10.1016/j.it.2013.01.004
10.1038/ni.1678
10.1093/jmcb/mjs024
10.1074/jbc.M112.347195
10.1073/pnas.0711122105
10.1038/19110
10.1073/pnas.230436397
10.1073/pnas.1702367114
10.1016/S1097-2765(03)00070-4
10.1038/ncomms6930
10.1016/S1074-7613(00)80391-X
10.1038/ni.1863
10.1016/j.cell.2007.10.037
10.4049/jimmunol.1401548
10.1111/imr.12311
10.1146/annurev.immunol.23.021704.115839
10.1074/jbc.M113.464081
10.1084/jem.20101123
10.1016/S0092-8674(00)00126-4
10.1016/j.immuni.2015.09.010
10.1016/0092-8674(95)90070-5
10.1074/jbc.M211796200
10.1038/ni.1676
10.1128/MCB.25.6.2130-2137.2005
10.1101/gad.1329805
10.1074/jbc.M609503200
10.7554/eLife.22416
10.1038/nature08247
10.1016/j.immuni.2007.07.012
10.1146/annurev.immunol.20.091301.131133
10.1016/j.bbamcr.2005.12.010
10.1016/j.molcel.2004.08.008
10.1074/jbc.M104837200
10.1038/ni.3097
10.1016/j.molcel.2017.09.001
10.1038/nature03308
10.1016/j.immuni.2016.04.019
10.1038/ncb1384
10.1002/0471142735.im1109ds87
10.1111/imr.12308
10.1016/S0014-5793(03)00998-0
10.1016/j.molcel.2008.05.014
10.1074/jbc.M109.072256
10.1038/nm.4229
10.1016/S0092-8674(00)80984-8
10.1038/s41388-018-0167-6
10.1074/jbc.C800128200
10.1038/ni.2378
10.1128/MCB.00564-12
10.2217/imt-2017-0185
10.1016/j.immuni.2004.09.011
10.1073/pnas.0805186105
10.1038/ni.1819
10.1101/gad.183434.111
10.1016/j.molcel.2013.06.004
10.1016/j.molcel.2010.03.009
10.1038/sj.onc.1211042
10.1128/MCB.24.21.9658-9667.2004
10.1038/nri.2017.52
10.1074/jbc.M609039200
10.1084/jem.20061166
10.1038/nature00888
10.1111/gtc.12128
10.1016/j.molcel.2009.10.013
10.1371/journal.pone.0004064
10.1016/j.jmb.2017.10.026
10.1042/BJ20111358
10.1126/science.1062677
10.1038/ncb1780
10.1016/j.cell.2009.03.007
10.1016/j.trsl.2015.06.018
10.1016/S0092-8674(00)81409-9
10.1074/jbc.M507807200
10.1038/nri2337
10.1016/0092-8674(95)90149-3
10.1038/385540a0
ContentType Journal Article
Copyright Copyright © 2018 Shi and Sun. 2018 Shi and Sun
Copyright_xml – notice: Copyright © 2018 Shi and Sun. 2018 Shi and Sun
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3389/fimmu.2018.01849
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-3224
ExternalDocumentID oai_doaj_org_article_41c39f5154cc463ba5e1205aa0e98953
PMC6094638
30140268
10_3389_fimmu_2018_01849
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM084459
– fundername: NIAID NIH HHS
  grantid: R01 AI104519
– fundername: NIAID NIH HHS
  grantid: R01 AI057555
– fundername: NIAID NIH HHS
  grantid: R37 AI064639
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-cff8f7a085677ed049f1650eaa1af6b2bbc0d2fd2f84f4c8052449eb767ace133
IEDL.DBID M48
ISSN 1664-3224
IngestDate Wed Aug 27 01:32:04 EDT 2025
Thu Aug 21 14:07:02 EDT 2025
Thu Jul 10 21:15:28 EDT 2025
Thu Apr 03 07:09:15 EDT 2025
Thu Apr 24 22:56:57 EDT 2025
Tue Jul 01 01:35:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords tumor necrosis factor receptor-associated factor
nuclear factor κB
tumor necrosis factor receptors
toll-like receptors
inflammation
mitogen-activated protein kinases
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-cff8f7a085677ed049f1650eaa1af6b2bbc0d2fd2f84f4c8052449eb767ace133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Specialty section: This article was submitted to Molecular Innate Immunity, a section of the journal Frontiers in Immunology
Reviewed by: Hasem Habelhah, University of Iowa, United States; Ping Xie, Rutgers University, The State University of New Jersey, United States; Weizhou Zhang, University of Iowa, United States
Edited by: Gail Abendroth Bishop, University of Iowa, United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fimmu.2018.01849
PMID 30140268
PQID 2093310144
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_41c39f5154cc463ba5e1205aa0e98953
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6094638
proquest_miscellaneous_2093310144
pubmed_primary_30140268
crossref_primary_10_3389_fimmu_2018_01849
crossref_citationtrail_10_3389_fimmu_2018_01849
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-09
PublicationDateYYYYMMDD 2018-08-09
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-09
  day: 09
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in immunology
PublicationTitleAlternate Front Immunol
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Piao (B132) 2011; 286
Gardam (B114) 2008; 28
Rothe (B103) 1995; 83
Beinke (B35) 2003; 23
Lin (B14) 1998; 92
Ye (B45) 2002; 418
Shen (B134) 2013; 6
Shi (B82) 2003; 278
Yang (B22) 2001; 2
Sriskantharajah (B15) 2009; 10
Vince (B119) 2007; 131
Jin (B126) 2015; 6
Qiao (B133) 2013; 14
Wagner (B52) 2008; 27
Schwandner (B40) 2000; 191
Huang (B23) 2004; 5
Fujita (B96) 2014; 34
Waterfield (B36) 2003; 11
Xiao (B17) 2001; 7
Tokunaga (B101) 2012; 31
Jensen (B59) 2003; 553
Chesi (B123) 2016; 22
Takiuchi (B100) 2014; 19
Kawai (B47) 2010; 11
Shen (B135) 2013; 10
Tokunaga (B92) 2009; 11
Liu (B46) 2013; 2
Takaoka (B143) 2005; 434
Qin (B25) 2006; 281
Waterfield (B38) 2004; 24
Rothe (B6) 1994; 78
Yao (B71) 2018; 37
Xie (B113) 2007; 27
Hacker (B5) 2011; 11
Fiil (B98) 2013; 50
Ea (B49) 2006; 22
Jiao (B70) 2015; 16
Lee (B86) 2004; 279
