Weak-form inference for hybrid dynamical systems in ecology

Species subject to predation and environmental threats commonly exhibit variable periods of population boom and bust over long timescales. Understanding and predicting such behaviour, especially given the inherent heterogeneity and stochasticity of exogenous driving factors over short timescales, is...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Royal Society interface Vol. 21; no. 221; p. 20240376
Main Authors Messenger, Daniel, Dwyer, Greg, Dukic, Vanja
Format Journal Article
LanguageEnglish
Published England The Royal Society 18.12.2024
Subjects
Online AccessGet full text
ISSN1742-5662
1742-5689
1742-5662
DOI10.1098/rsif.2024.0376

Cover

Loading…
Abstract Species subject to predation and environmental threats commonly exhibit variable periods of population boom and bust over long timescales. Understanding and predicting such behaviour, especially given the inherent heterogeneity and stochasticity of exogenous driving factors over short timescales, is an ongoing challenge. A modelling paradigm gaining popularity in the ecological sciences for such multi-scale effects is to couple short-term continuous dynamics to long-term discrete updates. We develop a data-driven method utilizing weak-form equation learning to extract such hybrid governing equations for population dynamics and to estimate the requisite parameters using sparse intermittent measurements of the discrete and continuous variables. The method produces a set of short-term continuous dynamical system equations parametrized by long-term variables, and long-term discrete equations parametrized by short-term variables, allowing direct assessment of interdependencies between the two timescales. We demonstrate the utility of the method on a variety of ecological scenarios and provide extensive tests using models previously derived for epizootics experienced by the North American spongy moth ( Lymantria dispar dispar ).
AbstractList Species subject to predation and environmental threats commonly exhibit variable periods of population boom and bust over long timescales. Understanding and predicting such behaviour, especially given the inherent heterogeneity and stochasticity of exogenous driving factors over short timescales, is an ongoing challenge. A modelling paradigm gaining popularity in the ecological sciences for such multi-scale effects is to couple short-term continuous dynamics to long-term discrete updates. We develop a data-driven method utilizing weak-form equation learning to extract such hybrid governing equations for population dynamics and to estimate the requisite parameters using sparse intermittent measurements of the discrete and continuous variables. The method produces a set of short-term continuous dynamical system equations parametrized by long-term variables, and long-term discrete equations parametrized by short-term variables, allowing direct assessment of interdependencies between the two timescales. We demonstrate the utility of the method on a variety of ecological scenarios and provide extensive tests using models previously derived for epizootics experienced by the North American spongy moth ( ).
Species subject to predation and environmental threats commonly exhibit variable periods of population boom and bust over long timescales. Understanding and predicting such behaviour, especially given the inherent heterogeneity and stochasticity of exogenous driving factors over short timescales, is an ongoing challenge. A modelling paradigm gaining popularity in the ecological sciences for such multi-scale effects is to couple short-term continuous dynamics to long-term discrete updates. We develop a data-driven method utilizing weak-form equation learning to extract such hybrid governing equations for population dynamics and to estimate the requisite parameters using sparse intermittent measurements of the discrete and continuous variables. The method produces a set of short-term continuous dynamical system equations parametrized by long-term variables, and long-term discrete equations parametrized by short-term variables, allowing direct assessment of interdependencies between the two timescales. We demonstrate the utility of the method on a variety of ecological scenarios and provide extensive tests using models previously derived for epizootics experienced by the North American spongy moth ( Lymantria dispar dispar ).
Species subject to predation and environmental threats commonly exhibit variable periods of population boom and bust over long timescales. Understanding and predicting such behaviour, especially given the inherent heterogeneity and stochasticity of exogenous driving factors over short timescales, is an ongoing challenge. A modelling paradigm gaining popularity in the ecological sciences for such multi-scale effects is to couple short-term continuous dynamics to long-term discrete updates. We develop a data-driven method utilizing weak-form equation learning to extract such hybrid governing equations for population dynamics and to estimate the requisite parameters using sparse intermittent measurements of the discrete and continuous variables. The method produces a set of short-term continuous dynamical system equations parametrized by long-term variables, and long-term discrete equations parametrized by short-term variables, allowing direct assessment of interdependencies between the two timescales. We demonstrate the utility of the method on a variety of ecological scenarios and provide extensive tests using models previously derived for epizootics experienced by the North American spongy moth (Lymantria dispar dispar).
