Aberrant Functional Connectivity in the Default Mode and Central Executive Networks in Subjects with Schizophrenia – A Whole-Brain Resting-State ICA Study

Neurophysiological changes of schizophrenia are currently linked to disturbances in connectivity between functional brain networks. Functional magnetic resonance imaging studies on schizophrenia have focused on a few selected networks. Also previously, it has not been possible to discern whether the...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in psychiatry Vol. 6; p. 26
Main Authors Littow, Harri, Huossa, Ville, Karjalainen, Sami, Jääskeläinen, Erika, Haapea, Marianne, Miettunen, Jouko, Tervonen, Osmo, Isohanni, Matti, Nikkinen, Juha, Veijola, Juha, Murray, Graham, Kiviniemi, Vesa J.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 26.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neurophysiological changes of schizophrenia are currently linked to disturbances in connectivity between functional brain networks. Functional magnetic resonance imaging studies on schizophrenia have focused on a few selected networks. Also previously, it has not been possible to discern whether the functional alterations in schizophrenia originate from spatial shifting or amplitude alterations of functional connectivity. In this study, we aim to discern the differences in schizophrenia patients with respect to spatial shifting vs. signal amplitude changes in functional connectivity in the whole-brain connectome. We used high model order-independent component analysis to study some 40 resting-state networks (RSN) covering the whole cortex. Group differences were analyzed with dual regression coupled with y-concat correction for multiple comparisons. We investigated the RSNs with and without variance normalization in order to discern spatial shifting from signal amplitude changes in 43 schizophrenia patients and matched controls from the Northern Finland 1966 Birth Cohort. Voxel-level correction for multiple comparisons revealed 18 RSNs with altered functional connectivity, 6 of which had both spatial and signal amplitude changes. After adding the multiple comparison, y-concat correction to the analysis for including the 40 RSNs as well, we found that four RSNs showed still changes. These robust changes actually seem encompass parcellations of the default mode network and central executive networks. These networks both have spatially shifted connectivity and abnormal signal amplitudes. Interestingly the networks seem to mix their functional representations in areas like left caudate nucleus and dorsolateral prefrontal cortex. These changes overlapped with areas that have been related to dopaminergic alterations in patients with schizophrenia compared to controls.
AbstractList Neurophysiological changes of schizophrenia are currently linked to disturbances in connectivity between functional brain networks. Functional magnetic resonance imaging studies on schizophrenia have focused on a few selected networks. Also previously, it has not been possible to discern whether the functional alterations in schizophrenia originate from spatial shifting or amplitude alterations of functional connectivity. In this study, we aim to discern the differences in schizophrenia patients with respect to spatial shifting vs. signal amplitude changes in functional connectivity in the whole-brain connectome. We used high model order-independent component analysis to study some 40 resting-state networks (RSN) covering the whole cortex. Group differences were analyzed with dual regression coupled with y-concat correction for multiple comparisons. We investigated the RSNs with and without variance normalization in order to discern spatial shifting from signal amplitude changes in 43 schizophrenia patients and matched controls from the Northern Finland 1966 Birth Cohort. Voxel-level correction for multiple comparisons revealed 18 RSNs with altered functional connectivity, 6 of which had both spatial and signal amplitude changes. After adding the multiple comparison, y-concat correction to the analysis for including the 40 RSNs as well, we found that four RSNs showed still changes. These robust changes actually seem encompass parcellations of the default mode network and central executive networks. These networks both have spatially shifted connectivity and abnormal signal amplitudes. Interestingly the networks seem to mix their functional representations in areas like left caudate nucleus and dorsolateral prefrontal cortex. These changes overlapped with areas that have been related to dopaminergic alterations in patients with schizophrenia compared to controls.Neurophysiological changes of schizophrenia are currently linked to disturbances in connectivity between functional brain networks. Functional magnetic resonance imaging studies on schizophrenia have focused on a few selected networks. Also previously, it has not been possible to discern whether the functional alterations in schizophrenia originate from spatial shifting or amplitude alterations of functional connectivity. In this study, we aim to discern the differences in schizophrenia patients with respect to spatial shifting vs. signal amplitude changes in functional connectivity in the whole-brain connectome. We used high model order-independent component analysis to study some 40 resting-state networks (RSN) covering the whole cortex. Group differences were analyzed with dual regression coupled with y-concat correction for multiple comparisons. We investigated the RSNs with and without variance normalization in order to discern spatial shifting from signal amplitude changes in 43 schizophrenia patients and matched controls from the Northern Finland 1966 Birth Cohort. Voxel-level correction for multiple comparisons revealed 18 RSNs with altered functional connectivity, 6 of which had both spatial and signal amplitude changes. After adding the multiple comparison, y-concat correction to the analysis for including the 40 RSNs as well, we found that four RSNs showed still changes. These robust changes actually seem encompass parcellations of the default mode network and central executive networks. These networks both have spatially shifted connectivity and abnormal signal amplitudes. Interestingly the networks seem to mix their functional representations in areas like left caudate nucleus and dorsolateral prefrontal cortex. These changes overlapped with areas that have been related to dopaminergic alterations in patients with schizophrenia compared to controls.
Neurophysiological changes of schizophrenia are currently linked to disturbances in connectivity between functional brain networks. Functional magnetic resonance imaging (fMRI) studies on schizophrenia have focused on a few selected networks. Also previously it has not been possible to discern whether the functional alterations in schizophrenia originate from spatial shifting or amplitude alterations of functional connectivity. In this study we aim to discern the differences in schizophrenia patients with respect to spatial shifting vs. signal amplitude changes in functional connectivity in the whole brain connectome. We used high model order independent component analysis (ICA) to study some 40 resting state networks (RSN) covering the whole cortex. Group differences were analysed with dual regression coupled with y-concat correction for multiple comparisons. We investigated the RSN’s with and without variance normalization in order to discern spatial shifting from signal amplitude changes in 43 schizophrenia patients and matched controls from the Northern Finland 1966 Birth Cohort. Voxel level correction for multiple comparisons revealed 18 RSN’s with altered functional connectivity, six of which had both spatial and signal amplitude changes. After adding the multiple comparison y-concat correction to the analysis for including the 40 RSN’s as well, we found that four RSN’s showed still changes. These robust changes actually seem encompass parcellations of the default mode network (DMN) and central executive networks (CEN). These networks both have spatially shifted connectivity and abnormal signal amplitudes. Interestingly the networks seem to mix their functional representations in areas like left caudate nucleus and dorsolateral pre-frontal cortex. These changes overlapped with areas that have been related to do paminergic alterations in patients with schizophrenia compared to controls.
Neurophysiological changes of schizophrenia are currently linked to disturbances in connectivity between functional brain networks. Functional magnetic resonance imaging studies on schizophrenia have focused on a few selected networks. Also previously, it has not been possible to discern whether the functional alterations in schizophrenia originate from spatial shifting or amplitude alterations of functional connectivity. In this study, we aim to discern the differences in schizophrenia patients with respect to spatial shifting vs. signal amplitude changes in functional connectivity in the whole-brain connectome. We used high model order-independent component analysis to study some 40 resting-state networks (RSN) covering the whole cortex. Group differences were analyzed with dual regression coupled with y-concat correction for multiple comparisons. We investigated the RSNs with and without variance normalization in order to discern spatial shifting from signal amplitude changes in 43 schizophrenia patients and matched controls from the Northern Finland 1966 Birth Cohort. Voxel-level correction for multiple comparisons revealed 18 RSNs with altered functional connectivity, 6 of which had both spatial and signal amplitude changes. After adding the multiple comparison, y-concat correction to the analysis for including the 40 RSNs as well, we found that four RSNs showed still changes. These robust changes actually seem encompass parcellations of the default mode network and central executive networks. These networks both have spatially shifted connectivity and abnormal signal amplitudes. Interestingly the networks seem to mix their functional representations in areas like left caudate nucleus and dorsolateral prefrontal cortex. These changes overlapped with areas that have been related to dopaminergic alterations in patients with schizophrenia compared to controls.