Wu (B41) 2003; 25
Luong le (B64) 2013; 112
Ha (B1) 2009
Yang (B9) 2015; 266
He (B63) 2013; 5
Rothe (B104) 1995; 269
Hsu (B74) 1996; 84
Haas (B91) 2009; 36
Xie (B2) 2013; 8
Boucher (B105) 1997; 233
Grumont (B141) 2001; 194
Yao (B26) 2007; 282
Sasaki (B115) 2008; 105
Eames (B145) 2016; 167
Yasunaga (B61) 2011; 85
Zheng (B127) 2010; 38
Xia (B57) 2009; 461
Sasaki (B89) 2015; 266
Varfolomeev (B118) 2007; 131
Lo (B53) 2009; 33
Strickson (B58) 2017; 114
Lamothe (B55) 2007; 282
Yoshikawa (B54) 2009; 583
Hayden (B10) 2008; 132
Dougan (B122) 2010; 207
Liu (B19) 2011; 21
Schimmack (B67) 2017; 6
Hayden (B30) 2012; 26
Zhou (B66) 2012; 287
Grech (B117) 2004; 21
Beinke (B37) 2004; 24
Walsh (B56) 2008; 3
Xu (B80) 2009; 36
Zhang (B69) 2013; 23
Shan (B81) 2018; 32
Sun (B28) 2013; 34
Xiao (B137) 2013; 19
Alvarez (B84) 2010; 465
Panda (B65) 2015; 43
Zhu (B138) 2010; 207
Kim (B108) 2005; 25
Gantke (B34) 2011; 21
Sorrentino (B43) 2008; 10
Gu (B44) 2013; 64
Sun (B60) 2008; 8
He (B112) 2006; 203
Sato (B21) 2005; 6
Wu (B50) 2006; 8
Babu (B39) 2006; 1763
Vallabhapurapu (B120) 2008; 9
Häcker (B129) 2006; 439
Xia (B85) 2002; 277
Zarnegar (B121) 2008; 9
Micheau (B77) 2003; 114
Zhang (B97) 2014; 461
Malinin (B116) 1997; 385
Liu (B8) 2017; 2
Yin (B83) 2009; 48
Park (B106) 1999; 398
Verhelst (B102) 2012; 31
Sun (B18) 2017; 17
Dong (B33) 2002; 20
Kanayama (B48) 2004; 15
Shu (B75) 1996; 93
Hauenstein (B95) 2017; 429
Deng (B4) 2000; 103
Tada (B73) 2001; 276
Tseng (B136) 2010; 11
Hrdinka (B90) 2017; 68
Schneider (B68) 2012; 13
Yeh (B72) 1997; 7
Watts (B109) 2005; 23
Liao (B32) 2004; 279
McPherson (B110) 2012; 287
Aggarwal (B107) 2003; 3
Sun (B13) 2008; 29
Yang (B16) 2012; 32
Beug (B124) 2017; 8
Sanjabi (B140) 2000; 97
Kulathu (B51) 2009; 16
Oganesyan (B130) 2006; 439
Sanjabi (B142) 2005; 19
Keusekotten (B99) 2013; 153
Choudhary (B128) 2013; 288
Deshaies (B3) 2009; 78
Beinke (B12) 2004; 382
Kensche (B94) 2012; 287
Vallabhapurapu (B11) 2009; 27
Xiao (B62) 2012; 441
Lalani (B131) 2015; 194
Krausgruber (B144) 2011; 12
Senftleben (B29) 2001; 293
Rahighi (B93) 2009; 136
Sun (B31) 2012; 246
Hu (B20) 2016; 26
Bertrand (B78) 2008; 30
Ward-Kavanagh (B111) 2016; 44
Arthur (B7) 2013; 13
Blonska (B24) 2005; 280
Lee (B42) 2007; 76
Dougan (B125) 2018; 10
Ma (B139) 2017; 18
Hsu (B76) 1995; 81
Mahoney (B79) 2008; 105
Varfolomeev (B88) 2008; 283
Yamazaki (B27) 2009; 2
Vince (B87) 2009; 284
References_xml – volume: 36
  start-page: 302
  year: 2009
  ident: B80
  article-title: A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-1beta
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.10.002
– volume: 279
  start-page: 33185
  year: 2004
  ident: B86
  article-title: The kinase activity of Rip1 is not required for tumor necrosis factor-alpha-induced IkappaB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M404206200
– volume: 27
  start-page: 693
  year: 2009
  ident: B11
  article-title: Regulation and function of NF-kappaB transcription factors in the immune system
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.021908.132641
– volume: 78
  start-page: 681
  year: 1994
  ident: B6
  article-title: A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90532-0
– volume: 12
  start-page: 231
  year: 2011
  ident: B144
  article-title: IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses
  publication-title: Nat Immunol
  doi: 10.1038/ni.1990
– volume: 13
  start-page: 679
  year: 2013
  ident: B7
  article-title: Mitogen-activated protein kinases in innate immunity
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3495
– volume: 2
  start-page: 17023
  year: 2017
  ident: B8
  article-title: NF-kappaB signaling in inflammation
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/sigtrans.2017.23
– volume: 26
  start-page: 457
  year: 2016
  ident: B20
  article-title: Ubiquitin signaling in immune responses
  publication-title: Cell Res
  doi: 10.1038/cr.2016.40
– volume: 8
  start-page: 14278
  year: 2017
  ident: B124
  article-title: Smac mimetics synergize with immune checkpoint inhibitors to promote tumour immunity against glioblastoma
  publication-title: Nat Commun
  doi: 10.1038/ncomms14278
– volume: 11
  start-page: 123
  year: 2009
  ident: B92
  article-title: Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1821
– volume: 246
  start-page: 125
  year: 2012
  ident: B31
  article-title: The noncanonical NF-kappaB pathway
  publication-title: Immunol Rev
  doi: 10.1111/j.1600-065X.2011.01088.x
– volume: 191
  start-page: 1233
  year: 2000
  ident: B40
  article-title: Requirement of tumor necrosis factor receptor-associated factor (TRAF)6 in interleukin 17 signal transduction
  publication-title: J Exp Med
  doi: 10.1084/jem.191.7.1233
– volume: 439
  start-page: 204
  year: 2006
  ident: B129
  article-title: Specificity in toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6
  publication-title: Nature
  doi: 10.1038/nature04369
– volume: 10
  start-page: 156
  year: 2013
  ident: B135
  article-title: Up-regulation and pre-activation of TRAF3 and TRAF5 in inflammatory bowel disease
  publication-title: Int J Med Sci
