Aberrant Functional Connectivity in the Default Mode and Central Executive Networks in Subjects with Schizophrenia – A Whole-Brain Resting-State ICA Study
Neurophysiological changes of schizophrenia are currently linked to disturbances in connectivity between functional brain networks. Functional magnetic resonance imaging studies on schizophrenia have focused on a few selected networks. Also previously, it has not been possible to discern whether the...
Saved in:
Published in | Frontiers in psychiatry Vol. 6; p. 26 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
26.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neurophysiological changes of schizophrenia are currently linked to disturbances in connectivity between functional brain networks. Functional magnetic resonance imaging studies on schizophrenia have focused on a few selected networks. Also previously, it has not been possible to discern whether the functional alterations in schizophrenia originate from spatial shifting or amplitude alterations of functional connectivity. In this study, we aim to discern the differences in schizophrenia patients with respect to spatial shifting vs. signal amplitude changes in functional connectivity in the whole-brain connectome. We used high model order-independent component analysis to study some 40 resting-state networks (RSN) covering the whole cortex. Group differences were analyzed with dual regression coupled with y-concat correction for multiple comparisons. We investigated the RSNs with and without variance normalization in order to discern spatial shifting from signal amplitude changes in 43 schizophrenia patients and matched controls from the Northern Finland 1966 Birth Cohort. Voxel-level correction for multiple comparisons revealed 18 RSNs with altered functional connectivity, 6 of which had both spatial and signal amplitude changes. After adding the multiple comparison, y-concat correction to the analysis for including the 40 RSNs as well, we found that four RSNs showed still changes. These robust changes actually seem encompass parcellations of the default mode network and central executive networks. These networks both have spatially shifted connectivity and abnormal signal amplitudes. Interestingly the networks seem to mix their functional representations in areas like left caudate nucleus and dorsolateral prefrontal cortex. These changes overlapped with areas that have been related to dopaminergic alterations in patients with schizophrenia compared to controls. |
---|---|
AbstractList | Neurophysiological changes of schizophrenia are currently linked to disturbances in connectivity between functional brain networks. Functional magnetic resonance imaging studies on schizophrenia have focused on a few selected networks. Also previously, it has not been possible to discern whether the functional alterations in schizophrenia originate from spatial shifting or amplitude alterations of functional connectivity. In this study, we aim to discern the differences in schizophrenia patients with respect to spatial shifting vs. signal amplitude changes in functional connectivity in the whole-brain connectome. We used high model order-independent component analysis to study some 40 resting-state networks (RSN) covering the whole cortex. Group differences were analyzed with dual regression coupled with y-concat correction for multiple comparisons. We investigated the RSNs with and without variance normalization in order to discern spatial shifting from signal amplitude changes in 43 schizophrenia patients and matched controls from the Northern Finland 1966 Birth Cohort. Voxel-level correction for multiple comparisons revealed 18 RSNs with altered functional connectivity, 6 of which had both spatial and signal amplitude changes. After adding the multiple comparison, y-concat correction to the analysis for including the 40 RSNs as well, we found that four RSNs showed still changes. These robust changes actually seem encompass parcellations of the default mode network and central executive networks. These networks both have spatially shifted connectivity and abnormal signal amplitudes. Interestingly the networks seem to mix their functional representations in areas like left caudate nucleus and dorsolateral prefrontal cortex. These changes overlapped with areas that have been related to dopaminergic alterations in patients with schizophrenia compared to controls.Neurophysiological changes of schizophrenia are currently linked to disturbances in connectivity between functional brain networks. Functional magnetic resonance imaging studies on schizophrenia have focused on a few selected networks. Also previously, it has not been possible to discern whether the functional alterations in schizophrenia originate from spatial shifting or amplitude alterations of functional connectivity. In this study, we aim to discern the differences in schizophrenia patients with respect to spatial shifting vs. signal amplitude changes in functional connectivity in the whole-brain connectome. We used high model order-independent component analysis to study some 40 resting-state networks (RSN) covering the whole cortex. Group differences were analyzed with dual regression coupled with y-concat correction for multiple comparisons. We investigated the RSNs with and without variance normalization in order to discern spatial shifting from signal amplitude changes in 43 schizophrenia patients and matched controls from the Northern Finland 1966 Birth Cohort. Voxel-level correction for multiple comparisons revealed 18 RSNs with altered functional connectivity, 6 of which had both spatial and signal amplitude changes. After adding the multiple comparison, y-concat correction to the analysis for including the 40 RSNs as well, we found that four RSNs showed still changes. These robust changes actually seem encompass parcellations of the default mode network and central executive networks. These networks both have spatially shifted connectivity and abnormal signal amplitudes. Interestingly the networks seem to mix their functional representations in areas like left caudate nucleus and dorsolateral prefrontal cortex. These changes overlapped with areas that have been related to dopaminergic alterations in patients with schizophrenia compared to controls. Neurophysiological changes of schizophrenia are currently linked to disturbances in connectivity between functional brain networks. Functional magnetic resonance imaging (fMRI) studies on schizophrenia have focused on a few selected networks. Also previously it has not been possible to discern whether the functional alterations in schizophrenia originate from spatial shifting or amplitude alterations of functional connectivity. In this study we aim to discern the differences in schizophrenia patients with respect to spatial shifting vs. signal amplitude changes in functional connectivity