Author Jääskeläinen, Erika
Haapea, Marianne
Kiviniemi, Vesa J.
Littow, Harri
Huossa, Ville
Miettunen, Jouko
Tervonen, Osmo
Karjalainen, Sami
Isohanni, Matti
Murray, Graham
Nikkinen, Juha
Veijola, Juha
AuthorAffiliation 4 Department of Psychiatry, University of Cambridge , Cambridge , UK
1 Department of Radiology, Medical Research Center, Oulu University Hospital , Oulu , Finland
3 Department of Oncology, Medical Research Center, Oulu University Hospital , Oulu , Finland
2 Department of Psychiatry, Medical Research Center, Oulu University Hospital , Oulu , Finland
AuthorAffiliation_xml – name: 3 Department of Oncology, Medical Research Center, Oulu University Hospital , Oulu , Finland
– name: 2 Department of Psychiatry, Medical Research Center, Oulu University Hospital , Oulu , Finland
– name: 4 Department of Psychiatry, University of Cambridge , Cambridge , UK
– name: 1 Department of Radiology, Medical Research Center, Oulu University Hospital , Oulu , Finland
Author_xml – sequence: 1
  givenname: Harri
  surname: Littow
  fullname: Littow, Harri
– sequence: 2
  givenname: Ville
  surname: Huossa
  fullname: Huossa, Ville
– sequence: 3
  givenname: Sami
  surname: Karjalainen
  fullname: Karjalainen, Sami
– sequence: 4
  givenname: Erika
  surname: Jääskeläinen
  fullname: Jääskeläinen, Erika
– sequence: 5
  givenname: Marianne
  surname: Haapea
  fullname: Haapea, Marianne
– sequence: 6
  givenname: Jouko
  surname: Miettunen
  fullname: Miettunen, Jouko
– sequence: 7
  givenname: Osmo
  surname: Tervonen
  fullname: Tervonen, Osmo
– sequence: 8
  givenname: Matti
  surname: Isohanni
  fullname: Isohanni, Matti
– sequence: 9
  givenname: Juha
  surname: Nikkinen
  fullname: Nikkinen, Juha
– sequence: 10
  givenname: Juha
  surname: Veijola
  fullname: Veijola, Juha
– sequence: 11
  givenname: Graham
  surname: Murray
  fullname: Murray, Graham
– sequence: 12
  givenname: Vesa J.
  surname: Kiviniemi
  fullname: Kiviniemi, Vesa J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25767449$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1uEzEUhUeoiJbSPSvkJZsJ_p-ZDVIILVQqIBEQS8vjuZM4TOzg8bSEFeI52MCat-BN-iQ4SalaJBb-_86x5XvuZ3vOO8iyhwSPGCurJ-2qX8cRxUSMMMZU3skOiJQ8x5LjvRvz_eyo7xcJwayqmBT3sn0qCllwXh1kP8Y1hKBdRCeDM9F6pzs08c5BWpzbuEbWoTgH9BxaPXQRvfINIO0aNAEXQ4KPP4MZEgvoNcQLHz72G8l0qBfJokcXNs7R1MztF7-aB3BWo98_L7_9uvz6HY3Rh7nvIH8WdJK8hT5aN8unUUdAp5MxmsahWT_I7ra66-HoajzM3p8cv5u8zM_evEjQWW64pDE3TUWkEaKlXAqgZV1gXVPZMtHg2qRWC1JhJiiDsqloybHWjKWuaE1NyoIdZqc738brhVoFu9Rhrby2arvhw0zpEK3pQHFtqoLygpK65ULKSpqSaFKytsVQijZ5Pd15rYZ6CY3ZfdUt09snzs7VzJ8rzjgRhCaDx1cGwX8a0seope0NdJ124IdebYpLsShEmdBHN--6vuRvjROAd4AJvu8DtNcIwWqTJLVNktokSW2TlCTyH4mxqSopHem1tvu_8A8lIdNa
CitedBy_id crossref_primary_10_1002_hbm_25230
crossref_primary_10_14218_JERP_2017_00009
crossref_primary_10_1016_j_tins_2017_04_003
crossref_primary_10_1016_j_schres_2023_03_040
crossref_primary_10_1007_s11682_021_00501_z
crossref_primary_10_1007_s10548_015_0460_4
crossref_primary_10_1016_j_neures_2020_01_003
crossref_primary_10_2147_NDT_S254208
crossref_primary_10_12998_wjcc_v11_i36_8458
crossref_primary_10_1016_j_drugalcdep_2022_109549
crossref_primary_10_1016_j_bpsc_2016_03_009
crossref_primary_10_1016_j_cortex_2019_04_026
crossref_primary_10_1148_radiol_2016160938
crossref_primary_10_1007_s00213_019_05382_1
crossref_primary_10_1038_s41537_023_00348_x
crossref_primary_10_1093_schbul_sbw015
crossref_primary_10_1055_s_0043_1771214
crossref_primary_10_17816_rmmar623485
crossref_primary_10_1109_TNSRE_2023_3283708
crossref_primary_10_7554_eLife_32992
crossref_primary_10_1002_aur_2212
crossref_primary_10_3389_fpsyt_2020_554475
crossref_primary_10_3390_brainsci11111490
crossref_primary_10_1016_j_nicl_2016_02_010
crossref_primary_10_3389_fpsyt_2016_00022
crossref_primary_10_3389_fpsyt_2021_768279
crossref_primary_10_1177_0271678X241262583
crossref_primary_10_1007_s11682_018_9974_1
crossref_primary_10_1093_schbul_sbaa056
crossref_primary_10_1017_S0033291720004201
crossref_primary_10_3389_fnins_2020_00901
crossref_primary_10_3389_fpsyt_2016_00029
crossref_primary_10_3390_jcm12093176
crossref_primary_10_1097_j_pain_0000000000002155
crossref_primary_10_1016_j_neuroimage_2018_06_081
crossref_primary_10_3389_fnins_2018_00889
crossref_primary_10_1016_j_pscychresns_2018_12_013
crossref_primary_10_1016_j_pscychresns_2025_111985
crossref_primary_10_1038_npp_2016_247
crossref_primary_10_1016_j_imu_2020_100289
crossref_primary_10_1007_s00406_024_01869_x
crossref_primary_10_1002_wps_21159
crossref_primary_10_3389_fnhum_2023_1204632
crossref_primary_10_1016_j_nicl_2015_11_015
crossref_primary_10_1016_j_pneurobio_2016_08_003
crossref_primary_10_1093_schbul_sbx194
Cites_doi 10.3389/neuro.09.017.2009
10.1016/j.pscychresns.2010.04.008
10.1503/jpn.110008
10.1016/j.schres.2014.06.035
10.1176/ajp.146.12.1561
10.3389/fnsys.2010.00041
10.1016/j.neubiorev.2008.09.002
10.1371/journal.pone.0025423
10.1016/j.biopsych.2009.11.017
10.1093/cercor/bhu050
10.1007/s00429-010-0262-0
10.1016/j.pnpbp.2013.10.021
10.1371/journal.pone.0101689
10.2174/156802612805289890
10.1016/j.pscychresns.2012.06.003
10.2174/156802612805289863
10.1038/nrn2575
10.1093/schbul/sbn176
10.3389/fnsys.2011.00037
10.1073/pnas.0809141106
10.1016/j.neuroimage.2007.03.060
10.1016/j.schres.2013.05.005
10.1176/appi.ajp.2008.08020183
10.1016/j.schres.2010.01.001
10.1001/archgenpsychiatry.2010.10
10.1016/j.neuroimage.2008.03.061
10.1002/hbm.20813
10.1016/S0006-3223(02)01316-1
10.1016/S1053-8119(03)00097-1
10.1093/oxfordjournals.schbul.a033321
10.1001/archgenpsychiatry.2010.85
10.1371/journal.pone.0014788
10.1037/a0014172
10.1016/j.neubiorev.2010.11.004
10.1016/j.schres.2011.03.010
10.1089/brain.2011.0036
10.1016/j.pnpbp.2010.12.001
10.1016/j.schres.2013.05.007
10.1016/j.neubiorev.2009.12.004
10.1073/pnas.0800005105
10.1097/WNR.0b013e32835df562
10.1016/j.neubiorev.2011.12.013
10.1016/j.biopsych.2010.03.035
10.1093/schbul/sbm052
10.1016/j.schres.2009.09.030
10.1002/hbm.22164
10.3389/fnsys.2011.00002
10.1016/j.schres.2013.04.011
10.1038/npp.2009.192
10.1016/S1053-8119(09)71511-3
10.1196/annals.1440.011
10.1371/journal.pone.0017500
10.1371/journal.pone.0071061