Species subject to predation and environmental threats commonly exhibit variable periods of population boom and bust over long timescales. Understanding and predicting such behaviour, especially given the inherent heterogeneity and stochasticity of exogenous driving factors over short timescales, is an ongoing challenge. A modelling paradigm gaining popularity in the ecological sciences for such multi-scale effects is to couple short-term continuous dynamics to long-term discrete updates. We develop a data-driven method utilizing weak-form equation learning to extract such hybrid governing equations for population dynamics and to estimate the requisite parameters using sparse intermittent measurements of the discrete and continuous variables. The method produces a set of short-term continuous dynamical system equations parametrized by long-term variables, and long-term discrete equations parametrized by short-term variables, allowing direct assessment of interdependencies between the two timescales. We demonstrate the utility of the method on a variety of ecological scenarios and provide extensive tests using models previously derived for epizootics experienced by the North American spongy moth (Lymantria dispar dispar).Species subject to predation and environmental threats commonly exhibit variable periods of population boom and bust over long timescales. Understanding and predicting such behaviour, especially given the inherent heterogeneity and stochasticity of exogenous driving factors over short timescales, is an ongoing challenge. A modelling paradigm gaining popularity in the ecological sciences for such multi-scale effects is to couple short-term continuous dynamics to long-term discrete updates. We develop a data-driven method utilizing weak-form equation learning to extract such hybrid governing equations for population dynamics and to estimate the requisite parameters using sparse intermittent measurements of the discrete and continuous variables. The method produces a set of short-term continuous dynamical system equations parametrized by long-term variables, and long-term discrete equations parametrized by short-term variables, allowing direct assessment of interdependencies between the two timescales. We demonstrate the utility of the method on a variety of ecological scenarios and provide extensive tests using models previously derived for epizootics experienced by the North American spongy moth (Lymantria dispar dispar).
Author Messenger, Daniel
Dwyer, Greg
Dukic, Vanja
Author_xml – sequence: 1
  givenname: Daniel
  orcidid: 0000-0002-8275-7888
  surname: Messenger
  fullname: Messenger, Daniel
– sequence: 2
  givenname: Greg
  surname: Dwyer
  fullname: Dwyer, Greg
– sequence: 3
  givenname: Vanja
  orcidid: 0000-0002-0348-0834
  surname: Dukic
  fullname: Dukic, Vanja