  doi: 10.7150/ijms.5457
– volume: 78
  start-page: 399
  year: 2009
  ident: B3
  article-title: RING domain E3 ubiquitin ligases
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.78.101807.093809
– volume: 14
  start-page: 244
  year: 2013
  ident: B133
  article-title: Gene expression of tumor necrosis factor receptor associated-factor (TRAF)-1 and TRAF-2 in inflammatory bowel disease
  publication-title: J Dig Dis
  doi: 10.1111/1751-2980.12044
– volume: 31
  start-page: 3845
  year: 2012
  ident: B102
  article-title: A20 inhibits LUBAC-mediated NF-kappaB activation by binding linear polyubiquitin chains via its zinc finger 7
  publication-title: EMBO J
  doi: 10.1038/emboj.2012.240
– volume: 287
  start-page: 23010
  year: 2012
  ident: B110
  article-title: Opposing roles for TRAF1 in the alternative versus classical NF-kappaB pathway in T cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.350538
– volume: 131
  start-page: 669
  year: 2007
  ident: B118
  article-title: IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis
  publication-title: Cell
  doi: 10.1016/j.cell.2007.10.030
– volume: 114
  start-page: 181
  year: 2003
  ident: B77
  article-title: Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00521-X
– volume: 28
  start-page: 391
  year: 2008
  ident: B114
  article-title: TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.01.009
– volume: 2
  start-page: e00785
  year: 2013
  ident: B46
  article-title: MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades
  publication-title: Elife
  doi: 10.7554/eLife.00785
– volume: 8
  start-page: 7
  year: 2013
  ident: B2
  article-title: TRAF molecules in cell signaling and in human diseases
  publication-title: J Mol Signal
  doi: 10.1186/1750-2187-8-7
– volume: 18
  start-page: 586
  year: 2017
  ident: B139
  article-title: NDR1 protein kinase promotes IL-17- and TNF-alpha-mediated inflammation by competitively binding TRAF3
  publication-title: EMBO Rep
  doi: 10.15252/embr.201642140
– volume: 6
  start-page: 1987
  year: 2005
  ident: B21
  article-title: Essential function for the kinase TAK1 in innate and adaptive immune responses
  publication-title: Nat Immunol
  doi: 10.1038/ni1255
– volume: 21
  start-page: 6
  year: 2011
  ident: B19
  article-title: Expanding role of ubiquitination in NF-κB signaling
  publication-title: Cell Res
  doi: 10.1038/cr.2010.170
– volume: 25
  start-page: 1096
  year: 2003
  ident: B41
  article-title: TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology
  publication-title: Bioessays
  doi: 10.1002/bies.10352
– volume: 153
  start-page: 1312
  year: 2013
  ident: B99
  article-title: OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.014
– volume: 3
  start-page: 745
  year: 2003
  ident: B107
  article-title: Signalling pathways of the TNF superfamily: a double-edged sword
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri1184
– volume: 32
  start-page: 327
  year: 2018
  ident: B81
  article-title: Necroptosis in development and diseases
  publication-title: Genes Dev
  doi: 10.1101/gad.312561.118
– volume: 233
  start-page: 592
  year: 1997
  ident: B105
  article-title: Binding sites of cytoplasmic effectors TRAF1, 2, and 3 on CD30 and other members of the TNF receptor superfamily
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1997.6509
– volume: 85
  start-page: 6212
  year: 2011
  ident: B61
  article-title: Ubiquitin-specific peptidase 20 targets TRAF6 and human T cell leukemia virus type 1 tax to negatively regulate NF-kappaB signaling
  publication-title: J Virol
  doi: 10.1128/JVI.00079-11
– volume: 132
  start-page: 344
  year: 2008
  ident: B10
  article-title: Shared principles in NF-kappaB signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2008.01.020
– volume: 279
  start-page: 26243
  year: 2004
  ident: B32
  article-title: Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M403286200
– volume: 76
  start-page: 447
  year: 2007
  ident: B42
  article-title: Signaling pathways downstream of pattern-recognition receptors and their cross talk
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.76.060605.122847
– volume: 5
  start-page: 98
  year: 2004
  ident: B23
  article-title: Differential regulation of interleukin 1 receptor and toll-like receptor signaling by MEKK3
  publication-title: Nat Immunol
  doi: 10.1038/ni1014
– volume: 16
  start-page: 1328
  year: 2009
  ident: B51
  article-title: Two-sided ubiquitin binding explains specificity of the TAB 2 NZF domain
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1731
– volume: 461
  start-page: 531
  year: 2014
  ident: B97
  article-title: An unexpected twist to the activation of IKKbeta: TAK1 primes IKKbeta for activation by autophosphorylation
  publication-title: Biochem J
  doi: 10.1042/BJ20140444
– volume: 19
  start-page: 595
  year: 2013
  ident: B137
  article-title: Peli1 promotes microglia-mediated CNS inflammation by regulating TRAF3 degradation
  publication-title: Nat Med
  doi: 10.1038/nm.3111
– volume: 22
  start-page: 245
  year: 2006
  ident: B49