10.1093/schbul/sbp131
10.1073/pnas.0811879106
10.1093/schbul/sbm043
10.1016/j.neuroimage.2009.11.072
10.1016/j.neulet.2007.02.081
10.1002/hbm.1058
10.1016/j.schres.2012.11.020
10.1016/j.neuropsychologia.2011.06.009
10.1176/ajp.2007.164.3.450
10.1016/j.pscychresns.2009.03.010
10.1016/j.schres.2010.12.022
10.1016/j.tics.2010.01.008
10.1006/nimg.2002.1132
10.1111/j.1460-9568.2009.06850.x
10.1002/hbm.20929
10.1002/hbm.10062
10.3389/fnsys.2010.00032
10.1098/rstb.2005.1634
10.1017/S095457940800062X
10.1073/pnas.98.2.676
10.1093/schbul/sbq031
10.1016/j.tics.2011.08.003
10.1093/cercor/bhn059
10.1016/j.neuron.2013.06.027
10.3389/fnsys.2011.00103
10.1002/hbm.20993
10.1016/j.schres.2012.01.036
10.1016/j.neuroimage.2011.10.010
10.3389/fnhum.2012.00184
10.1109/TMI.2003.822821
10.1016/j.biopsych.2010.11.009
10.1016/j.pnpbp.2009.07.032
10.1371/journal.pone.0021976
10.1523/JNEUROSCI.5587-06.2007
10.1016/S0920-9964(97)00114-X
10.1073/pnas.0504136102
ContentType Journal Article
Copyright Copyright © 2015 Littow, Huossa, Karjalainen, Jääskeläinen, Haapea, Miettunen, Tervonen, Isohanni, Nikkinen, Veijola, Murray and Kiviniemi. 2015
Copyright_xml – notice: Copyright © 2015 Littow, Huossa, Karjalainen, Jääskeläinen, Haapea, Miettunen, Tervonen, Isohanni, Nikkinen, Veijola, Murray and Kiviniemi. 2015
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpsyt.2015.00026
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1664-0640
ExternalDocumentID oai_doaj_org_article_4ac9724721bf456696c81a183ff0e85f
PMC4341512
25767449
10_3389_fpsyt_2015_00026
Genre Journal Article
GrantInformation_xml – fundername: MRC Oulu DP-grant
– fundername: Finnish Academy
  grantid: # 117111; 123772; 275352
– fundername: CSTI/SHOK Salwe
  grantid: WP302
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ABIVO
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-cd916c55f2465e28b70ab26f35d0bcd0bb51903523e8d92840aa330aa7fcb1873
IEDL.DBID M48
ISSN 1664-0640
IngestDate Wed Aug 27 01:30:53 EDT 2025
Thu Aug 21 18:19:47 EDT 2025
Thu Jul 10 22:43:30 EDT 2025
Thu Apr 03 07:07:18 EDT 2025
Thu Apr 24 23:03:42 EDT 2025
Tue Jul 01 03:19:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords caudate nucleus
central executive network
fMRI
resting state
ICA
schizophrenia
default mode network
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-cd916c55f2465e28b70ab26f35d0bcd0bb51903523e8d92840aa330aa7fcb1873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Schizophrenia, a section of the journal Frontiers in Psychiatry.
Edited by: Miles A. Whittington, University of York, UK
Reviewed by: James A. Waltz, University of Maryland School of Medicine, USA; Corinna Haenschel, Bangor University, UK; Christopher Schmidt, Pfizer Inc., USA
Harri Littow and Ville Huossa have contributed equally to this work.
OpenAccessLink https://doaj.org/article/4ac9724721bf456696c81a183ff0e85f
PMID 25767449
PQID 1664205758
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_4ac9724721bf456696c81a183ff0e85f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4341512
proquest_miscellaneous_1664205758
pubmed_primary_25767449
crossref_primary_10_3389_fpsyt_2015_00026
crossref_citationtrail_10_3389_fpsyt_2015_00026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-26
PublicationDateYYYYMMDD 2015-02-26
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-26
  day: 26
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in psychiatry
PublicationTitleAlternate Front Psychiatry
PublicationYear 2015
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Zhou (B30) 2007; 417
Guo (B87) 2014; 49
Beckmann (B59) 2004; 23
Spitzer (B56) 1989; 146
Andreasen (B1) 1998; 24
Henseler (B37) 2009; 30
Sridharan (B27) 2008; 105
Kang (B71) 2011; 49
Seeley (B26) 2007; 27
Yu (B42) 2011; 6
Yu (B13) 2012; 5
Su (B68) 2013; 148
Jenkinson (B57) 2002; 17
Yu (B89) 2012; 12
Heinz (B74) 2010; 36
Greicius (B8) 2009; 19
Jardri (B81) 2011; 6
Jukuri (B86) 2013; 143
Allen (B50) 2012; 59
Repovs (B32) 2011; 69
Woodward (B29) 2011; 130
Marrelec (B47) 2011; 6
Smith (B58) 2002; 17
Kiviniemi (B69) 2011; 1
Whitfield-Gabrieli (B19) 2009; 106
Littow (B63) 2010; 4
Abou Elseoud (B48) 2011; 5
Ongur (B83) 2010; 183
Lawrie (B38) 2002; 51
Garrity (B15) 2007; 164
Smith (B43) 2009; 44
Williamson (B11) 2007; 33
Abou-Elseoud (B51) 2010; 31
Beckmann (B60) 2005; 360
Tu (B34) 2013; 147
Karlsgodt (B4) 2008; 20
Menon (B28) 2010; 214
Sehatpour (B72) 2010; 67
Veijola (B54) 2014; 9
Pettersson-Yeo (B10) 2011; 35
Williamson (B12) 2012; 6
Raichle (B17) 2010; 14
Chen (B76) 2013; 24
Salvador (B18) 2010; 31
Abou Elseoud (B49) 2014; 35
Husa (B55) 2014; 158
Wang (B46) 2011; 6
Rantakallio (B53) 1969; 193
Palaniyappan (B70) 2013; 79
Rotarska-Jagiela (B23) 2010; 117
Filippini (B62) 2009; 106
Hoptman (B77) 2010; 117
Broyd (B6) 2009; 33
Abbott (B91) 2011; 35
Legrand (B80) 2009; 116
Allen (B61) 2011; 5
Wolf (B41) 2009; 33
Raichle (B16) 2001; 98
Bittner (B73) 2014
Stephan (B5) 2009; 35
van der Meer (B79) 2010; 34
Gradin (B36) 2013; 211
Lui (B35) 2009; 166
Jang (B82) 2011; 127
Bluhm (B21) 2009; 174
Orliac (B84) 2013; 148
Camchong (B22) 2011; 37
Tang (B85) 2013; 8
Fox (B25) 2005; 102
Sambataro (B90) 2010; 35
Calhoun (B7) 2009; 3
Huang (B88) 2010; 49
Beckmann (B52) 2009
Murray (B78) 2012; 36
Vercammen (B40) 2010; 67
Wolf (B33) 2011; 36
Nichols (B65) 2002; 15
Menon (B67) 2011; 15
Friston (B3) 1995; 3
Bullmore (B45) 2009; 10
Veer (B64) 2010; 4
Buckner (B14) 2008; 1124
Mingoia (B39) 2012; 138
Karbasforoushan (B9) 2012; 12
Kiviniemi (B44) 2003; 19
Eickhoff (B66) 2007; 36
Kiviniemi (B24) 2009; 30
Kegeles (B75) 2010; 67
Bullmore (B2) 1997; 28
Bluhm (B20) 2007; 33
Skudlarski (B31) 2010; 68
23324649 - Neuroreport. 2013 Feb 13;24(3):147-51
20063361 - Hum Brain Mapp. 2010 Aug;31(8):1207-16
21703287 - Neuropsychologia. 2011 Aug;49(10):2836-47
18838043 - Dev Psychopathol. 2008 Fall;20(4):1297-327
18981063 - Am J Psychiatry. 2009 Feb;166(2):196-205
22432423 - Brain Connect. 2011;1(4):339-47
19357304 - Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7209-14
22019879 - Neuroimage. 2012 Feb 15;59(4):4141-59
19686473 - Eur J Neurosci. 2009 Aug;30(4):693-702
17329432 - J Neurosci. 2007 Feb 28;27(9):2349-56
