Evidence that the endometrial microbiota has an effect on implantation success or failure
Bacterial cells in the human body account for 1–3% of total body weight and are at least equal in number to human cells. Recent research has focused on understanding how the different bacterial communities in the body (eg, gut, respiratory, skin, and vaginal microbiomes) predispose to health and dis...
Saved in:
Published in | American journal of obstetrics and gynecology Vol. 215; no. 6; pp. 684 - 703 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bacterial cells in the human body account for 1–3% of total body weight and are at least equal in number to human cells. Recent research has focused on understanding how the different bacterial communities in the body (eg, gut, respiratory, skin, and vaginal microbiomes) predispose to health and disease. The microbiota of the reproductive tract has been inferred from the vaginal bacterial communities, and the uterus has been classically considered a sterile cavity. However, while the vaginal microbiota has been investigated in depth, there is a paucity of consistent data regarding the existence of an endometrial microbiota and its possible impact in reproductive function.
This study sought to test the existence of an endometrial microbiota that differs from that in the vagina, assess its hormonal regulation, and analyze the impact of the endometrial microbial community on reproductive outcome in infertile patients undergoing in vitro fertilization.
To identify the existence of an endometrial microbiota, paired samples of endometrial fluid and vaginal aspirates were obtained simultaneously from 13 fertile women in prereceptive and receptive phases within the same menstrual cycle (total samples analyzed n = 52). To investigate the hormonal regulation of the endometrial microbiota during the acquisition of endometrial receptivity, endometrial fluid was collected at prereceptive and receptive phases within the same cycle from 22 fertile women (n = 44). Finally, the reproductive impact of an altered endometrial microbiota in endometrial fluid was assessed by implantation, ongoing pregnancy, and live birth rates in 35 infertile patients undergoing in vitro fertilization (total samples n = 41) with a receptive endometrium diagnosed using the endometrial receptivity array. Genomic DNA was obtained either from endometrial fluid or vaginal aspirate and sequenced by 454 pyrosequencing of the V3–V5 region of the 16S ribosomal RNA (rRNA) gene; the resulting sequences were taxonomically assigned using QIIME. Data analysis was performed using R packages. The χ2 test, Student t test, and analysis of variance were used for statistical analyses.
When bacterial communities from paired endometrial fluid and vaginal aspirate samples within the same subjects were interrogated, different bacterial communities were detected between the uterine cavity and the vagina of some subjects. Based on its composition, the microbiota in the endometrial fluid, comprising up to 191 operational taxonomic units, was defined as a Lactobacillus-dominated microbiota (>90% Lactobacillus spp.) or a non-Lactobacillus-dominated microbiota (<90% Lactobacillus spp. with >10% of other bacteria). Although the endometrial microbiota was not hormonally regulated during the acquisition of endometrial receptivity, the presence of a non-Lactobacillus-dominated microbiota in a receptive endometrium was associated with significant decreases in implantation [60.7% vs 23.1% (P = .02)], pregnancy [70.6% vs 33.3% (P = .03)], ongoing pregnancy [58.8% vs 13.3% (P = .02)], and live birth [58.8% vs 6.7% (P = .002)] rates.
Our results demonstrate the existence of an endometrial microbiota that is highly stable during the acquisition of endometrial receptivity. However, pathological modification of its profile is associated with poor reproductive outcomes for in vitro fertilization patients. This finding adds a novel microbiological dimension to the reproductive process. |
---|---|
AbstractList | Bacterial cells in the human body account for 1–3% of total body weight and are at least equal in number to human cells. Recent research has focused on understanding how the different bacterial communities in the body (eg, gut, respiratory, skin, and vaginal microbiomes) predispose to health and disease. The microbiota of the reproductive tract has been inferred from the vaginal bacterial communities, and the uterus has been classically considered a sterile cavity. However, while the vaginal microbiota has been investigated in depth, there is a paucity of consistent data regarding the existence of an endometrial microbiota and its possible impact in reproductive function.
This study sought to test the existence of an endometrial microbiota that differs from that in the vagina, assess its hormonal regulation, and analyze the impact of the endometrial microbial community on reproductive outcome in infertile patients undergoing in vitro fertilization.
To identify the existence of an endometrial microbiota, paired samples of endometrial fluid and vaginal aspirates were obtained simultaneously from 13 fertile women in prereceptive and receptive phases within the same menstrual cycle (total samples analyzed n = 52). To investigate the hormonal regulation of the endometrial microbiota during the acquisition of endometrial receptivity, endometrial fluid was collected at prereceptive and receptive phases within the same cycle from 22 fertile women (n = 44). Finally, the reproductive impact of an altered endometrial microbiota in endometrial fluid was assessed by implantation, ongoing pregnancy, and live birth rates in 35 infertile patients undergoing in vitro fertilization (total samples n = 41) with a receptive endometrium diagnosed using the endometrial receptivity array. Genomic DNA was obtained either from endometrial fluid or vaginal aspirate and sequenced by 454 pyrosequencing of the V3–V5 region of the 16S ribosomal RNA (rRNA) gene; the resulting sequences were taxonomically assigned using QIIME. Data analysis was performed using R packages. The χ2 test, Student t test, and analysis of variance were used for statistical analyses.
When bacterial communities from paired endometrial fluid and vaginal aspirate samples within the same subjects were interrogated, different bacterial communities were detected between the uterine cavity and the vagina of some subjects. Based on its composition, the microbiota in the endometrial fluid, comprising up to 191 operational taxonomic units, was defined as a Lactobacillus-dominated microbiota (>90% Lactobacillus spp.) or a non-Lactobacillus-dominated microbiota (<90% Lactobacillus spp. with >10% of other bacteria). Although the endometrial microbiota was not hormonally regulated during the acquisition of endometrial receptivity, the presence of a non-Lactobacillus-dominated microbiota in a receptive endometrium was associated with significant decreases in implantation [60.7% vs 23.1% (P = .02)], pregnancy [70.6% vs 33.3% (P = .03)], ongoing pregnancy [58.8% vs 13.3% (P = .02)], and live birth [58.8% vs 6.7% (P = .002)] rates.
Our results demonstrate the existence of an endometrial microbiota that is highly stable during the acquisition of endometrial receptivity. However, pathological modification of its profile is associated with poor reproductive outcomes for in vitro fertilization patients. This finding adds a novel microbiological dimension to the reproductive process. Background Bacterial cells in the human body account for 1–3% of total body weight and are at least equal in number to human cells. Recent research has focused on understanding how the different bacterial communities in the body (eg, gut, respiratory, skin, and vaginal microbiomes) predispose to health and disease. The microbiota of the reproductive tract has been inferred from the vaginal bacterial communities, and the uterus has been classically considered a sterile cavity. However, while the vaginal microbiota has been investigated in depth, there is a paucity of consistent data regarding the existence of an endometrial microbiota and its possible impact in reproductive function. Objective This study sought to test the existence of an endometrial microbiota that differs from that in the vagina, assess its hormonal regulation, and analyze the impact of the endometrial microbial community on reproductive outcome in infertile patients undergoing in vitro fertilization. Study Design To identify the existence of an endometrial microbiota, paired samples of endometrial fluid and vaginal aspirates were obtained simultaneously from 13 fertile women in prereceptive and receptive phases within the same menstrual cycle (total samples analyzed n = 52). To investigate the hormonal regulation of the endometrial microbiota during the acquisition of endometrial receptivity, endometrial fluid was collected at prereceptive and receptive phases within the same cycle from 22 fertile women (n = 44). Finally, the reproductive impact of an altered endometrial microbiota in endometrial fluid was assessed by implantation, ongoing pregnancy, and live birth rates in 35 infertile patients undergoing in vitro fertilization (total samples n = 41) with a receptive endometrium diagnosed using the endometrial receptivity array. Genomic DNA was obtained either from endometrial fluid or vaginal aspirate and sequenced by 454 pyrosequencing of the V3–V5 region of the 16S ribosomal RNA (rRNA) gene; the resulting sequences were taxonomically assigned using QIIME. Data analysis was performed using R packages. The χ2 test, Student t test, and analysis of variance were used for statistical analyses. Results When bacterial communities from paired endometrial fluid and vaginal aspirate samples within the same subjects