  article-title: Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2006.03.026
– volume: 23
  start-page: 366
  year: 2013
  ident: B69
  article-title: UBE2O negatively regulates TRAF6-mediated NF-kappaB activation by inhibiting TRAF6 polyubiquitination
  publication-title: Cell Res
  doi: 10.1038/cr.2013.21
– volume: 207
  start-page: 2647
  year: 2010
  ident: B138
  article-title: Modulation of experimental autoimmune encephalomyelitis through TRAF3-mediated suppression of interleukin 17 receptor signaling
  publication-title: J Exp Med
  doi: 10.1084/jem.20100703
– volume: 48
  start-page: 10558
  year: 2009
  ident: B83
  article-title: Structural basis for the lack of E2 interaction in the RING domain of TRAF2
  publication-title: Biochemistry
  doi: 10.1021/bi901462e
– volume: 583
  start-page: 3317
  year: 2009
  ident: B54
  article-title: Crystal structure of the NEMO ubiquitin-binding domain in complex with Lys 63-linked di-ubiquitin
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2009.09.028
– volume: 112
  start-page: 1583
  year: 2013
  ident: B64
  article-title: Cezanne regulates inflammatory responses to hypoxia in endothelial cells by targeting TRAF6 for deubiquitination
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.111.300119
– volume: 439
  start-page: 208
  year: 2006
  ident: B130
  article-title: Critical role of TRAF3 in the toll-like receptor-dependent and -independent antiviral response
  publication-title: Nature
  doi: 10.1038/nature04374
– volume: 286
  start-page: 17879
  year: 2011
  ident: B132
  article-title: Tumor necrosis factor receptor-associated factor (TRAF) 2 controls homeostasis of the colon to prevent spontaneous development of murine inflammatory bowel disease
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.221853
– volume: 269
  start-page: 1424
  year: 1995
  ident: B104
  article-title: TRAF2-mediated activation of NF-kB by TNF receptor 2 and CD40
  publication-title: Science
  doi: 10.1126/science.7544915
– volume: 64
  start-page: 477
  year: 2013
  ident: B44
  article-title: IL-17 family: cytokines, receptors and signaling
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2013.07.022
– volume: 11
  start-page: 457
  year: 2011
  ident: B5
  article-title: Expanding TRAF function: TRAF3 as a tri-faced immune regulator
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2998
– volume: 21
  start-page: 131
  year: 2011
  ident: B34
  article-title: Regulation and function of TPL-2, an IkappaB kinase-regulated MAP kinase kinase kinase
  publication-title: Cell Res
  doi: 10.1038/cr.2010.173
– volume: 2
  start-page: 620
  year: 2001
  ident: B22
  article-title: The essential role of MEKK3 in TNF-induced NF-kappaB activation
  publication-title: Nat Immunol
  doi: 10.1038/89769
– volume: 287
  start-page: 11002
  year: 2012
  ident: B66
  article-title: Ubiquitin-specific protease 4 mitigates toll-like/interleukin-1 receptor signaling and regulates innate immune activation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.328187
– volume: 2
  start-page: ra66
  year: 2009
  ident: B27
  article-title: Two mechanistically and temporally distinct NF-kappaB activation pathways in IL-1 signaling
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2000387
– volume: 34
  start-page: 1322
  year: 2014
  ident: B96
  article-title: Mechanism underlying IkappaB kinase activation mediated by the linear ubiquitin chain assembly complex
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01538-13
– volume: 10
  start-page: 38
  year: 2009
  ident: B15
  article-title: Proteolysis of NF-kappaB1 p105 is essential for T cell antigen receptor-induced proliferation
  publication-title: Nat Immunol
  doi: 10.1038/ni.1685
– volume: 382
  start-page: 393
  year: 2004
  ident: B12
  article-title: Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology
  publication-title: Biochem J
  doi: 10.1042/BJ20040544
– volume: 24
  start-page: 6040
  year: 2004
  ident: B38
  article-title: IKKb is an essential component of the Tpl2 signaling pathway
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.24.13.6040-6048.2004
– volume: 194
  start-page: 1021
  year: 2001
  ident: B141
  article-title: c-Rel regulates interleukin 12 p70 expression in CD8(+) dendritic cells by specifically inducing p35 gene transcription
  publication-title: J Exp Med
  doi: 10.1084/jem.194.8.1021
– volume: 7
  start-page: 401
  year: 2001
  ident: B17
  article-title: NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(01)00187-3
– volume: 465
  start-page: 1084
  year: 2010
  ident: B84
  article-title: Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2
  publication-title: Nature
  doi: 10.1038/nature09128
– volume: 31
  start-page: 3856
  year: 2012
  ident: B101
  article-title: Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-kappaB regulation
  publication-title: EMBO J
  doi: 10.1038/emboj.2012.241
– volume: 281
  start-page: 21013
  year: 2006
  ident: B25
  article-title: TLR8-mediated NF-kappaB and JNK activation are TAK1-independent and MEKK3-dependent
