Weak-form inference for hybrid dynamical systems in ecology
Species subject to predation and environmental threats commonly exhibit variable periods of population boom and bust over long timescales. Understanding and predicting such behaviour, especially given the inherent heterogeneity and stochasticity of exogenous driving factors over short timescales, is...
Saved in:
Published in | Journal of the Royal Society interface Vol. 21; no. 221; p. 20240376 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society
18.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1742-5662 1742-5689 1742-5662 |
DOI | 10.1098/rsif.2024.0376 |
Cover
Loading…
Abstract | Species subject to predation and environmental threats commonly exhibit variable periods of population boom and bust over long timescales. Understanding and predicting such behaviour, especially given the inherent heterogeneity and stochasticity of exogenous driving factors over short timescales, is an ongoing challenge. A modelling paradigm gaining popularity in the ecological sciences for such multi-scale effects is to couple short-term continuous dynamics to long-term discrete updates. We develop a data-driven method utilizing weak-form equation learning to extract such hybrid governing equations for population dynamics and to estimate the requisite parameters using sparse intermittent measurements of the discrete and continuous variables. The method produces a set of short-term continuous dynamical system equations parametrized by long-term variables, and long-term discrete equations parametrized by short-term variables, allowing direct assessment of interdependencies between the two timescales. We demonstrate the utility of the method on a variety of ecological scenarios and provide extensive tests using models previously derived for epizootics experienced by the North American spongy moth (
Lymantria dispar dispar
). |
---|---|
AbstractList | Species subject to predation and environmental threats commonly exhibit variable periods of population boom and bust over long timescales. Understanding and predicting such behaviour, especially given the inherent heterogeneity and stochasticity of exogenous driving factors over short timescales, is an ongoing challenge. A modelling paradigm gaining popularity in the ecological sciences for such multi-scale effects is to couple short-term continuous dynamics to long-term discrete updates. We develop a data-driven method utilizing weak-form equation learning to extract such hybrid governing equations for population dynamics and to estimate the requisite parameters using sparse intermittent measurements of the discrete and continuous variables. The method produces a set of short-term continuous dynamical system equations parametrized by long-term variables, and long-term discrete equations parametrized by short-term variables, allowing direct assessment of interdependencies between the two timescales. We demonstrate the utility of the method on a variety of ecological scenarios and provide extensive tests using models previously derived for epizootics experienced by the North American spongy moth (