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39689846$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/2569537$$D View this record in Osti.gov
BookMark eNp1kc1LBSEUxSWKPl5tW8bQqs28xtFxRlpERF8QtClaijrXnjWjpfOC-e9zeBUVtBCV-7vH4z07aN15Bwjt42KOC94ch2jNvCxKOi9IzdbQNq5pmVeMles_zltoJ8bnIiGkqjbRFuGs4Q1l2-jkEeRLbnzoM-sMBHAasnTNFqMKts3a0cneatllcYwD9DFhGWjf-adxF20Y2UXY-9xn6OHy4v78Or-9u7o5P7vNNWXlkGtoWd0qULxRhtZUEawUVYpQhmXJWpMWNi3DRlaSK1kpJQmDGqcSo5yRGTpd6b4uVQ-tBjcE2YnXYHsZRuGlFb8rzi7Ek38XGLMKN5wkhcOVgo-DFVHbAfRCe-dAD6KsGK_SZGbo6POZ4N-WEAfR26ih66QDv4yCYMo45QWnCT346ejbytdcEzBfATr4GAOYbwQXYgpOTMGJKTgxBZca6J-GZFIO1k8_st1_bR8Up56N
CitedBy_id crossref_primary_10_1002_nme_7634
Cites_doi 10.1515/9781400847310
10.1038/nature02569
10.1086/664488
10.1098/rspa.2020.0290
10.1080/01621459.2015.1096787
10.1016/0098-1354(93)80001-4
10.1080/01621459.2012.713876
10.1093/ee/14.2.106
10.1137/20M1343166
10.1890/14-0661.1
10.1086/303379
10.1103/PhysRevE.92.033304
10.1006/tpbi.1996.0027
10.1017/S0266466600004898
10.1086/592403
10.1890/07-0641.1
10.1111/j.1467-9868.2007.00610.x
10.1109/SURV.2014.052914.00130
10.1101/2023.08.28.554919
10.1086/707138
10.1038/nature07084
10.1103/PhysRevResearch.5.L042017
10.1016/j.csbj.2023.01.044
10.1115/1.4053324
10.1007/s11538-023-01208-6
10.1086/717178
10.1098/rspa.2018.0534
10.1007/s10651-014-0297-0
10.1073/pnas.1517384113
10.1103/PhysRevE.96.023302
10.1016/B978-012159270-7/50004-X
10.1063/5.0157669
10.1017/9781316479964.008
10.1109/TAC.1974.1100705
10.1214/15-SS111
10.2307/1913471
10.1086/723490
10.1098/rsif.2022.0412
10.1214/18-EJS1429
10.2307/2265735
10.1063/1.5120861
10.1098/rspa.2019.0800
10.4039/Ent119697-7
10.1016/0022-2011(87)90115-7
10.1016/j.isci.2024.109316
10.1016/j.cma.2019.07.007
10.1080/07474939208800229
10.1137/18M1189828
10.1137/22M1526782
10.1016/j.mbs.2015.11.011
10.1016/j.jcp.2023.112069
10.1086/707457
10.1007/s11071-020-05925-8
10.1007/s00265-010-1029-6
10.1137/130949282
10.1098/rsta.2010.0237
10.1007/s11538-006-9126-4
10.1007/978-1-4899-1834-5
10.1101/2020.03.28.013524
10.1214/aos/1176344136
10.1111/ele.12506
10.1098/rspa.2021.0904
10.1111/j.1461-0248.2005.00879.x
10.1016/j.mbs.2020.108409
10.1016/j.epidem.2013.07.001
10.1086/677308
10.1016/j.arcontrol.2018.08.002
10.1086/691537
10.1103/PhysRevResearch.5.023126
10.1016/j.physd.2022.133406
10.2307/2937196
10.2307/j.ctvcm4gk0
10.1016/j.jcp.2021.110525
10.1109/CoDIT49905.2020.9263962
10.1098/rsif.2008.0172
10.2307/1312946
10.1137/18M1188227
10.1073/pnas.0600816103
10.1073/pnas.2020397118
10.1093/jee/84.5.1508
ContentType Journal Article
Copyright 2024 The Author(s). 2024
Copyright_xml – notice: 2024 The Author(s). 2024
CorporateAuthor Univ. of Colorado, Boulder, CO (United States)
CorporateAuthor_xml – name: Univ. of Colorado, Boulder, CO (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OIOZB
OTOTI