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M512908200
– volume: 29
  start-page: 469
  year: 2008
  ident: B13
  article-title: New insights into NF-kappaB regulation and function
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2008.07.003
– volume: 23
  start-page: 4739
  year: 2003
  ident: B35
  article-title: NF-kappaB1 p105 negatively regulates TPL-2 MEK kinase activity
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.23.14.4739-4752.2003
– volume: 33
  start-page: 602
  year: 2009
  ident: B53
  article-title: Structural basis for recognition of diubiquitins by NEMO
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.01.012
– volume: 93
  start-page: 13973
  year: 1996
  ident: B75
  article-title: The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.93.24.13973
– volume: 277
  start-page: 7996
  year: 2002
  ident: B85
  article-title: Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-alpha signaling
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111423200
– volume: 34
  start-page: 282
  year: 2013
  ident: B28
  article-title: Regulation of nuclear factor-kappaB in autoimmunity
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2013.01.004
– volume: 9
  start-page: 1364
  year: 2008
  ident: B120
  article-title: Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling
  publication-title: Nat Immunol
  doi: 10.1038/ni.1678
– volume: 5
  start-page: 39
  year: 2013
  ident: B63
  article-title: USP2a negatively regulates IL-1beta- and virus-induced NF-kappaB activation by deubiquitinating TRAF6
  publication-title: J Mol Cell Biol
  doi: 10.1093/jmcb/mjs024
– volume: 287
  start-page: 23626
  year: 2012
  ident: B94
  article-title: Analysis of nuclear factor-kappaB (NF-kappaB) essential modulator (NEMO) binding to linear and lysine-linked ubiquitin chains and its role in the activation of NF-kappaB
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.347195
– volume: 105
  start-page: 11778
  year: 2008
  ident: B79
  article-title: Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0711122105
– volume: 398
  start-page: 533
  year: 1999
  ident: B106
  article-title: Structural basis for self-association and receptor recognition of human TRAF2
  publication-title: Nature
  doi: 10.1038/19110
– volume: 97
  start-page: 12705
  year: 2000
  ident: B140
  article-title: Selective requirement for c-Rel during IL-12 P40 gene induction in macrophages
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.230436397
– volume: 114
  start-page: E3481
  year: 2017
  ident: B58
  article-title: Roles of the TRAF6 and pellino E3 ligases in MyD88 and RANKL signaling
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1702367114
– volume: 11
  start-page: 685
  year: 2003
  ident: B36
  article-title: NF-kappaB1/p105 regulates lipopolysaccharide-stimulated MAP kinase signaling by governing the stability and function of the Tpl2 kinase
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(03)00070-4
– volume: 6
  start-page: 5930
  year: 2015
  ident: B126
  article-title: Proinflammatory TLR signalling is regulated by a TRAF2-dependent proteolysis mechanism in macrophages
  publication-title: Nat Commun
  doi: 10.1038/ncomms6930
– volume: 7
  start-page: 715
  year: 1997
  ident: B72
  article-title: Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80391-X
– volume: 11
  start-page: 373
  year: 2010
  ident: B47
  article-title: The role of pattern-recognition receptors in innate immunity: update on toll-like receptors
  publication-title: Nat Immunol
  doi: 10.1038/ni.1863
– volume: 131
  start-page: 682
  year: 2007
  ident: B119
  article-title: IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis
  publication-title: Cell
  doi: 10.1016/j.cell.2007.10.037
– volume: 194
  start-page: 334
  year: 2015
  ident: B131
  article-title: Myeloid cell TRAF3 regulates immune responses and inhibits inflammation and tumor development in mice
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1401548
– volume: 266
  start-page: 56
  year: 2015
  ident: B9
  article-title: Targeting signaling factors for degradation, an emerging mechanism for TRAF functions
  publication-title: Immunol Rev
  doi: 10.1111/imr.12311
– volume: 23
  start-page: 23
  year: 2005
  ident: B109
  article-title: Tnf/Tnfr family members in costimulation of T cell responses
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.23.021704.115839
– volume: 288
  start-page: 14612
  year: 2013
  ident: B128
  article-title: Inducible tumor necrosis factor (TNF) receptor-associated factor-1 expression couples the canonical to the non-canonical NF-kappaB pathway in TNF stimulation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M113.464081
– volume: 207
  start-page: 2195
  year: 2010
  ident: B122
  article-title: IAP inhibitors enhance co-stimulation to promote tumor immunity
  publication-title: J Exp Med
  doi: 10.1084/jem.20101123
– volume: 103
  start-page: 351
  year: 2000
  ident: B4
  article-title: Activation of the IkB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00126-4