). Species subject to predation and environmental threats commonly exhibit variable periods of population boom and bust over long timescales. Understanding and predicting such behaviour, especially given the inherent heterogeneity and stochasticity of exogenous driving factors over short timescales, is an ongoing challenge. A modelling paradigm gaining popularity in the ecological sciences for such multi-scale effects is to couple short-term continuous dynamics to long-term discrete updates. We develop a data-driven method utilizing weak-form equation learning to extract such hybrid governing equations for population dynamics and to estimate the requisite parameters using sparse intermittent measurements of the discrete and continuous variables. The method produces a set of short-term continuous dynamical system equations parametrized by long-term variables, and long-term discrete equations parametrized by short-term variables, allowing direct assessment of interdependencies between the two timescales. We demonstrate the utility of the method on a variety of ecological scenarios and provide extensive tests using models previously derived for epizootics experienced by the North American spongy moth ( Lymantria dispar dispar ). Species subject to predation and environmental threats commonly exhibit variable periods of population boom and bust over long timescales. Understanding and predicting such behaviour, especially given the inherent heterogeneity and stochasticity of exogenous driving factors over short timescales, is an ongoing challenge. A modelling paradigm gaining popularity in the ecological sciences for such multi-scale effects is to couple short-term continuous dynamics to long-term discrete updates. We develop a data-driven method utilizing weak-form equation learning to extract such hybrid governing equations for population dynamics and to estimate the requisite parameters using sparse intermittent measurements of the discrete and continuous variables. The method produces a set of short-term continuous dynamical system equations parametrized by long-term variables, and long-term discrete equations parametrized by short-term variables, allowing direct assessment of interdependencies between the two timescales. We demonstrate the utility of the method on a variety of ecological scenarios and provide extensive tests using models previously derived for epizootics experienced by the North American spongy moth (Lymantria dispar dispar). Species subject to predation and environmental threats commonly exhibit variable periods of population boom and bust over long timescales. Understanding and predicting such behaviour, especially given the inherent heterogeneity and stochasticity of exogenous driving factors over short timescales, is an ongoing challenge. A modelling paradigm gaining popularity in the ecological sciences for such multi-scale effects is to couple short-term continuous dynamics to long-term discrete updates. We develop a data-driven method utilizing weak-form equation learning to extract such hybrid governing equations for population dynamics and to estimate the requisite parameters using sparse intermittent measurements of the discrete and continuous variables. The method produces a set of short-term continuous dynamical