23726722 - Schizophr Res. 2013 Aug;148(1-3):50-8
18501637 - Neuroimage. 2009 Jan 1;44(1):83-98
18824195 - Neurosci Biobehav Rev. 2009 Mar;33(3):279-96
20679585 - Arch Gen Psychiatry. 2010 Aug;67(8):772-82
16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13
25034761 - Schizophr Res. 2014 Sep;158(1-3):134-41
19190637 - Nat Rev Neurosci. 2009 Mar;10(3):186-98
12062886 - Biol Psychiatry. 2002 Jun 15;51(12):1008-11
24675869 - Cereb Cortex. 2015 Sep;25(9):2494-506
21193174 - Biol Psychiatry. 2011 May 15;69(10):967-73
20015455 - Neurosci Biobehav Rev. 2010 May;34(6):935-46
19783410 - Psychiatry Res. 2009 Oct 30;174(1):17-23
19159156 - Psychol Rev. 2009 Jan;116(1):252-82
12377157 - Neuroimage. 2002 Oct;17(2):825-41
21533283 - PLoS One. 2011 Apr 13;6(4):e14788
9468349 - Schizophr Res. 1997 Dec 19;28(2-3):143-56
19164577 - Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1279-84
11747097 - Hum Brain Mapp. 2002 Jan;15(1):1-25
19738925 - Front Hum Neurosci. 2009 Aug 17;3:17
17499520 - Neuroimage. 2007 Jul 1;36(3):511-21
20512370 - Brain Struct Funct. 2010 Jun;214(5-6):655-67
22275887 - Front Syst Neurosci. 2012 Jan 10;5:103
20453041 - Schizophr Bull. 2010 May;36(3):472-85
21687724 - Front Syst Neurosci. 2011 Jun 03;5:37
17399900 - Neurosci Lett. 2007 May 7;417(3):297-302
20097544 - Schizophr Res. 2010 Mar;117(1):21-30
23972602 - Neuron. 2013 Aug 21;79(4):814-28
21115039 - Neurosci Biobehav Rev. 2011 Apr;35(5):1110-24
19854028 - Schizophr Res. 2010 Mar;117(1):13-20
23727217 - Schizophr Res. 2013 Aug;148(1-3):74-80
7583624 - Clin Neurosci. 1995;3(2):89-97
21408008 - PLoS One. 2011 Mar 09;6(3):e17500
15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8
14964560 - IEEE Trans Med Imaging. 2004 Feb;23(2):137-52
20941370 - Front Syst Neurosci. 2010 Sep 20;4:null
23706416 - Schizophr Res. 2013 Jul;147(2-3):339-47
20553873 - Psychiatry Res. 2010 Jul 30;183(1):59-68
22230705 - Neurosci Biobehav Rev. 2012 Mar;36(3):1043-59
9613621 - Schizophr Bull. 1998;24(2):203-18
20225222 - Hum Brain Mapp. 2010 Dec;31(12):2003-14
20206576 - Trends Cogn Sci. 2010 Apr;14(4):180-90
22737116 - Front Hum Neurosci. 2012 Jun 21;6:184
20194823 - Arch Gen Psychiatry. 2010 Mar;67(3):231-9
22578721 - Schizophr Res. 2012 Jul;138(2-3):143-9
21442040 - Front Syst Neurosci. 2011 Feb 04;5:2
21185903 - Prog Neuropsychopharmacol Biol Psychiatry. 2011 Mar 30;35(2):473-82
23146249 - Psychiatry Res. 2013 Feb 28;211(2):104-11
18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38
19956088 - Neuropsychopharmacology. 2010 Mar;35(4):904-12
19920062 - Schizophr Bull. 2011 May;37(3):640-50
18723676 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12569-74
21458238 - Schizophr Res. 2011 Aug;130(1-3):86-93
12391568 - Hum Brain Mapp. 2002 Nov;17(3):143-55
17329470 - Am J Psychiatry. 2007 Mar;164(3):450-7
25036617 - PLoS One. 2014 Jul 18;9(7):e101689
23245776 - Schizophr Res. 2013 Feb;143(2-3):239-45
19666074 - Prog Neuropsychopharmacol Biol Psychiatry. 2009 Nov 13;33(8):1464-73
18403396 - Cereb Cortex. 2009 Jan;19(1):72-8
11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98 (2):676-82
21791169 - J Psychiatry Neurosci. 2011 Nov;36(6):366-74
2686476 - Am J Psychiatry. 1989 Dec;146(12):1561-7
17493957 - Schizophr Bull. 2007 Jul;33(4):994-1003
20060103 - Biol Psychiatry. 2010 May 15;67(10):912-8
24216538 - Prog Neuropsychopharmacol Biol Psychiatry. 2014 Mar 3;49:16-20
21980454 - PLoS One. 2011;6(9):e25423
23279180 - Curr Top Med Chem. 2012;12(21):2415-25
22987670 - Hum Brain Mapp. 2014 Jan;35(1):161-72
19963069 - Neuroimage. 2010 Feb 15;49(4):2901-6
19155345 - Schizophr Bull. 2009 May;35(3):509-27
21908230 - Trends Cogn Sci. 2011 Oct;15(10):483-506
17556752 - Schizophr Bull. 2007 Jul;33(4):1004-12
21818285 - PLoS One. 2011;6(7):e21976
23279179 - Curr Top Med Chem. 2012;12(21):2404-14
4911003 - Acta Paediatr Scand. 1969;193:Suppl 193:1
23923052 - PLoS One. 2013 Jul 29;8(7):e71061
21277171 - Schizophr Res. 2011 Apr;127(1-3):58-65
20953235 - Front Syst Neurosci. 2010 Aug 26;4:null
12814576 - Neuroimage. 2003 Jun;19(2 Pt 1):253-60
20497901 - Biol Psychiatry. 2010 Jul 1;68(1):61-9
19507160 - Hum Brain Mapp. 2009 Dec;30(12):3865-86
References_xml – volume: 3
  start-page: 17
  year: 2009
  ident: B7
  article-title: Functional brain networks in schizophrenia: a review
  publication-title: Front Hum Neurosci
  doi: 10.3389/neuro.09.017.2009
– volume: 183
  start-page: 59
  issue: 1
  year: 2010
  ident: B83
  article-title: Default mode network abnormalities in bipolar disorder and schizophrenia
  publication-title: Psychiatry Res
  doi: 10.1016/j.pscychresns.2010.04.008
– volume: 36
  start-page: 366
  issue: 6
  year: 2011
  ident: B33
  article-title: Dysconnectivity of multiple resting-state networks in patients with schizophrenia who have persistent auditory verbal hallucinations
  publication-title: J Psychiatry Neurosci
  doi: 10.1503/jpn.110008
– volume: 158
  start-page: 134
  issue: 1–3
  year: 2014
  ident: B55
  article-title: LIfetime use of antipsychotic medication and its relation to change of learning and memory in midlife schizophrenia – an observational 9-year follow-up study
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2014.06.035
– volume: 146
  start-page: 1561
  issue: 12
  year: 1989
  ident: B56
  article-title: National field trial of the DSM-III-R diagnostic criteria for self-defeating personality disorder
  publication-title: Am J Psychiatry
  doi: 10.1176/ajp.146.12.1561
– volume: 4
  year: 2010
  ident: B64
  article-title: Whole brain resting-state analysis reveals decreased functional connectivity in major depression
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2010.00041
– volume: 33
  start-page: 279
  issue: 3
  year: 2009
  ident: B6
  article-title: Default-mode brain dysfunction in mental disorders: a systematic review
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2008.09.002
– volume: 6
  start-page: e25423
  issue: 9
  year: 2011
  ident: B42
  article-title: Altered topological properties of functional network connectivity in schizophrenia during resting state: a small-world brain network study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0025423