were interrogated, different bacterial communities were detected between the uterine cavity and the vagina of some subjects. Based on its composition, the microbiota in the endometrial fluid, comprising up to 191 operational taxonomic units, was defined as a Lactobacillus -dominated microbiota (>90% Lactobacillus spp.) or a non- Lactobacillus -dominated microbiota (<90% Lactobacillus spp. with >10% of other bacteria). Although the endometrial microbiota was not hormonally regulated during the acquisition of endometrial receptivity, the presence of a non- Lactobacillus -dominated microbiota in a receptive endometrium was associated with significant decreases in implantation [60.7% vs 23.1% ( P = .02)], pregnancy [70.6% vs 33.3% ( P = .03)], ongoing pregnancy [58.8% vs 13.3% ( P = .02)], and live birth [58.8% vs 6.7% ( P = .002)] rates. Conclusion Our results demonstrate the existence of an endometrial microbiota that is highly stable during the acquisition of endometrial receptivity. However, pathological modification of its profile is associated with poor reproductive outcomes for in vitro fertilization patients. This finding adds a novel microbiological dimension to the reproductive process. Bacterial cells in the human body account for 1-3% of total body weight and are at least equal in number to human cells. Recent research has focused on understanding how the different bacterial communities in the body (eg, gut, respiratory, skin, and vaginal microbiomes) predispose to health and disease. The microbiota of the reproductive tract has been inferred from the vaginal bacterial communities, and the uterus has been classically considered a sterile cavity. However, while the vaginal microbiota has been investigated in depth, there is a paucity of consistent data regarding the existence of an endometrial microbiota and its possible impact in reproductive function. This study sought to test the existence of an endometrial microbiota that differs from that in the vagina, assess its hormonal regulation, and analyze the impact of the endometrial microbial community on reproductive outcome in infertile patients undergoing in vitro fertilization. To identify the existence of an endometrial microbiota, paired samples of endometrial fluid and vaginal aspirates were obtained simultaneously from 13 fertile women in prereceptive and receptive phases within the same menstrual cycle (total samples analyzed n = 52). To investigate the hormonal regulation of the endometrial microbiota during the acquisition of endometrial receptivity, endometrial fluid was collected at prereceptive and receptive phases within the same cycle from 22 fertile women (n = 44). Finally, the reproductive impact of an altered endometrial microbiota in endometrial fluid was assessed by implantation, ongoing pregnancy, and live birth rates in 35 infertile patients undergoing in vitro fertilization (total samples n = 41) with a receptive endometrium diagnosed using the endometrial receptivity array. Genomic DNA was obtained either from endometrial fluid or vaginal aspirate and sequenced by 454 pyrosequencing of the V3-V5 region of the 16S ribosomal RNA (rRNA) gene; the resulting sequences were taxonomically assigned using QIIME. Data analysis was performed using R packages. The χ test, Student t test, and analysis of variance were used for statistical analyses. When bacterial communities from paired endometrial fluid and vaginal aspirate samples within the same subjects were interrogated, different bacterial communities were detected between the uterine cavity and the vagina of some subjects. Based on its composition, the microbiota in the endometrial fluid, comprising up to 191 operational taxonomic units, was defined as a Lactobacillus-dominated microbiota (>90% Lactobacillus spp.) or a non-Lactobacillus-dominated microbiota (<90% Lactobacillus spp. with >10% of other bacteria). Although the endometrial microbiota was not hormonally regulated during the acquisition of endometrial receptivity, the presence of a non-Lactobacillus-dominated microbiota in a receptive endometrium was associated with significant decreases in implantation [60.7% vs 23.1% (P = .02)], pregnancy [70.6% vs 33.3% (P = .03)], ongoing pregnancy [58.8% vs 13.3% (P = .02)], and live birth [58.8% vs 6.7% (P = .002)] rates. Our results demonstrate the existence of an endometrial microbiota that is highly stable during the acquisition of endometrial receptivity. However, pathological modification of its profile is associated with poor reproductive outcomes for in vitro fertilization patients. This finding adds a novel microbiological dimension to the reproductive process. Bacterial cells in the human body account for 1-3% of total body weight and are at least equal in number to human cells. Recent research has focused on understanding how the different bacterial communities in the body (eg, gut, respiratory, skin, and vaginal microbiomes) predispose to health and disease. The microbiota of the reproductive tract has been inferred from the vaginal bacterial communities, and the uterus has been classically considered a sterile cavity. However, while the vaginal microbiota has been investigated in depth, there is a paucity of consistent data regarding the existence of an endometrial microbiota and its possible impact in reproductive function.BACKGROUNDBacterial cells in the human body account for 1-3% of total body weight and are at least equal in number to human cells. Recent research has focused on understanding how the different bacterial communities in the body (eg, gut, respiratory, skin, and vaginal microbiomes) predispose to health and disease. The microbiota of the reproductive tract has been inferred from the vaginal bacterial communities, and the uterus has been classically considered a sterile cavity. However, while the vaginal microbiota has been investigated in depth, there is a paucity of consistent data regarding the existence of an endometrial microbiota and its possible impact in reproductive function.This study sought to test the existence of an endometrial microbiota that differs from that in the vagina, assess its hormonal regulation, and analyze the impact of the endometrial microbial community on reproductive outcome in infertile patients undergoing in vitro fertilization.OBJECTIVEThis study sought to test the existence of an endometrial microbiota that differs from that in the vagina, assess its hormonal regulation, and analyze the impact of the endometrial microbial community on reproductive outcome in infertile patients undergoing in vitro fertilization.To identify the existence of an endometrial microbiota, paired samples of endometrial fluid and vaginal aspirates were obtained simultaneously from 13 fertile women in prereceptive and receptive phases within the same menstrual cycle (total samples analyzed n = 52). To investigate the hormonal regulation of the endometrial microbiota during the acquisition of endometrial receptivity, endometrial fluid was collected at prereceptive and receptive phases within the same cycle from 22 fertile women (n = 44). Finally, the reproductive impact of an altered endometrial microbiota in endometrial fluid was assessed by implantation, ongoing pregnancy, and live birth rates in 35 infertile patients undergoing in vitro fertilization (total samples n = 41) with a receptive endometrium diagnosed using the endometrial receptivity array. Genomic DNA was obtained either from endometrial fluid or vaginal aspirate and sequenced by 454 pyrosequencing of the V3-V5 region of the 16S ribosomal RNA (rRNA) gene; the resulting sequences were taxonomically assigned using QIIME. Data analysis was performed using R packages. The χ2 test, Student t test, and analysis of variance were used for statistical analyses.STUDY DESIGNTo identify the existence of an endometrial microbiota, paired samples of endometrial fluid and vaginal aspirates were obtained simultaneously from 13 fertile women in prereceptive and receptive phases within the same menstrual cycle (total samples analyzed n = 52). To investigate the hormonal regulation of the endometrial microbiota during the acquisition of endometrial receptivity, endometrial fluid was collected at prereceptive and receptive phases within the same cycle from 22 fertile women (n = 44). Finally, the reproductive impact of an altered endometrial microbiota in endometrial fluid was assessed by implantation, ongoing pregnancy, and live birth rates in 35 infertile patients undergoing in vitro fertilization (total samples n = 41) with a receptive endometrium diagnosed using the endometrial receptivity array. Genomic DNA was obtained either from endometrial fluid or vaginal aspirate and sequenced by 454 pyrosequencing of the V3-V5 region of the 16S ribosomal RNA (rRNA) gene; the resulting sequences were taxonomically assigned using QIIME. Data analysis was performed using R packages. The χ2 test, Student t test, and analysis of variance were used for statistical analyses.When bacterial communities from paired endometrial fluid and vaginal aspirate samples within the same subjects were interrogated, different bacterial communities were detected between the uterine cavity and the vagina of some subjects. Based on its composition, the microbiota in the endometrial fluid, comprising up to 191 operational taxonomic units, was defined as a Lactobacillus-dominated microbiota (>90% Lactobacillus spp.) or a non-Lactobacillus-dominated microbiota (<90% Lactobacillus spp. with >10% of other bacteria). Although the endometrial microbiota was not hormonally regulated during the acquisition of endometrial receptivity, the presence of a non-Lactobacillus-dominated microbiota in a receptive endometrium was associated with significant decreases in implantation [60.7% vs 