system equations parametrized by long-term variables, and long-term discrete equations parametrized by short-term variables, allowing direct assessment of interdependencies between the two timescales. We demonstrate the utility of the method on a variety of ecological scenarios and provide extensive tests using models previously derived for epizootics experienced by the North American spongy moth (Lymantria dispar dispar).Species subject to predation and environmental threats commonly exhibit variable periods of population boom and bust over long timescales. Understanding and predicting such behaviour, especially given the inherent heterogeneity and stochasticity of exogenous driving factors over short timescales, is an ongoing challenge. A modelling paradigm gaining popularity in the ecological sciences for such multi-scale effects is to couple short-term continuous dynamics to long-term discrete updates. We develop a data-driven method utilizing weak-form equation learning to extract such hybrid governing equations for population dynamics and to estimate the requisite parameters using sparse intermittent measurements of the discrete and continuous variables. The method produces a set of short-term continuous dynamical system equations parametrized by long-term variables, and long-term discrete equations parametrized by short-term variables, allowing direct assessment of interdependencies between the two timescales. We demonstrate the utility of the method on a variety of ecological scenarios and provide extensive tests using models previously derived for epizootics experienced by the North American spongy moth (Lymantria dispar dispar). |
Author | Messenger, Daniel Dwyer, Greg Dukic, Vanja |
Author_xml | – sequence: 1 givenname: Daniel orcidid: 0000-0002-8275-7888 surname: Messenger fullname: Messenger, Daniel – sequence: 2 givenname: Greg surname: Dwyer fullname: Dwyer, Greg – sequence: 3 givenname: Vanja orcidid: 0000-0002-0348-0834 surname: Dukic fullname: Dukic, Vanja |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39689846$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/2569537$$D View this record in Osti.gov |
BookMark | eNp1kc1LBSEUxSWKPl5tW8bQqs28xtFxRlpERF8QtClaijrXnjWjpfOC-e9zeBUVtBCV-7vH4z07aN15Bwjt42KOC94ch2jNvCxKOi9IzdbQNq5pmVeMles_zltoJ8bnIiGkqjbRFuGs4Q1l2-jkEeRLbnzoM-sMBHAasnTNFqMKts3a0cneatllcYwD9DFhGWjf-adxF20Y2UXY-9xn6OHy4v78Or-9u7o5P7vNNWXlkGtoWd0qULxRhtZUEawUVYpQhmXJWpMWNi3DRlaSK1kpJQmDGqcSo5yRGTpd6b4uVQ-tBjcE2YnXYHsZRuGlFb8rzi7Ek38XGLMKN5wkhcOVgo-DFVHbAfRCe-dAD6KsGK_SZGbo6POZ4N-WEAfR26ih66QDv4yCYMo45QWnCT346ejbytdcEzBfATr4GAOYbwQXYgpOTMGJKTgxBZca6J-GZFIO1k8_st1_bR8Up56N |
CitedBy_id | crossref_primary_10_1002_nme_7634 |
Cites_doi | 10.1515/9781400847310 10.1038/nature02569 10.1086/664488 10.1098/rspa.2020.0290 10.1080/01621459.2015.1096787 10.1016/0098-1354(93)80001-4 10.1080/01621459.2012.713876 10.1093/ee/14.2.106 10.1137/20M1343166 10.1890/14-0661.1 10.1086/303379 10.1103/PhysRevE.92.033304 10.1006/tpbi.1996.0027 10.1017/S0266466600004898 10.1086/592403 10.1890/07-0641.1 10.1111/j.1467-9868.2007.00610.x 10.1109/SURV.2014.052914.00130 10.1101/2023.08.28.554919 10.1086/707138 10.1038/nature07084 10.1103/PhysRevResearch.5.L042017 