5PM
DOI 10.1098/rsif.2024.0376
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Weak-form inference for hybrid dynamical systems in ecology
EISSN 1742-5662
ExternalDocumentID PMC11651893
2569537
39689846
10_1098_rsif_2024_0376
Genre Journal Article
GrantInformation_xml – fundername: NIFA Biological Sciences
– fundername: Division of Environmental Biology
– fundername: ;
GroupedDBID ---
0R~
18M
29L
2WC
4.4
53G
5GY
5VS
AAYXX
ACGFO
ACQIA
ACRPL
ADBBV
ADDVE
ADNMO
AENEX
AFFVI
AGPVY
AGQPQ
AJZGM
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
AOIJS
BAWUL
BGBPD
BTFSW
C1A
CAG
CITATION
COF
CS3
DIK
DU5
EBS
EJD
GX1
H13
HYE
HZ~
KQ8
MRS
MV1
NSAHA
O9-
P2P
ROL
RPM
RRY
S70
TR2
V1E
W8F
XSW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c462t-ced67dbeb98bf474b31bb4bb3461a26df26d1fd61fa5a9ba5bba36e716df64963
ISSN 1742-5662
1742-5689
IngestDate Thu Aug 21 18:29:46 EDT 2025
Mon Jun 23 02:30:28 EDT 2025
Thu Jul 10 21:27:56 EDT 2025
Sun Mar 30 02:12:01 EDT 2025
Thu Apr 24 23:12:59 EDT 2025
Tue Jul 01 01:33:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 221
Keywords parameter estimation
hybrid systems
system identification
multi-scale model
data-driven modelling
WSINDy
Language English
License Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c462t-ced67dbeb98bf474b31bb4bb3461a26df26d1fd61fa5a9ba5bba36e716df64963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
SC0023164
USDOE Office of Science (SC)
ORCID 0000-0002-8275-7888
0000-0002-0348-0834
0000000203480834
0000000282757888
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11651893
PMID 39689846
PQID 3146949094
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11651893
osti_scitechconnect_2569537
proquest_miscellaneous_3146949094
pubmed_primary_39689846
crossref_primary_10_1098_rsif_2024_0376
crossref_citationtrail_10_1098_rsif_2024_0376
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-18
PublicationDateYYYYMMDD 2024-12-18
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-18
  day: 18
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: United States
PublicationTitle Journal of the Royal Society interface
PublicationTitleAlternate J R Soc Interface
PublicationYear 2024
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_9_4_2
e_1_3_9_31_2
e_1_3_9_77_2
e_1_3_9_6_2
e_1_3_9_56_2
e_1_3_9_79_2
e_1_3_9_98_2
e_1_3_9_12_2
e_1_3_9_35_2
e_1_3_9_50_2
e_1_3_9_73_2
e_1_3_9_96_2
e_1_3_9_2_2
e_1_3_9_10_2
e_1_3_9_33_2
e_1_3_9_52_2
e_1_3_9_75_2
e_1_3_9_94_2
e_1_3_9_90_2
e_1_3_9_71_2
Niven R (e_1_3_9_93_2) 2020; 33
e_1_3_9_16_2
e_1_3_9_14_2
e_1_3_9_8_2
e_1_3_9_58_2
e_1_3_9_18_2
e_1_3_9_42_2
e_1_3_9_65_2
e_1_3_9_88_2
e_1_3_9_40_2
e_1_3_9_67_2
e_1_3_9_23_2
e_1_3_9_46_2
e_1_3_9_61_2
e_1_3_9_84_2
e_1_3_9_21_2
e_1_3_9_44_2
e_1_3_9_63_2
e_1_3_9_86_2
e_1_3_9_80_2
Burnham KP (e_1_3_9_5_2) 2007
e_1_3_9_27_2
Watanabe S (e_1_3_9_39_2) 2013; 14