in the whole brain connectome. We used high model order independent component analysis (ICA) to study some 40 resting state networks (RSN) covering the whole cortex. Group differences were analysed with dual regression coupled with y-concat correction for multiple comparisons. We investigated the RSN’s with and without variance normalization in order to discern spatial shifting from signal amplitude changes in 43 schizophrenia patients and matched controls from the Northern Finland 1966 Birth Cohort. Voxel level correction for multiple comparisons revealed 18 RSN’s with altered functional connectivity, six of which had both spatial and signal amplitude changes. After adding the multiple comparison y-concat correction to the analysis for including the 40 RSN’s as well, we found that four RSN’s showed still changes. These robust changes actually seem encompass parcellations of the default mode network (DMN) and central executive networks (CEN). These networks both have spatially shifted connectivity and abnormal signal amplitudes. Interestingly the networks seem to mix their functional representations in areas like left caudate nucleus and dorsolateral pre-frontal cortex. These changes overlapped with areas that have been related to do paminergic alterations in patients with schizophrenia compared to controls. Neurophysiological changes of schizophrenia are currently linked to disturbances in connectivity between functional brain networks. Functional magnetic resonance imaging studies on schizophrenia have focused on a few selected networks. Also previously, it has not been possible to discern whether the functional alterations in schizophrenia originate from spatial shifting or amplitude alterations of functional connectivity. In this study, we aim to discern the differences in schizophrenia patients with respect to spatial shifting vs. signal amplitude changes in functional connectivity in the whole-brain connectome. We used high model order-independent component analysis to study some 40 resting-state networks (RSN) covering the whole cortex. Group differences were analyzed with dual regression coupled with y-concat correction for multiple comparisons. We investigated the RSNs with and without variance normalization in order to discern spatial shifting from signal amplitude changes in 43 schizophrenia patients and matched controls from the Northern Finland 1966 Birth Cohort. Voxel-level correction for multiple comparisons revealed 18 RSNs with altered functional connectivity, 6 of which had both spatial and signal amplitude changes. After adding the multiple comparison, y-concat correction to the analysis for including the 40 RSNs as well, we found that four RSNs showed still changes. These robust changes actually seem encompass parcellations of the default mode network and central executive networks. These networks both have spatially shifted connectivity and abnormal signal amplitudes. Interestingly the networks seem to mix their functional representations in areas like left caudate nucleus and dorsolateral prefrontal cortex. These changes overlapped with areas that have been related to dopaminergic alterations in patients with schizophrenia compared to controls. |
Author | Jääskeläinen, Erika Haapea, Marianne Kiviniemi, Vesa J. Littow, Harri Huossa, Ville Miettunen, Jouko Tervonen, Osmo Karjalainen, Sami Isohanni, Matti Murray, Graham Nikkinen, Juha Veijola, Juha |
AuthorAffiliation | 4 Department of Psychiatry, University of Cambridge , Cambridge , UK 1 Department of Radiology, Medical Research Center, Oulu University Hospital , Oulu , Finland 3 Department of Oncology, Medical Research Center, Oulu University Hospital , Oulu , Finland 2 Department of Psychiatry, Medical Research Center, Oulu University Hospital , Oulu , Finland |
AuthorAffiliation_xml | – name: 3 Department of Oncology, Medical Research Center, Oulu University Hospital , Oulu , Finland – name: 2 Department of Psychiatry, Medical Research Center, Oulu University Hospital , Oulu , Finland – name: 4 Department of Psychiatry, University of Cambridge , Cambridge , UK – name: 1 Department of Radiology, Medical Research Center, Oulu University Hospital , Oulu , Finland |
Author_xml | – sequence: 1 givenname: Harri surname: Littow fullname: Littow, Harri – sequence: 2 givenname: Ville surname: Huossa fullname: Huossa, Ville – sequence: 3 givenname: Sami surname: Karjalainen fullname: Karjalainen, Sami – sequence: 4 givenname: Erika surname: Jääskeläinen fullname: Jääskeläinen, Erika – sequence: 5 givenname: Marianne surname: Haapea fullname: Haapea, Marianne – sequence: 6 givenname: Jouko surname: Miettunen fullname: Miettunen, Jouko – sequence: 7 givenname: Osmo surname: Tervonen fullname: Tervonen, Osmo – sequence: 8 givenname: Matti surname: Isohanni fullname: Isohanni, Matti – sequence: 9 givenname: Juha surname: Nikkinen fullname: Nikkinen, Juha – sequence: 10 givenname: Juha surname: Veijola fullname: Veijola, Juha – sequence: 11 givenname: Graham surname: Murray fullname: Murray, Graham – sequence: 12 givenname: Vesa J. surname: Kiviniemi fullname: Kiviniemi, Vesa J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25767449$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1uEzEUhUeoiJbSPSvkJZsJ_p-ZDVIILVQqIBEQS8vjuZM4TOzg8bSEFeI52MCat-BN-iQ4SalaJBb-_86x5XvuZ3vOO8iyhwSPGCurJ-2qX8cRxUSMMMZU3skOiJQ8x5LjvRvz_eyo7xcJwayqmBT3sn0qCllwXh1kP8Y1hKBdRCeDM9F6pzs08c5BWpzbuEbWoTgH9BxaPXQRvfINIO0aNAEXQ4KPP4MZEgvoNcQLHz72G8l0qBfJokcXNs7R1MztF7-aB3BWo98_L7_9uvz6HY3Rh7nvIH8WdJK8hT5aN8unUUdAp5MxmsahWT_I7ra66-HoajzM3p8cv5u8zM_evEjQWW64pDE3TUWkEaKlXAqgZV1gXVPZMtHg2qRWC1JhJiiDsqloybHWjKWuaE1NyoIdZqc738brhVoFu9Rhrby2arvhw0zpEK3pQHFtqoLygpK65ULKSpqSaFKytsVQijZ5Pd15rYZ6CY3ZfdUt09snzs7VzJ8rzjgRhCaDx1cGwX8a0seope0NdJ124IdebYpLsShEmdBHN--6vuRvjROAd4AJvu8DtNcIwWqTJLVNktokSW2TlCTyH4mxqSopHem1tvu_8A8lIdNa |
CitedBy_id | crossref_primary_10_1002_hbm_25230 crossref_primary_10_14218_JERP_2017_00009 crossref_primary_10_1016_j_tins_2017_04_003 crossref_primary_10_1016_j_schres_2023_03_040 crossref_primary_10_1007_s11682_021_00501_z crossref_primary_10_1007_s10548_015_0460_4 crossref_primary_10_1016_j_neures_2020_01_003 crossref_primary_10_2147_NDT_S254208 crossref_primary_10_12998_wjcc_v11_i36_8458 crossref_primary_10_1016_j_drugalcdep_2022_109549 crossref_primary_10_1016_j_bpsc_2016_03_009 crossref_primary_10_1016_j_cortex_2019_04_026 crossref_primary_10_1148_radiol_2016160938 crossref_primary_10_1007_s00213_019_05382_1 crossref_primary_10_1038_s41537_023_00348_x crossref_primary_10_1093_schbul_sbw015 crossref_primary_10_1055_s_0043_1771214 crossref_primary_10_17816_rmmar623485 crossref_primary_10_1109_TNSRE_2023_3283708 crossref_primary_10_7554_eLife_32992 crossref_primary_10_1002_aur_2212 crossref_primary_10_3389_fpsyt_2020_554475 crossref_primary_10_3390_brainsci11111490 crossref_primary_10_1016_j_nicl_2016_02_010 crossref_primary_10_3389_fpsyt_2016_00022 crossref_primary_10_3389_fpsyt_2021_768279 crossref_primary_10_1177_0271678X241262583 crossref_primary_10_1007_s11682_018_9974_1 crossref_primary_10_1093_schbul_sbaa056 crossref_primary_10_1017_S0033291720004201 crossref_primary_10_3389_fnins_2020_00901 crossref_primary_10_3389_fpsyt_2016_00029 crossref_primary_10_3390_jcm12093176 crossref_primary_10_1097_j_pain_0000000000002155 crossref_primary_10_1016_j_neuroimage_2018_06_081 crossref_primary_10_3389_fnins_2018_00889 crossref_primary_10_1016_j_pscychresns_2018_12_013 crossref_primary_10_1016_j_pscychresns_2025_111985 crossref_primary_10_1038_npp_2016_247 crossref_primary_10_1016_j_imu_2020_100289 crossref_primary_10_1007_s00406_024_01869_x crossref_primary_10_1002_wps_21159 crossref_primary_10_3389_fnhum_2023_1204632 crossref_primary_10_1016_j_nicl_2015_11_015 crossref_primary_10_1016_j_pneurobio_2016_08_003 crossref_primary_10_1093_schbul_sbx194 |