– volume: 67
  start-page: 912
  issue: 10
  year: 2010
  ident: B40
  article-title: Auditory hallucinations in schizophrenia are associated with reduced functional connectivity of the temporo-parietal area
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2009.11.017
– year: 2014
  ident: B73
  article-title: The when and where of working memory dysfunction in early-onset schizophrenia – a functional magnetic resonance imaging study
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhu050
– volume: 214
  start-page: 655
  issue: 5–6
  year: 2010
  ident: B28
  article-title: Saliency, switching, attention and control: a network model of insula function
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-010-0262-0
– volume: 49
  start-page: 16
  year: 2014
  ident: B87
  article-title: Abnormal default-mode network homogeneity in first-episode, drug-naive schizophrenia at rest
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
  doi: 10.1016/j.pnpbp.2013.10.021
– volume: 9
  issue: 7
  year: 2014
  ident: B54
  article-title: Longitudinal changes in total brain volume in schizophrenia: relation to symptom severity, cognition and antipsychotic medication
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0101689
– volume: 12
  start-page: 2415
  issue: 21
  year: 2012
  ident: B89
  article-title: Brain connectivity networks in schizophrenia underlying resting state functional magnetic resonance imaging
  publication-title: Curr Top Med Chem
  doi: 10.2174/156802612805289890
– volume: 211
  start-page: 104
  issue: 2
  year: 2013
  ident: B36
  article-title: Salience network-midbrain dysconnectivity and blunted reward signals in schizophrenia
  publication-title: Psychiatry Res
  doi: 10.1016/j.pscychresns.2012.06.003
– volume: 12
  start-page: 2404
  issue: 21
  year: 2012
  ident: B9
  article-title: Resting-state networks in schizophrenia
  publication-title: Curr Top Med Chem
  doi: 10.2174/156802612805289863
– volume: 10
  start-page: 186
  year: 2009
  ident: B45
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2575
– volume: 3
  start-page: 89
  issue: 2
  year: 1995
  ident: B3
  article-title: Schizophrenia: a disconnection syndrome?
  publication-title: Clin Neurosci
– volume: 35
  start-page: 509
  issue: 3
  year: 2009
  ident: B5
  article-title: Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbn176
– volume: 5
  start-page: 37
  year: 2011
  ident: B48
  article-title: Group-ICA model order highlights patterns of functional brain connectivity
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2011.00037
– volume: 106
  start-page: 1279
  issue: 4
  year: 2009
  ident: B19
  article-title: Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0809141106
– volume: 36
  start-page: 511
  issue: 3
  year: 2007
  ident: B66
  article-title: Assignment of functional activations to probabilistic cytoarchitectonic areas revisited
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.03.060
– volume: 148
  start-page: 50
  issue: 1–3
  year: 2013
  ident: B68
  article-title: Reduced neuro-integration from the dorsolateral prefrontal cortex to the whole brain and executive dysfunction in schizophrenia patients and their relatives
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2013.05.005
– volume: 166
  start-page: 196
  issue: 2
  year: 2009
  ident: B35
  article-title: Association of cerebral deficits with clinical symptoms in antipsychotic-naive first-episode schizophrenia: an optimized voxel-based morphometry and resting state functional connectivity study
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2008.08020183
– volume: 117
  start-page: 21
  issue: 1
  year: 2010
  ident: B23
  article-title: Resting-state functional network correlates of psychotic symptoms in schizophrenia
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2010.01.001
– volume: 67
  start-page: 231
  issue: 3
  year: 2010
  ident: B75
  article-title: Increased synaptic dopamine function in associative regions of the striatum in schizophrenia
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archgenpsychiatry.2010.10
– volume: 44
  start-page: 83
  issue: 1
  year: 2009
  ident: B43
  article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.03.061
– volume: 30
  start-page: 3865
  issue: 12
  year: 2009
  ident: B24
  article-title: Functional segmentation of the brain cortex using high model order group PICA
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20813
– volume: 51
  start-page: 1008
  issue: 12
  year: 2002
  ident: B38
  article-title: Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations
  publication-title: Biol Psychiatry
  doi: 10.1016/S0006-3223(02)01316-1
– volume: 19
  start-page: 253
  issue: 2 Pt1
  year: 2003
  ident: B44
  article-title: Independent component analysis of nondeterministic fMRI signal sources
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00097-1
– volume: 24
  start-page: 203
  issue: 2
  year: 1998
  ident: B1
  article-title: “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry?
  publication-title: Schizophr Bull
  doi: 10.1093/oxfordjournals.schbul.a033321
– volume: 67
  start-page: 772
  issue: 8
  year: 2010
  ident: B72
  article-title: Impaired visual object processing across an occipital-frontal-hippocampal brain network in schizophrenia
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archgenpsychiatry.2010.85
– volume: 6
  start-page: e14788
  issue: 4
  year: 2011
  ident: B47
  article-title: Assessing the influence of different ROI selection strategies on functional connectivity analyses of fMRI data acquired during steady-state conditions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0014788
– volume: 116
  start-page: 252
  issue: 1
  year: 2009
  ident: B80
  article-title: What is self-specific? Theoretical investigation and critical review of neuroimaging results
  publication-title: Psychol Rev
  doi: 10.1037/a0014172
– volume: 35
  start-page: 1110
  issue: 5
  year: 2011
  ident: B10
  article-title: Dysconnectivity in schizophrenia: where are we now?