– volume: 43
  start-page: 647
  year: 2015
  ident: B65
  article-title: Deubiquitinase MYSM1 regulates innate immunity through inactivation of TRAF3 and TRAF6 complexes
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.09.010
– volume: 81
  start-page: 495
  year: 1995
  ident: B76
  article-title: The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90070-5
– volume: 278
  start-page: 15429
  year: 2003
  ident: B82
  article-title: TNF-induced GCKR and SAPK activation depends upon the E2/E3 complex Ubc13-Uev1A/TRAF2
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M211796200
– volume: 9
  start-page: 1371
  year: 2008
  ident: B121
  article-title: Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK
  publication-title: Nat Immunol
  doi: 10.1038/ni.1676
– volume: 25
  start-page: 2130
  year: 2005
  ident: B108
  article-title: TRAF2 plays a key, nonredundant role in LIGHT-lymphotoxin beta receptor signaling
  publication-title: Mol Biol Cell
  doi: 10.1128/MCB.25.6.2130-2137.2005
– volume: 19
  start-page: 2138
  year: 2005
  ident: B142
  article-title: A c-Rel subdomain responsible for enhanced DNA-binding affinity and selective gene activation
  publication-title: Genes Dev
  doi: 10.1101/gad.1329805
– volume: 282
  start-page: 4102
  year: 2007
  ident: B55
  article-title: Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I kappa B kinase activation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M609503200
– volume: 6
  start-page: e22416
  year: 2017
  ident: B67
  article-title: YOD1/TRAF6 association balances p62-dependent IL-1 signaling to NF-kappaB
  publication-title: Elife
  doi: 10.7554/eLife.22416
– volume: 461
  start-page: 114
  year: 2009
  ident: B57
  article-title: Direct activation of protein kinases by unanchored polyubiquitin chains
  publication-title: Nature
  doi: 10.1038/nature08247
– volume: 27
  start-page: 253
  year: 2007
  ident: B113
  article-title: Tumor necrosis factor receptor-associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.07.012
– volume: 20
  start-page: 55
  year: 2002
  ident: B33
  article-title: MAP kinases in the immune response
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.20.091301.131133
– volume: 1763
  start-page: 174
  year: 2006
  ident: B39
  article-title: Phosphorylation of NF-kappaB1/p105 by oncoprotein kinase Tpl2: implications for a novel mechanism of Tpl2 regulation
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2005.12.010
– volume: 15
  start-page: 535
  year: 2004
  ident: B48
  article-title: TAB 2 and TAB 3 activate the NF-kappaB pathway through binding to polyubiquitin chains
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2004.08.008
– volume: 276
  start-page: 36530
  year: 2001
  ident: B73
  article-title: Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-kappa B activation and protection from cell death
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M104837200
– volume: 16
  start-page: 246
  year: 2015
  ident: B70
  article-title: The kinase MST4 limits inflammatory responses through direct phosphorylation of the adaptor TRAF6
  publication-title: Nat Immunol
  doi: 10.1038/ni.3097
– volume: 68
  start-page: 265
  year: 2017
  ident: B90
  article-title: The Met1-linked ubiquitin machinery: emerging themes of (De)regulation
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.09.001
– volume: 434
  start-page: 243
  year: 2005
  ident: B143
  article-title: Integral role of IRF-5 in the gene induction programme activated by toll-like receptors
  publication-title: Nature
  doi: 10.1038/nature03308
– volume: 44
  start-page: 1005
  year: 2016
  ident: B111
  article-title: The TNF receptor superfamily in co-stimulating and co-inhibitory responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.04.019
– volume: 8
  start-page: 398
  year: 2006
  ident: B50
  article-title: Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1384
– year: 2009
  ident: B1
  article-title: TRAF-mediated TNFR-family signaling
  publication-title: Curr Protoc Immunol
  doi: 10.1002/0471142735.im1109ds87
– volume: 266
  start-page: 175
  year: 2015
  ident: B89
  article-title: Roles of linear ubiquitinylation, a crucial regulator of NF-kappaB and cell death, in the immune system
  publication-title: Immunol Rev
  doi: 10.1111/imr.12308
– volume: 553
  start-page: 190
  year: 2003
  ident: B59
  article-title: Ubiquitin activated tumor necrosis factor receptor associated factor-6 (TRAF6) is recycled via deubiquitination
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(03)00998-0
– volume: 30
  start-page: 689
  year: 2008
  ident: B78
  article-title: cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2008.05.014
– volume: 284
  start-page: 35906
  year: 2009
  ident: B87
  article-title: TRAF2 must bind to cellular inhibitors of apoptosis for tumor necrosis factor (TNF) to efficiently activate NF-{kappa}B and to prevent TNF-induced apoptosis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.072256
– volume: 22
  start-page: 1411
  year: 2016
  ident: B123