23.1% (P = .02)], pregnancy [70.6% vs 33.3% (P = .03)], ongoing pregnancy [58.8% vs 13.3% (P = .02)], and live birth [58.8% vs 6.7% (P = .002)] rates.RESULTSWhen bacterial communities from paired endometrial fluid and vaginal aspirate samples within the same subjects were interrogated, different bacterial communities were detected between the uterine cavity and the vagina of some subjects. Based on its composition, the microbiota in the endometrial fluid, comprising up to 191 operational taxonomic units, was defined as a Lactobacillus-dominated microbiota (>90% Lactobacillus spp.) or a non-Lactobacillus-dominated microbiota (<90% Lactobacillus spp. with >10% of other bacteria). Although the endometrial microbiota was not hormonally regulated during the acquisition of endometrial receptivity, the presence of a non-Lactobacillus-dominated microbiota in a receptive endometrium was associated with significant decreases in implantation [60.7% vs 23.1% (P = .02)], pregnancy [70.6% vs 33.3% (P = .03)], ongoing pregnancy [58.8% vs 13.3% (P = .02)], and live birth [58.8% vs 6.7% (P = .002)] rates.Our results demonstrate the existence of an endometrial microbiota that is highly stable during the acquisition of endometrial receptivity. However, pathological modification of its profile is associated with poor reproductive outcomes for in vitro fertilization patients. This finding adds a novel microbiological dimension to the reproductive process.CONCLUSIONOur results demonstrate the existence of an endometrial microbiota that is highly stable during the acquisition of endometrial receptivity. However, pathological modification of its profile is associated with poor reproductive outcomes for in vitro fertilization patients. This finding adds a novel microbiological dimension to the reproductive process. |
Author | Pellicer, Antonio Vilella, Felipe Martinez-Blanch, Juan F. Alonso, Roberto Simon, Carlos Moreno, Inmaculada Ramon, Daniel Codoñer, Francisco M. Remohí, Jose Valbuena, Diana Jimenez-Almazán, Jorge Alamá, Pilar |
Author_xml | – sequence: 1 givenname: Inmaculada surname: Moreno fullname: Moreno, Inmaculada organization: Department of Research and Development, Igenomix SL, Valencia, Spain – sequence: 2 givenname: Francisco M. surname: Codoñer fullname: Codoñer, Francisco M. organization: Lifesequencing SL, Valencia, Spain – sequence: 3 givenname: Felipe surname: Vilella fullname: Vilella, Felipe organization: Fundación Instituto Valenciano de Infertilidad (IVI), Valencia, Spain – sequence: 4 givenname: Diana surname: Valbuena fullname: Valbuena, Diana organization: Department of Research and Development, Igenomix SL, Valencia, Spain – sequence: 5 givenname: Juan F. orcidid: 0000-0002-9340-6207 surname: Martinez-Blanch fullname: Martinez-Blanch, Juan F. organization: Lifesequencing SL, Valencia, Spain – sequence: 6 givenname: Jorge surname: Jimenez-Almazán fullname: Jimenez-Almazán, Jorge organization: Department of Bioinformatics, Igenomix SL, Valencia, Spain – sequence: 7 givenname: Roberto surname: Alonso fullname: Alonso, Roberto organization: Department of Bioinformatics, Igenomix SL, Valencia, Spain – sequence: 8 givenname: Pilar surname: Alamá fullname: Alamá, Pilar organization: IVI Valencia, Valencia, Spain – sequence: 9 givenname: Jose surname: Remohí fullname: Remohí, Jose organization: IVI Valencia, Valencia, Spain – sequence: 10 givenname: Antonio surname: Pellicer fullname: Pellicer, Antonio organization: Department of Pediatrics, Obstetrics, and Gynecology, Universidad de Valencia, Instituto Universitario IVI, Valencia, Spain – sequence: 11 givenname: Daniel surname: Ramon fullname: Ramon, Daniel organization: Lifesequencing SL, Valencia, Spain – sequence: 12 givenname: Carlos surname: Simon fullname: Simon, Carlos email: carlos.simon@igenomix.com organization: Scientific director, Igenomix SL, Valencia, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27717732$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1rFTEUhoNU2tvaP-BCsnQzYz7uzYeIIKV-QMGF7cJVyGTO2IwzyTXJFPrvzXCri4J1k-TA-745eXJO0VGIARB6SUlLCRVvxtaO8UfL6rkluiVy9wxtKNGyEUqoI7QhhLBGc6lO0GnO41oyzY7RCZOSSsnZBn2_vPM9BAe43NpSF8AQ-jhDSd5OePYuxc7HYvGtzdgGDMMAruAYsJ_3kw3FFl-LvDgHOeOY8GD9tCR4gZ4Pdspw_rCfoZuPl9cXn5urr5--XHy4atxWsNI4LnpQpLNad1ZxrYSmQ-3Pcq3Zlnacdr3glhBJdh0nnRC84zvptCDcAuX8DL0-5O5T_LVALmb22cFUe4O4ZEMV31UEQm6r9NWDdOlm6M0--dmme_MHRxWwg6C-OucEw18JJWZlbkazMjcrc0O0qcyrST0yOX-gUlJF8bT13cEKFdCdh2Sy8-tv9D5VyqaP_mn7-0d2N_ngnZ1-wj3kMS4pVPSGmswMMd_WAVjHgQpOpGKyBrz9d8D_bv8NdKbENw |
CitedBy_id | crossref_primary_10_1093_humrep_dez065 crossref_primary_10_33549_physiolres_934960 crossref_primary_10_3390_microorganisms11061443 crossref_primary_10_1111_aji_13037 crossref_primary_10_61622_rbgo_2024rbgo82 crossref_primary_10_3390_ani14010162 crossref_primary_10_1016_j_theriogenology_2022_10_007 crossref_primary_10_1007_s10304_019_0253_z crossref_primary_10_1111_aji_13392 crossref_primary_10_31071_promedosvity2020_03_055 crossref_primary_10_7717_peerj_13177 crossref_primary_10_3390_ani13182880 crossref_primary_10_3390_ani13030485 crossref_primary_10_1002_rmb2_12083 crossref_primary_10_1016_j_fertnstert_2018_04_041 crossref_primary_10_1007_s10815_022_02544_7 crossref_primary_10_1186_s12884_022_04471_y crossref_primary_10_1128_spectrum_01650_23 crossref_primary_10_1007_s40618_022_01752_3 crossref_primary_10_1128_spectrum_00462_22 crossref_primary_10_1016_j_biochi_2022_02_005 crossref_primary_10_1111_jog_15759 crossref_primary_10_1186_s43043_021_00078_z crossref_primary_10_1007_s10815_022_02688_6 crossref_primary_10_3389_fnut_2022_927972 crossref_primary_10_3390_nu13030855 crossref_primary_10_3390_jcm13164605 crossref_primary_10_3389_bjbs_2023_12098 crossref_primary_10_3390_microorganisms10112238 crossref_primary_10_3390_biom15010106 crossref_primary_10_3389_fphys_2017_00415 crossref_primary_10_3389_fimmu_2022_928475 crossref_primary_10_1097_GCO_0000000000000620 crossref_primary_10_1016_j_beem_2018_10_001 crossref_primary_10_3390_ht9020012 crossref_primary_10_1007_s00129_017_4096_1 crossref_primary_10_1016_j_rbmo_2022_06_008 crossref_primary_10_1186_s43043_022_00117_3 crossref_primary_10_1007_s00203_023_03703_9 crossref_primary_10_1016_j_mehy_2022_110858 crossref_primary_10_33590_emjreprohealth_10310747 crossref_primary_10_3389_fcimb_2022_1059825 crossref_primary_10_1155_2019_4893437 crossref_primary_10_3390_ijms221810082 crossref_primary_10_1080_14767058_2020_1787977 crossref_primary_10_3390_ijms231911298 crossref_primary_10_1186_s12958_019_0562_z crossref_primary_10_1007_s10815_024_03292_6 crossref_primary_10_1373_clinchem_2018_289306 crossref_primary_10_3389_fcimb_2020_609488 crossref_primary_10_24075_brsmu_2025_007 crossref_primary_10_3390_jcm13113173 crossref_primary_10_1097_GCO_0000000000000709 crossref_primary_10_1016_j_jri_2024_104325 crossref_primary_10_12677_jcpm_2024_34268 crossref_primary_10_1186_s12866_024_03339_9 crossref_primary_10_3389_fimmu_2022_919728 crossref_primary_10_3390_vetsci12030232 crossref_primary_10_1016_j_jri_2021_103436 crossref_primary_10_1016_j_fertnstert_2018_12_022 crossref_primary_10_3390_life13071486 crossref_primary_10_3389_frph_2022_963752 crossref_primary_10_1016_j_theriogenology_2023_04_022 crossref_primary_10_3390_ijms232113267 crossref_primary_10_3390_microorganisms10050922 crossref_primary_10_2139_ssrn_4020522 crossref_primary_10_1016_j_rbmo_2021_05_001 crossref_primary_10_1111_aji_13065 crossref_primary_10_30841_2708_8731_4_2022_262794 crossref_primary_10_1016_j_ajog_2020_06_004 crossref_primary_10_1186_s43043_023_00136_8 crossref_primary_10_3389_fimmu_2019_02823 crossref_primary_10_3389_fcimb_2019_00114 crossref_primary_10_1007_s11250_022_03119_5 crossref_primary_10_1111_jog_15897 crossref_primary_10_1016_j_jri_2020_103244 crossref_primary_10_1007_s43032_021_00579_2 crossref_primary_10_1098_rspb_2024_1334 crossref_primary_10_1177_1753495X18775899 crossref_primary_10_3390_microorganisms13010197 crossref_primary_10_1515_jpm_2020_0367 crossref_primary_10_1007_s42977_022_00134_3 crossref_primary_10_1186_s12905_022_01681_6 crossref_primary_10_1111_aji_70035 crossref_primary_10_3390_ijms24065947 crossref_primary_10_1136_bmjopen_2021_057328 crossref_primary_10_5582_bst_2023_01133 crossref_primary_10_1007_s10815_022_02588_9 crossref_primary_10_1371_journal_pone_0202699 crossref_primary_10_1038_s41598_023_39078_6 crossref_primary_10_1111_1471_0528_16661 crossref_primary_10_1111_1471_0528_16782 crossref_primary_10_3390_microorganisms11030741 crossref_primary_10_1016_j_theriogenology_2022_11_003 crossref_primary_10_3389_fcimb_2021_654202 crossref_primary_10_1128_msphere_00096_23 crossref_primary_10_1007_s43032_024_01557_0 crossref_primary_10_3390_jcm11061505 crossref_primary_10_1016_j_fertnstert_2018_12_008 crossref_primary_10_1007_s00129_024_05320_z crossref_primary_10_1186_s12958_018_0414_2 crossref_primary_10_26442_20795696_2020_3_200174 crossref_primary_10_1007_s00281_020_00807_y crossref_primary_10_3389_fcimb_2020_00350 crossref_primary_10_1002_rmb2_12389 crossref_primary_10_1111_aji_70022 crossref_primary_10_3168_jds_2019_18050 crossref_primary_10_3390_ijms232012212 crossref_primary_10_3390_ijms23010485 crossref_primary_10_1111_aji_13376 crossref_primary_10_1126_scisignal_aba3396 crossref_primary_10_3390_medicina59091540 crossref_primary_10_17116_rosakush201818061 crossref_primary_10_1002_rmb2_12495 crossref_primary_10_1038_s41598_019_55611_y crossref_primary_10_1093_humrep_dez041 crossref_primary_10_1016_j_ejogrb_2020_10_054 crossref_primary_10_1016_j_mimet_2022_106664 crossref_primary_10_1128_MMBR_00036_17 crossref_primary_10_1097_GCO_0000000000000626 crossref_primary_10_1016_j_xfnr_2022_11_001 crossref_primary_10_3389_fgene_2024_1292757 crossref_primary_10_1016_j_jri_2025_104440 crossref_primary_10_1016_j_ajog_2018_02_012 crossref_primary_10_3389_fcimb_2023_1059339 