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2010.11.004
– volume: 130
  start-page: 86
  issue: 1–3
  year: 2011
  ident: B29
  article-title: Functional resting-state networks are differentially affected in schizophrenia
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2011.03.010
– volume: 1
  start-page: 339
  issue: 4
  year: 2011
  ident: B69
  article-title: A sliding time-window ICA reveals spatial variability of the default mode network
  publication-title: Brain Connect
  doi: 10.1089/brain.2011.0036
– volume: 35
  start-page: 473
  issue: 2
  year: 2011
  ident: B91
  article-title: Antipsychotic dose and diminished neural modulation: a multi-site fMRI study
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
  doi: 10.1016/j.pnpbp.2010.12.001
– volume: 148
  start-page: 74
  issue: 1–3
  year: 2013
  ident: B84
  article-title: Links among resting-state default-mode network, salience network, and symptomatology in schizophrenia
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2013.05.007
– volume: 34
  start-page: 935
  issue: 6
  year: 2010
  ident: B79
  article-title: Self-reflection and the brain: a theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2009.12.004
– volume: 105
  start-page: 12569
  issue: 34
  year: 2008
  ident: B27
  article-title: A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0800005105
– volume: 24
  start-page: 147
  issue: 3
  year: 2013
  ident: B76
  article-title: The deficits on a cortical-subcortical loop of meaning processing in schizophrenia
  publication-title: Neuroreport
  doi: 10.1097/WNR.0b013e32835df562
– volume: 36
  start-page: 1043
  issue: 3
  year: 2012
  ident: B78
  article-title: Degrees of separation: a quantitative neuroimaging meta-analysis investigating self-specificity and shared neural activation between self- and other-reflection
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2011.12.013
– volume: 68
  start-page: 61
  issue: 1
  year: 2010
  ident: B31
  article-title: Brain connectivity is not only lower but different in schizophrenia: a combined anatomical and functional approach
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2010.03.035
– volume: 33
  start-page: 1004
  issue: 4
  year: 2007
  ident: B20
  article-title: Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbm052
– volume: 117
  start-page: 13
  issue: 1
  year: 2010
  ident: B77
  article-title: Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2009.09.030
– volume: 35
  start-page: 161
  issue: 1
  year: 2014
  ident: B49
  article-title: Altered resting-state activity in seasonal affective disorder
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22164
– volume: 193
  start-page: 1+
  issue: Suppl 193
  year: 1969
  ident: B53
  article-title: Groups at risk in low birth weight infants and perinatal mortality
  publication-title: Acta Paediatr Scand
– volume: 5
  start-page: 2
  year: 2011
  ident: B61
  article-title: A baseline for the multivariate comparison of resting-state networks
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2011.00002
– volume: 147
  start-page: 339
  issue: 2–3
  year: 2013
  ident: B34
  article-title: Schizophrenia and the brain’s control network: aberrant within- and between-network connectivity of the frontoparietal network in schizophrenia
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2013.04.011
– volume: 35
  start-page: 904
  issue: 4
  year: 2010
  ident: B90
  article-title: Treatment with olanzapine is associated with modulation of the default mode network in patients with Schizophrenia
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2009.192
– volume-title: 15th Annual Meeting of Organization of Human Brain Mapping, June 18-23
  year: 2009
  ident: B52
  article-title: Group comparison of resting-state FMRI data using multi-subject ICA and dual regression
  doi: 10.1016/S1053-8119(09)71511-3
– volume: 1124
  start-page: 1
  year: 2008
  ident: B14
  article-title: The brain’s default network: anatomy, function, and relevance to disease
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1440.011
– volume: 6
  start-page: e17500
  issue: 3
  year: 2011
  ident: B81
  article-title: Increased overlap between the brain areas involved in self-other distinction in schizophrenia
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0017500
– volume: 8
  start-page: e71061
  issue: 7
  year: 2013
  ident: B85
  article-title: Aberrant default mode functional connectivity in early onset schizophrenia
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0071061
– volume: 37
  start-page: 640
  issue: 3
  year: 2011
  ident: B22
  article-title: Altered functional and anatomical connectivity in schizophrenia
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbp131
– volume: 106
  start-page: 7209
  issue: 17
  year: 2009
  ident: B62
  article-title: Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0811879106
– volume: 33
  start-page: 994
  issue: 4
  year: 2007
  ident: B11
  article-title: Are anticorrelated networks in the brain relevant to schizophrenia?
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbm043
– volume: 49
  start-page: 2901
  issue: 4
  year: 2010
  ident: B88
  article-title: Localization of cerebral functional deficits in treatment-naive, first-episode schizophrenia using resting-state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.11.072
– volume: 417
  start-page: 297
  issue: 3
  year: 2007
  ident: B30
  article-title: Functional dysconnectivity oh the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2007.02.081
– volume: 15
  start-page: 1
  issue: 1
  year: 2002
  ident: B65
  article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.1058
– volume: 143
  start-page: 239
  issue: 2–3
  year: 2013
  ident: B86
  article-title: Default mode network in young people with familial risk for psychosis – the oulu brain and mind study
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2012.11.020
– volume: 49
  start-page: 2836
  issue: 10
  year: 2011
  ident: B71
  article-title: Disrupted functional connectivity for controlled visual processing as a basis for impaired spatial working memory in schizophrenia
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2011.06.009
– volume: 164
  start-page: 450
  issue: 3
  year: 2007
  ident: B15
  article-title: Aberrant “default mode” functional connectivity in schizophrenia
  publication-title: Am J Psychiatry
  doi: 10.1176/ajp.2007.164.3.450
– volume: 174
  start-page: 17
  issue: 1
  year: 2009
  ident: B21
  article-title: Retrosplenial cortex connectivity in schizophrenia
  publication-title: Psychiatry Res
  doi: 10.1016/j.pscychresns.2009.03.010
– volume: 127
  start-page: 58
  issue: 1–3
  year: 2011
  ident: B82
  article-title: Reduced prefrontal functional connectivity in the default mode network is related to greater psychopathology in subjects with high genetic loading for schizophrenia
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2010.12.022
– volume: 14
  start-page: 180
  issue: 4