  article-title: IAP antagonists induce anti-tumor immunity in multiple myeloma
  publication-title: Nat Med
  doi: 10.1038/nm.4229
– volume: 84
  start-page: 299
  year: 1996
  ident: B74
  article-title: TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80984-8
– volume: 37
  start-page: 3501
  year: 2018
  ident: B71
  article-title: RSK2 is required for TRAF6 phosphorylation-mediated colon inflammation
  publication-title: Oncogene
  doi: 10.1038/s41388-018-0167-6
– volume: 283
  start-page: 24295
  year: 2008
  ident: B88
  article-title: c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C800128200
– volume: 13
  start-page: 823
  year: 2012
  ident: B68
  article-title: The innate immune sensor NLRC3 attenuates toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-kappaB
  publication-title: Nat Immunol
  doi: 10.1038/ni.2378
– volume: 32
  start-page: 3438
  year: 2012
  ident: B16
  article-title: Coordinate regulation of TPL-2 and NF-kappaB signaling in macrophages by NF-kappaB1 p105
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00564-12
– volume: 10
  start-page: 787
  year: 2018
  ident: B125
  article-title: Regulation of innate and adaptive antitumor immunity by IAP antagonists
  publication-title: Immunotherapy
  doi: 10.2217/imt-2017-0185
– volume: 6
  start-page: 917
  year: 2013
  ident: B134
  article-title: Intestinal protein expression profile identifies inflammatory bowel disease and predicts relapse
  publication-title: Int J Clin Exp Pathol
– volume: 21
  start-page: 629
  year: 2004
  ident: B117
  article-title: TRAF2 differentially regulates the canonical and noncanonical pathways of NF-kappaB activation in mature B cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2004.09.011
– volume: 105
  start-page: 10883
  year: 2008
  ident: B115
  article-title: NIK overexpression amplifies, whereas ablation of its TRAF3-binding domain replaces BAFF:BAFF-R-mediated survival signals in B cells
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0805186105
– volume: 11
  start-page: 70
  year: 2010
  ident: B136
  article-title: Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines
  publication-title: Nat Immunol
  doi: 10.1038/ni.1819
– volume: 26
  start-page: 203
  year: 2012
  ident: B30
  article-title: NF-kappaB, the first quarter-century: remarkable progress and outstanding questions
  publication-title: Genes Dev
  doi: 10.1101/gad.183434.111
– volume: 50
  start-page: 818
  year: 2013
  ident: B98
  article-title: OTULIN restricts Met1-linked ubiquitination to control innate immune signaling
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2013.06.004
– volume: 38
  start-page: 101
  year: 2010
  ident: B127
  article-title: Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.03.009
– volume: 27
  start-page: 3739
  year: 2008
  ident: B52
  article-title: Ubiquitin binding mediates the NF-kB inhibitory potential of ABINs
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1211042
– volume: 24
  start-page: 9658
  year: 2004
  ident: B37
  article-title: Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IkappaB kinase-induced proteolysis of NF-kappaB1 p105
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.24.21.9658-9667.2004
– volume: 17
  start-page: 545
  year: 2017
  ident: B18
  article-title: The non-canonical NF-kappaB pathway in immunity and inflammation
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2017.52
– volume: 282
  start-page: 6075
  year: 2007
  ident: B26
  article-title: Interleukin-1 (IL-1)-induced TAK1-dependent versus MEKK3-dependent NFkappaB activation pathways bifurcate at IL-1 receptor-associated kinase modification
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M609039200
– volume: 203
  start-page: 2413
  year: 2006
  ident: B112
  article-title: Rescue of TRAF3-null mice by p100 NF-kappa B deficiency
  publication-title: J Exp Med
  doi: 10.1084/jem.20061166
– volume: 418
  start-page: 443
  year: 2002
  ident: B45
  article-title: Distinct molecular mechanism for initiating TRAF6 signalling
  publication-title: Nature
  doi: 10.1038/nature00888
– volume: 19
  start-page: 254
  year: 2014
  ident: B100
  article-title: Suppression of LUBAC-mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN
  publication-title: Genes Cells
  doi: 10.1111/gtc.12128
– volume: 36
  start-page: 831
  year: 2009
  ident: B91
  article-title: Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.10.013
– volume: 3
  start-page: e4064
  year: 2008
  ident: B56
  article-title: TRAF6 autoubiquitination-independent activation of the NFkappaB and MAPK pathways in response to IL-1 and RANKL
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0004064
– volume: 429
  start-page: 3793
  year: 2017
  ident: B95
  article-title: Evidence for M1-linked polyubiquitin-mediated conformational change in NEMO
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2017.10.026
– volume: 441
  start-page: 979
  year: 2012
  ident: B62
  article-title: Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFalpha-induced cancer cell migration
  publication-title: Biochem J