Cites_doi | 10.3389/neuro.09.017.2009 10.1016/j.pscychresns.2010.04.008 10.1503/jpn.110008 10.1016/j.schres.2014.06.035 10.1176/ajp.146.12.1561 10.3389/fnsys.2010.00041 10.1016/j.neubiorev.2008.09.002 10.1371/journal.pone.0025423 10.1016/j.biopsych.2009.11.017 10.1093/cercor/bhu050 10.1007/s00429-010-0262-0 10.1016/j.pnpbp.2013.10.021 10.1371/journal.pone.0101689 10.2174/156802612805289890 10.1016/j.pscychresns.2012.06.003 10.2174/156802612805289863 10.1038/nrn2575 10.1093/schbul/sbn176 10.3389/fnsys.2011.00037 10.1073/pnas.0809141106 10.1016/j.neuroimage.2007.03.060 10.1016/j.schres.2013.05.005 10.1176/appi.ajp.2008.08020183 10.1016/j.schres.2010.01.001 10.1001/archgenpsychiatry.2010.10 10.1016/j.neuroimage.2008.03.061 10.1002/hbm.20813 10.1016/S0006-3223(02)01316-1 10.1016/S1053-8119(03)00097-1 10.1093/oxfordjournals.schbul.a033321 10.1001/archgenpsychiatry.2010.85 10.1371/journal.pone.0014788 10.1037/a0014172 10.1016/j.neubiorev.2010.11.004 10.1016/j.schres.2011.03.010 10.1089/brain.2011.0036 10.1016/j.pnpbp.2010.12.001 10.1016/j.schres.2013.05.007 10.1016/j.neubiorev.2009.12.004 10.1073/pnas.0800005105 10.1097/WNR.0b013e32835df562 10.1016/j.neubiorev.2011.12.013 10.1016/j.biopsych.2010.03.035 10.1093/schbul/sbm052 10.1016/j.schres.2009.09.030 10.1002/hbm.22164 10.3389/fnsys.2011.00002 10.1016/j.schres.2013.04.011 10.1038/npp.2009.192 10.1016/S1053-8119(09)71511-3 10.1196/annals.1440.011 10.1371/journal.pone.0017500 10.1371/journal.pone.0071061 10.1093/schbul/sbp131 10.1073/pnas.0811879106 10.1093/schbul/sbm043 10.1016/j.neuroimage.2009.11.072 10.1016/j.neulet.2007.02.081 10.1002/hbm.1058 10.1016/j.schres.2012.11.020 10.1016/j.neuropsychologia.2011.06.009 10.1176/ajp.2007.164.3.450 10.1016/j.pscychresns.2009.03.010 10.1016/j.schres.2010.12.022 10.1016/j.tics.2010.01.008 10.1006/nimg.2002.1132 10.1111/j.1460-9568.2009.06850.x 10.1002/hbm.20929 10.1002/hbm.10062 10.3389/fnsys.2010.00032 10.1098/rstb.2005.1634 10.1017/S095457940800062X 10.1073/pnas.98.2.676 10.1093/schbul/sbq031 10.1016/j.tics.2011.08.003 10.1093/cercor/bhn059 10.1016/j.neuron.2013.06.027 10.3389/fnsys.2011.00103 10.1002/hbm.20993 10.1016/j.schres.2012.01.036 10.1016/j.neuroimage.2011.10.010 10.3389/fnhum.2012.00184 10.1109/TMI.2003.822821 10.1016/j.biopsych.2010.11.009 10.1016/j.pnpbp.2009.07.032 10.1371/journal.pone.0021976 10.1523/JNEUROSCI.5587-06.2007 10.1016/S0920-9964(97)00114-X 10.1073/pnas.0504136102 |
ContentType | Journal Article |
Copyright | Copyright © 2015 Littow, Huossa, Karjalainen, Jääskeläinen, Haapea, Miettunen, Tervonen, Isohanni, Nikkinen, Veijola, Murray and Kiviniemi. 2015 |
Copyright_xml | – notice: Copyright © 2015 Littow, Huossa, Karjalainen, Jääskeläinen, Haapea, Miettunen, Tervonen, Isohanni, Nikkinen, Veijola, Murray and Kiviniemi. 2015 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpsyt.2015.00026 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1664-0640 |
ExternalDocumentID | oai_doaj_org_article_4ac9724721bf456696c81a183ff0e85f PMC4341512 25767449 10_3389_fpsyt_2015_00026 |
Genre | Journal Article |
GrantInformation_xml | – fundername: MRC Oulu DP-grant – fundername: Finnish Academy grantid: # 117111; 123772; 275352 – fundername: CSTI/SHOK Salwe grantid: WP302 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ABIVO ACGFO ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c462t-cd916c55f2465e28b70ab26f35d0bcd0bb51903523e8d92840aa330aa7fcb1873 |
IEDL.DBID | M48 |
ISSN | 1664-0640 |
IngestDate | Wed Aug 27 01:30:53 EDT 2025 Thu Aug 21 18:19:47 EDT 2025 Thu Jul 10 22:43:30 EDT 2025 Thu Apr 03 07:07:18 EDT 2025 Thu Apr 24 23:03:42 EDT 2025 Tue Jul 01 03:19:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | caudate nucleus central executive network fMRI resting state ICA schizophrenia default mode network |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-cd916c55f2465e28b70ab26f35d0bcd0bb51903523e8d92840aa330aa7fcb1873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Schizophrenia, a section of the journal Frontiers in Psychiatry. Edited by: Miles A. Whittington, University of York, UK Reviewed by: James A. Waltz, University of Maryland School of Medicine, USA; Corinna Haenschel, Bangor University, UK; Christopher Schmidt, Pfizer Inc., USA Harri Littow and Ville Huossa have contributed equally to this work. |
OpenAccessLink | https://doaj.org/article/4ac9724721bf456696c81a183ff0e85f |
PMID | 25767449 |
PQID | 1664205758 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4ac9724721bf456696c81a183ff0e85f pubmedcentral_primary_oai_pubmedcentral_nih_gov_4341512 proquest_miscellaneous_1664205758 pubmed_primary_25767449 crossref_primary_10_3389_fpsyt_2015_00026 crossref_citationtrail_10_3389_fpsyt_2015_00026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-26 |
PublicationDateYYYYMMDD | 2015-02-26 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in psychiatry |
PublicationTitleAlternate | Front Psychiatry |
PublicationYear | 2015 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Zhou (B30) 2007; 417 Guo (B87) 2014; 49 Beckmann (B59) 2004; 23 Spitzer (B56) 1989; 146 Andreasen (B1) 1998; 24 Henseler (B37) 2009; 30 Sridharan (B27) 2008; 105 Kang (B71) 2011; 49 Seeley (B26) 2007; 27 Yu (B42) 2011; 6 Yu (B13) 2012; 5 Su (B68) 2013; 148 Jenkinson (B57) 2002; 17 Yu (B89) 2012; 12 Heinz (B74) 2010; 36 Greicius (B8) 2009; 19 Jardri (B81) 2011; 6 Jukuri (B86) 2013; 143 Allen (B50) 2012; 59 Repovs (B32) 2011; 69 Woodward (B29) 2011; 130 Marrelec (B47) 2011; 6 Smith (B58) 2002; 17 Kiviniemi (B69) 2011; 1 Whitfield-Gabrieli (B19) 2009; 106 Littow (B63) 2010; 4 Abou Elseoud (B48) 2011; 5 Ongur (B83) 2010; 183 Lawrie (B38) 2002; 51 Garrity (B15) 2007; 164 Smith (B43) 2009; 44 Williamson (B11) 2007; 33 Abou-Elseoud (B51) 2010; 31 Beckmann (B60) 2005; 360 Tu (B34) 2013; 147 Karlsgodt (B4) 2008; 20 Menon (B28) 2010; 214 Sehatpour (B72) 2010; 67 Veijola (B54) 2014; 9 Pettersson-Yeo (B10) 2011; 35 Williamson (B12) 2012; 6 Raichle (B17) 2010; 14 Chen (B76) 2013; 24 Salvador (B18) 2010; 31 