10.1016/j.csbj.2023.01.044 10.1115/1.4053324 10.1007/s11538-023-01208-6 10.1086/717178 10.1098/rspa.2018.0534 10.1007/s10651-014-0297-0 10.1073/pnas.1517384113 10.1103/PhysRevE.96.023302 10.1016/B978-012159270-7/50004-X 10.1063/5.0157669 10.1017/9781316479964.008 10.1109/TAC.1974.1100705 10.1214/15-SS111 10.2307/1913471 10.1086/723490 10.1098/rsif.2022.0412 10.1214/18-EJS1429 10.2307/2265735 10.1063/1.5120861 10.1098/rspa.2019.0800 10.4039/Ent119697-7 10.1016/0022-2011(87)90115-7 10.1016/j.isci.2024.109316 10.1016/j.cma.2019.07.007 10.1080/07474939208800229 10.1137/18M1189828 10.1137/22M1526782 10.1016/j.mbs.2015.11.011 10.1016/j.jcp.2023.112069 10.1086/707457 10.1007/s11071-020-05925-8 10.1007/s00265-010-1029-6 10.1137/130949282 10.1098/rsta.2010.0237 10.1007/s11538-006-9126-4 10.1007/978-1-4899-1834-5 10.1101/2020.03.28.013524 10.1214/aos/1176344136 10.1111/ele.12506 10.1098/rspa.2021.0904 10.1111/j.1461-0248.2005.00879.x 10.1016/j.mbs.2020.108409 10.1016/j.epidem.2013.07.001 10.1086/677308 10.1016/j.arcontrol.2018.08.002 10.1086/691537 10.1103/PhysRevResearch.5.023126 10.1016/j.physd.2022.133406 10.2307/2937196 10.2307/j.ctvcm4gk0 10.1016/j.jcp.2021.110525 10.1109/CoDIT49905.2020.9263962 10.1098/rsif.2008.0172 10.2307/1312946 10.1137/18M1188227 10.1073/pnas.0600816103 10.1073/pnas.2020397118 10.1093/jee/84.5.1508 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). 2024 |
Copyright_xml | – notice: 2024 The Author(s). 2024 |
CorporateAuthor | Univ. of Colorado, Boulder, CO (United States) |
CorporateAuthor_xml | – name: Univ. of Colorado, Boulder, CO (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OIOZB OTOTI 5PM |
DOI | 10.1098/rsif.2024.0376 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Weak-form inference for hybrid dynamical systems in ecology |
EISSN | 1742-5662 |
ExternalDocumentID | PMC11651893 2569537 39689846 10_1098_rsif_2024_0376 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIFA Biological Sciences – fundername: Division of Environmental Biology – fundername: ; |
GroupedDBID | --- 0R~ 18M 29L 2WC 4.4 53G 5GY 5VS AAYXX ACGFO ACQIA ACRPL ADBBV ADDVE ADNMO AENEX AFFVI AGPVY AGQPQ AJZGM ALMA_UNASSIGNED_HOLDINGS ALMYZ AOIJS BAWUL BGBPD BTFSW C1A CAG CITATION COF CS3 DIK DU5 EBS EJD GX1 H13 HYE HZ~ KQ8 MRS MV1 NSAHA O9- P2P ROL RPM RRY S70 TR2 V1E W8F XSW CGR CUY CVF ECM EIF NPM 7X8 OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-c462t-ced67dbeb98bf474b31bb4bb3461a26df26d1fd61fa5a9ba5bba36e716df64963 |
ISSN | 1742-5662 1742-5689 |
IngestDate | Thu Aug 21 18:29:46 EDT 2025 Mon Jun 23 02:30:28 EDT 2025 Thu Jul 10 21:27:56 EDT 2025 Sun Mar 30 02:12:01 EDT 2025 Thu Apr 24 23:12:59 EDT 2025 Tue Jul 01 01:33:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 221 |
Keywords | parameter estimation hybrid systems system identification multi-scale model data-driven modelling WSINDy |
Language | English |
License | Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c462t-ced67dbeb98bf474b31bb4bb3461a26df26d1fd61fa5a9ba5bba36e716df64963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 SC0023164 USDOE Office of Science (SC) |
ORCID | 0000-0002-8275-7888 0000-0002-0348-0834 0000000203480834 0000000282757888 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC11651893 |
