A Model Combining Multi Branch Spectral-Temporal CNN, Efficient Channel Attention, and LightGBM For MI-BCI Classification
Accurately decoding motor imagery (MI) brain-computer interface (BCI) tasks has remained a challenge for both neuroscience research and clinical diagnosis. Unfortunately, less subject information and low signal-to-noise ratio of MI electroencephalography (EEG) signals make it difficult to decode the...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 31; p. 1 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Accurately decoding motor imagery (MI) brain-computer interface (BCI) tasks has remained a challenge for both neuroscience research and clinical diagnosis. Unfortunately, less subject information and low signal-to-noise ratio of MI electroencephalography (EEG) signals make it difficult to decode the movement intentions of users. In this study, we proposed an end-to-end deep learning model, a multi-branch spectral-temporal convolutional neural network with channel attention and LightGBM model (MBSTCNN-ECA-LightGBM), to decode MI-EEG tasks. We first constructed a multi branch CNN module to learn spectral-temporal domain features. Subsequently, we added an efficient channel attention mechanism module to obtain more discriminative features. Finally, LightGBM was applied to decode the MI multi-classification tasks. The within-subject cross-session training strategy was used to validate classification results. The experimental results showed that the model achieved an average accuracy of 86% on the two-class MI-BCI data and an average accuracy of 74% on the four-class MI-BCI data, which outperformed current state-of-the-art methods. The proposed MBSTCNN-ECA-LightGBM can efficiently decode the spectral and temporal domain information of EEG, improving the performance of MI-based BCIs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1534-4320 1558-0210 1558-0210 |
DOI: | 10.1109/TNSRE.2023.3243992 |