Abou Elseoud (B49) 2014; 35 Husa (B55) 2014; 158 Wang (B46) 2011; 6 Rantakallio (B53) 1969; 193 Palaniyappan (B70) 2013; 79 Rotarska-Jagiela (B23) 2010; 117 Filippini (B62) 2009; 106 Hoptman (B77) 2010; 117 Broyd (B6) 2009; 33 Abbott (B91) 2011; 35 Legrand (B80) 2009; 116 Allen (B61) 2011; 5 Wolf (B41) 2009; 33 Raichle (B16) 2001; 98 Bittner (B73) 2014 Stephan (B5) 2009; 35 van der Meer (B79) 2010; 34 Gradin (B36) 2013; 211 Lui (B35) 2009; 166 Jang (B82) 2011; 127 Bluhm (B21) 2009; 174 Orliac (B84) 2013; 148 Camchong (B22) 2011; 37 Tang (B85) 2013; 8 Fox (B25) 2005; 102 Sambataro (B90) 2010; 35 Calhoun (B7) 2009; 3 Huang (B88) 2010; 49 Beckmann (B52) 2009 Murray (B78) 2012; 36 Vercammen (B40) 2010; 67 Wolf (B33) 2011; 36 Nichols (B65) 2002; 15 Menon (B67) 2011; 15 Friston (B3) 1995; 3 Bullmore (B45) 2009; 10 Veer (B64) 2010; 4 Buckner (B14) 2008; 1124 Mingoia (B39) 2012; 138 Karbasforoushan (B9) 2012; 12 Kiviniemi (B44) 2003; 19 Eickhoff (B66) 2007; 36 Kiviniemi (B24) 2009; 30 Kegeles (B75) 2010; 67 Bullmore (B2) 1997; 28 Bluhm (B20) 2007; 33 Skudlarski (B31) 2010; 68 23324649 - Neuroreport. 2013 Feb 13;24(3):147-51 20063361 - Hum Brain Mapp. 2010 Aug;31(8):1207-16 21703287 - Neuropsychologia. 2011 Aug;49(10):2836-47 18838043 - Dev Psychopathol. 2008 Fall;20(4):1297-327 18981063 - Am J Psychiatry. 2009 Feb;166(2):196-205 22432423 - Brain Connect. 2011;1(4):339-47 19357304 - Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7209-14 22019879 - Neuroimage. 2012 Feb 15;59(4):4141-59 19686473 - Eur J Neurosci. 2009 Aug;30(4):693-702 17329432 - J Neurosci. 2007 Feb 28;27(9):2349-56 23726722 - Schizophr Res. 2013 Aug;148(1-3):50-8 18501637 - Neuroimage. 2009 Jan 1;44(1):83-98 18824195 - Neurosci Biobehav Rev. 2009 Mar;33(3):279-96 20679585 - Arch Gen Psychiatry. 2010 Aug;67(8):772-82 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 25034761 - Schizophr Res. 2014 Sep;158(1-3):134-41 19190637 - Nat Rev Neurosci. 2009 Mar;10(3):186-98 12062886 - Biol Psychiatry. 2002 Jun 15;51(12):1008-11 24675869 - Cereb Cortex. 2015 Sep;25(9):2494-506 21193174 - Biol Psychiatry. 2011 May 15;69(10):967-73 20015455 - Neurosci Biobehav Rev. 2010 May;34(6):935-46 19783410 - Psychiatry Res. 2009 Oct 30;174(1):17-23 19159156 - Psychol Rev. 2009 Jan;116(1):252-82 12377157 - Neuroimage. 2002 Oct;17(2):825-41 21533283 - PLoS One. 2011 Apr 13;6(4):e14788 9468349 - Schizophr Res. 1997 Dec 19;28(2-3):143-56 19164577 - Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1279-84 11747097 - Hum Brain Mapp. 2002 Jan;15(1):1-25 19738925 - Front Hum Neurosci. 2009 Aug 17;3:17 17499520 - Neuroimage. 2007 Jul 1;36(3):511-21 20512370 - Brain Struct Funct. 2010 Jun;214(5-6):655-67 22275887 - Front Syst Neurosci. 2012 Jan 10;5:103 20453041 - Schizophr Bull. 2010 May;36(3):472-85 21687724 - Front Syst Neurosci. 2011 Jun 03;5:37 17399900 - Neurosci Lett. 2007 May 7;417(3):297-302 20097544 - Schizophr Res. 2010 Mar;117(1):21-30 23972602 - Neuron. 2013 Aug 21;79(4):814-28 21115039 - Neurosci Biobehav Rev. 2011 Apr;35(5):1110-24 19854028 - Schizophr Res. 2010 Mar;117(1):13-20 23727217 - Schizophr Res. 2013 Aug;148(1-3):74-80 7583624 - Clin Neurosci. 1995;3(2):89-97 21408008 - PLoS One. 2011 Mar 09;6(3):e17500 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 14964560 - IEEE Trans Med Imaging. 2004 Feb;23(2):137-52 20941370 - Front Syst Neurosci. 2010 Sep 20;4:null 23706416 - Schizophr Res. 2013 Jul;147(2-3):339-47 20553873 - Psychiatry Res. 2010 Jul 30;183(1):59-68 22230705 - Neurosci Biobehav Rev. 2012 Mar;36(3):1043-59 9613621 - Schizophr Bull. 1998;24(2):203-18 20225222 - Hum Brain Mapp. 2010 Dec;31(12):2003-14 20206576 - Trends Cogn Sci. 2010 Apr;14(4):180-90 22737116 - Front Hum Neurosci. 2012 Jun 21;6:184 20194823 - Arch Gen Psychiatry. 2010 Mar;67(3):231-9 22578721 - Schizophr Res. 2012 Jul;138(2-3):143-9 21442040 - Front Syst Neurosci. 2011 Feb 04;5:2 21185903 - Prog Neuropsychopharmacol Biol Psychiatry. 2011 Mar 30;35(2):473-82 23146249 - Psychiatry Res. 2013 Feb 28;211(2):104-11 18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38 19956088 - Neuropsychopharmacology. 2010 Mar;35(4):904-12 19920062 - Schizophr Bull. 2011 May;37(3):640-50 18723676 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12569-74 21458238 - Schizophr Res. 2011 Aug;130(1-3):86-93 12391568 - Hum Brain Mapp. 2002 Nov;17(3):143-55 17329470 - Am J Psychiatry. 2007 Mar;164(3):450-7 25036617 - PLoS One. 2014 Jul 18;9(7):e101689 23245776 - Schizophr Res. 2013 Feb;143(2-3):239-45 19666074 - Prog Neuropsychopharmacol Biol Psychiatry. 2009 Nov 13;33(8):1464-73 18403396 - Cereb Cortex. 2009 Jan;19(1):72-8 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98 (2):676-82 21791169 - J Psychiatry Neurosci. 2011 Nov;36(6):366-74 2686476 - Am J Psychiatry. 1989 Dec;146(12):1561-7 17493957 - Schizophr Bull. 2007 Jul;33(4):994-1003 20060103 - Biol Psychiatry. 2010 May 15;67(10):912-8 24216538 - Prog Neuropsychopharmacol Biol Psychiatry. 2014 Mar 3;49:16-20 21980454 - PLoS One. 2011;6(9):e25423 23279180 - Curr Top Med Chem. 2012;12(21):2415-25 22987670 - Hum Brain Mapp. 2014 Jan;35(1):161-72 19963069 - Neuroimage. 2010 Feb 15;49(4):2901-6 19155345 - Schizophr Bull. 2009 May;35(3):509-27 21908230 - Trends Cogn Sci. 2011 Oct;15(10):483-506 17556752 - Schizophr Bull. 2007 Jul;33(4):1004-12 21818285 - PLoS One. 2011;6(7):e21976 23279179 - Curr Top Med Chem. 2012;12(21):2404-14 4911003 - Acta Paediatr Scand. 1969;193:Suppl 193:1 23923052 - PLoS One. 2013 Jul 29;8(7):e71061 21277171 - Schizophr Res. 2011 Apr;127(1-3):58-65 20953235 - Front Syst Neurosci. 2010 Aug 26;4:null 12814576 - Neuroimage. 2003 Jun;19(2 Pt 1):253-60 20497901 - Biol Psychiatry. 2010 Jul 1;68(1):61-9 19507160 - Hum Brain Mapp. 2009 Dec;30(12):3865-86 |
References_xml | – volume: 3 start-page: 17 year: 2009 ident: B7 article-title: Functional brain networks in schizophrenia: a review publication-title: Front Hum Neurosci doi: 10.3389/neuro.09.017.2009 – volume: 183 start-page: 59 issue: 1 year: 2010 ident: B83 article-title: Default mode network abnormalities in bipolar disorder and schizophrenia publication-title: Psychiatry Res doi: 10.1016/j.pscychresns.2010.04.008 – volume: 36 start-page: 366 issue: 6 year: 2011 ident: B33 article-title: Dysconnectivity of multiple resting-state networks in patients with schizophrenia who have persistent auditory verbal hallucinations publication-title: J Psychiatry Neurosci doi: 10.1503/jpn.110008 – volume: 158 start-page: 134 issue: 1–3 year: 2014 ident: B55 article-title: LIfetime use of antipsychotic medication and its relation to change of learning and memory in midlife schizophrenia – an observational 9-year follow-up study publication-title: Schizophr Res doi: 10.1016/j.schres.2014.06.035 – volume: 146 start-page: 1561 issue: 12 year: 1989 ident: B56 article-title: National field trial of the DSM-III-R diagnostic criteria for self-defeating personality disorder