PMID | 39689846 |
PQID | 3146949094 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11651893 osti_scitechconnect_2569537 proquest_miscellaneous_3146949094 pubmed_primary_39689846 crossref_primary_10_1098_rsif_2024_0376 crossref_citationtrail_10_1098_rsif_2024_0376 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-18 |
PublicationDateYYYYMMDD | 2024-12-18 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: United States |
PublicationTitle | Journal of the Royal Society interface |
PublicationTitleAlternate | J R Soc Interface |
PublicationYear | 2024 |
Publisher | The Royal Society |
Publisher_xml | – name: The Royal Society |
References | e_1_3_9_4_2 e_1_3_9_31_2 e_1_3_9_77_2 e_1_3_9_6_2 e_1_3_9_56_2 e_1_3_9_79_2 e_1_3_9_98_2 e_1_3_9_12_2 e_1_3_9_35_2 e_1_3_9_50_2 e_1_3_9_73_2 e_1_3_9_96_2 e_1_3_9_2_2 e_1_3_9_10_2 e_1_3_9_33_2 e_1_3_9_52_2 e_1_3_9_75_2 e_1_3_9_94_2 e_1_3_9_90_2 e_1_3_9_71_2 Niven R (e_1_3_9_93_2) 2020; 33 e_1_3_9_16_2 e_1_3_9_14_2 e_1_3_9_8_2 e_1_3_9_58_2 e_1_3_9_18_2 e_1_3_9_42_2 e_1_3_9_65_2 e_1_3_9_88_2 e_1_3_9_40_2 e_1_3_9_67_2 e_1_3_9_23_2 e_1_3_9_46_2 e_1_3_9_61_2 e_1_3_9_84_2 e_1_3_9_21_2 e_1_3_9_44_2 e_1_3_9_63_2 e_1_3_9_86_2 e_1_3_9_80_2 Burnham KP (e_1_3_9_5_2) 2007 e_1_3_9_27_2 Watanabe S (e_1_3_9_39_2) 2013; 14 e_1_3_9_25_2 e_1_3_9_48_2 e_1_3_9_69_2 e_1_3_9_29_2 e_1_3_9_30_2 e_1_3_9_55_2 e_1_3_9_76_2 e_1_3_9_57_2 e_1_3_9_78_2 Maclauchlan LE (e_1_3_9_92_2) 2009; 10 e_1_3_9_13_2 e_1_3_9_34_2 e_1_3_9_51_2 e_1_3_9_72_2 e_1_3_9_97_2 e_1_3_9_11_2 e_1_3_9_32_2 e_1_3_9_74_2 e_1_3_9_95_2 Lax PD (e_1_3_9_82_2) 1954 e_1_3_9_91_2 Goebel R (e_1_3_9_53_2) 2012 e_1_3_9_70_2 van der Schaft A (e_1_3_9_54_2) 2007 e_1_3_9_17_2 e_1_3_9_38_2 e_1_3_9_15_2 e_1_3_9_36_2 e_1_3_9_7_2 e_1_3_9_59_2 e_1_3_9_9_2 e_1_3_9_19_2 e_1_3_9_20_2 e_1_3_9_41_2 e_1_3_9_87_2 e_1_3_9_68_2 e_1_3_9_89_2 e_1_3_9_24_2 e_1_3_9_45_2 e_1_3_9_62_2 e_1_3_9_83_2 Bolker BM (e_1_3_9_3_2) 2008 e_1_3_9_22_2 e_1_3_9_43_2 e_1_3_9_64_2 e_1_3_9_85_2 e_1_3_9_60_2 Akaike H (e_1_3_9_37_2) 1977 Kreyszig E (e_1_3_9_81_2) 1989 e_1_3_9_28_2 e_1_3_9_49_2 e_1_3_9_26_2 e_1_3_9_47_2 |
References_xml | – ident: e_1_3_9_2_2 doi: 10.1515/9781400847310 – ident: e_1_3_9_16_2 doi: 10.1038/nature02569 – ident: e_1_3_9_64_2 doi: 10.1086/664488 – ident: e_1_3_9_98_2 – ident: e_1_3_9_95_2 doi: 10.1098/rspa.2020.0290 – ident: e_1_3_9_34_2 doi: 10.1080/01621459.2015.1096787 – ident: e_1_3_9_67_2 doi: 10.1016/0098-1354(93)80001-4 – ident: e_1_3_9_31_2 doi: 10.1080/01621459.2012.713876 – ident: e_1_3_9_89_2 doi: 10.1093/ee/14.2.106 – volume: 14 start-page: 867 year: 2013 ident: e_1_3_9_39_2 article-title: A widely applicable Bayesian information criterion publication-title: J. Mach. Learn. Res. – volume-title: Introductory functional analysis with applications year: 1989 ident: e_1_3_9_81_2 – ident: e_1_3_9_11_2 doi: 10.1137/20M1343166 – ident: e_1_3_9_7_2 doi: 10.1890/14-0661.1 – ident: e_1_3_9_20_2 doi: 10.1086/303379 – ident: e_1_3_9_79_2 doi: 10.1103/PhysRevE.92.033304 – ident: e_1_3_9_19_2 doi: 10.1006/tpbi.1996.0027 – ident: e_1_3_9_86_2 doi: 10.1017/S0266466600004898 – ident: e_1_3_9_21_2 doi: 10.1086/592403 – ident: e_1_3_9_28_2 doi: 10.1890/07-0641.1 – ident: e_1_3_9_32_2 doi: 10.1111/j.1467-9868.2007.00610.x – ident: e_1_3_9_57_2 doi: 10.1109/SURV.2014.052914.00130 – ident: e_1_3_9_76_2 doi: 10.1101/2023.08.28.554919 – ident: e_1_3_9_8_2 doi: 10.1086/707138 – volume: 33 volume-title: Int. Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering year: 2020 ident: e_1_3_9_93_2 – ident: e_1_3_9_4_2 doi: 10.1038/nature07084 – ident: e_1_3_9_48_2 doi: 10.1103/PhysRevResearch.5.L042017 – ident: e_1_3_9_56_2 doi: 10.1016/j.csbj.2023.01.044 – ident: e_1_3_9_44_2 doi: 10.1115/1.4053324 – ident: e_1_3_9_10_2 doi: 10.1007/s11538-023-01208-6 – ident: e_1_3_9_18_2 doi: 10.1086/717178 – ident: e_1_3_9_43_2 doi: 10.1098/rspa.2018.0534 – ident: e_1_3_9_9_2 doi: 10.1007/s10651-014-0297-0 – ident: e_1_3_9_41_2 doi: 10.1073/pnas.1517384113 – ident: e_1_3_9_71_2 doi: 10.1103/PhysRevE.96.023302 – ident: e_1_3_9_17_2 doi: 10.1016/B978-012159270-7/50004-X – ident: e_1_3_9_45_2 doi: 10.1063/5.0157669 – ident: e_1_3_9_60_2 doi: 10.1017/9781316479964.008 – ident: e_1_3_9_63_2 – ident: e_1_3_9_84_2 doi: 10.1109/TAC.1974.1100705 – ident: e_1_3_9_29_2 doi: 10.1214/15-SS111 – ident: e_1_3_9_87_2 doi: 10.2307/1913471 – ident: e_1_3_9_15_2 doi: 10.1086/723490 – start-page: 27 volume-title: Applications of statistics year: 1977 ident: e_1_3_9_37_2 – ident: e_1_3_9_69_2 doi: 10.1098/rsif.2022.0412 – ident: e_1_3_9_36_2 doi: 10.1214/18-EJS1429 – ident: e_1_3_9_52_2 doi: 10.2307/2265735 – ident: e_1_3_9_73_2 doi: 10.1063/1.5120861 – ident: e_1_3_9_83_2 doi: 10.1098/rspa.2019.0800 – ident: e_1_3_9_62_2 doi: 10.4039/Ent119697-7 – ident: e_1_3_9_51_2 doi: 10.1016/0022-2011(87)90115-7 – ident: e_1_3_9_50_2 doi: 10.1016/j.isci.2024.109316 – ident: e_1_3_9_72_2 doi: 10.1016/j.cma.2019.07.007 – ident: e_1_3_9_85_2 doi: 10.1080/07474939208800229 – ident: e_1_3_9_42_2 doi: 10.1137/18M1189828 – ident: e_1_3_9_75_2 doi: 10.1137/22M1526782 – volume-title: Contributions to the theory of partial differential equations year: 1954 ident: e_1_3_9_82_2 – ident: e_1_3_9_25_2 doi: 10.1016/j.mbs.2015.11.011 – volume-title: An introduction to hybrid dynamical systems year: 2007 ident: e_1_3_9_54_2 – volume-title: Hybrid dynamical systems: modeling, stability, and robustness year: 2012 ident: e_1_3_9_53_2 – volume-title: Ecological models and data in R year: 2008 ident: e_1_3_9_3_2 – ident: e_1_3_9_78_2 doi: 10.1016/j.jcp.2023.112069 – ident: e_1_3_9_40_2 doi: 10.1086/707457 – ident: e_1_3_9_94_2 doi: 10.1007/s11071-020-05925-8 – ident: e_1_3_9_6_2 doi: 10.1007/s00265-010-1029-6 – ident: e_1_3_9_80_2 doi: 10.1137/130949282 – ident: e_1_3_9_88_2 doi: 10.1098/rsta.2010.0237 – ident: e_1_3_9_27_2 doi: 10.1007/s11538-006-9126-4 – ident: e_1_3_9_59_2 doi: 10.1007/978-1-4899-1834-5 – ident: e_1_3_9_24_2 doi: 10.1101/2020.03.28.013524 – ident: e_1_3_9_38_2 doi: 10.1214/aos/1176344136 – ident: e_1_3_9_22_2 doi: 10.1111/ele.12506 – ident: e_1_3_9_96_2 – volume: 10 start-page: 22 year: 2009 ident: e_1_3_9_92_2 article-title: An integrated management system for the Douglas-fir tussock moth in southern British Columbia publication-title: JEM – ident: e_1_3_9_77_2 doi: 10.1098/rspa.2021.0904 – ident: e_1_3_9_14_2 doi: 10.1111/j.1461-0248.2005.00879.x – ident: e_1_3_9_26_2 doi: 10.1016/j.mbs.2020.108409 – ident: e_1_3_9_23_2 doi: 10.1016/j.epidem.2013.07.001 – ident: e_1_3_9_30_2 doi: 10.1086/677308 – ident: e_1_3_9_55_2 doi: 10.1016/j.arcontrol.2018.08.002 – ident: e_1_3_9_65_2 doi: 10.1086/691537 – volume-title: Model selection and multimodel inference: a practical information-theoretic approach year: 2007 ident: e_1_3_9_5_2 – ident: e_1_3_9_70_2 doi: 10.1098/rsif.2022.0412 – ident: e_1_3_9_47_2 doi: 10.1103/PhysRevResearch.5.023126 – ident: e_1_3_9_68_2 doi: 10.1016/j.physd.2022.133406 – ident: e_1_3_9_61_2 doi: 10.2307/2937196 – ident: e_1_3_9_97_2 – ident: e_1_3_9_13_2 doi: 10.2307/j.ctvcm4gk0 – ident: e_1_3_9_12_2 doi: 10.1016/j.jcp.2021.110525 – ident: e_1_3_9_46_2 doi: 10.1109/CoDIT49905.2020.9263962 – ident: e_1_3_9_33_2 doi: 10.1098/rsif.2008.0172 – ident: e_1_3_9_91_2 doi: 10.2307/1312946 – ident: e_1_3_9_49_2 doi: 10.1137/18M1188227 – ident: e_1_3_9_58_2 doi: 10.1073/pnas.0600816103 – ident: e_1_3_9_35_2 doi: 10.1073/pnas.2020397118 – ident: e_1_3_9_90_2 doi: 10.1093/jee/84.5.1508 – ident: e_1_3_9_74_2 doi: 10.1063/1.5120861 |
SSID | ssj0037355 |
Score | 2.4290178 |
Snippet | Species subject to predation and environmental threats commonly exhibit variable periods of population boom and bust over long timescales. Understanding and... |
SourceID | pubmedcentral osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 20240376 |
SubjectTerms | Animals Ecosystem Life Sciences–Mathematics interface Models, Biological Moths - physiology Population Dynamics |
Title | Weak-form inference for hybrid dynamical systems in ecology |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39689846 https://www.proquest.com/docview/3146949094 https://www.osti.gov/servlets/purl/2569537 https://pubmed.ncbi.nlm.nih.gov/PMC11651893 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_0BOmLWD9jVVYQVCRtPjabLD6JKEWpILTat7Cb3aVnNVfuUqT-9c5kN5vm2oL6kJBs9hKYmZv8ZjPzG0KeM1HpUhUYlvAkZgBJYsXTNC6LxlqNfO19O5-9z3z3gH08LA7HNnd9dUmntpvfl9aV_I9WYQz0ilWy_6DZcFMYgGPQL-xBw7D_Kx1_M_I4RtTZ51Q5vlhMGzw6wzqs19p1m8eKEMdL3vODNONC-kVQijDUrSgM6ZzIJ7G0cjSAPWQbx7XAsUI9oOFfZ24YK19GiHw879uof5Xtd3l-lSHruQy9YzTOM0IMHQP2m7hOV9zsTSTzZ94TInla7nq7XHDTicDSg-VqjiSqGdtenwhiPvnZKy0XvBIVW2PLdu9ff-k6uZFBjIDtKz59CZ-Q8hKQVGDprHamD9sgN4efTwDJbAGO9bJgYz1n9hwI2b9NbnlF0bfOFDbJNdPeIZveP6_oS08i_uoueRNsgwbboHBKnW3QYBvU2wZMo9427pGDD-_33-3GvlFG3DCedXFjNC-1MkpUyrKSqTxViimVM57KjGsLW2o1T60spFCyUErm3ECorC1n4ILvk1m7aM1DQhOTV1wLy5ElgYtEgZQUDkJYLTSzEYkHadWNZ5HHZiY_apfNUNUo6BoFXaOgI_IizD9x_ClXztxC4deA_JC-uME8r6arAZKLIi8j8mzQSQ0OEL9qydYsTld1Du96wUQiWEQeOB2FJw06jkg10V6YgOTq0yvt_KgnWUdaqhTA_KMrb7pFNsZ_ymMy65an5gkg1E497S3xD-BQkT0 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weak-form+inference+for+hybrid+dynamical+systems+in+ecology&rft.jtitle=Journal+of+the+Royal+Society+interface&rft.au=Messenger%2C+Daniel&rft.au=Dwyer%2C+Greg&rft.au=Dukic%2C+Vanja&rft.date=2024-12-18&rft.eissn=1742-5662&rft.volume=21&rft.issue=221&rft.spage=20240376&rft_id=info:doi/10.1098%2Frsif.2024.0376&rft_id=info%3Apmid%2F39689846&rft.externalDocID=39689846 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-5662&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-5662&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-5662&client=summon |