  year: 2010
  ident: B17
  article-title: Two views of brain function
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2010.01.008
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  ident: B57
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 30
  start-page: 693
  issue: 4
  year: 2009
  ident: B37
  article-title: A systematic fMRI investigation of the brain systems subserving different working memory components in schizophrenia
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2009.06850.x
– volume: 31
  start-page: 1207
  issue: 8
  year: 2010
  ident: B51
  article-title: The effect of model order selection in group PICA
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20929
– volume: 17
  start-page: 143
  issue: 3
  year: 2002
  ident: B58
  article-title: Fast robust automated brain extraction
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.10062
– volume: 4
  year: 2010
  ident: B63
  article-title: Age-related differences in functional nodes of the brain cortex – a high model order group ICA study
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2010.00032
– volume: 360
  start-page: 1001
  issue: 1457
  year: 2005
  ident: B60
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2005.1634
– volume: 20
  start-page: 1297
  issue: 4
  year: 2008
  ident: B4
  article-title: Developmental disruptions in neural connectivity in the pathophysiology of schizophrenia
  publication-title: Dev Psychopathol
  doi: 10.1017/S095457940800062X
– volume: 98
  start-page: 676
  issue: 2
  year: 2001
  ident: B16
  article-title: A default mode of brain function
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.98.2.676
– volume: 36
  start-page: 472
  issue: 3
  year: 2010
  ident: B74
  article-title: Dopaminergic dysfunction in schizophrenia: salience attribution revisited
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbq031
– volume: 15
  start-page: 483
  issue: 10
  year: 2011
  ident: B67
  article-title: Large-scale brain networks and psychopathology: a unifying triple network model
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2011.08.003
– volume: 19
  start-page: 72
  issue: 1
  year: 2009
  ident: B8
  article-title: Resting-state functional connectivity reflects structural connectivity in the default mode network
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn059
– volume: 79
  start-page: 814
  issue: 4
  year: 2013
  ident: B70
  article-title: Neural primacy of the salience processing system in schizophrenia
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.06.027
– volume: 5
  start-page: 103
  year: 2012
  ident: B13
  article-title: Modular organization of functional network connectivity in healthy controls and patients with schizophrenia during the resting state
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2011.00103
– volume: 31
  start-page: 2003
  issue: 12
  year: 2010
  ident: B18
  article-title: Overall brain connectivity maps show cortico-subcortical abnormalities in schizophrenia
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20993
– volume: 138
  start-page: 143
  issue: 2–3
  year: 2012
  ident: B39
  article-title: Default mode network activity in schizophrenia studied at resting state using probabilistic ICA
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2012.01.036
– volume: 59
  start-page: 4141
  issue: 4
  year: 2012
  ident: B50
  article-title: Capturing inter-subject variability with group independent component analysis of fMRI data: a simulation study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.010
– volume: 6
  start-page: 184
  year: 2012
  ident: B12
  article-title: A framework for interpreting functional networks in schizophrenia
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2012.00184
– volume: 23
  start-page: 137
  issue: 2
  year: 2004
  ident: B59
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2003.822821
– volume: 69
  start-page: 967
  issue: 10
  year: 2011
  ident: B32
  article-title: Brain network connectivity in individuals with schizophrenia and their siblings
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2010.11.009
– volume: 33
  start-page: 1464
  issue: 8
  year: 2009
  ident: B41
  article-title: Temporally anticorrelated brain networks during working memory performance reveal aberrant prefrontal and hippocampal connectivity in patients with schizophrenia
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
  doi: 10.1016/j.pnpbp.2009.07.032
– volume: 6
  start-page: e21976
  issue: 7
  year: 2011
  ident: B46
  article-title: graph theoretical analysis of functional brain networks: test-retest evaluation on short- and long-term resting-state functional MRI data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0021976
– volume: 27
  start-page: 2349
  issue: 9
  year: 2007
  ident: B26
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5587-06.2007
– volume: 28
  start-page: 143
  issue: 2–3)
  year: 1997
  ident: B2
  article-title: The dysplastic net hypothesis: an integration of developmental and dysconnectivity theories of schizophrenia
  publication-title: Schizophr Res
  doi: 10.1016/S0920-9964(97)00114-X
– volume: 102
  start-page: 9673
  issue: 27
  year: 2005
  ident: B25
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0504136102
– reference: 21408008 - PLoS One. 2011 Mar 09;6(3):e17500
– reference: 14964560 - IEEE Trans Med Imaging. 2004 Feb;23(2):137-52
– reference: 11747097 - Hum Brain Mapp. 2002 Jan;15(1):1-25
– reference: 17399900 - Neurosci Lett. 2007 May 7;417(3):297-302
– reference: 20225222 - Hum Brain Mapp. 2010 Dec;31(12):2003-14
– reference: 23279179 - Curr Top Med Chem. 2012;12(21):2404-14
– reference: 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8
– reference: 22230705 - Neurosci Biobehav Rev. 2012 Mar;36(3):1043-59
– reference: 20206576 - Trends Cogn Sci. 2010 Apr;14(4):180-90
– reference: 22275887 - Front Syst Neurosci. 2012 Jan 10;5:103
– reference: 21442040 - Front Syst Neurosci. 2011 Feb 04;5:2
– reference: 7583624 - Clin Neurosci. 1995;3(2):89-97
– reference: 19507160 - Hum Brain Mapp. 2009 Dec;30(12):3865-86
– reference: 17499520 - Neuroimage. 2007 Jul 1;36(3):511-21
– reference: 19159156 - Psychol Rev. 2009 Jan;116(1):252-82
– reference: 19357304 - Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7209-14
– reference: 25034761 - Schizophr Res. 2014 Sep;158(1-3):134-41
– reference: 23727217 - Schizophr Res. 2013 Aug;148(1-3):74-80
– reference: 22578721 - Schizophr Res. 2012 Jul;138(2-3):143-9
– reference: 12377157 - Neuroimage. 2002 Oct;17(2):825-41
– reference: 20941370 - Front Syst Neurosci. 2010 Sep 20;4:null
– reference: 21185903 - Prog Neuropsychopharmacol Biol Psychiatry. 2011 Mar 30;35(2):473-82
– reference: 19164577 - Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1279-84
– reference: 20097544 - Schizophr Res. 2010 Mar;117(1):21-30
– reference: 17556752 - Schizophr Bull. 2007 Jul;33(4):1004-12
– reference: 21818285 - PLoS One. 2011;6(7):e21976
– reference: 21115039 - Neurosci Biobehav Rev. 2011 Apr;35(5):1110-24