publication-title: Am J Psychiatry doi: 10.1176/ajp.146.12.1561 – volume: 4 year: 2010 ident: B64 article-title: Whole brain resting-state analysis reveals decreased functional connectivity in major depression publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2010.00041 – volume: 33 start-page: 279 issue: 3 year: 2009 ident: B6 article-title: Default-mode brain dysfunction in mental disorders: a systematic review publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2008.09.002 – volume: 6 start-page: e25423 issue: 9 year: 2011 ident: B42 article-title: Altered topological properties of functional network connectivity in schizophrenia during resting state: a small-world brain network study publication-title: PLoS One doi: 10.1371/journal.pone.0025423 – volume: 67 start-page: 912 issue: 10 year: 2010 ident: B40 article-title: Auditory hallucinations in schizophrenia are associated with reduced functional connectivity of the temporo-parietal area publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2009.11.017 – year: 2014 ident: B73 article-title: The when and where of working memory dysfunction in early-onset schizophrenia – a functional magnetic resonance imaging study publication-title: Cereb Cortex doi: 10.1093/cercor/bhu050 – volume: 214 start-page: 655 issue: 5–6 year: 2010 ident: B28 article-title: Saliency, switching, attention and control: a network model of insula function publication-title: Brain Struct Funct doi: 10.1007/s00429-010-0262-0 – volume: 49 start-page: 16 year: 2014 ident: B87 article-title: Abnormal default-mode network homogeneity in first-episode, drug-naive schizophrenia at rest publication-title: Prog Neuropsychopharmacol Biol Psychiatry doi: 10.1016/j.pnpbp.2013.10.021 – volume: 9 issue: 7 year: 2014 ident: B54 article-title: Longitudinal changes in total brain volume in schizophrenia: relation to symptom severity, cognition and antipsychotic medication publication-title: PLoS One doi: 10.1371/journal.pone.0101689 – volume: 12 start-page: 2415 issue: 21 year: 2012 ident: B89 article-title: Brain connectivity networks in schizophrenia underlying resting state functional magnetic resonance imaging publication-title: Curr Top Med Chem doi: 10.2174/156802612805289890 – volume: 211 start-page: 104 issue: 2 year: 2013 ident: B36 article-title: Salience network-midbrain dysconnectivity and blunted reward signals in schizophrenia publication-title: Psychiatry Res doi: 10.1016/j.pscychresns.2012.06.003 – volume: 12 start-page: 2404 issue: 21 year: 2012 ident: B9 article-title: Resting-state networks in schizophrenia publication-title: Curr Top Med Chem doi: 10.2174/156802612805289863 – volume: 10 start-page: 186 year: 2009 ident: B45 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat Rev Neurosci doi: 10.1038/nrn2575 – volume: 3 start-page: 89 issue: 2 year: 1995 ident: B3 article-title: Schizophrenia: a disconnection syndrome? publication-title: Clin Neurosci – volume: 35 start-page: 509 issue: 3 year: 2009 ident: B5 article-title: Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring publication-title: Schizophr Bull doi: 10.1093/schbul/sbn176 – volume: 5 start-page: 37 year: 2011 ident: B48 article-title: Group-ICA model order highlights patterns of functional brain connectivity publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2011.00037 – volume: 106 start-page: 1279 issue: 4 year: 2009 ident: B19 article-title: Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0809141106 – volume: 36 start-page: 511 issue: 3 year: 2007 ident: B66 article-title: Assignment of functional activations to probabilistic cytoarchitectonic areas revisited publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.03.060 – volume: 148 start-page: 50 issue: 1–3 year: 2013 ident: B68 article-title: Reduced neuro-integration from the dorsolateral prefrontal cortex to the whole brain and executive dysfunction in schizophrenia patients and their relatives publication-title: Schizophr Res doi: 10.1016/j.schres.2013.05.005 – volume: 166 start-page: 196 issue: 2 year: 2009 ident: B35 article-title: Association of cerebral deficits with clinical symptoms in antipsychotic-naive first-episode schizophrenia: an optimized voxel-based morphometry and resting state functional connectivity study publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2008.08020183 – volume: 117 start-page: 21 issue: 1 year: 2010 ident: B23 article-title: Resting-state functional network correlates of psychotic symptoms in schizophrenia publication-title: Schizophr Res doi: 10.1016/j.schres.2010.01.001 – volume: 67 start-page: 231 issue: 3 year: 2010 ident: B75 article-title: Increased synaptic dopamine function in associative regions of the striatum in schizophrenia publication-title: Arch Gen Psychiatry doi: 10.1001/archgenpsychiatry.2010.10 – volume: 44 start-page: 83 issue: 1 year: 2009 ident: B43 article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.03.061 – volume: 30 start-page: 3865 issue: 12 year: 2009 ident: B24 article-title: Functional segmentation of the brain cortex using high model order group PICA publication-title: Hum Brain Mapp doi: 10.1002/hbm.20813 – volume: 51 start-page: 1008 issue: 12 year: 2002 ident: B38 article-title: Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations publication-title: Biol Psychiatry doi: 10.1016/S0006-3223(02)01316-1 – volume: 19 start-page: 253 issue: 2 Pt1 year: 2003 ident: B44 article-title: Independent component analysis of nondeterministic fMRI signal sources publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00097-1 – volume: 24 start-page: 203 issue: 2 year: 1998 ident: B1 article-title: “Cognitive dysmetria†as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? publication-title: Schizophr Bull doi: 10.1093/oxfordjournals.schbul.a033321 – volume: 67 start-page: 772 issue: 8 year: 2010 ident: B72 article-title: Impaired visual object processing across an occipital-frontal-hippocampal brain network in schizophrenia publication-title: Arch Gen Psychiatry doi: 10.1001/archgenpsychiatry.2010.85 – volume: 6 start-page: e14788 issue: 4 year: 2011 ident: B47 article-title: Assessing the influence of different ROI selection strategies on functional connectivity analyses of fMRI data acquired during steady-state conditions publication-title: PLoS One doi: 10.1371/journal.pone.0014788 – volume: 116 start-page: 252 issue: 1 year: 2009 ident: B80 article-title: What is self-specific? Theoretical investigation and critical review of neuroimaging results publication-title: Psychol Rev doi: 10.1037/a0014172 – volume: 35 start-page: 1110 issue: 5 year: 2011 ident: B10 article-title: Dysconnectivity in schizophrenia: where are we now? publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2010.11.004 – volume: 130 start-page: 86 issue: 1–3 year: 2011 ident: B29 article-title: Functional resting-state networks are differentially affected in