e_1_3_9_25_2
e_1_3_9_48_2
e_1_3_9_69_2
e_1_3_9_29_2
e_1_3_9_30_2
e_1_3_9_55_2
e_1_3_9_76_2
e_1_3_9_57_2
e_1_3_9_78_2
Maclauchlan LE (e_1_3_9_92_2) 2009; 10
e_1_3_9_13_2
e_1_3_9_34_2
e_1_3_9_51_2
e_1_3_9_72_2
e_1_3_9_97_2
e_1_3_9_11_2
e_1_3_9_32_2
e_1_3_9_74_2
e_1_3_9_95_2
Lax PD (e_1_3_9_82_2) 1954
e_1_3_9_91_2
Goebel R (e_1_3_9_53_2) 2012
e_1_3_9_70_2
van der Schaft A (e_1_3_9_54_2) 2007
e_1_3_9_17_2
e_1_3_9_38_2
e_1_3_9_15_2
e_1_3_9_36_2
e_1_3_9_7_2
e_1_3_9_59_2
e_1_3_9_9_2
e_1_3_9_19_2
e_1_3_9_20_2
e_1_3_9_41_2
e_1_3_9_87_2
e_1_3_9_68_2
e_1_3_9_89_2
e_1_3_9_24_2
e_1_3_9_45_2
e_1_3_9_62_2
e_1_3_9_83_2
Bolker BM (e_1_3_9_3_2) 2008
e_1_3_9_22_2
e_1_3_9_43_2
e_1_3_9_64_2
e_1_3_9_85_2
e_1_3_9_60_2
Akaike H (e_1_3_9_37_2) 1977
Kreyszig E (e_1_3_9_81_2) 1989
e_1_3_9_28_2
e_1_3_9_49_2
e_1_3_9_26_2
e_1_3_9_47_2
References_xml – ident: e_1_3_9_2_2
  doi: 10.1515/9781400847310
– ident: e_1_3_9_16_2
  doi: 10.1038/nature02569
– ident: e_1_3_9_64_2
  doi: 10.1086/664488
– ident: e_1_3_9_98_2
– ident: e_1_3_9_95_2
  doi: 10.1098/rspa.2020.0290
– ident: e_1_3_9_34_2
  doi: 10.1080/01621459.2015.1096787
– ident: e_1_3_9_67_2
  doi: 10.1016/0098-1354(93)80001-4
– ident: e_1_3_9_31_2
  doi: 10.1080/01621459.2012.713876
– ident: e_1_3_9_89_2
  doi: 10.1093/ee/14.2.106
– volume: 14
  start-page: 867
  year: 2013
  ident: e_1_3_9_39_2
  article-title: A widely applicable Bayesian information criterion
  publication-title: J. Mach. Learn. Res.
– volume-title: Introductory functional analysis with applications
  year: 1989
  ident: e_1_3_9_81_2
– ident: e_1_3_9_11_2
  doi: 10.1137/20M1343166
– ident: e_1_3_9_7_2
  doi: 10.1890/14-0661.1
– ident: e_1_3_9_20_2
  doi: 10.1086/303379
– ident: e_1_3_9_79_2
  doi: 10.1103/PhysRevE.92.033304
– ident: e_1_3_9_19_2
  doi: 10.1006/tpbi.1996.0027
– ident: e_1_3_9_86_2
  doi: 10.1017/S0266466600004898
– ident: e_1_3_9_21_2
  doi: 10.1086/592403
– ident: e_1_3_9_28_2
  doi: 10.1890/07-0641.1
– ident: e_1_3_9_32_2
  doi: 10.1111/j.1467-9868.2007.00610.x
– ident: e_1_3_9_57_2
  doi: 10.1109/SURV.2014.052914.00130
– ident: e_1_3_9_76_2
  doi: 10.1101/2023.08.28.554919
– ident: e_1_3_9_8_2
  doi: 10.1086/707138
– volume: 33
  volume-title: Int. Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering
  year: 2020
  ident: e_1_3_9_93_2
– ident: e_1_3_9_4_2
  doi: 10.1038/nature07084
– ident: e_1_3_9_48_2
  doi: 10.1103/PhysRevResearch.5.L042017
– ident: e_1_3_9_56_2
  doi: 10.1016/j.csbj.2023.01.044
– ident: e_1_3_9_44_2
  doi: 10.1115/1.4053324
– ident: e_1_3_9_10_2
  doi: 10.1007/s11538-023-01208-6
– ident: e_1_3_9_18_2
  doi: 10.1086/717178
– ident: e_1_3_9_43_2
  doi: 10.1098/rspa.2018.0534
– ident: e_1_3_9_9_2
  doi: 10.1007/s10651-014-0297-0
– ident: e_1_3_9_41_2
  doi: 10.1073/pnas.1517384113
– ident: e_1_3_9_71_2
  doi: 10.1103/PhysRevE.96.023302
– ident: e_1_3_9_17_2