crossref_primary_10_1002_rmb2_12249 crossref_primary_10_1007_s10815_023_02791_2 crossref_primary_10_1016_j_jogoh_2019_01_007 crossref_primary_10_3390_microorganisms11040991 crossref_primary_10_1007_s00404_022_06755_2 crossref_primary_10_3390_pharmaceutics16111475 crossref_primary_10_3389_fcell_2021_641921 crossref_primary_10_3389_fanim_2023_1111636 crossref_primary_10_1111_aji_70005 crossref_primary_10_1002_rmb2_12250 crossref_primary_10_1016_j_jri_2024_104251 crossref_primary_10_1038_s41598_024_82466_9 crossref_primary_10_1016_j_tim_2022_09_011 crossref_primary_10_1128_spectrum_02732_23 crossref_primary_10_1007_s15013_020_3160_4 crossref_primary_10_7759_cureus_81056 crossref_primary_10_1128_spectrum_04764_22 crossref_primary_10_1016_j_fertnstert_2018_06_041 crossref_primary_10_1186_s12916_021_02227_7 crossref_primary_10_3389_fcimb_2025_1515563 crossref_primary_10_1002_14651858_CD015707 crossref_primary_10_1016_j_gofs_2020_07_005 crossref_primary_10_3389_fimmu_2019_02653 crossref_primary_10_3390_ijms20143405 crossref_primary_10_3390_ijms24043163 crossref_primary_10_3389_fimmu_2023_1198430 crossref_primary_10_1038_s41598_023_30591_2 crossref_primary_10_3389_fmicb_2022_1029128 crossref_primary_10_1080_19490976_2021_1894070 crossref_primary_10_1016_j_fertnstert_2019_08_060 crossref_primary_10_1093_humrep_deaa372 crossref_primary_10_7759_cureus_81067 crossref_primary_10_1055_s_0041_1735199 crossref_primary_10_3389_fcell_2021_613277 crossref_primary_10_3389_fendo_2022_1057022 crossref_primary_10_1186_s40168_023_01527_9 crossref_primary_10_1186_s13027_023_00483_1 crossref_primary_10_1136_bmjopen_2023_081470 crossref_primary_10_3389_fcimb_2024_1494931 crossref_primary_10_1016_j_xfnr_2024_100073 crossref_primary_10_1128_mSphere_00210_20 crossref_primary_10_3390_endocrines3040068 crossref_primary_10_1016_j_rbmo_2020_01_023 crossref_primary_10_4049_jimmunol_1801350 crossref_primary_10_1016_j_ejogrb_2021_05_045 crossref_primary_10_1111_1471_0528_15881 crossref_primary_10_3390_ijms252313227 crossref_primary_10_1097_OGX_0000000000000788 crossref_primary_10_3389_fimmu_2021_641281 crossref_primary_10_3390_ijms241310920 crossref_primary_10_3390_microorganisms9030473 crossref_primary_10_1136_bmjopen_2019_035866 crossref_primary_10_1007_s10815_024_03066_0 crossref_primary_10_1042_BSR20203908 crossref_primary_10_3390_ijms24032059 crossref_primary_10_1038_s41598_019_39700_6 crossref_primary_10_3892_br_2019_1194 crossref_primary_10_1007_s41974_022_00233_y crossref_primary_10_1016_j_fertnstert_2023_02_014 crossref_primary_10_1055_s_0043_1777758 crossref_primary_10_3389_fendo_2022_1061766 crossref_primary_10_1016_j_fertnstert_2020_12_019 crossref_primary_10_17116_rosakush20181806173 crossref_primary_10_23736_S2724_606X_21_04970_8 crossref_primary_10_3390_ijms23010180 crossref_primary_10_1016_j_rbmo_2021_03_016 crossref_primary_10_1016_j_fertnstert_2020_12_010 crossref_primary_10_1016_j_medcli_2017_04_008 crossref_primary_10_1093_humupd_dmx028 crossref_primary_10_3390_jcm11092481 crossref_primary_10_1007_s10815_019_01630_7 crossref_primary_10_1016_j_rbmo_2020_08_015 crossref_primary_10_1242_dmm_035147 crossref_primary_10_1051_medsci_20183404014 crossref_primary_10_7759_cureus_49476 crossref_primary_10_1042_ETLS20170042 crossref_primary_10_1080_1040841X_2024_2320247 crossref_primary_10_1007_s00281_025_01040_1 crossref_primary_10_1002_14651858_CD008995_pub3 crossref_primary_10_1111_apm_13288 crossref_primary_10_1186_s12884_021_03955_7 crossref_primary_10_3390_biom10040593 crossref_primary_10_1016_j_chom_2018_01_013 crossref_primary_10_3389_fcimb_2022_1025714 crossref_primary_10_1007_s00404_023_06987_w crossref_primary_10_3389_froh_2021_735634 crossref_primary_10_1111_1471_0528_15972 crossref_primary_10_1007_s00129_018_4349_7 crossref_primary_10_3389_fendo_2023_1204729 crossref_primary_10_3389_fendo_2022_932339 crossref_primary_10_1007_s13669_024_00374_1 crossref_primary_10_3390_jcm10071461 crossref_primary_10_1016_j_jprot_2020_103652 crossref_primary_10_1016_j_rbmo_2017_04_005 crossref_primary_10_1111_jog_14585 crossref_primary_10_1038_s41598_024_76125_2 crossref_primary_10_3389_fcell_2021_693267 crossref_primary_10_3390_diagnostics12081948 crossref_primary_10_23736_S2724_606X_22_04915_6 crossref_primary_10_3389_fimmu_2018_00208 crossref_primary_10_1093_humupd_dmy012 crossref_primary_10_3390_microorganisms11051211 crossref_primary_10_1016_j_medcle_2017_12_013 crossref_primary_10_1016_j_theriogenology_2020_08_001 crossref_primary_10_1007_s11033_023_08745_2 crossref_primary_10_1016_j_jri_2023_104138 crossref_primary_10_1016_j_tim_2017_07_008 crossref_primary_10_3390_pathogens11111244 crossref_primary_10_1093_humrep_dey346 crossref_primary_10_25259_fsr_43_23 crossref_primary_10_3389_fcimb_2024_1351540 crossref_primary_10_1016_j_rbmo_2018_12_019 crossref_primary_10_1016_j_fertnstert_2019_06_028 crossref_primary_10_1186_s12964_024_01740_5 crossref_primary_10_1016_j_placenta_2017_06_005 crossref_primary_10_1128_mBio_03242_19 crossref_primary_10_3389_fcimb_2022_1056319 crossref_primary_10_3390_jcm13175331 crossref_primary_10_1016_j_rbmo_2021_02_003 crossref_primary_10_1016_j_fertnstert_2018_04_012 crossref_primary_10_3390_jox15010026 crossref_primary_10_1055_s_0041_1730908 crossref_primary_10_3390_microorganisms13030547 crossref_primary_10_1016_j_jiac_2022_01_001 crossref_primary_10_1038_s41598_018_22856_y crossref_primary_10_1093_humupd_dmy048 crossref_primary_10_3390_microorganisms11082089 crossref_primary_10_1093_humrep_deab002 crossref_primary_10_1007_s13669_024_00373_2 crossref_primary_10_1016_j_fertnstert_2021_09_014 crossref_primary_10_1111_imm_13155 crossref_primary_10_1007_s00129_018_4228_2 crossref_primary_10_1093_humrep_deab009 crossref_primary_10_1016_j_jogoh_2020_102036 crossref_primary_10_17816_JOWD6725_15 crossref_primary_10_3389_fcimb_2020_00413 crossref_primary_10_1111_aogs_14297 crossref_primary_10_3389_fimmu_2020_00378 crossref_primary_10_3389_fendo_2024_1437781 crossref_primary_10_3389_fmicb_2023_1137869 crossref_primary_10_1007_s13353_025_00949_5 crossref_primary_10_22207_JPAM_15_4_03 crossref_primary_10_3390_microorganisms12030547 crossref_primary_10_1016_j_theriogenology_2020_09_028 crossref_primary_10_1007_s10815_019_01564_0 crossref_primary_10_3389_fcimb_2021_659505 crossref_primary_10_1080_14647273_2021_1925976 crossref_primary_10_1161_CIRCRESAHA_122_320771 crossref_primary_10_3168_jds_2017_12592 crossref_primary_10_1002_rmb2_12634 crossref_primary_10_1128_CVI_00203_17 crossref_primary_10_1007_s10815_020_01878_4 crossref_primary_10_1038_s41598_022_18971_6 crossref_primary_10_1038_s41598_021_98380_3 crossref_primary_10_1071_RD21252 crossref_primary_10_1111_jog_15060 crossref_primary_10_3164_jcbn_20_53 crossref_primary_10_1093_humrep_deaa094 crossref_primary_10_1016_j_rbmo_2019_03_008 crossref_primary_10_1007_s11845_018_1933_8 crossref_primary_10_3390_pathogens8040205 crossref_primary_10_1111_aji_13713 crossref_primary_10_3390_jcm10184063 crossref_primary_10_1016_j_ajog_2020_10_019 crossref_primary_10_1186_s12985_024_02322_0 crossref_primary_10_1016_j_ajog_2020_02_001 crossref_primary_10_1080_14647273_2017_1353709 crossref_primary_10_3390_life13122269 crossref_primary_10_3389_fcimb_2020_570025 crossref_primary_10_1080_01443615_2022_2033183 crossref_primary_10_3389_fendo_2022_945736 crossref_primary_10_3390_diagnostics12112711 crossref_primary_10_3390_ijms22115644 crossref_primary_10_1080_13102818_2023_2250007 crossref_primary_10_3389_fmicb_2024_1351899 crossref_primary_10_1007_s00404_025_07944_5 crossref_primary_10_1007_s15013_018_1595_7 crossref_primary_10_1097_LGT_0000000000000646 crossref_primary_10_3390_nu12030757 crossref_primary_10_3390_nu17030410 crossref_primary_10_1016_j_repbio_2019_04_001 crossref_primary_10_3390_life11020148 crossref_primary_10_3390_diagnostics15030243 crossref_primary_10_1080_10408398_2021_1935701 crossref_primary_10_31071_promedosvity2019_03_068 crossref_primary_10_1099_mgen_0_001323 crossref_primary_10_1007_s10815_023_02862_4 crossref_primary_10_23946_2500_0764_2024_9_1_102_111 crossref_primary_10_1007_s41974_020_00155_7 crossref_primary_10_3390_pathogens10030295 crossref_primary_10_1111_jog_16051 crossref_primary_10_3920_BM2019_0081 crossref_primary_10_1016_j_bbcan_2023_189000 crossref_primary_10_1016_j_rbmo_2020_06_014 crossref_primary_10_3390_microorganisms12050989 crossref_primary_10_1038_s41419_019_2071_6 crossref_primary_10_1002_rmb2_12619 crossref_primary_10_1111_1471_0528_15951 crossref_primary_10_1016_j_ajog_2016_09_085 crossref_primary_10_1186_s12905_024_02985_5 crossref_primary_10_1093_biolre_ioac067 crossref_primary_10_3389_fimmu_2019_02387 crossref_primary_10_1007_s10815_021_02247_5 crossref_primary_10_7759_cureus_62949 crossref_primary_10_2478_amb_2023_0037 crossref_primary_10_1016_j_repbio_2020_07_001 crossref_primary_10_1128_spectrum_01462_24 crossref_primary_10_3389_fimmu_2018_01874 crossref_primary_10_35339_ic_9_1_59_65 crossref_primary_10_1016_j_jri_2023_103988 crossref_primary_10_21518_ms2024_146 crossref_primary_10_3892_br_2023_1626 crossref_primary_10_1055_s_0043_1777361 crossref_primary_10_1016_j_humic_2017_01_004 crossref_primary_10_1038_s41598_017_08268_4 crossref_primary_10_1016_j_diagmicrobio_2024_116437 crossref_primary_10_17116_repro202228061175 crossref_primary_10_1186_s12941_020_00356_0 crossref_primary_10_1097_RD9_0000000000000085 crossref_primary_10_1016_j_placenta_2021_06_006 crossref_primary_10_1016_j_fertnstert_2018_06_005 crossref_primary_10_1007_s10304_023_00535_0 crossref_primary_10_3389_fcimb_2018_00001 crossref_primary_10_3390_biomedicines10010174 crossref_primary_10_1093_infdis_jiy744 crossref_primary_10_3390_jcm13123420 crossref_primary_10_1016_j_fertnstert_2017_05_030 crossref_primary_10_1016_j_fertnstert_2017_05_034 crossref_primary_10_15789_2220_7619_IBE_17808 