schizophrenia publication-title: Schizophr Res doi: 10.1016/j.schres.2011.03.010 – volume: 1 start-page: 339 issue: 4 year: 2011 ident: B69 article-title: A sliding time-window ICA reveals spatial variability of the default mode network publication-title: Brain Connect doi: 10.1089/brain.2011.0036 – volume: 35 start-page: 473 issue: 2 year: 2011 ident: B91 article-title: Antipsychotic dose and diminished neural modulation: a multi-site fMRI study publication-title: Prog Neuropsychopharmacol Biol Psychiatry doi: 10.1016/j.pnpbp.2010.12.001 – volume: 148 start-page: 74 issue: 1–3 year: 2013 ident: B84 article-title: Links among resting-state default-mode network, salience network, and symptomatology in schizophrenia publication-title: Schizophr Res doi: 10.1016/j.schres.2013.05.007 – volume: 34 start-page: 935 issue: 6 year: 2010 ident: B79 article-title: Self-reflection and the brain: a theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2009.12.004 – volume: 105 start-page: 12569 issue: 34 year: 2008 ident: B27 article-title: A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0800005105 – volume: 24 start-page: 147 issue: 3 year: 2013 ident: B76 article-title: The deficits on a cortical-subcortical loop of meaning processing in schizophrenia publication-title: Neuroreport doi: 10.1097/WNR.0b013e32835df562 – volume: 36 start-page: 1043 issue: 3 year: 2012 ident: B78 article-title: Degrees of separation: a quantitative neuroimaging meta-analysis investigating self-specificity and shared neural activation between self- and other-reflection publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2011.12.013 – volume: 68 start-page: 61 issue: 1 year: 2010 ident: B31 article-title: Brain connectivity is not only lower but different in schizophrenia: a combined anatomical and functional approach publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2010.03.035 – volume: 33 start-page: 1004 issue: 4 year: 2007 ident: B20 article-title: Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network publication-title: Schizophr Bull doi: 10.1093/schbul/sbm052 – volume: 117 start-page: 13 issue: 1 year: 2010 ident: B77 article-title: Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study publication-title: Schizophr Res doi: 10.1016/j.schres.2009.09.030 – volume: 35 start-page: 161 issue: 1 year: 2014 ident: B49 article-title: Altered resting-state activity in seasonal affective disorder publication-title: Hum Brain Mapp doi: 10.1002/hbm.22164 – volume: 193 start-page: 1+ issue: Suppl 193 year: 1969 ident: B53 article-title: Groups at risk in low birth weight infants and perinatal mortality publication-title: Acta Paediatr Scand – volume: 5 start-page: 2 year: 2011 ident: B61 article-title: A baseline for the multivariate comparison of resting-state networks publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2011.00002 – volume: 147 start-page: 339 issue: 2–3 year: 2013 ident: B34 article-title: Schizophrenia and the brain’s control network: aberrant within- and between-network connectivity of the frontoparietal network in schizophrenia publication-title: Schizophr Res doi: 10.1016/j.schres.2013.04.011 – volume: 35 start-page: 904 issue: 4 year: 2010 ident: B90 article-title: Treatment with olanzapine is associated with modulation of the default mode network in patients with Schizophrenia publication-title: Neuropsychopharmacology doi: 10.1038/npp.2009.192 – volume-title: 15th Annual Meeting of Organization of Human Brain Mapping, June 18-23 year: 2009 ident: B52 article-title: Group comparison of resting-state FMRI data using multi-subject ICA and dual regression doi: 10.1016/S1053-8119(09)71511-3 – volume: 1124 start-page: 1 year: 2008 ident: B14 article-title: The brain’s default network: anatomy, function, and relevance to disease publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1440.011 – volume: 6 start-page: e17500 issue: 3 year: 2011 ident: B81 article-title: Increased overlap between the brain areas involved in self-other distinction in schizophrenia publication-title: PLoS One doi: 10.1371/journal.pone.0017500 – volume: 8 start-page: e71061 issue: 7 year: 2013 ident: B85 article-title: Aberrant default mode functional connectivity in early onset schizophrenia publication-title: PLoS One doi: 10.1371/journal.pone.0071061 – volume: 37 start-page: 640 issue: 3 year: 2011 ident: B22 article-title: Altered functional and anatomical connectivity in schizophrenia publication-title: Schizophr Bull doi: 10.1093/schbul/sbp131 – volume: 106 start-page: 7209 issue: 17 year: 2009 ident: B62 article-title: Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0811879106 – volume: 33 start-page: 994 issue: 4 year: 2007 ident: B11 article-title: Are anticorrelated networks in the brain relevant to schizophrenia? publication-title: Schizophr Bull doi: 10.1093/schbul/sbm043 – volume: 49 start-page: 2901 issue: 4 year: 2010 ident: B88 article-title: Localization of cerebral functional deficits in treatment-naive, first-episode schizophrenia using resting-state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.072 – volume: 417 start-page: 297 issue: 3 year: 2007 ident: B30 article-title: Functional dysconnectivity oh the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI publication-title: Neurosci Lett doi: 10.1016/j.neulet.2007.02.081 – volume: 15 start-page: 1 issue: 1 year: 2002 ident: B65 article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples publication-title: Hum Brain Mapp doi: 10.1002/hbm.1058 – volume: 143 start-page: 239 issue: 2–3 year: 2013 ident: B86 article-title: Default mode network in young people with familial risk for psychosis – the oulu brain and mind study publication-title: Schizophr Res doi: 10.1016/j.schres.2012.11.020 – volume: 49 start-page: 2836 issue: 10 year: 2011 ident: B71 article-title: Disrupted functional connectivity for controlled visual processing as a basis for impaired spatial working memory in schizophrenia publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2011.06.009 – volume: 164 start-page: 450 issue: 3 year: 2007 ident: B15 article-title: Aberrant “default mode†functional connectivity in schizophrenia publication-title: Am J Psychiatry doi: 10.1176/ajp.2007.164.3.450 – volume: 174 start-page: 17 issue: 1 year: 2009 ident: B21 article-title: Retrosplenial cortex connectivity in schizophrenia publication-title: Psychiatry Res doi: 10.1016/j.pscychresns.2009.03.010 – volume: 127 start-page: 58 issue: 1–3 year: 2011 ident: B82 article-title: Reduced prefrontal functional connectivity in the default mode network is related to greater psychopathology in subjects with high genetic loading for schizophrenia publication-title: Schizophr Res doi: 10.1016/j.schres.2010.12.022 – volume: 14 start-page: 180 issue: 4 year: 2010 ident: B17 article-title: Two views of brain function publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2010.01.008 – volume: 17 start-page: 825 issue: 2 year: 2002 ident: B57 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage doi: 10.1006/nimg.2002.1132 – volume: 30 start-page: 693 issue: 4 year: 2009 ident: B37 article-title: A systematic fMRI investigation of the brain systems subserving different working memory components in schizophrenia publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2009.06850.x – volume: 31 start-page: 1207 issue: 8 year: 2010 ident: B51 article-title: The effect of model order selection in group PICA publication-title: Hum Brain Mapp doi: 10.1002/hbm.20929 – volume: 17 start-page: 143 issue: 3 year: 2002 ident: B58 article-title: Fast robust automated brain extraction publication-title: Hum Brain Mapp doi: 10.1002/hbm.10062 – volume: 4 year: 2010 ident: B63 article-title: Age-related differences in functional nodes of the brain cortex – a high model order group ICA study publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2010.00032 – volume: 360 start-page: 1001 issue: 1457 year: 2005 ident: B60 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2005.1634 – volume: 20 start-page: 1297 issue: 4 year: 2008 ident: B4 article-title: Developmental disruptions in neural connectivity in the pathophysiology of schizophrenia publication-title: Dev Psychopathol doi: 10.1017/S095457940800062X – volume: 98 start-page: 676 issue: 2 year: 2001 ident: B16 article-title: A default mode of brain function publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.98.2.676 – volume: 36 start-page: 472 issue: 3 year: 2010 ident: B74 article-title: Dopaminergic dysfunction in schizophrenia: salience attribution revisited publication-title: Schizophr Bull doi: 10.1093/schbul/sbq031 – volume: 15 start-page: 483 issue: 10 year: 2011 ident: B67 article-title: Large-scale brain networks and psychopathology: a unifying triple network model publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2011.08.003 – volume: 19 start-page: 72 issue: 1 year: 2009 ident: B8 article-title: Resting-state functional connectivity reflects structural connectivity in the default mode network publication-title: Cereb Cortex doi: 10.1093/cercor/bhn059 – volume: 79 start-page: 814 issue: 4 year: 2013 ident: B70 article-title: Neural primacy of the salience processing system in schizophrenia publication-title: Neuron doi: 10.1016/j.neuron.2013.06.027 – volume: 5 start-page: 103 year: 2012 ident: B13 article-title: Modular organization of functional network connectivity in healthy controls and patients with schizophrenia during the resting state publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2011.00103 – volume: 31 start-page: 2003 issue: 12 year: 2010 ident: B18 article-title: Overall brain connectivity maps show cortico-subcortical abnormalities in schizophrenia publication-title: Hum Brain Mapp doi: 10.1002/hbm.20993 – volume: 138 start-page: 143 issue: 2–3 year: 2012 ident: B39 article-title: Default mode network activity in schizophrenia studied at resting state using probabilistic ICA publication-title: Schizophr Res doi: 10.1016/j.schres.2012.01.036 – volume: 59 start-page: 4141 issue: 4 year: 2012 ident: B50 article-title: Capturing inter-subject variability with group independent component analysis of fMRI data: a simulation study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.010 – volume: 6 start-page: 184 year: 2012 ident: B12 article-title: A framework for interpreting functional networks in schizophrenia publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2012.00184 – volume: 23 start-page: 137 issue: 2 year: 2004 ident: B59 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2003.822821 – volume: 69 start-page: 967 issue: 10 year: 2011 ident: B32 article-title: Brain network connectivity in individuals with schizophrenia and their siblings publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2010.11.009 – volume: 33 start-page: 1464 issue: 8 year: 2009 ident: B41 article-title: Temporally anticorrelated brain networks during working memory performance reveal aberrant prefrontal and hippocampal connectivity in patients with schizophrenia publication-title: Prog Neuropsychopharmacol Biol Psychiatry doi: 10.1016/j.pnpbp.2009.07.032 – volume: 6 start-page: e21976 issue: 7 year: 2011 ident: B46 article-title: graph theoretical analysis of functional brain networks: test-retest evaluation on short- and long-term resting-state functional MRI data publication-title: PLoS One doi: 10.1371/journal.pone.0021976 – volume: 27 start-page: 2349 issue: 9 year: 2007 ident: B26 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5587-06.2007 – volume: 28 start-page: 143 issue: 2–3) year: 1997 ident: B2 article-title: The dysplastic net hypothesis: an integration of developmental and dysconnectivity theories of schizophrenia publication-title: Schizophr Res doi: 10.1016/S0920-9964(97)00114-X – volume: 102 start-page: 9673 issue: 27 year: 2005 ident: B25 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0504136102 – reference: 21408008 - PLoS One. 2011 Mar 09;6(3):e17500 – reference: 14964560 - IEEE Trans Med Imaging. 2004 Feb;23(2):137-52 – reference: 11747097 - Hum Brain Mapp. 2002 Jan;15(1):1-25 – reference: 17399900 - Neurosci Lett. 2007 May 7;417(3):297-302 – reference: 20225222 - Hum Brain Mapp. 2010 Dec;31(12):2003-14 – reference: 23279179 - Curr Top Med Chem. 2012;12(21):2404-14 – reference: 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 – reference: 22230705 - Neurosci Biobehav Rev. 2012 Mar;36(3):1043-59 – reference: 20206576 - Trends Cogn Sci. 2010 Apr;14(4):180-90 – reference: 22275887 - Front Syst Neurosci. 2012 Jan 10;5:103 – reference: 21442040 - Front Syst Neurosci. 2011 Feb 04;5:2 – reference: 7583624 - Clin Neurosci. 1995;3(2):89-97 – reference: 19507160 - Hum Brain Mapp. 2009 Dec;30(12):3865-86 – reference: 17499520 - Neuroimage. 2007 Jul 1;36(3):511-21 – reference: 19159156 - Psychol Rev. 2009 Jan;116(1):252-82 – reference: 19357304 - Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7209-14 – reference: 25034761 - Schizophr Res. 2014 Sep;158(1-3):134-41 – reference: 23727217 - Schizophr Res. 2013 Aug;148(1-3):74-80 – reference: 22578721 - Schizophr Res. 2012 Jul;138(2-3):143-9 – reference: 12377157 - Neuroimage. 2002 Oct;17(2):825-41 – reference: 20941370 - Front Syst Neurosci. 2010 Sep 20;4:null – reference: 21185903 - Prog Neuropsychopharmacol Biol Psychiatry. 2011 Mar 30;35(2):473-82 – reference: 19164577 - Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1279-84 – reference: 20097544 - Schizophr Res. 2010 Mar;117(1):21-30 – reference: 17556752 - Schizophr Bull. 2007 Jul;33(4):1004-12 – reference: 21818285 - PLoS One. 2011;6(7):e21976 – reference: 21115039 - Neurosci Biobehav Rev. 2011 Apr;35(5):1110-24 – reference: 4911003 - Acta Paediatr Scand. 1969;193:Suppl 193:1+ – reference: 18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38 – reference: 23972602 - Neuron. 