  doi: 10.1016/B978-012159270-7/50004-X
– ident: e_1_3_9_45_2
  doi: 10.1063/5.0157669
– ident: e_1_3_9_60_2
  doi: 10.1017/9781316479964.008
– ident: e_1_3_9_63_2
– ident: e_1_3_9_84_2
  doi: 10.1109/TAC.1974.1100705
– ident: e_1_3_9_29_2
  doi: 10.1214/15-SS111
– ident: e_1_3_9_87_2
  doi: 10.2307/1913471
– ident: e_1_3_9_15_2
  doi: 10.1086/723490
– start-page: 27
  volume-title: Applications of statistics
  year: 1977
  ident: e_1_3_9_37_2
– ident: e_1_3_9_69_2
  doi: 10.1098/rsif.2022.0412
– ident: e_1_3_9_36_2
  doi: 10.1214/18-EJS1429
– ident: e_1_3_9_52_2
  doi: 10.2307/2265735
– ident: e_1_3_9_73_2
  doi: 10.1063/1.5120861
– ident: e_1_3_9_83_2
  doi: 10.1098/rspa.2019.0800
– ident: e_1_3_9_62_2
  doi: 10.4039/Ent119697-7
– ident: e_1_3_9_51_2
  doi: 10.1016/0022-2011(87)90115-7
– ident: e_1_3_9_50_2
  doi: 10.1016/j.isci.2024.109316
– ident: e_1_3_9_72_2
  doi: 10.1016/j.cma.2019.07.007
– ident: e_1_3_9_85_2
  doi: 10.1080/07474939208800229
– ident: e_1_3_9_42_2
  doi: 10.1137/18M1189828
– ident: e_1_3_9_75_2
  doi: 10.1137/22M1526782
– volume-title: Contributions to the theory of partial differential equations
  year: 1954
  ident: e_1_3_9_82_2
– ident: e_1_3_9_25_2
  doi: 10.1016/j.mbs.2015.11.011
– volume-title: An introduction to hybrid dynamical systems
  year: 2007
  ident: e_1_3_9_54_2
– volume-title: Hybrid dynamical systems: modeling, stability, and robustness
  year: 2012
  ident: e_1_3_9_53_2
– volume-title: Ecological models and data in R
  year: 2008
  ident: e_1_3_9_3_2
– ident: e_1_3_9_78_2
  doi: 10.1016/j.jcp.2023.112069
– ident: e_1_3_9_40_2
  doi: 10.1086/707457
– ident: e_1_3_9_94_2
  doi: 10.1007/s11071-020-05925-8
– ident: e_1_3_9_6_2
  doi: 10.1007/s00265-010-1029-6
– ident: e_1_3_9_80_2
  doi: 10.1137/130949282
– ident: e_1_3_9_88_2
  doi: 10.1098/rsta.2010.0237
– ident: e_1_3_9_27_2
  doi: 10.1007/s11538-006-9126-4
– ident: e_1_3_9_59_2
  doi: 10.1007/978-1-4899-1834-5
– ident: e_1_3_9_24_2
  doi: 10.1101/2020.03.28.013524
– ident: e_1_3_9_38_2
  doi: 10.1214/aos/1176344136
– ident: e_1_3_9_22_2
  doi: 10.1111/ele.12506
– ident: e_1_3_9_96_2
– volume: 10
  start-page: 22
  year: 2009
  ident: e_1_3_9_92_2
  article-title: An integrated management system for the Douglas-fir tussock moth in southern British Columbia
  publication-title: JEM
– ident: e_1_3_9_77_2
  doi: 10.1098/rspa.2021.0904
– ident: e_1_3_9_14_2
  doi: 10.1111/j.1461-0248.2005.00879.x
– ident: e_1_3_9_26_2
  doi: 10.1016/j.mbs.2020.108409
– ident: e_1_3_9_23_2
  doi: 10.1016/j.epidem.2013.07.001
– ident: e_1_3_9_30_2
  doi: 10.1086/677308
– ident: e_1_3_9_55_2
  doi: 10.1016/j.arcontrol.2018.08.002
– ident: e_1_3_9_65_2
  doi: 10.1086/691537
– volume-title: Model selection and multimodel inference: a practical information-theoretic approach
  year: 2007
  ident: e_1_3_9_5_2