crossref_primary_10_3389_fendo_2023_1140774 crossref_primary_10_1186_s40168_024_01821_0 crossref_primary_10_2139_ssrn_3972353 crossref_primary_10_1093_biolre_iox107 crossref_primary_10_3390_genes10120971 crossref_primary_10_1097_RD9_0000000000000078 crossref_primary_10_1016_j_rbmo_2019_03_067 crossref_primary_10_1080_10408398_2022_2117784 crossref_primary_10_15406_ogij_2022_13_00649 crossref_primary_10_1002_jcla_25158 crossref_primary_10_1097_RD9_0000000000000082 crossref_primary_10_1016_j_gine_2021_100687 crossref_primary_10_1093_ofid_ofz525 crossref_primary_10_17749_2313_7347_ob_gyn_rep_2020_157 crossref_primary_10_1016_j_gine_2021_100688 crossref_primary_10_3389_fmed_2021_651938 crossref_primary_10_1002_14651858_CD005996_pub4 crossref_primary_10_1155_2021_8849664 crossref_primary_10_3390_antibiotics9020059 crossref_primary_10_33667_2078_5631_2023_3_30_36 crossref_primary_10_1016_j_ajog_2020_01_031 crossref_primary_10_1530_JME_21_0238 crossref_primary_10_3389_fmicb_2021_729744 crossref_primary_10_1128_mbio_01619_22 crossref_primary_10_52420_2071_5943_2023_22_1_96_103 crossref_primary_10_1007_s10304_022_00466_2 crossref_primary_10_3389_fmicb_2017_01965 crossref_primary_10_3390_jpm11070659 crossref_primary_10_1055_s_0043_1778661 crossref_primary_10_3390_nu13010162 crossref_primary_10_1007_s10304_018_0200_4 crossref_primary_10_3389_fendo_2022_1081830 crossref_primary_10_1016_j_ejogrb_2023_08_002 crossref_primary_10_1016_j_gofs_2020_05_003 crossref_primary_10_23736_S2724_606X_21_04870_3 crossref_primary_10_3390_jcm11030680 crossref_primary_10_1016_j_ygyno_2022_02_021 crossref_primary_10_1007_s10815_021_02324_9 crossref_primary_10_1055_a_1895_9940 crossref_primary_10_1038_s41598_019_46173_0 crossref_primary_10_1016_j_placenta_2021_12_015 crossref_primary_10_21886_2219_8075_2024_15_1_82_93 crossref_primary_10_3389_fimmu_2020_528202 crossref_primary_10_1093_humrep_dead274 crossref_primary_10_1111_asj_13374 crossref_primary_10_1111_aji_13552 crossref_primary_10_3390_a17030108 crossref_primary_10_1016_j_jri_2024_104192 crossref_primary_10_1038_s41598_018_21657_7 crossref_primary_10_1371_journal_pone_0237232 crossref_primary_10_1007_s00213_019_05436_4 crossref_primary_10_1016_j_xfss_2024_12_002 crossref_primary_10_1016_j_ejogrb_2024_11_032 crossref_primary_10_3390_diagnostics12040878 crossref_primary_10_1186_s12884_023_06140_0 crossref_primary_10_1093_humupd_dmab035 crossref_primary_10_1016_j_ajog_2020_01_056 crossref_primary_10_1038_s41585_020_0286_z crossref_primary_10_5812_fga_136798 crossref_primary_10_1371_journal_pone_0317595 crossref_primary_10_1016_j_jri_2022_103653 crossref_primary_10_1002_rmb2_12105 crossref_primary_10_1007_s10552_020_01338_5 crossref_primary_10_1097_TP_0000000000002035 crossref_primary_10_1152_physrev_00050_2021 crossref_primary_10_1097_GCO_0000000000000468 crossref_primary_10_1016_j_bbadis_2021_166231 crossref_primary_10_1155_2023_2675966 crossref_primary_10_3390_medicina60010025 crossref_primary_10_1016_j_jri_2022_103782 crossref_primary_10_1128_spectrum_01676_22 crossref_primary_10_3390_life13071531 crossref_primary_10_1007_s13224_024_02064_7 crossref_primary_10_3390_ijms23105756 crossref_primary_10_3389_fendo_2022_813791 crossref_primary_10_1186_s40168_021_01184_w crossref_primary_10_3390_microorganisms11010148 crossref_primary_10_61399_ikcusbfd_1219405 crossref_primary_10_1093_biolre_ioaa183 crossref_primary_10_1016_j_ajog_2018_10_018 crossref_primary_10_1186_s12941_024_00710_6 crossref_primary_10_1016_j_ajog_2018_10_017 crossref_primary_10_3390_cancers14194909 crossref_primary_10_1002_rmb2_12332 crossref_primary_10_17352_2455_2976_000146 crossref_primary_10_1002_rmb2_12576 crossref_primary_10_1007_s10304_022_00469_z crossref_primary_10_17116_kurort202310006192 crossref_primary_10_1016_j_jsxm_2022_04_009 crossref_primary_10_21886_2219_8075_2023_14_3_5_15 crossref_primary_10_1055_s_0043_1778067 crossref_primary_10_3390_ijms252312600 crossref_primary_10_1186_s12866_024_03612_x crossref_primary_10_3389_fendo_2024_1380187 crossref_primary_10_1021_acsnano_4c13593 crossref_primary_10_1002_rmb2_12441 crossref_primary_10_3390_ijms252010923 crossref_primary_10_3390_pathogens10020090 crossref_primary_10_3389_fmed_2020_00217 crossref_primary_10_1093_biolre_ioy257 crossref_primary_10_17749_2313_7347_ob_gyn_rep_2023_433 crossref_primary_10_1016_j_placenta_2024_05_125 crossref_primary_10_1093_humupd_dmad013 crossref_primary_10_1007_s10815_018_1130_8 crossref_primary_10_1093_humrep_dead194 crossref_primary_10_3892_mmr_2019_10092 crossref_primary_10_1007_s10815_022_02573_2 crossref_primary_10_1038_s41598_022_12095_7 crossref_primary_10_1016_j_fertnstert_2018_01_022 crossref_primary_10_1055_s_0043_1778056 crossref_primary_10_3389_fendo_2019_00935 crossref_primary_10_1016_j_jri_2022_103736 crossref_primary_10_3390_diagnostics12071576 crossref_primary_10_1007_s00404_021_06171_y crossref_primary_10_1038_s41585_019_0250_y crossref_primary_10_17116_repro20243004151 crossref_primary_10_1016_j_fertnstert_2016_11_028 crossref_primary_10_1093_gpbjnl_qzad005 crossref_primary_10_3390_biomedicines12071476 crossref_primary_10_1016_j_gtc_2019_04_004 crossref_primary_10_1111_1471_0528_15178 crossref_primary_10_1186_s12978_018_0653_x crossref_primary_10_3390_ijms25042237 crossref_primary_10_32708_uutfd_731738 crossref_primary_10_1016_j_rbmo_2019_04_006 crossref_primary_10_1016_j_rbmo_2021_07_018 crossref_primary_10_3390_jcm12155069 crossref_primary_10_1016_j_jri_2022_103627 crossref_primary_10_17116_repro20232904168 crossref_primary_10_3390_ijms24032995 crossref_primary_10_2478_jbcr_2021_0022 crossref_primary_10_33920_med_14_2401_01 crossref_primary_10_1186_s43043_020_00050_3 crossref_primary_10_1016_j_theriogenology_2019_04_022 crossref_primary_10_3389_fmicb_2023_1075900 crossref_primary_10_3390_jpm11060546 crossref_primary_10_3389_fendo_2023_1096050 crossref_primary_10_1016_j_jogoh_2020_101727 crossref_primary_10_1016_j_xfss_2021_01_002 crossref_primary_10_1016_j_rbmo_2021_12_014 crossref_primary_10_1093_jas_skz210 crossref_primary_10_1016_j_cell_2024_07_029 crossref_primary_10_1093_jas_skz212 crossref_primary_10_17116_repro20192504127 crossref_primary_10_3390_microorganisms12091789 crossref_primary_10_3390_nu15020362 crossref_primary_10_1099_jmm_0_001741 crossref_primary_10_1038_s41598_025_92906_9 crossref_primary_10_1055_s_0043_1778017 crossref_primary_10_1111_ajo_12754 crossref_primary_10_1016_j_bpobgyn_2023_102365 crossref_primary_10_1111_aji_13652 crossref_primary_10_1111_aogs_14847 crossref_primary_10_1097_GCO_0000000000000357 crossref_primary_10_1016_j_addr_2021_113955 crossref_primary_10_3390_jcm13020457 crossref_primary_10_3389_fcimb_2023_1177366 crossref_primary_10_3390_ijms25010622 crossref_primary_10_1093_humrep_deae190 crossref_primary_10_1080_19396368_2023_2195040 crossref_primary_10_26416_ObsGin_71_2_2023_8877 crossref_primary_10_1016_j_jri_2022_103634 crossref_primary_10_1002_rmb2_12523 crossref_primary_10_1155_2022_4624311 crossref_primary_10_1007_s10815_022_02628_4 crossref_primary_10_1016_j_ogc_2023_09_002 crossref_primary_10_24075_brsmu_2020_012 crossref_primary_10_3390_biomedicines11092391 crossref_primary_10_1016_j_rbmo_2021_06_004 crossref_primary_10_1093_hropen_hoad023 crossref_primary_10_26442_20795696_2021_6_201300 crossref_primary_10_31640_JVD_7_8_2019_2 crossref_primary_10_38025_2078_1962_2023_22_1_110_116 crossref_primary_10_1016_j_fertnstert_2018_09_020 crossref_primary_10_1016_j_fertnstert_2021_11_032 crossref_primary_10_1016_j_jri_2023_103944 crossref_primary_10_17749_2313_7347_ob_gyn_rep_2025_592 crossref_primary_10_1186_s12905_022_01750_w crossref_primary_10_17749_2313_7347_ob_gyn_rep_2024_555 |
Cites_doi | 10.1093/humrep/det096 10.1371/journal.pone.0032543 10.1093/humrep/17.2.337 10.1093/nar/gkn879 10.1073/pnas.1502875112 10.1016/S0140-6736(99)02415-0 10.1055/s-0033-1361821 10.1128/CMR.00075-15 10.1016/j.jpag.2008.01.073 10.1186/2049-2618-2-4 10.1073/pnas.1002611107 10.1093/bioinformatics/btq461 10.1038/163688a0 10.1093/humrep/14.9.2411 10.1016/j.patrec.2005.10.010 10.1126/scitranslmed.3003605 10.1016/j.ajog.2014.11.043 10.1210/jc.2013-2205 10.1016/S1472-6483(10)61737-3 10.1006/geno.1997.4995 10.1016/j.fertnstert.2008.10.019 10.1016/j.fertnstert.2004.05.076 10.1007/s10815-011-9694-6 10.1128/IAI.00101-08 10.1038/nrg3182 10.1086/345761 10.1093/oxfordjournals.humrep.a019470 10.1046/j.1365-2672.2002.01547.x 10.1016/S0015-0282(98)00277-5 10.1136/bmj.308.6924.295 10.1016/S0015-0282(00)01624-1 10.4049/jimmunol.1300661 10.1038/nmeth.f.303 10.1186/2049-2618-2-18 10.1136/bmj.319.7204.220 10.1007/s10815-015-0614-z 10.1016/j.fertnstert.2010.04.063 10.1016/j.fertnstert.2012.09.046 10.14806/ej.17.1.200 10.1007/s10815-007-9146-5 10.1093/bioinformatics/btr381 10.3109/00016349509008942 10.1016/j.fertnstert.2013.05.004 10.1016/j.cell.2014.07.019 10.1016/j.ajog.2004.01.002 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.ajog.2016.09.075 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1097-6868 |
EndPage | 703 |
ExternalDocumentID | 27717732 10_1016_j_ajog_2016_09_075 S0002937816307827 1_s2_0_S0002937816307827 |
Genre | Journal Article |
GroupedDBID | --- --K --M -ET .1- .55 .FO .GJ .XZ .~1 0R~ 1B1 1CY 1P~ 1~. 1~5 23M 2KS 354 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 6J9 7-5 85S 8F7 8P~ AAEDT AAEDW AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYJJ AAYWO ABBQC ABCQX ABDPE ABFNM ABFRF ABJNI ABMAC ABMZM ABOCM ABPMR ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFCHL AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGNAY AGQPQ AGUBO AGYEJ AHDLI AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 C5W CAG COF CS3 EBS EFJIC EFKBS EJD EO8 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IH2 IHE J1W K-O KOM LPU M41 MO0 N4W N9A NEJ NQ- O-L O9- OAUVE OBH OCB OGEVE OHH OHT OMK OQ. OVD P-8 P-9 P2P PC. PH~ Q38 R2- ROL RPZ RXW SDF SEL SES SEW SJN SPCBC SSH SSZ T5K TAE TEORI TWZ UDS UGJ UHB UHS UHU UKR UNMZH UV1 VH1 VVN WH7 WOQ WOW X6Y X7M XFW YFH YOC YYQ YZZ Z5R ZGI ZXP ZY1 ~G- ~H1 AACTN AFCTW AFKWA AJOXV AMFUW NCXOZ RIG AAIAV ABLVK ABYKQ ADOJD AFDAS AHPSJ AJBFU EFLBG G8K LCYCR ZA5 AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c462t-c36de80ba99ba8398691f277a399241b31bd63a00705b30b663b357c9603ae133 |