2013 Aug 21;79(4):814-28 – reference: 20497901 - Biol Psychiatry. 2010 Jul 1;68(1):61-9 – reference: 2686476 - Am J Psychiatry. 1989 Dec;146(12):1561-7 – reference: 20679585 - Arch Gen Psychiatry. 2010 Aug;67(8):772-82 – reference: 12391568 - Hum Brain Mapp. 2002 Nov;17(3):143-55 – reference: 19783410 - Psychiatry Res. 2009 Oct 30;174(1):17-23 – reference: 18723676 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12569-74 – reference: 19155345 - Schizophr Bull. 2009 May;35(3):509-27 – reference: 21791169 - J Psychiatry Neurosci. 2011 Nov;36(6):366-74 – reference: 20194823 - Arch Gen Psychiatry. 2010 Mar;67(3):231-9 – reference: 20453041 - Schizophr Bull. 2010 May;36(3):472-85 – reference: 19738925 - Front Hum Neurosci. 2009 Aug 17;3:17 – reference: 23923052 - PLoS One. 2013 Jul 29;8(7):e71061 – reference: 23245776 - Schizophr Res. 2013 Feb;143(2-3):239-45 – reference: 23146249 - Psychiatry Res. 2013 Feb 28;211(2):104-11 – reference: 21980454 - PLoS One. 2011;6(9):e25423 – reference: 19956088 - Neuropsychopharmacology. 2010 Mar;35(4):904-12 – reference: 17329470 - Am J Psychiatry. 2007 Mar;164(3):450-7 – reference: 17329432 - J Neurosci. 2007 Feb 28;27(9):2349-56 – reference: 24675869 - Cereb Cortex. 2015 Sep;25(9):2494-506 – reference: 19920062 - Schizophr Bull. 2011 May;37(3):640-50 – reference: 22432423 - Brain Connect. 2011;1(4):339-47 – reference: 21533283 - PLoS One. 2011 Apr 13;6(4):e14788 – reference: 12814576 - Neuroimage. 2003 Jun;19(2 Pt 1):253-60 – reference: 21908230 - Trends Cogn Sci. 2011 Oct;15(10):483-506 – reference: 21458238 - Schizophr Res. 2011 Aug;130(1-3):86-93 – reference: 23279180 - Curr Top Med Chem. 2012;12(21):2415-25 – reference: 19666074 - Prog Neuropsychopharmacol Biol Psychiatry. 2009 Nov 13;33(8):1464-73 – reference: 20553873 - Psychiatry Res. 2010 Jul 30;183(1):59-68 – reference: 23324649 - Neuroreport. 2013 Feb 13;24(3):147-51 – reference: 19686473 - Eur J Neurosci. 2009 Aug;30(4):693-702 – reference: 12062886 - Biol Psychiatry. 2002 Jun 15;51(12):1008-11 – reference: 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 – reference: 22987670 - Hum Brain Mapp. 2014 Jan;35(1):161-72 – reference: 20015455 - Neurosci Biobehav Rev. 2010 May;34(6):935-46 – reference: 18403396 - Cereb Cortex. 2009 Jan;19(1):72-8 – reference: 23726722 - Schizophr Res. 2013 Aug;148(1-3):50-8 – reference: 20063361 - Hum Brain Mapp. 2010 Aug;31(8):1207-16 – reference: 20060103 - Biol Psychiatry. 2010 May 15;67(10):912-8 – reference: 18501637 - Neuroimage. 2009 Jan 1;44(1):83-98 – reference: 23706416 - Schizophr Res. 2013 Jul;147(2-3):339-47 – reference: 18981063 - Am J Psychiatry. 2009 Feb;166(2):196-205 – reference: 18824195 - Neurosci Biobehav Rev. 2009 Mar;33(3):279-96 – reference: 21277171 - Schizophr Res. 2011 Apr;127(1-3):58-65 – reference: 21687724 - Front Syst Neurosci. 2011 Jun 03;5:37 – reference: 22019879 - Neuroimage. 2012 Feb 15;59(4):4141-59 – reference: 19854028 - Schizophr Res. 2010 Mar;117(1):13-20 – reference: 9613621 - Schizophr Bull. 1998;24(2):203-18 – reference: 21703287 - Neuropsychologia. 2011 Aug;49(10):2836-47 – reference: 25036617 - PLoS One. 2014 Jul 18;9(7):e101689 – reference: 9468349 - Schizophr Res. 1997 Dec 19;28(2-3):143-56 – reference: 19190637 - Nat Rev Neurosci. 2009 Mar;10(3):186-98 – reference: 17493957 - Schizophr Bull. 2007 Jul;33(4):994-1003 – reference: 21193174 - Biol Psychiatry. 2011 May 15;69(10):967-73 – reference: 24216538 - Prog Neuropsychopharmacol Biol Psychiatry. 2014 Mar 3;49:16-20 – reference: 19963069 - Neuroimage. 2010 Feb 15;49(4):2901-6 – reference: 20953235 - Front Syst Neurosci. 2010 Aug 26;4:null – reference: 20512370 - Brain Struct Funct. 2010 Jun;214(5-6):655-67 – reference: 18838043 - Dev Psychopathol. 2008 Fall;20(4):1297-327 – reference: 22737116 - Front Hum Neurosci. 2012 Jun 21;6:184 – reference: 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98 (2):676-82 |
SSID | ssj0000399365 |
Score | 2.2458396 |
Snippet | Neurophysiological changes of schizophrenia are currently linked to disturbances in connectivity between functional brain networks. Functional magnetic... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 26 |
SubjectTerms | Caudate Nucleus default-mode Network DLPFC fMRI BOLD Psychiatry Schizophrenia ventral striatum |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtUwELVQV2wQiFd4aZDYsIhu4jhOvLxUVAUJVlTqzvJTVKrSqklU2PEPbPk6voQZO73KRQg2LJJFEiuWZ-JzxhmfYexV7bmVXLXovMFigCLq0srKlMbXKjgjow-0OfnDR3l8It6ftqerUl-UE5blgfPAbYRxquMCAxUbEeylkq6vDTpijFXo20izL2LeKphKczDhrmzzf0mMwtQmXo5fKXeypjWUpKWwwqEk1_8njvl7quQKe47usjsLaYRt7uw9disM99mPrQ1XiDQTEDblJT1wlLfickUIOBsA6R34EM18PgEVvQEzeFjeAuFLcDNNdzDkZPCRmoyzpbWZEWiJFsZ1Uh78_PYdtnBNNXVLS8UlgEp7IPpB2pgE7w63kARrH7CTo7efDo_LpdZC6YTkU-k88kTXtpEL2Qbe264ylsvYtL6yDg-LVI-0U5vQe4WYVhnTNHjqorN13zUP2cFwMYTHDCz3URiMs1QTRV85JbEVxsGGKxmVFwXb3Iy8dosQOdXDONcYkJCtdLKVJlvpZKuCvd61uMwiHH959g0Zc_ccyWenC-hUenEq_S-nKtjLG1fQ-LnRPxQzhIt51LXEgI04bl-wR9k1dq-i2K0TQhWs23Oavb7s3xnOPidJb4FkAqnXk__R-afsNg1H2ncvn7GD6WoOz5E5TfZF-kh-AdqoG9c priority: 102 providerName: Directory of Open Access Journals |
Title | Aberrant Functional Connectivity in the Default Mode and Central Executive Networks in Subjects with Schizophrenia – A Whole-Brain Resting-State ICA Study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25767449 https://www.proquest.com/docview/1664205758 https://pubmed.ncbi.nlm.nih.gov/PMC4341512 https://doaj.org/article/4ac9724721bf456696c81a183ff0e85f |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXLggUHkESjVIXDiEJo7jxIcKbR-rFqk9ACt6i2zHbiutsmWTlbp_hV_LjJMuXbRCPWwOu3GSzcx4vm88nmHsY1pzI7nKUXmdQYIi0tjIRMe6TpWzWvra0ebks3N5MhFfL_KLv9ujhxfYbqR21E9qMp9-vv21_IIGv0-ME_3tnr9pl5QWmVJ4BDnFY_YE_VJBZno2gP0wL5MvDr0lUylFTEtY_brlxous-alQzn8TBv03lfKebxo_Z88GUAmjXgtesEeu2Wa_R8bN0RN1MEbf1Yf8IOS12L5jBFw3gPAPjpzXi2kH1BYNdFPDEPGF41tnFzQdwnmfLN7SEJxqKHbTAoVw4fv9pD2IYQQ_qeNufECtJ-Ab1fBoLuMAaeH0cASUt7h8ySbj4x-HJ_HQiSG2QvIutjWiSJvnnguZO16aItGGS5_ldWIsfgwCQaqsmrmyVujxEq2zDA-FtyYti-wV22pmjXvDwPDaC40sTGVelIlVEkchS9ZcSa9qEbG9u_de2aFMOXXLmFZIV0hSVZBURZKqgqQi9mk14qYv0fGfcw9IlKvzqLh2-GI2v6wGW62EtqrgArmx8YgvpZK2TDXOfd4nrsx9xD7cKUKFxkgrLLpxs0VbkWJxQsBlxF73irG6FTG7QggVsWJNZdaeZf2X5voqFPwWCDUQmL19wH3fsaf0b8Ome7nDtrr5wr1H2NSZ3RBu2A028QfTEhj3 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aberrant+Functional+Connectivity+in+the+Default+Mode+and+Central+Executive+Networks+in+Subjects+with+Schizophrenia+-+A+Whole-Brain+Resting-State+ICA+Study&rft.jtitle=Frontiers+in+psychiatry&rft.au=Littow%2C+Harri&rft.au=Huossa%2C+Ville&rft.au=Karjalainen%2C+Sami&rft.au=J%C3%A4%C3%A4skel%C3%A4inen%2C+Erika&rft.date=2015-02-26&rft.issn=1664-0640&rft.eissn=1664-0640&rft.volume=6&rft.spage=26&rft_id=info:doi/10.3389%2Ffpsyt.2015.00026&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-0640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-0640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-0640&client=summon |