– reference: 4911003 - Acta Paediatr Scand. 1969;193:Suppl 193:1+
– reference: 18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38
– reference: 23972602 - Neuron. 2013 Aug 21;79(4):814-28
– reference: 20497901 - Biol Psychiatry. 2010 Jul 1;68(1):61-9
– reference: 2686476 - Am J Psychiatry. 1989 Dec;146(12):1561-7
– reference: 20679585 - Arch Gen Psychiatry. 2010 Aug;67(8):772-82
– reference: 12391568 - Hum Brain Mapp. 2002 Nov;17(3):143-55
– reference: 19783410 - Psychiatry Res. 2009 Oct 30;174(1):17-23
– reference: 18723676 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12569-74
– reference: 19155345 - Schizophr Bull. 2009 May;35(3):509-27
– reference: 21791169 - J Psychiatry Neurosci. 2011 Nov;36(6):366-74
– reference: 20194823 - Arch Gen Psychiatry. 2010 Mar;67(3):231-9
– reference: 20453041 - Schizophr Bull. 2010 May;36(3):472-85
– reference: 19738925 - Front Hum Neurosci. 2009 Aug 17;3:17
– reference: 23923052 - PLoS One. 2013 Jul 29;8(7):e71061
– reference: 23245776 - Schizophr Res. 2013 Feb;143(2-3):239-45
– reference: 23146249 - Psychiatry Res. 2013 Feb 28;211(2):104-11
– reference: 21980454 - PLoS One. 2011;6(9):e25423
– reference: 19956088 - Neuropsychopharmacology. 2010 Mar;35(4):904-12
– reference: 17329470 - Am J Psychiatry. 2007 Mar;164(3):450-7
– reference: 17329432 - J Neurosci. 2007 Feb 28;27(9):2349-56
– reference: 24675869 - Cereb Cortex. 2015 Sep;25(9):2494-506
– reference: 19920062 - Schizophr Bull. 2011 May;37(3):640-50
– reference: 22432423 - Brain Connect. 2011;1(4):339-47
– reference: 21533283 - PLoS One. 2011 Apr 13;6(4):e14788
– reference: 12814576 - Neuroimage. 2003 Jun;19(2 Pt 1):253-60
– reference: 21908230 - Trends Cogn Sci. 2011 Oct;15(10):483-506
– reference: 21458238 - Schizophr Res. 2011 Aug;130(1-3):86-93
– reference: 23279180 - Curr Top Med Chem. 2012;12(21):2415-25
– reference: 19666074 - Prog Neuropsychopharmacol Biol Psychiatry. 2009 Nov 13;33(8):1464-73
– reference: 20553873 - Psychiatry Res. 2010 Jul 30;183(1):59-68
– reference: 23324649 - Neuroreport. 2013 Feb 13;24(3):147-51
– reference: 19686473 - Eur J Neurosci. 2009 Aug;30(4):693-702
– reference: 12062886 - Biol Psychiatry. 2002 Jun 15;51(12):1008-11
– reference: 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13
– reference: 22987670 - Hum Brain Mapp. 2014 Jan;35(1):161-72
– reference: 20015455 - Neurosci Biobehav Rev. 2010 May;34(6):935-46
– reference: 18403396 - Cereb Cortex. 2009 Jan;19(1):72-8
– reference: 23726722 - Schizophr Res. 2013 Aug;148(1-3):50-8
– reference: 20063361 - Hum Brain Mapp. 2010 Aug;31(8):1207-16
– reference: 20060103 - Biol Psychiatry. 2010 May 15;67(10):912-8
– reference: 18501637 - Neuroimage. 2009 Jan 1;44(1):83-98
– reference: 23706416 - Schizophr Res. 2013 Jul;147(2-3):339-47
– reference: 18981063 - Am J Psychiatry. 2009 Feb;166(2):196-205
– reference: 18824195 - Neurosci Biobehav Rev. 2009 Mar;33(3):279-96
– reference: 21277171 - Schizophr Res. 2011 Apr;127(1-3):58-65
– reference: 21687724 - Front Syst Neurosci. 2011 Jun 03;5:37
– reference: 22019879 - Neuroimage. 2012 Feb 15;59(4):4141-59
– reference: 19854028 - Schizophr Res. 2010 Mar;117(1):13-20
– reference: 9613621 - Schizophr Bull. 1998;24(2):203-18
– reference: 21703287 - Neuropsychologia. 2011 Aug;49(10):2836-47
– reference: 25036617 - PLoS One. 2014 Jul 18;9(7):e101689
– reference: 9468349 - Schizophr Res. 1997 Dec 19;28(2-3):143-56
– reference: 19190637 - Nat Rev Neurosci. 2009 Mar;10(3):186-98
– reference: 17493957 - Schizophr Bull. 2007 Jul;33(4):994-1003
– reference: 21193174 - Biol Psychiatry. 2011 May 15;69(10):967-73
– reference: 24216538 - Prog Neuropsychopharmacol Biol Psychiatry. 2014 Mar 3;49:16-20
– reference: 19963069 - Neuroimage. 2010 Feb 15;49(4):2901-6
– reference: 20953235 - Front Syst Neurosci. 2010 Aug 26;4:null
– reference: 20512370 - Brain Struct Funct. 2010 Jun;214(5-6):655-67
– reference: 18838043 - Dev Psychopathol. 2008 Fall;20(4):1297-327
– reference: 22737116 - Front Hum Neurosci. 2012 Jun 21;6:184
– reference: 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98 (2):676-82
SSID ssj0000399365
Score 2.2458396
Snippet Neurophysiological changes of schizophrenia are currently linked to disturbances in connectivity between functional brain networks. Functional magnetic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 26
SubjectTerms Caudate Nucleus
default-mode Network
DLPFC
fMRI BOLD
Psychiatry
Schizophrenia
ventral striatum
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtUwELVQV2wQiFd4aZDYsIhu4jhOvLxUVAUJVlTqzvJTVKrSqklU2PEPbPk6voQZO73KRQg2LJJFEiuWZ-JzxhmfYexV7bmVXLXovMFigCLq0srKlMbXKjgjow-0OfnDR3l8It6ftqerUl-UE5blgfPAbYRxquMCAxUbEeylkq6vDTpijFXo20izL2LeKphKczDhrmzzf0mMwtQmXo5fKXeypjWUpKWwwqEk1_8njvl7quQKe47usjsLaYRt7uw9disM99mPrQ1XiDQTEDblJT1wlLfickUIOBsA6R34EM18PgEVvQEzeFjeAuFLcDNNdzDkZPCRmoyzpbWZEWiJFsZ1Uh78_PYdtnBNNXVLS8UlgEp7IPpB2pgE7w63kARrH7CTo7efDo_LpdZC6YTkU-k88kTXtpEL2Qbe264ylsvYtL6yDg-LVI-0U5vQe4WYVhnTNHjqorN13zUP2cFwMYTHDCz3URiMs1QTRV85JbEVxsGGKxmVFwXb3Iy8dosQOdXDONcYkJCtdLKVJlvpZKuCvd61uMwiHH959g0Zc_ccyWenC-hUenEq_S-nKtjLG1fQ-LnRPxQzhIt51LXEgI04bl-wR9k1dq-i2K0TQhWs23Oavb7s3xnOPidJb4FkAqnXk__R-afsNg1H2ncvn7GD6WoOz5E5TfZF-kh-AdqoG9c
  priority: 102
  providerName: Directory of Open Access Journals
Title Aberrant Functional Connectivity in the Default Mode and Central Executive Networks in Subjects with Schizophrenia – A Whole-Brain Resting-State ICA Study
URI https://www.ncbi.nlm.nih.gov/pubmed/25767449
https://www.proquest.com/docview/1664205758
https://pubmed.ncbi.nlm.nih.gov/PMC4341512
https://doaj.org/article/4ac9724721bf456696c81a183ff0e85f
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXLggUHkESjVIXDiEJo7jxIcKbR-rFqk9ACt6i2zHbiutsmWTlbp_hV_LjJMuXbRCPWwOu3GSzcx4vm88nmHsY1pzI7nKUXmdQYIi0tjIRMe6TpWzWvra0ebks3N5MhFfL_KLv9ujhxfYbqR21E9qMp9-vv21_IIGv0-ME_3tnr9pl5QWmVJ4BDnFY_YE_VJBZno2gP0wL5MvDr0lUylFTEtY_brlxous-alQzn8TBv03lfKebxo_Z88GUAmjXgtesEeu2Wa_R8bN0RN1MEbf1Yf8IOS12L5jBFw3gPAPjpzXi2kH1BYNdFPDEPGF41tnFzQdwnmfLN7SEJxqKHbTAoVw4fv9pD2IYQQ_qeNufECtJ-Ab1fBoLuMAaeH0cASUt7h8ySbj4x-HJ_HQiSG2QvIutjWiSJvnnguZO16aItGGS5_ldWIsfgwCQaqsmrmyVujxEq2zDA-FtyYti-wV22pmjXvDwPDaC40sTGVelIlVEkchS9ZcSa9qEbG9u_de2aFMOXXLmFZIV0hSVZBURZKqgqQi9mk14qYv0fGfcw9IlKvzqLh2-GI2v6wGW62EtqrgArmx8YgvpZK2TDXOfd4nrsx9xD7cKUKFxkgrLLpxs0VbkWJxQsBlxF73irG6FTG7QggVsWJNZdaeZf2X5voqFPwWCDUQmL19wH3fsaf0b8Ome7nDtrr5wr1H2NSZ3RBu2A028QfTEhj3
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aberrant+Functional+Connectivity+in+the+Default+Mode+and+Central+Executive+Networks+in+Subjects+with+Schizophrenia+-+A+Whole-Brain+Resting-State+ICA+Study&rft.jtitle=Frontiers+in+psychiatry&rft.au=Littow%2C+Harri&rft.au=Huossa%2C+Ville&rft.au=Karjalainen%2C+Sami&rft.au=J%C3%A4%C3%A4skel%C3%A4inen%2C+Erika&rft.date=2015-02-26&rft.issn=1664-0640&rft.eissn=1664-0640&rft.volume=6&rft.spage=26&rft_id=info:doi/10.3389%2Ffpsyt.2015.00026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-0640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-0640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-0640&client=summon