IEDL.DBID | .~1 |
ISSN | 0002-9378 1097-6868 |
IngestDate | Fri Jul 11 02:52:27 EDT 2025 Wed Feb 19 02:40:48 EST 2025 Tue Jul 01 04:43:02 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Fri Feb 23 02:29:20 EST 2024 Tue Feb 25 20:08:01 EST 2025 Tue Aug 26 17:15:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | bacterial pathogens endometrial microbiota embryo implantation endometrial receptivity array assisted reproductive techniques |
Language | English |
License | Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-c36de80ba99ba8398691f277a399241b31bd63a00705b30b663b357c9603ae133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9340-6207 |
PMID | 27717732 |
PQID | 1835378674 |
PQPubID | 23479 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_1835378674 pubmed_primary_27717732 crossref_primary_10_1016_j_ajog_2016_09_075 crossref_citationtrail_10_1016_j_ajog_2016_09_075 elsevier_sciencedirect_doi_10_1016_j_ajog_2016_09_075 elsevier_clinicalkeyesjournals_1_s2_0_S0002937816307827 elsevier_clinicalkey_doi_10_1016_j_ajog_2016_09_075 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | American journal of obstetrics and gynecology |
PublicationTitleAlternate | Am J Obstet Gynecol |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Sim, Cox, Wopereis, Martin, Knol, Li (bib25) 2012; 7 Burton, Reid (bib3) 2002; 186 Mitchell, Haick, Nkwopara (bib20) 2015; 212 Cole, Wang, Cardenas (bib28) 2009; 37 Spurbeck, Arvidson (bib32) 2008; 76 Romero, Chaiworapongsa, Kuivaniemi, Tromp (bib12) 2004; 190 Franasiak, Werner, Juneau (bib37) 2016; 33 Salim, Ben-Shlomo, Colodner, Keness, Shalev (bib16) 2002; 17 Møller, Kristiansen, Thorsen, Frost, Mogensen (bib19) 1995; 74 Ralph, Rutherford, Wilson (bib10) 1999; 319 Hay, Lamont, Taylor-Robinson, Morgan, Ison, Pearson (bib11) 1994; 308 González, Vázquez-Baeza, Knight (bib2) 2014; 158 Liversedge, Turner, Horner, Keay, Jenkins, Hull (bib34) 1999; 14 Fanchin, Harmas, Benaoudia, Lundkvist, Olivennes, Frydman (bib13) 1998; 70 Ruiz-Alonso, Blesa, Díaz-Gimeno (bib24) 2013; 100 Romero, Hassan, Gajer (bib9) 2014; 2 Caporaso, Kuczynski, Stombaugh (bib26) 2010; 7 Onderdonk, Delaney, Fichorova (bib6) 2016; 29 Shannon CE. The mathematical theory of communication. University of Illinois Press. Illinis book edition, 1963. Hyman, Herndon, Jiang (bib33) 2012; 29 Dominguez, Gadea, Mercader, Esteban, Pellicer, Simón (bib40) 2010; 93 Egbase, al-Sharhan, al-Othman, al-Mutawa, Udo, Grudzinskas (bib14) 1996; 11 Edgar (bib27) 2010; 26 Romero, Hassan, Gajer (bib7) 2014; 2 Moore, Soules, Klein, Fujimoto, Agnew, Eschenbach (bib15) 2000; 74 Sirota, Zarek, Segars (bib1) 2014; 32 Pavlova, Kilic, Kilic (bib4) 2002; 92 Ravel, Gajer, Abdo (bib8) 2011; 108 Cha J, Vilella F, Dey SK, Simón C. Molecular interplay in successful implantation. Science. S. Sanders. Washington; Nov. 12, 2013; Ten critical topics in reproductive medicine: 44-8. Vilella, Ramirez, Berlanga (bib23) 2013; 98 Egbase, Udo, al-Sharhan, Grudzinskas (bib36) 1999; 354 Selman, Mariani, Barnocchi (bib17) 2007; 24 Simpson EH. Measurement of diversity. Nature 1949;163:688-8. Yamamoto, Zhou, Williams, Hochwalt, Forney (bib39) 2009; 22 Gajer, Brotman, Bai (bib5) 2012; 4 Cho, Blaser (bib22) 2012; 13 van Oostrum, De Sutter, Meys, Verstraelen (bib35) 2013; 28 Skarin, Sylwan (bib38) 1986; 94 DiGiulio, Callahan, McMurdie (bib31) 2015; 112 Romero, Espinoza, Mazor (bib18) 2004; 82 Racicot, Cardenas, Wunsche (bib21) 2013; 191 Edgar (10.1016/j.ajog.2016.09.075_bib47) 2011; 27 Ravel (10.1016/j.ajog.2016.09.075_bib8) 2011; 108 Dominguez (10.1016/j.ajog.2016.09.075_bib40) 2010; 93 Møller (10.1016/j.ajog.2016.09.075_bib19) 1995; 74 Pearson (10.1016/j.ajog.2016.09.075_bib45) 1997; 46 Burton (10.1016/j.ajog.2016.09.075_bib3) 2002; 186 Onderdonk (10.1016/j.ajog.2016.09.075_bib6) 2016; 29 Cole (10.1016/j.ajog.2016.09.075_bib28) 2009; 37 Pavlova (10.1016/j.ajog.2016.09.075_bib4) 2002; 92 Egbase (10.1016/j.ajog.2016.09.075_bib36) 1999; 354 Caporaso (10.1016/j.ajog.2016.09.075_bib26) 2010; 7 Liversedge (10.1016/j.ajog.2016.09.075_bib34) 1999; 14 Sirota (10.1016/j.ajog.2016.09.075_bib1) 2014; 32 Romero (10.1016/j.ajog.2016.09.075_bib9) 2014; 2 Edgar (10.1016/j.ajog.2016.09.075_bib27) 2010; 26 Salim (10.1016/j.ajog.2016.09.075_bib16) 2002; 17 Romero (10.1016/j.ajog.2016.09.075_bib18) 2004; 82 Hyman (10.1016/j.ajog.2016.09.075_bib33) 2012; 29 10.1016/j.ajog.2016.09.075_bib30 Franasiak (10.1016/j.ajog.2016.09.075_bib37) 2016; 33 Selman (10.1016/j.ajog.2016.09.075_bib17) 2007; 24 González (10.1016/j.ajog.2016.09.075_bib2) 2014; 158 Cho (10.1016/j.ajog.2016.09.075_bib22) 2012; 13 Fawcett (10.1016/j.ajog.2016.09.075_bib48) 2006; 27 Romero (10.1016/j.ajog.2016.09.075_bib12) 2004; 190 Mitchell (10.1016/j.ajog.2016.09.075_bib20) 2015; 212 Racicot (10.1016/j.ajog.2016.09.075_bib21) 2013; 191 Romero (10.1016/j.ajog.2016.09.075_bib7) 2014; 2 Spurbeck (10.1016/j.ajog.2016.09.075_bib32) 2008; 76 Sim (10.1016/j.ajog.2016.09.075_bib25) 2012; 7 Ruiz-Alonso (10.1016/j.ajog.2016.09.075_bib24) 2013; 100 Egbase (10.1016/j.ajog.2016.09.075_bib14) 1996; 11 DiGiulio (10.1016/j.ajog.2016.09.075_bib31) 2015; 112 Vilella (10.1016/j.ajog.2016.09.075_bib23) 2013; 98 Skarin (10.1016/j.ajog.2016.09.075_bib38) 1986; 94 van der Gaast (10.1016/j.ajog.2016.09.075_bib42) 2003; 7 Díaz-Gimeno (10.1016/j.ajog.2016.09.075_bib43) 2011; 95 10.1016/j.ajog.2016.09.075_bib29 Ralph (10.1016/j.ajog.2016.09.075_bib10) 1999; 319 Díaz-Gimeno (10.1016/j.ajog.2016.09.075_bib44) 2013; 99 Hay (10.1016/j.ajog.2016.09.075_bib11) 1994; 308 van Oostrum (10.1016/j.ajog.2016.09.075_bib35) 2013; 28 10.1016/j.ajog.2016.09.075_bib41 Fanchin (10.1016/j.ajog.2016.09.075_bib13) 1998; 70 Gajer (10.1016/j.ajog.2016.09.075_bib5) 2012; 4 Martin (10.1016/j.ajog.2016.09.075_bib46) 2011; 17 Moore (10.1016/j.ajog.2016.09.075_bib15) 2000; 74 Yamamoto (10.1016/j.ajog.2016.09.075_bib39) 2009; 22 27725136 - Am J Obstet Gynecol. 2016 Dec;215(6):682-683 |
References_xml | – volume: 7 start-page: 335 year: 2010 end-page: 336 ident: bib26 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat Methods – volume: 17 start-page: 337 year: 2002 end-page: 340 ident: bib16 article-title: Bacterial colonization of the uterine cervix and success rate in assisted reproduction: results of a prospective survey publication-title: Hum Reprod – volume: 94 start-page: 399 year: 1986 end-page: 403 ident: bib38 article-title: Vaginal lactobacilli inhibiting growth of publication-title: Acta Pathol Microbiol Immunol Scand B – volume: 100 start-page: 818 year: 2013 end-page: 824 ident: bib24 article-title: The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure publication-title: Fertil Steril – volume: 4 year: 2012 ident: bib5 article-title: Temporal dynamics of the human vaginal microbiota publication-title: Sci Transl Med – volume: 158 start-page: 690 year: 2014 end-page: 691 ident: bib2 article-title: SnapShot: the human microbiome publication-title: Cell – volume: 319 start-page: 220 year: 1999 end-page: 223 ident: bib10 article-title: Influence of bacterial vaginosis on conception and miscarriage in the first trimester: cohort study publication-title: BMJ – volume: 11 start-page: 1687 year: 1996 end-page: 1689 ident: bib14 article-title: Incidence of microbial growth from the tip of the embryo transfer catheter after embryo transfer in relation to clinical pregnancy rate following in-vitro fertilization and embryo transfer publication-title: Hum Reprod – volume: 92 start-page: 451 year: 2002 end-page: 459 ident: bib4 article-title: Genetic diversity of vaginal lactobacilli from women in different countries based on 16S rRNA gene sequences publication-title: J Appl Microbiol – volume: 22 start-page: 11 year: 2009 end-page: 18 ident: bib39 article-title: Bacterial populations in the vaginas of healthy adolescent women publication-title: J Pediatr Adolesc Gynecol – volume: 82 start-page: 799 year: 2004 end-page: 804 ident: bib18 article-title: Can endometrial infection/inflammation explain implantation failure, spontaneous abortion, and preterm birth after in vitro fertilization? publication-title: Fertil Steril – volume: 76 start-page: 3124 year: 2008 end-page: 3130 ident: bib32 article-title: Inhibition of publication-title: Infect Immun – volume: 308 start-page: 295 year: 1994 end-page: 298 ident: bib11 article-title: Abnormal bacterial colonization of the genital tract and subsequent preterm delivery and late miscarriage publication-title: BMJ – volume: 7 start-page: e32543 year: 2012 ident: bib25 article-title: Improved detection of bifidobacteria with optimized 16S rRNA-gene based pyrosequencing publication-title: PLoS One – volume: 186 start-page: 1770 year: 2002 end-page: 1780 ident: bib3 article-title: Evaluation of the bacterial vaginal flora of 20 postmenopausal women by direct (Nugent score) and molecular (polymerase chain reaction and denaturing gradient gel electrophoresis) techniques publication-title: J Infect Dis – volume: 29 start-page: 223 year: 2016 end-page: 238 ident: bib6 article-title: The human microbiome during bacterial vaginosis publication-title: Clin Microbiol Rev – volume: 29 start-page: 105 year: 2012 end-page: 115 ident: bib33 article-title: The dynamics of the vaginal microbiome during infertility therapy with in vitro fertilization-embryo transfer publication-title: J Assist Reprod Genet – volume: 191 start-page: 934 year: 2013 end-page: 941 ident: bib21 article-title: Viral infection of the pregnant cervix predisposes to ascending bacterial infection publication-title: J Immunol – volume: 32 start-page: 35 year: 2014 end-page: 42 ident: bib1 article-title: Potential influence of the microbiome on infertility and assisted reproductive technology publication-title: Semin Reprod Med – volume: 190 start-page: 1509 year: 2004 end-page: 1519 ident: bib12 article-title: Bacterial vaginosis, the inflammatory response and the risk of preterm birth: a role for genetic epidemiology in the prevention of preterm birth publication-title: Am J Obstet Gynecol – volume: 108 start-page: 4680 year: 2011 end-page: 4687 ident: bib8 article-title: Vaginal microbiome of reproductive-age women publication-title: Proc Natl Acad Sci U S A – volume: 93 start-page: 774 year: 2010 end-page: 782.e1 ident: bib40 article-title: Embryologic outcome and secretome profile of implanted blastocysts obtained after coculture in human endometrial epithelial cells versus the sequential system publication-title: Fertil Steril – reference: Cha J, Vilella F, Dey SK, Simón C. Molecular interplay in successful implantation. Science. S. Sanders. Washington; Nov. 12, 2013; Ten critical topics in reproductive medicine: 44-8. – volume: 212 start-page: 611.e1 year: 2015 end-page: 611.e9 ident: bib20 article-title: Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women publication-title: Am J Obstet Gynecol – volume: 13 start-page: 260 year: 2012 end-page: 270 ident: bib22 article-title: The human microbiome: at the interface of health and disease publication-title: Nat Rev Genet – volume: 74 start-page: 216 year: 1995 end-page: 219 ident: bib19 article-title: Sterility of the uterine cavity publication-title: Acta Obstet Gynecol Scand – volume: 98 start-page: 4123 year: 2013 end-page: 4132 ident: bib23 article-title: PGE2 and PGF2 concentrations in human endometrial fluid as biomarkers for embryonic implantation publication-title: J Clin Endocrinol Metab – volume: 14 start-page: 2411 year: 1999 end-page: 2415 ident: bib34 article-title: The influence of bacterial vaginosis on in-vitro fertilization and embryo implantation during assisted reproduction treatment publication-title: Hum Reprod – volume: 112 start-page: 11060 year: 2015 end-page: 11065 ident: bib31 article-title: Temporal and spatial variation of the human microbiota during pregnancy publication-title: Proc Natl Acad Sci U S A – volume: 2 start-page: 18 year: 2014 ident: bib9 article-title: The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term publication-title: Microbiome – volume: 2 start-page: 4 year: 2014 ident: bib7 article-title: The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women publication-title: Microbiome – volume: 74 start-page: 1118 year: 2000 end-page: 1124 ident: bib15 article-title: Bacteria in the transfer catheter tip influence the live-birth rate after in vitro fertilization publication-title: Fertil Steril – volume: 26 start-page: 2460 year: 2010 end-page: 2461 ident: bib27 article-title: Search and clustering orders of magnitude faster than BLAST publication-title: Bioinformatics – volume: 37 start-page: D141 year: 2009 end-page: D145 ident: bib28 article-title: The ribosomal database project: improved alignments and new tools for rRNA analysis publication-title: Nucleic Acids Res – reference: Simpson EH. Measurement of diversity. Nature 1949;163:688-8. – volume: 354 start-page: 651 year: 1999 end-page: 652 ident: bib36 article-title: Prophylactic antibiotics and endocervical microbial inoculation of the endometrium at embryo transfer publication-title: Lancet – volume: 24 start-page: 395 year: 2007 end-page: 399 ident: bib17 article-title: Examination of bacterial contamination at the time of embryo transfer, and its impact on the IVF/pregnancy outcome publication-title: J Assist Reprod Genet – reference: Shannon CE. The mathematical theory of communication. University of Illinois Press. Illinis book edition, 1963. – volume: 70 start-page: 866 year: 1998 end-page: 870 ident: bib13 article-title: Microbial flora of the cervix assessed at the time of embryo transfer adversely affects in vitro fertilization outcome publication-title: Fertil Steril – volume: 28 start-page: 1809 year: 2013 end-page: 1815 ident: bib35 article-title: Risks associated with bacterial vaginosis in infertility patients: a systematic review and meta-analysis publication-title: Hum Reprod – volume: 33 start-page: 129 year: 2016 end-page: 136 ident: bib37 article-title: Endometrial microbiome at the time of embryo transfer: next-generation sequencing of the 16S ribosomal subunit publication-title: J Assist Reprod Genet – volume: 28 start-page: 1809 year: 2013 ident: 10.1016/j.ajog.2016.09.075_bib35 article-title: Risks associated with bacterial vaginosis in infertility patients: a systematic review and meta-analysis publication-title: Hum Reprod doi: 10.1093/humrep/det096 – volume: 7 start-page: e32543 year: 2012 ident: 10.1016/j.ajog.2016.09.075_bib25 article-title: Improved detection of bifidobacteria with optimized 16S rRNA-gene based pyrosequencing publication-title: PLoS One doi: 10.1371/journal.pone.0032543 – volume: 17 start-page: 337 year: 2002 ident: 10.1016/j.ajog.2016.09.075_bib16 article-title: Bacterial colonization of the uterine cervix and success rate in assisted reproduction: results of a prospective survey publication-title: Hum Reprod doi: 10.1093/humrep/17.2.337 – volume: 37 start-page: D141 year: 2009 ident: 10.1016/j.ajog.2016.09.075_bib28 article-title: The ribosomal database project: improved alignments and new tools for rRNA analysis publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn879 – volume: 112 start-page: 11060 year: 2015 ident: 10.1016/j.ajog.2016.09.075_bib31 article-title: Temporal and spatial variation of the human microbiota during pregnancy publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1502875112 – volume: 354 start-page: 651 year: 1999 ident: 10.1016/j.ajog.2016.09.075_bib36 article-title: Prophylactic antibiotics and endocervical microbial inoculation of the endometrium at embryo transfer publication-title: Lancet doi: 10.1016/S0140-6736(99)02415-0 – volume: 32 start-page: 35 year: 2014 ident: 10.1016/j.ajog.2016.09.075_bib1 article-title: Potential influence of the microbiome on infertility and assisted reproductive technology publication-title: Semin Reprod Med doi: 10.1055/s-0033-1361821 – volume: 29 start-page: 223 year: 2016 ident: 10.1016/j.ajog.2016.09.075_bib6 article-title: The human microbiome during bacterial vaginosis publication-title: Clin Microbiol Rev doi: 10.1128/CMR.00075-15 – volume: 22 start-page: 11 year: 2009 ident: 10.1016/j.ajog.2016.09.075_bib39 article-title: Bacterial populations in the vaginas of healthy adolescent women publication-title: J Pediatr Adolesc Gynecol doi: 10.1016/j.jpag.2008.01.073 – volume: 2 start-page: 4 year: 2014 ident: 10.1016/j.ajog.2016.09.075_bib7 article-title: The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women publication-title: Microbiome doi: 10.1186/2049-2618-2-4 – volume: 108 start-page: 4680 issue: Suppl year: 2011 ident: 10.1016/j.ajog.2016.09.075_bib8 article-title: Vaginal microbiome of reproductive-age women publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1002611107 – volume: 26 start-page: 2460 year: 2010 ident: 10.1016/j.ajog.2016.09.075_bib27 article-title: Search and clustering orders of magnitude faster than BLAST publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq461 – ident: 10.1016/j.ajog.2016.09.075_bib30 doi: 10.1038/163688a0 – volume: 14 start-page: 2411 year: 1999 ident: 10.1016/j.ajog.2016.09.075_bib34 article-title: The influence of bacterial vaginosis on in-vitro fertilization and embryo implantation during assisted reproduction treatment publication-title: Hum Reprod doi: 10.1093/humrep/14.9.2411 – volume: 27 start-page: 861 year: 2006 ident: 10.1016/j.ajog.2016.09.075_bib48 article-title: An introduction to ROC analysis publication-title: ROC Analysis in Pattern Recognition doi: 10.1016/j.patrec.2005.10.010 – volume: 4 year: 2012 ident: 10.1016/j.ajog.2016.09.075_bib5 article-title: Temporal dynamics of the human vaginal microbiota publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3003605 – volume: 212 start-page: 611.e1 year: 2015 ident: 10.1016/j.ajog.2016.09.075_bib20 article-title: Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2014.11.043 – volume: 98 start-page: 4123 year: 2013 ident: 10.1016/j.ajog.2016.09.075_bib23 article-title: PGE2 and PGF2 concentrations in human endometrial fluid as biomarkers for embryonic implantation publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2013-2205 – volume: 7 start-page: 105 year: 2003 ident: 10.1016/j.ajog.2016.09.075_bib42 article-title: Endometrial secretion aspiration prior to embryo transfer does not reduce implantation rates publication-title: Reprod Biomed Online doi: 10.1016/S1472-6483(10)61737-3 – volume: 46 start-page: 24 year: 1997 ident: 10.1016/j.ajog.2016.09.075_bib45 article-title: Comparison of DNA sequences with protein sequences publication-title: Genomics doi: 10.1006/geno.1997.4995 – ident: 10.1016/j.ajog.2016.09.075_bib41 – volume: 93 start-page: 774 year: 2010 ident: 10.1016/j.ajog.2016.09.075_bib40 article-title: Embryologic outcome and secretome profile of implanted blastocysts obtained after coculture in human endometrial epithelial cells versus the sequential system publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2008.10.019 – volume: 82 start-page: 799 year: 2004 ident: 10.1016/j.ajog.2016.09.075_bib18 article-title: Can endometrial infection/inflammation explain implantation failure, spontaneous abortion, and preterm birth after in vitro fertilization? publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2004.05.076 – volume: 29 start-page: 105 year: 2012 ident: 10.1016/j.ajog.2016.09.075_bib33 article-title: The dynamics of the vaginal microbiome during infertility therapy with in vitro fertilization-embryo transfer publication-title: J Assist Reprod Genet doi: 10.1007/s10815-011-9694-6 – volume: 76 start-page: 3124 year: 2008 ident: 10.1016/j.ajog.2016.09.075_bib32 article-title: Inhibition of Neisseria gonorrhoeae epithelial cell interactions by vaginal Lactobacillus species publication-title: Infect Immun doi: 10.1128/IAI.00101-08 – volume: 94 start-page: 399 year: 1986 ident: 10.1016/j.ajog.2016.09.075_bib38 article-title: Vaginal lactobacilli inhibiting growth of Gardnerella vaginalis, Mobiluncus and other bacterial species cultured from vaginal content of women with bacterial vaginosis publication-title: Acta Pathol Microbiol Immunol Scand B – volume: 13 start-page: 260 year: 2012 ident: 10.1016/j.ajog.2016.09.075_bib22 article-title: The human microbiome: at the interface of health and disease publication-title: Nat Rev Genet doi: 10.1038/nrg3182 – volume: 186 start-page: 1770 year: 2002 ident: 10.1016/j.ajog.2016.09.075_bib3 article-title: Evaluation of the bacterial vaginal flora of 20 postmenopausal women by direct (Nugent score) and molecular (polymerase chain reaction and denaturing gradient gel electrophoresis) techniques publication-title: J Infect Dis doi: 10.1086/345761 – volume: 11 start-page: 1687 year: 1996 ident: 10.1016/j.ajog.2016.09.075_bib14 article-title: Incidence of microbial growth from the tip of the embryo transfer catheter after embryo transfer in relation to clinical pregnancy rate following in-vitro fertilization and embryo transfer publication-title: Hum Reprod doi: 10.1093/oxfordjournals.humrep.a019470 – volume: 92 start-page: 451 year: 2002 ident: 10.1016/j.ajog.2016.09.075_bib4 article-title: Genetic diversity of vaginal lactobacilli from women in different countries based on 16S rRNA gene sequences publication-title: J Appl Microbiol doi: 10.1046/j.1365-2672.2002.01547.x – volume: 70 start-page: 866 year: 1998 ident: 10.1016/j.ajog.2016.09.075_bib13 article-title: Microbial flora of the cervix assessed at the time of embryo transfer adversely affects in vitro fertilization outcome publication-title: Fertil Steril doi: 10.1016/S0015-0282(98)00277-5 – volume: 308 start-page: 295 year: 1994 ident: 10.1016/j.ajog.2016.09.075_bib11 article-title: Abnormal bacterial colonization of the genital tract and subsequent preterm delivery and late miscarriage publication-title: BMJ doi: 10.1136/bmj.308.6924.295 – volume: 74 start-page: 1118 year: 2000 ident: 10.1016/j.ajog.2016.09.075_bib15 article-title: Bacteria in the transfer catheter tip influence the live-birth rate after in vitro fertilization publication-title: Fertil Steril doi: 10.1016/S0015-0282(00)01624-1 – volume: 191 start-page: 934 year: 2013 ident: 10.1016/j.ajog.2016.09.075_bib21 article-title: Viral infection of the pregnant cervix predisposes to ascending bacterial infection publication-title: J Immunol doi: 10.4049/jimmunol.1300661 – volume: 7 start-page: 335 year: 2010 ident: 10.1016/j.ajog.2016.09.075_bib26 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat Methods doi: 10.1038/nmeth.f.303 – volume: 2 start-page: 18 year: 2014 ident: 10.1016/j.ajog.2016.09.075_bib9 article-title: The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term publication-title: Microbiome doi: 10.1186/2049-2618-2-18 – volume: 319 start-page: 220 year: 1999 ident: 10.1016/j.ajog.2016.09.075_bib10 article-title: Influence of bacterial vaginosis on conception and miscarriage in the first trimester: cohort study publication-title: BMJ doi: 10.1136/bmj.319.7204.220 – volume: 33 start-page: 129 year: 2016 ident: 10.1016/j.ajog.2016.09.075_bib37 article-title: Endometrial microbiome at the time of embryo transfer: next-generation sequencing of the 16S ribosomal subunit publication-title: J Assist Reprod Genet doi: 10.1007/s10815-015-0614-z – volume: 95 start-page: 50 year: 2011 ident: 10.1016/j.ajog.2016.09.075_bib43 article-title: A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2010.04.063 – volume: 99 start-page: 508 year: 2013 ident: 10.1016/j.ajog.2016.09.075_bib44 article-title: The accuracy and reproducibility of the endometrial receptivity array is superior to histology as a diagnostic method for endometrial receptivity publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2012.09.046 – volume: 17 start-page: 10 year: 2011 ident: 10.1016/j.ajog.2016.09.075_bib46 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet J doi: 10.14806/ej.17.1.200 – volume: 24 start-page: 395 year: 2007 ident: 10.1016/j.ajog.2016.09.075_bib17 article-title: Examination of bacterial contamination at the time of embryo transfer, and its impact on the IVF/pregnancy outcome publication-title: J Assist Reprod Genet doi: 10.1007/s10815-007-9146-5 – volume: 27 start-page: 2194 year: 2011 ident: 10.1016/j.ajog.2016.09.075_bib47 article-title: UCHIME improves sensitivity and speed of chimera detection publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr381 – volume: 74 start-page: 216 year: 1995 ident: 10.1016/j.ajog.2016.09.075_bib19 article-title: Sterility of the uterine cavity publication-title: Acta Obstet Gynecol Scand doi: 10.3109/00016349509008942 – volume: 100 start-page: 818 year: 2013 ident: 10.1016/j.ajog.2016.09.075_bib24 article-title: The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2013.05.004 – ident: 10.1016/j.ajog.2016.09.075_bib29 – volume: 158 start-page: 690 year: 2014 ident: 10.1016/j.ajog.2016.09.075_bib2 article-title: SnapShot: the human microbiome publication-title: Cell doi: 10.1016/j.cell.2014.07.019 – volume: 190 start-page: 1509 year: 2004 ident: 10.1016/j.ajog.2016.09.075_bib12 article-title: Bacterial vaginosis, the inflammatory response and the risk of preterm birth: a role for genetic epidemiology in the prevention of preterm birth publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2004.01.002 – reference: 27725136 - Am J Obstet Gynecol. 2016 Dec;215(6):682-683 |
SSID | ssj0002292 |
Score | 2.6598349 |
Snippet | Bacterial cells in the human body account for 1–3% of total body weight and are at least equal in number to human cells. Recent research has focused on... Background Bacterial cells in the human body account for 1–3% of total body weight and are at least equal in number to human cells. Recent research has focused... Bacterial cells in the human body account for 1-3% of total body weight and are at least equal in number to human cells. Recent research has focused on... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 684 |
SubjectTerms | assisted reproductive techniques bacterial pathogens Bacterial Typing Techniques Case-Control Studies Embryo Implantation Embryo Transfer endometrial microbiota endometrial receptivity array Endometrium - microbiology Female Fertilization in Vitro Gardnerella vaginalis - genetics Genome, Bacterial Humans Infertility - therapy Lactobacillus - genetics Live Birth - epidemiology Logistic Models Luteinizing Hormone Menstrual Cycle Microbiota - genetics Multivariate Analysis Obstetrics and Gynecology Pilot Projects Polymerase Chain Reaction Pregnancy Pregnancy Rate Prevotella - genetics Principal Component Analysis Prospective Studies RNA, Ribosomal, 16S - genetics Sequence Analysis, RNA Spain - epidemiology Treatment Outcome Vagina - microbiology |
Title | Evidence that the endometrial microbiota has an effect on implantation success or failure |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0002937816307827 https://www.clinicalkey.es/playcontent/1-s2.0-S0002937816307827 https://dx.doi.org/10.1016/j.ajog.2016.09.075 https://www.ncbi.nlm.nih.gov/pubmed/27717732 https://www.proquest.com/docview/1835378674 |
Volume | 215 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQSKiXqpQ-lpdcqbcqJbGdODkiBFqo4AQSPVl2MluC2GRFstf-dmZiZ1EFpVIvkRJ55GQynvksfzPD2NdUa2perCJZ5C5SoJPIQZJGIk_LuFRVLhTlDl9cZtNrdX6T3qyx4zEXhmiVwfd7nz546_DkMGjzcFHXlOMbY6zSOSIKinOUUa6UJiv__vuJ5iFEIUYITKND4ozneNm79hfRu7Kh1ilxDV8OTn8Dn0MQOn3H3gb0yI_8C26xNWjes82LcD6-zX6OTUJ5f2t7vACHpmrnMDTn4PPal13qLb-1HbcN93QO3ja8ni_urc9Dani3HPoo8vaBz2xNzPUP7Pr05Op4GoXmCVGpMtFHpcwqyGNni8JZREF5ViQzobWlSrQqcTJxVSYtlftJnYwdIg8nU13ijkZawJ3rR7betA18ZhxlpRZKFzCzCnJtQWFMg8rGGVSxKycsGbVmylBZnBpc3JuRQnZnSNOGNG3iwqCmJ-zbSmbh62q8OlqOP8OMGaPo4wy6_Vel9EtS0IVl2pnEdMLE5pkpTVi6kvzDGv8545fRUgwuUzp7sQ20S5wJkS5OkGk1YZ-8Ca2-G_9KorUUO_856y57Q3eeZLPH1vuHJewjVOrdwbAWDtjG0dmP6eUjPacQCw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDbS5lPS9farQWzGxJdmyjyE0bJrsnhJIT0KyZxuHrL3E3v-fkSUvlKYJ9OKD7UH2aDTzCX0zA_AtVco1L5aRKHIbSVRJZDFJI56nZVzKKufS5Q7PF9nsQv68TC934GjMhXG0yuD7vU8fvHW4cxC0ebCua5fjG1OsUjkhChfn1BPYddWp0gnsHp6czhZbh8x5wUcU7ARC7oyneZnr9rdjeGVDuVNHN7w_Pv0Lfw5x6HgfngcAyQ79N76AHWxewtN5OCJ_Bb_GPqGsvzI9XZBhU7UrHPpzsFXtKy_1hl2ZjpmGeUYHaxtWr9Y3xqciNazbDK0UWXvLlqZ25PXXcHH84_xoFoX-CVEpM95HpcgqzGNrisIaAkJ5ViRLrpRxxWhlYkViq0wYV_EntSK2BD6sSFVJmxphkDavb2DStA2-A0ayQnGpClwaibkyKCmsYWXiDKvYllNIRq3pMhQXdz0ubvTIIrvWTtPaaVrHhSZNT-H7VmbtS2s8-LYYJ0OPSaPk5jR5_gel1H1S2IWV2ulEd1zH-i9rmkK6lfzDIB8d8etoKZpWqjt-MQ22GxqJwC4NkCk5hbfehLb_TbOSKCX4-_8c9Qs8m53Pz_TZyeL0A-y5J55z8xEm_e0GPxFy6u3nsDLuAIhJErw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+that+the+endometrial+microbiota+has+an+effect+on+implantation+success+or+failure&rft.jtitle=American+journal+of+obstetrics+and+gynecology&rft.au=Moreno%2C+Inmaculada&rft.au=Codo%C3%B1er%2C+Francisco+M.&rft.au=Vilella%2C+Felipe&rft.au=Valbuena%2C+Diana&rft.date=2016-12-01&rft.pub=Elsevier+Inc&rft.issn=0002-9378&rft.volume=215&rft.issue=6&rft.spage=684&rft.epage=703&rft_id=info:doi/10.1016%2Fj.ajog.2016.09.075&rft.externalDocID=S0002937816307827 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00029378%2FS0002937816X00130%2Fcov150h.gif |