– ident: e_1_3_9_70_2
  doi: 10.1098/rsif.2022.0412
– ident: e_1_3_9_47_2
  doi: 10.1103/PhysRevResearch.5.023126
– ident: e_1_3_9_68_2
  doi: 10.1016/j.physd.2022.133406
– ident: e_1_3_9_61_2
  doi: 10.2307/2937196
– ident: e_1_3_9_97_2
– ident: e_1_3_9_13_2
  doi: 10.2307/j.ctvcm4gk0
– ident: e_1_3_9_12_2
  doi: 10.1016/j.jcp.2021.110525
– ident: e_1_3_9_46_2
  doi: 10.1109/CoDIT49905.2020.9263962
– ident: e_1_3_9_33_2
  doi: 10.1098/rsif.2008.0172
– ident: e_1_3_9_91_2
  doi: 10.2307/1312946
– ident: e_1_3_9_49_2
  doi: 10.1137/18M1188227
– ident: e_1_3_9_58_2
  doi: 10.1073/pnas.0600816103
– ident: e_1_3_9_35_2
  doi: 10.1073/pnas.2020397118
– ident: e_1_3_9_90_2
  doi: 10.1093/jee/84.5.1508
– ident: e_1_3_9_74_2
  doi: 10.1063/1.5120861
SSID ssj0037355
Score 2.4290178
Snippet Species subject to predation and environmental threats commonly exhibit variable periods of population boom and bust over long timescales. Understanding and...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 20240376
SubjectTerms Animals
Ecosystem
Life Sciences–Mathematics interface
Models, Biological
Moths - physiology
Population Dynamics
Title Weak-form inference for hybrid dynamical systems in ecology
URI https://www.ncbi.nlm.nih.gov/pubmed/39689846
https://www.proquest.com/docview/3146949094
https://www.osti.gov/servlets/purl/2569537
https://pubmed.ncbi.nlm.nih.gov/PMC11651893
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_0BOmLWD9jVVYQVCRtPjabLD6JKEWpILTat7Cb3aVnNVfuUqT-9c5kN5vm2oL6kJBs9hKYmZv8ZjPzG0KeM1HpUhUYlvAkZgBJYsXTNC6LxlqNfO19O5-9z3z3gH08LA7HNnd9dUmntpvfl9aV_I9WYQz0ilWy_6DZcFMYgGPQL-xBw7D_Kx1_M_I4RtTZ51Q5vlhMGzw6wzqs19p1m8eKEMdL3vODNONC-kVQijDUrSgM6ZzIJ7G0cjSAPWQbx7XAsUI9oOFfZ24YK19GiHw879uof5Xtd3l-lSHruQy9YzTOM0IMHQP2m7hOV9zsTSTzZ94TInla7nq7XHDTicDSg-VqjiSqGdtenwhiPvnZKy0XvBIVW2PLdu9ff-k6uZFBjIDtKz59CZ-Q8hKQVGDprHamD9sgN4efTwDJbAGO9bJgYz1n9hwI2b9NbnlF0bfOFDbJNdPeIZveP6_oS08i_uoueRNsgwbboHBKnW3QYBvU2wZMo9427pGDD-_33-3GvlFG3DCedXFjNC-1MkpUyrKSqTxViimVM57KjGsLW2o1T60spFCyUErm3ECorC1n4ILvk1m7aM1DQhOTV1wLy5ElgYtEgZQUDkJYLTSzEYkHadWNZ5HHZiY_apfNUNUo6BoFXaOgI_IizD9x_ClXztxC4deA_JC-uME8r6arAZKLIi8j8mzQSQ0OEL9qydYsTld1Du96wUQiWEQeOB2FJw06jkg10V6YgOTq0yvt_KgnWUdaqhTA_KMrb7pFNsZ_ymMy65an5gkg1E497S3xD-BQkT0
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weak-form+inference+for+hybrid+dynamical+systems+in+ecology&rft.jtitle=Journal+of+the+Royal+Society+interface&rft.au=Messenger%2C+Daniel&rft.au=Dwyer%2C+Greg&rft.au=Dukic%2C+Vanja&rft.date=2024-12-18&rft.eissn=1742-5662&rft.volume=21&rft.issue=221&rft.spage=20240376&rft_id=info:doi/10.1098%2Frsif.2024.0376&rft_id=info%3Apmid%2F39689846&rft.externalDocID=39689846
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-5662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-5662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-5662&client=summon