  doi: 10.1042/BJ20111358
– volume: 293
  start-page: 1495
  year: 2001
  ident: B29
  article-title: Activation of IKKa of a second, evolutionary conserved, NF-kB signaling pathway
  publication-title: Science
  doi: 10.1126/science.1062677
– volume: 10
  start-page: 1199
  year: 2008
  ident: B43
  article-title: The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1780
– volume: 136
  start-page: 1098
  year: 2009
  ident: B93
  article-title: Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation
  publication-title: Cell
  doi: 10.1016/j.cell.2009.03.007
– volume: 167
  start-page: 167
  year: 2016
  ident: B145
  article-title: Interferon regulatory factor 5 in human autoimmunity and murine models of autoimmune disease
  publication-title: Transl Res
  doi: 10.1016/j.trsl.2015.06.018
– volume: 92
  start-page: 819
  year: 1998
  ident: B14
  article-title: Cotranslational biogenesis of NF-kappaB p50 by the 26S proteasome
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81409-9
– volume: 280
  start-page: 43056
  year: 2005
  ident: B24
  article-title: TAK1 is recruited to the tumor necrosis factor-alpha (TNF-alpha) receptor 1 complex in a receptor-interacting protein (RIP)-dependent manner and cooperates with MEKK3 leading to NF-kappaB activation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M507807200
– volume: 8
  start-page: 501
  year: 2008
  ident: B60
  article-title: Deubiquitylation and regulation of the immune response
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2337
– volume: 83
  start-page: 1243
  year: 1995
  ident: B103
  article-title: The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90149-3
– volume: 385
  start-page: 540
  year: 1997
  ident: B116
  article-title: MAP3K-related kinase involved in NF-kB induction by TNF, CD95 and IL-1
  publication-title: Nature
  doi: 10.1038/385540a0
SSID ssj0000493335
Score 2.5958269
SecondaryResourceType review_article
Snippet Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of structurally related proteins that transduces signals from members of TNFR...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1849
SubjectTerms Animals
Humans
Immunology
inflammation
Inflammation - metabolism
Inflammation Mediators - metabolism
mitogen-activated protein kinases
Mitogen-Activated Protein Kinases - metabolism
NF-kappa B - metabolism
nuclear factor κB
Signal Transduction
TNF Receptor-Associated Factor 2 - metabolism
TNF Receptor-Associated Factor 3 - metabolism
TNF Receptor-Associated Factor 6 - metabolism
toll-like receptors
tumor necrosis factor receptor-associated factor
Tumor Necrosis Factor Receptor-Associated Peptides and Proteins - metabolism
tumor necrosis factor receptors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA0iCG7Et_VFBDcu6nTatE2WKg6iOLhQcFeSNNGK0xnmgbjyv_wIv8l70844I6IboYXSpE3Ivek9l6TnEHIotMkDY5UfaJb4TITGVznXkLVynnNcGArwb-TrdnJxxy7v4_spqS_cE1bRA1cD12BNHQkLUZdpeFukZGyaYRBLGRjBRex4PiHmTSVTTxXujaIortYlIQsTDVt0OiPcysWP4UTqzKk45Oj6f8KY37dKTsWe1jJZqkEjPak6u0LmTLlKFioZydc18nY76nT7tG2wqWJAW05DhwIiND248McmMPlX0UMt20W7lraR01j2x4Uf76dUljm9hskO7uWfaCeBBk_fIKlDUdKrooTgR28APb7I18E6uWud355d-LWwgg9DGA59bS23qQS0laQp2IoJ2wSkZqRsSpuoUCkd5KGFgzPLNKoeMCaMSpNUagNZ7QaZL7ul2SIUPglKQVUBaQyL80QFmucAC0KVwtu19EhjPMyZrlnHUfziOYPsAw2TOcNkaJjMGcYjR5MnehXjxi91T9Fyk3rIle1ugAdltQdlf3mQRw7Gds9gbuGCiSxNdzSAhsCLUMyYeWSz8oNJUy41DRPukXTGQ2b6MltSFo-OvzuBlBo-e9v_0fkdsojD4bYkil0yP-yPzB7ApKHadzPiE22kE1k
  priority: 102
  providerName: Directory of Open Access Journals
Title Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor κB and Mitogen-Activated Protein Kinase Pathways
URI https://www.ncbi.nlm.nih.gov/pubmed/30140268
https://www.proquest.com/docview/2093310144
https://pubmed.ncbi.nlm.nih.gov/PMC6094638
https://doaj.org/article/41c39f5154cc463ba5e1205aa0e98953
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLVgCIkXxDdhYzISLzxky4fj2A8IbYgygVrtYZX6FtmOvQWtyUhbsT7xv_gR_Kbd66QdRRUSUlu1tRM3Pte-59bOPYS8lcaWkXU6jAzjIZOJDXUpDEStQpQCF4YivBt5OOInY_Zlkk1ub4_uO3C2NbRDPalxe3lw_X35AQb8e4w4wd8eumo6XeAuLXEATybvknvgl3LUMxj2ZP9bx4XT1CtuxpyzECyZdeuWW0-y4ad8Ov9tHPTvrZR_-KbBI_KwJ5X0qLOCx-SOrZ-Q-53M5PIp-Xm2mDYtHVlsqprRgdfYocAY7RW8CVcQ2fK26LyX9aKNoyPMeazaVeHvX8dU1SUdwmQA5hceGS-RBkefYtKHqqZfqxqcIz0FdvlDLWfPyHjw6ezjSdgLL4QAWDIPjXPC5QrYGM9zwJJJFwOTs0rFynGdaG2iMnHwEMwxg6oIjEmrc54rYyHqfU526qa2LwmFKUNrqCohzGFZyXVkRAk9n-gczm5UQA5X3VyYPis5imNcFhCdIDCFB6ZAYAoPTEDerY-46jJy_KPuMSK3roe5tP0XTXte9EOzYLFJpQNexwxcfqpVZuMkypSKrBQySwPyZoV7AWMPF1RUbZvFDBoCi0KxYxaQF50drJvyoWvCRUDyDQvZ-C2bJXV14fN7cwi5YVp89R8Xukse4Ae_M1HukZ15u7CvgS3N9b7_lwFeP0_ifT8gbgBHshcj
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+Necrosis+Factor+Receptor-Associated+Factor+Regulation+of+Nuclear+Factor+%CE%BAB+and+Mitogen-Activated+Protein+Kinase+Pathways&rft.jtitle=Frontiers+in+immunology&rft.au=Shi%2C+Jian-Hong&rft.au=Sun%2C+Shao-Cong&rft.date=2018-08-09&rft.issn=1664-3224&rft.eissn=1664-3224&rft.volume=9&rft_id=info:doi/10.3389%2Ffimmu.2018.01849&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fimmu_2018_01849
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon