Evidence that the endometrial microbiota has an effect on implantation success or failure

Bacterial cells in the human body account for 1–3% of total body weight and are at least equal in number to human cells. Recent research has focused on understanding how the different bacterial communities in the body (eg, gut, respiratory, skin, and vaginal microbiomes) predispose to health and dis...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of obstetrics and gynecology Vol. 215; no. 6; pp. 684 - 703
Main Authors Moreno, Inmaculada, Codoñer, Francisco M., Vilella, Felipe, Valbuena, Diana, Martinez-Blanch, Juan F., Jimenez-Almazán, Jorge, Alonso, Roberto, Alamá, Pilar, Remohí, Jose, Pellicer, Antonio, Ramon, Daniel, Simon, Carlos
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bacterial cells in the human body account for 1–3% of total body weight and are at least equal in number to human cells. Recent research has focused on understanding how the different bacterial communities in the body (eg, gut, respiratory, skin, and vaginal microbiomes) predispose to health and disease. The microbiota of the reproductive tract has been inferred from the vaginal bacterial communities, and the uterus has been classically considered a sterile cavity. However, while the vaginal microbiota has been investigated in depth, there is a paucity of consistent data regarding the existence of an endometrial microbiota and its possible impact in reproductive function. This study sought to test the existence of an endometrial microbiota that differs from that in the vagina, assess its hormonal regulation, and analyze the impact of the endometrial microbial community on reproductive outcome in infertile patients undergoing in vitro fertilization. To identify the existence of an endometrial microbiota, paired samples of endometrial fluid and vaginal aspirates were obtained simultaneously from 13 fertile women in prereceptive and receptive phases within the same menstrual cycle (total samples analyzed n = 52). To investigate the hormonal regulation of the endometrial microbiota during the acquisition of endometrial receptivity, endometrial fluid was collected at prereceptive and receptive phases within the same cycle from 22 fertile women (n = 44). Finally, the reproductive impact of an altered endometrial microbiota in endometrial fluid was assessed by implantation, ongoing pregnancy, and live birth rates in 35 infertile patients undergoing in vitro fertilization (total samples n = 41) with a receptive endometrium diagnosed using the endometrial receptivity array. Genomic DNA was obtained either from endometrial fluid or vaginal aspirate and sequenced by 454 pyrosequencing of the V3–V5 region of the 16S ribosomal RNA (rRNA) gene; the resulting sequences were taxonomically assigned using QIIME. Data analysis was performed using R packages. The χ2 test, Student t test, and analysis of variance were used for statistical analyses. When bacterial communities from paired endometrial fluid and vaginal aspirate samples within the same subjects were interrogated, different bacterial communities were detected between the uterine cavity and the vagina of some subjects. Based on its composition, the microbiota in the endometrial fluid, comprising up to 191 operational taxonomic units, was defined as a Lactobacillus-dominated microbiota (>90% Lactobacillus spp.) or a non-Lactobacillus-dominated microbiota (<90% Lactobacillus spp. with >10% of other bacteria). Although the endometrial microbiota was not hormonally regulated during the acquisition of endometrial receptivity, the presence of a non-Lactobacillus-dominated microbiota in a receptive endometrium was associated with significant decreases in implantation [60.7% vs 23.1% (P = .02)], pregnancy [70.6% vs 33.3% (P = .03)], ongoing pregnancy [58.8% vs 13.3% (P = .02)], and live birth [58.8% vs 6.7% (P = .002)] rates. Our results demonstrate the existence of an endometrial microbiota that is highly stable during the acquisition of endometrial receptivity. However, pathological modification of its profile is associated with poor reproductive outcomes for in vitro fertilization patients. This finding adds a novel microbiological dimension to the reproductive process.
AbstractList Bacterial cells in the human body account for 1–3% of total body weight and are at least equal in number to human cells. Recent research has focused on understanding how the different bacterial communities in the body (eg, gut, respiratory, skin, and vaginal microbiomes) predispose to health and disease. The microbiota of the reproductive tract has been inferred from the vaginal bacterial communities, and the uterus has been classically considered a sterile cavity. However, while the vaginal microbiota has been investigated in depth, there is a paucity of consistent data regarding the existence of an endometrial microbiota and its possible impact in reproductive function. This study sought to test the existence of an endometrial microbiota that differs from that in the vagina, assess its hormonal regulation, and analyze the impact of the endometrial microbial community on reproductive outcome in infertile patients undergoing in vitro fertilization. To identify the existence of an endometrial microbiota, paired samples of endometrial fluid and vaginal aspirates were obtained simultaneously from 13 fertile women in prereceptive and receptive phases within the same menstrual cycle (total samples analyzed n = 52). To investigate the hormonal regulation of the endometrial microbiota during the acquisition of endometrial receptivity, endometrial fluid was collected at prereceptive and receptive phases within the same cycle from 22 fertile women (n = 44). Finally, the reproductive impact of an altered endometrial microbiota in endometrial fluid was assessed by implantation, ongoing pregnancy, and live birth rates in 35 infertile patients undergoing in vitro fertilization (total samples n = 41) with a receptive endometrium diagnosed using the endometrial receptivity array. Genomic DNA was obtained either from endometrial fluid or vaginal aspirate and sequenced by 454 pyrosequencing of the V3–V5 region of the 16S ribosomal RNA (rRNA) gene; the resulting sequences were taxonomically assigned using QIIME. Data analysis was performed using R packages. The χ2 test, Student t test, and analysis of variance were used for statistical analyses. When bacterial communities from paired endometrial fluid and vaginal aspirate samples within the same subjects were interrogated, different bacterial communities were detected between the uterine cavity and the vagina of some subjects. Based on its composition, the microbiota in the endometrial fluid, comprising up to 191 operational taxonomic units, was defined as a Lactobacillus-dominated microbiota (>90% Lactobacillus spp.) or a non-Lactobacillus-dominated microbiota (<90% Lactobacillus spp. with >10% of other bacteria). Although the endometrial microbiota was not hormonally regulated during the acquisition of endometrial receptivity, the presence of a non-Lactobacillus-dominated microbiota in a receptive endometrium was associated with significant decreases in implantation [60.7% vs 23.1% (P = .02)], pregnancy [70.6% vs 33.3% (P = .03)], ongoing pregnancy [58.8% vs 13.3% (P = .02)], and live birth [58.8% vs 6.7% (P = .002)] rates. Our results demonstrate the existence of an endometrial microbiota that is highly stable during the acquisition of endometrial receptivity. However, pathological modification of its profile is associated with poor reproductive outcomes for in vitro fertilization patients. This finding adds a novel microbiological dimension to the reproductive process.
Background Bacterial cells in the human body account for 1–3% of total body weight and are at least equal in number to human cells. Recent research has focused on understanding how the different bacterial communities in the body (eg, gut, respiratory, skin, and vaginal microbiomes) predispose to health and disease. The microbiota of the reproductive tract has been inferred from the vaginal bacterial communities, and the uterus has been classically considered a sterile cavity. However, while the vaginal microbiota has been investigated in depth, there is a paucity of consistent data regarding the existence of an endometrial microbiota and its possible impact in reproductive function. Objective This study sought to test the existence of an endometrial microbiota that differs from that in the vagina, assess its hormonal regulation, and analyze the impact of the endometrial microbial community on reproductive outcome in infertile patients undergoing in vitro fertilization. Study Design To identify the existence of an endometrial microbiota, paired samples of endometrial fluid and vaginal aspirates were obtained simultaneously from 13 fertile women in prereceptive and receptive phases within the same menstrual cycle (total samples analyzed n = 52). To investigate the hormonal regulation of the endometrial microbiota during the acquisition of endometrial receptivity, endometrial fluid was collected at prereceptive and receptive phases within the same cycle from 22 fertile women (n = 44). Finally, the reproductive impact of an altered endometrial microbiota in endometrial fluid was assessed by implantation, ongoing pregnancy, and live birth rates in 35 infertile patients undergoing in vitro fertilization (total samples n = 41) with a receptive endometrium diagnosed using the endometrial receptivity array. Genomic DNA was obtained either from endometrial fluid or vaginal aspirate and sequenced by 454 pyrosequencing of the V3–V5 region of the 16S ribosomal RNA (rRNA) gene; the resulting sequences were taxonomically assigned using QIIME. Data analysis was performed using R packages. The χ2 test, Student t test, and analysis of variance were used for statistical analyses. Results When bacterial communities from paired endometrial fluid and vaginal aspirate samples within the same subjects were interrogated, different bacterial communities were detected between the uterine cavity and the vagina of some subjects. Based on its composition, the microbiota in the endometrial fluid, comprising up to 191 operational taxonomic units, was defined as a Lactobacillus -dominated microbiota (>90% Lactobacillus spp.) or a non- Lactobacillus -dominated microbiota (<90% Lactobacillus spp. with >10% of other bacteria). Although the endometrial microbiota was not hormonally regulated during the acquisition of endometrial receptivity, the presence of a non- Lactobacillus -dominated microbiota in a receptive endometrium was associated with significant decreases in implantation [60.7% vs 23.1% ( P  = .02)], pregnancy [70.6% vs 33.3% ( P  = .03)], ongoing pregnancy [58.8% vs 13.3% ( P  = .02)], and live birth [58.8% vs 6.7% ( P  = .002)] rates. Conclusion Our results demonstrate the existence of an endometrial microbiota that is highly stable during the acquisition of endometrial receptivity. However, pathological modification of its profile is associated with poor reproductive outcomes for in vitro fertilization patients. This finding adds a novel microbiological dimension to the reproductive process.
Bacterial cells in the human body account for 1-3% of total body weight and are at least equal in number to human cells. Recent research has focused on understanding how the different bacterial communities in the body (eg, gut, respiratory, skin, and vaginal microbiomes) predispose to health and disease. The microbiota of the reproductive tract has been inferred from the vaginal bacterial communities, and the uterus has been classically considered a sterile cavity. However, while the vaginal microbiota has been investigated in depth, there is a paucity of consistent data regarding the existence of an endometrial microbiota and its possible impact in reproductive function. This study sought to test the existence of an endometrial microbiota that differs from that in the vagina, assess its hormonal regulation, and analyze the impact of the endometrial microbial community on reproductive outcome in infertile patients undergoing in vitro fertilization. To identify the existence of an endometrial microbiota, paired samples of endometrial fluid and vaginal aspirates were obtained simultaneously from 13 fertile women in prereceptive and receptive phases within the same menstrual cycle (total samples analyzed n = 52). To investigate the hormonal regulation of the endometrial microbiota during the acquisition of endometrial receptivity, endometrial fluid was collected at prereceptive and receptive phases within the same cycle from 22 fertile women (n = 44). Finally, the reproductive impact of an altered endometrial microbiota in endometrial fluid was assessed by implantation, ongoing pregnancy, and live birth rates in 35 infertile patients undergoing in vitro fertilization (total samples n = 41) with a receptive endometrium diagnosed using the endometrial receptivity array. Genomic DNA was obtained either from endometrial fluid or vaginal aspirate and sequenced by 454 pyrosequencing of the V3-V5 region of the 16S ribosomal RNA (rRNA) gene; the resulting sequences were taxonomically assigned using QIIME. Data analysis was performed using R packages. The χ test, Student t test, and analysis of variance were used for statistical analyses. When bacterial communities from paired endometrial fluid and vaginal aspirate samples within the same subjects were interrogated, different bacterial communities were detected between the uterine cavity and the vagina of some subjects. Based on its composition, the microbiota in the endometrial fluid, comprising up to 191 operational taxonomic units, was defined as a Lactobacillus-dominated microbiota (>90% Lactobacillus spp.) or a non-Lactobacillus-dominated microbiota (<90% Lactobacillus spp. with >10% of other bacteria). Although the endometrial microbiota was not hormonally regulated during the acquisition of endometrial receptivity, the presence of a non-Lactobacillus-dominated microbiota in a receptive endometrium was associated with significant decreases in implantation [60.7% vs 23.1% (P = .02)], pregnancy [70.6% vs 33.3% (P = .03)], ongoing pregnancy [58.8% vs 13.3% (P = .02)], and live birth [58.8% vs 6.7% (P = .002)] rates. Our results demonstrate the existence of an endometrial microbiota that is highly stable during the acquisition of endometrial receptivity. However, pathological modification of its profile is associated with poor reproductive outcomes for in vitro fertilization patients. This finding adds a novel microbiological dimension to the reproductive process.
Bacterial cells in the human body account for 1-3% of total body weight and are at least equal in number to human cells. Recent research has focused on understanding how the different bacterial communities in the body (eg, gut, respiratory, skin, and vaginal microbiomes) predispose to health and disease. The microbiota of the reproductive tract has been inferred from the vaginal bacterial communities, and the uterus has been classically considered a sterile cavity. However, while the vaginal microbiota has been investigated in depth, there is a paucity of consistent data regarding the existence of an endometrial microbiota and its possible impact in reproductive function.BACKGROUNDBacterial cells in the human body account for 1-3% of total body weight and are at least equal in number to human cells. Recent research has focused on understanding how the different bacterial communities in the body (eg, gut, respiratory, skin, and vaginal microbiomes) predispose to health and disease. The microbiota of the reproductive tract has been inferred from the vaginal bacterial communities, and the uterus has been classically considered a sterile cavity. However, while the vaginal microbiota has been investigated in depth, there is a paucity of consistent data regarding the existence of an endometrial microbiota and its possible impact in reproductive function.This study sought to test the existence of an endometrial microbiota that differs from that in the vagina, assess its hormonal regulation, and analyze the impact of the endometrial microbial community on reproductive outcome in infertile patients undergoing in vitro fertilization.OBJECTIVEThis study sought to test the existence of an endometrial microbiota that differs from that in the vagina, assess its hormonal regulation, and analyze the impact of the endometrial microbial community on reproductive outcome in infertile patients undergoing in vitro fertilization.To identify the existence of an endometrial microbiota, paired samples of endometrial fluid and vaginal aspirates were obtained simultaneously from 13 fertile women in prereceptive and receptive phases within the same menstrual cycle (total samples analyzed n = 52). To investigate the hormonal regulation of the endometrial microbiota during the acquisition of endometrial receptivity, endometrial fluid was collected at prereceptive and receptive phases within the same cycle from 22 fertile women (n = 44). Finally, the reproductive impact of an altered endometrial microbiota in endometrial fluid was assessed by implantation, ongoing pregnancy, and live birth rates in 35 infertile patients undergoing in vitro fertilization (total samples n = 41) with a receptive endometrium diagnosed using the endometrial receptivity array. Genomic DNA was obtained either from endometrial fluid or vaginal aspirate and sequenced by 454 pyrosequencing of the V3-V5 region of the 16S ribosomal RNA (rRNA) gene; the resulting sequences were taxonomically assigned using QIIME. Data analysis was performed using R packages. The χ2 test, Student t test, and analysis of variance were used for statistical analyses.STUDY DESIGNTo identify the existence of an endometrial microbiota, paired samples of endometrial fluid and vaginal aspirates were obtained simultaneously from 13 fertile women in prereceptive and receptive phases within the same menstrual cycle (total samples analyzed n = 52). To investigate the hormonal regulation of the endometrial microbiota during the acquisition of endometrial receptivity, endometrial fluid was collected at prereceptive and receptive phases within the same cycle from 22 fertile women (n = 44). Finally, the reproductive impact of an altered endometrial microbiota in endometrial fluid was assessed by implantation, ongoing pregnancy, and live birth rates in 35 infertile patients undergoing in vitro fertilization (total samples n = 41) with a receptive endometrium diagnosed using the endometrial receptivity array. Genomic DNA was obtained either from endometrial fluid or vaginal aspirate and sequenced by 454 pyrosequencing of the V3-V5 region of the 16S ribosomal RNA (rRNA) gene; the resulting sequences were taxonomically assigned using QIIME. Data analysis was performed using R packages. The χ2 test, Student t test, and analysis of variance were used for statistical analyses.When bacterial communities from paired endometrial fluid and vaginal aspirate samples within the same subjects were interrogated, different bacterial communities were detected between the uterine cavity and the vagina of some subjects. Based on its composition, the microbiota in the endometrial fluid, comprising up to 191 operational taxonomic units, was defined as a Lactobacillus-dominated microbiota (>90% Lactobacillus spp.) or a non-Lactobacillus-dominated microbiota (<90% Lactobacillus spp. with >10% of other bacteria). Although the endometrial microbiota was not hormonally regulated during the acquisition of endometrial receptivity, the presence of a non-Lactobacillus-dominated microbiota in a receptive endometrium was associated with significant decreases in implantation [60.7% vs 23.1% (P = .02)], pregnancy [70.6% vs 33.3% (P = .03)], ongoing pregnancy [58.8% vs 13.3% (P = .02)], and live birth [58.8% vs 6.7% (P = .002)] rates.RESULTSWhen bacterial communities from paired endometrial fluid and vaginal aspirate samples within the same subjects were interrogated, different bacterial communities were detected between the uterine cavity and the vagina of some subjects. Based on its composition, the microbiota in the endometrial fluid, comprising up to 191 operational taxonomic units, was defined as a Lactobacillus-dominated microbiota (>90% Lactobacillus spp.) or a non-Lactobacillus-dominated microbiota (<90% Lactobacillus spp. with >10% of other bacteria). Although the endometrial microbiota was not hormonally regulated during the acquisition of endometrial receptivity, the presence of a non-Lactobacillus-dominated microbiota in a receptive endometrium was associated with significant decreases in implantation [60.7% vs 23.1% (P = .02)], pregnancy [70.6% vs 33.3% (P = .03)], ongoing pregnancy [58.8% vs 13.3% (P = .02)], and live birth [58.8% vs 6.7% (P = .002)] rates.Our results demonstrate the existence of an endometrial microbiota that is highly stable during the acquisition of endometrial receptivity. However, pathological modification of its profile is associated with poor reproductive outcomes for in vitro fertilization patients. This finding adds a novel microbiological dimension to the reproductive process.CONCLUSIONOur results demonstrate the existence of an endometrial microbiota that is highly stable during the acquisition of endometrial receptivity. However, pathological modification of its profile is associated with poor reproductive outcomes for in vitro fertilization patients. This finding adds a novel microbiological dimension to the reproductive process.
Author Pellicer, Antonio
Vilella, Felipe
Martinez-Blanch, Juan F.
Alonso, Roberto
Simon, Carlos
Moreno, Inmaculada
Ramon, Daniel
Codoñer, Francisco M.
Remohí, Jose
Valbuena, Diana
Jimenez-Almazán, Jorge
Alamá, Pilar
Author_xml – sequence: 1
  givenname: Inmaculada
  surname: Moreno
  fullname: Moreno, Inmaculada
  organization: Department of Research and Development, Igenomix SL, Valencia, Spain
– sequence: 2
  givenname: Francisco M.
  surname: Codoñer
  fullname: Codoñer, Francisco M.
  organization: Lifesequencing SL, Valencia, Spain
– sequence: 3
  givenname: Felipe
  surname: Vilella
  fullname: Vilella, Felipe
  organization: Fundación Instituto Valenciano de Infertilidad (IVI), Valencia, Spain
– sequence: 4
  givenname: Diana
  surname: Valbuena
  fullname: Valbuena, Diana
  organization: Department of Research and Development, Igenomix SL, Valencia, Spain
– sequence: 5
  givenname: Juan F.
  orcidid: 0000-0002-9340-6207
  surname: Martinez-Blanch
  fullname: Martinez-Blanch, Juan F.
  organization: Lifesequencing SL, Valencia, Spain
– sequence: 6
  givenname: Jorge
  surname: Jimenez-Almazán
  fullname: Jimenez-Almazán, Jorge
  organization: Department of Bioinformatics, Igenomix SL, Valencia, Spain
– sequence: 7
  givenname: Roberto
  surname: Alonso
  fullname: Alonso, Roberto
  organization: Department of Bioinformatics, Igenomix SL, Valencia, Spain
– sequence: 8
  givenname: Pilar
  surname: Alamá
  fullname: Alamá, Pilar
  organization: IVI Valencia, Valencia, Spain
– sequence: 9
  givenname: Jose
  surname: Remohí
  fullname: Remohí, Jose
  organization: IVI Valencia, Valencia, Spain
– sequence: 10
  givenname: Antonio
  surname: Pellicer
  fullname: Pellicer, Antonio
  organization: Department of Pediatrics, Obstetrics, and Gynecology, Universidad de Valencia, Instituto Universitario IVI, Valencia, Spain
– sequence: 11
  givenname: Daniel
  surname: Ramon
  fullname: Ramon, Daniel
  organization: Lifesequencing SL, Valencia, Spain
– sequence: 12
  givenname: Carlos
  surname: Simon
  fullname: Simon, Carlos
  email: carlos.simon@igenomix.com
  organization: Scientific director, Igenomix SL, Valencia, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27717732$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1rFTEUhoNU2tvaP-BCsnQzYz7uzYeIIKV-QMGF7cJVyGTO2IwzyTXJFPrvzXCri4J1k-TA-745eXJO0VGIARB6SUlLCRVvxtaO8UfL6rkluiVy9wxtKNGyEUqoI7QhhLBGc6lO0GnO41oyzY7RCZOSSsnZBn2_vPM9BAe43NpSF8AQ-jhDSd5OePYuxc7HYvGtzdgGDMMAruAYsJ_3kw3FFl-LvDgHOeOY8GD9tCR4gZ4Pdspw_rCfoZuPl9cXn5urr5--XHy4atxWsNI4LnpQpLNad1ZxrYSmQ-3Pcq3Zlnacdr3glhBJdh0nnRC84zvptCDcAuX8DL0-5O5T_LVALmb22cFUe4O4ZEMV31UEQm6r9NWDdOlm6M0--dmme_MHRxWwg6C-OucEw18JJWZlbkazMjcrc0O0qcyrST0yOX-gUlJF8bT13cEKFdCdh2Sy8-tv9D5VyqaP_mn7-0d2N_ngnZ1-wj3kMS4pVPSGmswMMd_WAVjHgQpOpGKyBrz9d8D_bv8NdKbENw
CitedBy_id crossref_primary_10_1093_humrep_dez065
crossref_primary_10_33549_physiolres_934960
crossref_primary_10_3390_microorganisms11061443
crossref_primary_10_1111_aji_13037
crossref_primary_10_61622_rbgo_2024rbgo82
crossref_primary_10_3390_ani14010162
crossref_primary_10_1016_j_theriogenology_2022_10_007
crossref_primary_10_1007_s10304_019_0253_z
crossref_primary_10_1111_aji_13392
crossref_primary_10_31071_promedosvity2020_03_055
crossref_primary_10_7717_peerj_13177
crossref_primary_10_3390_ani13182880
crossref_primary_10_3390_ani13030485
crossref_primary_10_1002_rmb2_12083
crossref_primary_10_1016_j_fertnstert_2018_04_041
crossref_primary_10_1007_s10815_022_02544_7
crossref_primary_10_1186_s12884_022_04471_y
crossref_primary_10_1128_spectrum_01650_23
crossref_primary_10_1007_s40618_022_01752_3
crossref_primary_10_1128_spectrum_00462_22
crossref_primary_10_1016_j_biochi_2022_02_005
crossref_primary_10_1111_jog_15759
crossref_primary_10_1186_s43043_021_00078_z
crossref_primary_10_1007_s10815_022_02688_6
crossref_primary_10_3389_fnut_2022_927972
crossref_primary_10_3390_nu13030855
crossref_primary_10_3390_jcm13164605
crossref_primary_10_3389_bjbs_2023_12098
crossref_primary_10_3390_microorganisms10112238
crossref_primary_10_3390_biom15010106
crossref_primary_10_3389_fphys_2017_00415
crossref_primary_10_3389_fimmu_2022_928475
crossref_primary_10_1097_GCO_0000000000000620
crossref_primary_10_1016_j_beem_2018_10_001
crossref_primary_10_3390_ht9020012
crossref_primary_10_1007_s00129_017_4096_1
crossref_primary_10_1016_j_rbmo_2022_06_008
crossref_primary_10_1186_s43043_022_00117_3
crossref_primary_10_1007_s00203_023_03703_9
crossref_primary_10_1016_j_mehy_2022_110858
crossref_primary_10_33590_emjreprohealth_10310747
crossref_primary_10_3389_fcimb_2022_1059825
crossref_primary_10_1155_2019_4893437
crossref_primary_10_3390_ijms221810082
crossref_primary_10_1080_14767058_2020_1787977
crossref_primary_10_3390_ijms231911298
crossref_primary_10_1186_s12958_019_0562_z
crossref_primary_10_1007_s10815_024_03292_6
crossref_primary_10_1373_clinchem_2018_289306
crossref_primary_10_3389_fcimb_2020_609488
crossref_primary_10_24075_brsmu_2025_007
crossref_primary_10_3390_jcm13113173
crossref_primary_10_1097_GCO_0000000000000709
crossref_primary_10_1016_j_jri_2024_104325
crossref_primary_10_12677_jcpm_2024_34268
crossref_primary_10_1186_s12866_024_03339_9
crossref_primary_10_3389_fimmu_2022_919728
crossref_primary_10_3390_vetsci12030232
crossref_primary_10_1016_j_jri_2021_103436
crossref_primary_10_1016_j_fertnstert_2018_12_022
crossref_primary_10_3390_life13071486
crossref_primary_10_3389_frph_2022_963752
crossref_primary_10_1016_j_theriogenology_2023_04_022
crossref_primary_10_3390_ijms232113267
crossref_primary_10_3390_microorganisms10050922
crossref_primary_10_2139_ssrn_4020522
crossref_primary_10_1016_j_rbmo_2021_05_001
crossref_primary_10_1111_aji_13065
crossref_primary_10_30841_2708_8731_4_2022_262794
crossref_primary_10_1016_j_ajog_2020_06_004
crossref_primary_10_1186_s43043_023_00136_8
crossref_primary_10_3389_fimmu_2019_02823
crossref_primary_10_3389_fcimb_2019_00114
crossref_primary_10_1007_s11250_022_03119_5
crossref_primary_10_1111_jog_15897
crossref_primary_10_1016_j_jri_2020_103244
crossref_primary_10_1007_s43032_021_00579_2
crossref_primary_10_1098_rspb_2024_1334
crossref_primary_10_1177_1753495X18775899
crossref_primary_10_3390_microorganisms13010197
crossref_primary_10_1515_jpm_2020_0367
crossref_primary_10_1007_s42977_022_00134_3
crossref_primary_10_1186_s12905_022_01681_6
crossref_primary_10_1111_aji_70035
crossref_primary_10_3390_ijms24065947
crossref_primary_10_1136_bmjopen_2021_057328
crossref_primary_10_5582_bst_2023_01133
crossref_primary_10_1007_s10815_022_02588_9
crossref_primary_10_1371_journal_pone_0202699
crossref_primary_10_1038_s41598_023_39078_6
crossref_primary_10_1111_1471_0528_16661
crossref_primary_10_1111_1471_0528_16782
crossref_primary_10_3390_microorganisms11030741
crossref_primary_10_1016_j_theriogenology_2022_11_003
crossref_primary_10_3389_fcimb_2021_654202
crossref_primary_10_1128_msphere_00096_23
crossref_primary_10_1007_s43032_024_01557_0
crossref_primary_10_3390_jcm11061505
crossref_primary_10_1016_j_fertnstert_2018_12_008
crossref_primary_10_1007_s00129_024_05320_z
crossref_primary_10_1186_s12958_018_0414_2
crossref_primary_10_26442_20795696_2020_3_200174
crossref_primary_10_1007_s00281_020_00807_y
crossref_primary_10_3389_fcimb_2020_00350
crossref_primary_10_1002_rmb2_12389
crossref_primary_10_1111_aji_70022
crossref_primary_10_3168_jds_2019_18050
crossref_primary_10_3390_ijms232012212
crossref_primary_10_3390_ijms23010485
crossref_primary_10_1111_aji_13376
crossref_primary_10_1126_scisignal_aba3396
crossref_primary_10_3390_medicina59091540
crossref_primary_10_17116_rosakush201818061
crossref_primary_10_1002_rmb2_12495
crossref_primary_10_1038_s41598_019_55611_y
crossref_primary_10_1093_humrep_dez041
crossref_primary_10_1016_j_ejogrb_2020_10_054
crossref_primary_10_1016_j_mimet_2022_106664
crossref_primary_10_1128_MMBR_00036_17
crossref_primary_10_1097_GCO_0000000000000626
crossref_primary_10_1016_j_xfnr_2022_11_001
crossref_primary_10_3389_fgene_2024_1292757
crossref_primary_10_1016_j_jri_2025_104440
crossref_primary_10_1016_j_ajog_2018_02_012
crossref_primary_10_3389_fcimb_2023_1059339
crossref_primary_10_1002_rmb2_12249
crossref_primary_10_1007_s10815_023_02791_2
crossref_primary_10_1016_j_jogoh_2019_01_007
crossref_primary_10_3390_microorganisms11040991
crossref_primary_10_1007_s00404_022_06755_2
crossref_primary_10_3390_pharmaceutics16111475
crossref_primary_10_3389_fcell_2021_641921
crossref_primary_10_3389_fanim_2023_1111636
crossref_primary_10_1111_aji_70005
crossref_primary_10_1002_rmb2_12250
crossref_primary_10_1016_j_jri_2024_104251
crossref_primary_10_1038_s41598_024_82466_9
crossref_primary_10_1016_j_tim_2022_09_011
crossref_primary_10_1128_spectrum_02732_23
crossref_primary_10_1007_s15013_020_3160_4
crossref_primary_10_7759_cureus_81056
crossref_primary_10_1128_spectrum_04764_22
crossref_primary_10_1016_j_fertnstert_2018_06_041
crossref_primary_10_1186_s12916_021_02227_7
crossref_primary_10_3389_fcimb_2025_1515563
crossref_primary_10_1002_14651858_CD015707
crossref_primary_10_1016_j_gofs_2020_07_005
crossref_primary_10_3389_fimmu_2019_02653
crossref_primary_10_3390_ijms20143405
crossref_primary_10_3390_ijms24043163
crossref_primary_10_3389_fimmu_2023_1198430
crossref_primary_10_1038_s41598_023_30591_2
crossref_primary_10_3389_fmicb_2022_1029128
crossref_primary_10_1080_19490976_2021_1894070
crossref_primary_10_1016_j_fertnstert_2019_08_060
crossref_primary_10_1093_humrep_deaa372
crossref_primary_10_7759_cureus_81067
crossref_primary_10_1055_s_0041_1735199
crossref_primary_10_3389_fcell_2021_613277
crossref_primary_10_3389_fendo_2022_1057022
crossref_primary_10_1186_s40168_023_01527_9
crossref_primary_10_1186_s13027_023_00483_1
crossref_primary_10_1136_bmjopen_2023_081470
crossref_primary_10_3389_fcimb_2024_1494931
crossref_primary_10_1016_j_xfnr_2024_100073
crossref_primary_10_1128_mSphere_00210_20
crossref_primary_10_3390_endocrines3040068
crossref_primary_10_1016_j_rbmo_2020_01_023
crossref_primary_10_4049_jimmunol_1801350
crossref_primary_10_1016_j_ejogrb_2021_05_045
crossref_primary_10_1111_1471_0528_15881
crossref_primary_10_3390_ijms252313227
crossref_primary_10_1097_OGX_0000000000000788
crossref_primary_10_3389_fimmu_2021_641281
crossref_primary_10_3390_ijms241310920
crossref_primary_10_3390_microorganisms9030473
crossref_primary_10_1136_bmjopen_2019_035866
crossref_primary_10_1007_s10815_024_03066_0
crossref_primary_10_1042_BSR20203908
crossref_primary_10_3390_ijms24032059
crossref_primary_10_1038_s41598_019_39700_6
crossref_primary_10_3892_br_2019_1194
crossref_primary_10_1007_s41974_022_00233_y
crossref_primary_10_1016_j_fertnstert_2023_02_014
crossref_primary_10_1055_s_0043_1777758
crossref_primary_10_3389_fendo_2022_1061766
crossref_primary_10_1016_j_fertnstert_2020_12_019
crossref_primary_10_17116_rosakush20181806173
crossref_primary_10_23736_S2724_606X_21_04970_8
crossref_primary_10_3390_ijms23010180
crossref_primary_10_1016_j_rbmo_2021_03_016
crossref_primary_10_1016_j_fertnstert_2020_12_010
crossref_primary_10_1016_j_medcli_2017_04_008
crossref_primary_10_1093_humupd_dmx028
crossref_primary_10_3390_jcm11092481
crossref_primary_10_1007_s10815_019_01630_7
crossref_primary_10_1016_j_rbmo_2020_08_015
crossref_primary_10_1242_dmm_035147
crossref_primary_10_1051_medsci_20183404014
crossref_primary_10_7759_cureus_49476
crossref_primary_10_1042_ETLS20170042
crossref_primary_10_1080_1040841X_2024_2320247
crossref_primary_10_1007_s00281_025_01040_1
crossref_primary_10_1002_14651858_CD008995_pub3
crossref_primary_10_1111_apm_13288
crossref_primary_10_1186_s12884_021_03955_7
crossref_primary_10_3390_biom10040593
crossref_primary_10_1016_j_chom_2018_01_013
crossref_primary_10_3389_fcimb_2022_1025714
crossref_primary_10_1007_s00404_023_06987_w
crossref_primary_10_3389_froh_2021_735634
crossref_primary_10_1111_1471_0528_15972
crossref_primary_10_1007_s00129_018_4349_7
crossref_primary_10_3389_fendo_2023_1204729
crossref_primary_10_3389_fendo_2022_932339
crossref_primary_10_1007_s13669_024_00374_1
crossref_primary_10_3390_jcm10071461
crossref_primary_10_1016_j_jprot_2020_103652
crossref_primary_10_1016_j_rbmo_2017_04_005
crossref_primary_10_1111_jog_14585
crossref_primary_10_1038_s41598_024_76125_2
crossref_primary_10_3389_fcell_2021_693267
crossref_primary_10_3390_diagnostics12081948
crossref_primary_10_23736_S2724_606X_22_04915_6
crossref_primary_10_3389_fimmu_2018_00208
crossref_primary_10_1093_humupd_dmy012
crossref_primary_10_3390_microorganisms11051211
crossref_primary_10_1016_j_medcle_2017_12_013
crossref_primary_10_1016_j_theriogenology_2020_08_001
crossref_primary_10_1007_s11033_023_08745_2
crossref_primary_10_1016_j_jri_2023_104138
crossref_primary_10_1016_j_tim_2017_07_008
crossref_primary_10_3390_pathogens11111244
crossref_primary_10_1093_humrep_dey346
crossref_primary_10_25259_fsr_43_23
crossref_primary_10_3389_fcimb_2024_1351540
crossref_primary_10_1016_j_rbmo_2018_12_019
crossref_primary_10_1016_j_fertnstert_2019_06_028
crossref_primary_10_1186_s12964_024_01740_5
crossref_primary_10_1016_j_placenta_2017_06_005
crossref_primary_10_1128_mBio_03242_19
crossref_primary_10_3389_fcimb_2022_1056319
crossref_primary_10_3390_jcm13175331
crossref_primary_10_1016_j_rbmo_2021_02_003
crossref_primary_10_1016_j_fertnstert_2018_04_012
crossref_primary_10_3390_jox15010026
crossref_primary_10_1055_s_0041_1730908
crossref_primary_10_3390_microorganisms13030547
crossref_primary_10_1016_j_jiac_2022_01_001
crossref_primary_10_1038_s41598_018_22856_y
crossref_primary_10_1093_humupd_dmy048
crossref_primary_10_3390_microorganisms11082089
crossref_primary_10_1093_humrep_deab002
crossref_primary_10_1007_s13669_024_00373_2
crossref_primary_10_1016_j_fertnstert_2021_09_014
crossref_primary_10_1111_imm_13155
crossref_primary_10_1007_s00129_018_4228_2
crossref_primary_10_1093_humrep_deab009
crossref_primary_10_1016_j_jogoh_2020_102036
crossref_primary_10_17816_JOWD6725_15
crossref_primary_10_3389_fcimb_2020_00413
crossref_primary_10_1111_aogs_14297
crossref_primary_10_3389_fimmu_2020_00378
crossref_primary_10_3389_fendo_2024_1437781
crossref_primary_10_3389_fmicb_2023_1137869
crossref_primary_10_1007_s13353_025_00949_5
crossref_primary_10_22207_JPAM_15_4_03
crossref_primary_10_3390_microorganisms12030547
crossref_primary_10_1016_j_theriogenology_2020_09_028
crossref_primary_10_1007_s10815_019_01564_0
crossref_primary_10_3389_fcimb_2021_659505
crossref_primary_10_1080_14647273_2021_1925976
crossref_primary_10_1161_CIRCRESAHA_122_320771
crossref_primary_10_3168_jds_2017_12592
crossref_primary_10_1002_rmb2_12634
crossref_primary_10_1128_CVI_00203_17
crossref_primary_10_1007_s10815_020_01878_4
crossref_primary_10_1038_s41598_022_18971_6
crossref_primary_10_1038_s41598_021_98380_3
crossref_primary_10_1071_RD21252
crossref_primary_10_1111_jog_15060
crossref_primary_10_3164_jcbn_20_53
crossref_primary_10_1093_humrep_deaa094
crossref_primary_10_1016_j_rbmo_2019_03_008
crossref_primary_10_1007_s11845_018_1933_8
crossref_primary_10_3390_pathogens8040205
crossref_primary_10_1111_aji_13713
crossref_primary_10_3390_jcm10184063
crossref_primary_10_1016_j_ajog_2020_10_019
crossref_primary_10_1186_s12985_024_02322_0
crossref_primary_10_1016_j_ajog_2020_02_001
crossref_primary_10_1080_14647273_2017_1353709
crossref_primary_10_3390_life13122269
crossref_primary_10_3389_fcimb_2020_570025
crossref_primary_10_1080_01443615_2022_2033183
crossref_primary_10_3389_fendo_2022_945736
crossref_primary_10_3390_diagnostics12112711
crossref_primary_10_3390_ijms22115644
crossref_primary_10_1080_13102818_2023_2250007
crossref_primary_10_3389_fmicb_2024_1351899
crossref_primary_10_1007_s00404_025_07944_5
crossref_primary_10_1007_s15013_018_1595_7
crossref_primary_10_1097_LGT_0000000000000646
crossref_primary_10_3390_nu12030757
crossref_primary_10_3390_nu17030410
crossref_primary_10_1016_j_repbio_2019_04_001
crossref_primary_10_3390_life11020148
crossref_primary_10_3390_diagnostics15030243
crossref_primary_10_1080_10408398_2021_1935701
crossref_primary_10_31071_promedosvity2019_03_068
crossref_primary_10_1099_mgen_0_001323
crossref_primary_10_1007_s10815_023_02862_4
crossref_primary_10_23946_2500_0764_2024_9_1_102_111
crossref_primary_10_1007_s41974_020_00155_7
crossref_primary_10_3390_pathogens10030295
crossref_primary_10_1111_jog_16051
crossref_primary_10_3920_BM2019_0081
crossref_primary_10_1016_j_bbcan_2023_189000
crossref_primary_10_1016_j_rbmo_2020_06_014
crossref_primary_10_3390_microorganisms12050989
crossref_primary_10_1038_s41419_019_2071_6
crossref_primary_10_1002_rmb2_12619
crossref_primary_10_1111_1471_0528_15951
crossref_primary_10_1016_j_ajog_2016_09_085
crossref_primary_10_1186_s12905_024_02985_5
crossref_primary_10_1093_biolre_ioac067
crossref_primary_10_3389_fimmu_2019_02387
crossref_primary_10_1007_s10815_021_02247_5
crossref_primary_10_7759_cureus_62949
crossref_primary_10_2478_amb_2023_0037
crossref_primary_10_1016_j_repbio_2020_07_001
crossref_primary_10_1128_spectrum_01462_24
crossref_primary_10_3389_fimmu_2018_01874
crossref_primary_10_35339_ic_9_1_59_65
crossref_primary_10_1016_j_jri_2023_103988
crossref_primary_10_21518_ms2024_146
crossref_primary_10_3892_br_2023_1626
crossref_primary_10_1055_s_0043_1777361
crossref_primary_10_1016_j_humic_2017_01_004
crossref_primary_10_1038_s41598_017_08268_4
crossref_primary_10_1016_j_diagmicrobio_2024_116437
crossref_primary_10_17116_repro202228061175
crossref_primary_10_1186_s12941_020_00356_0
crossref_primary_10_1097_RD9_0000000000000085
crossref_primary_10_1016_j_placenta_2021_06_006
crossref_primary_10_1016_j_fertnstert_2018_06_005
crossref_primary_10_1007_s10304_023_00535_0
crossref_primary_10_3389_fcimb_2018_00001
crossref_primary_10_3390_biomedicines10010174
crossref_primary_10_1093_infdis_jiy744
crossref_primary_10_3390_jcm13123420
crossref_primary_10_1016_j_fertnstert_2017_05_030
crossref_primary_10_1016_j_fertnstert_2017_05_034
crossref_primary_10_15789_2220_7619_IBE_17808
crossref_primary_10_3389_fendo_2023_1140774
crossref_primary_10_1186_s40168_024_01821_0
crossref_primary_10_2139_ssrn_3972353
crossref_primary_10_1093_biolre_iox107
crossref_primary_10_3390_genes10120971
crossref_primary_10_1097_RD9_0000000000000078
crossref_primary_10_1016_j_rbmo_2019_03_067
crossref_primary_10_1080_10408398_2022_2117784
crossref_primary_10_15406_ogij_2022_13_00649
crossref_primary_10_1002_jcla_25158
crossref_primary_10_1097_RD9_0000000000000082
crossref_primary_10_1016_j_gine_2021_100687
crossref_primary_10_1093_ofid_ofz525
crossref_primary_10_17749_2313_7347_ob_gyn_rep_2020_157
crossref_primary_10_1016_j_gine_2021_100688
crossref_primary_10_3389_fmed_2021_651938
crossref_primary_10_1002_14651858_CD005996_pub4
crossref_primary_10_1155_2021_8849664
crossref_primary_10_3390_antibiotics9020059
crossref_primary_10_33667_2078_5631_2023_3_30_36
crossref_primary_10_1016_j_ajog_2020_01_031
crossref_primary_10_1530_JME_21_0238
crossref_primary_10_3389_fmicb_2021_729744
crossref_primary_10_1128_mbio_01619_22
crossref_primary_10_52420_2071_5943_2023_22_1_96_103
crossref_primary_10_1007_s10304_022_00466_2
crossref_primary_10_3389_fmicb_2017_01965
crossref_primary_10_3390_jpm11070659
crossref_primary_10_1055_s_0043_1778661
crossref_primary_10_3390_nu13010162
crossref_primary_10_1007_s10304_018_0200_4
crossref_primary_10_3389_fendo_2022_1081830
crossref_primary_10_1016_j_ejogrb_2023_08_002
crossref_primary_10_1016_j_gofs_2020_05_003
crossref_primary_10_23736_S2724_606X_21_04870_3
crossref_primary_10_3390_jcm11030680
crossref_primary_10_1016_j_ygyno_2022_02_021
crossref_primary_10_1007_s10815_021_02324_9
crossref_primary_10_1055_a_1895_9940
crossref_primary_10_1038_s41598_019_46173_0
crossref_primary_10_1016_j_placenta_2021_12_015
crossref_primary_10_21886_2219_8075_2024_15_1_82_93
crossref_primary_10_3389_fimmu_2020_528202
crossref_primary_10_1093_humrep_dead274
crossref_primary_10_1111_asj_13374
crossref_primary_10_1111_aji_13552
crossref_primary_10_3390_a17030108
crossref_primary_10_1016_j_jri_2024_104192
crossref_primary_10_1038_s41598_018_21657_7
crossref_primary_10_1371_journal_pone_0237232
crossref_primary_10_1007_s00213_019_05436_4
crossref_primary_10_1016_j_xfss_2024_12_002
crossref_primary_10_1016_j_ejogrb_2024_11_032
crossref_primary_10_3390_diagnostics12040878
crossref_primary_10_1186_s12884_023_06140_0
crossref_primary_10_1093_humupd_dmab035
crossref_primary_10_1016_j_ajog_2020_01_056
crossref_primary_10_1038_s41585_020_0286_z
crossref_primary_10_5812_fga_136798
crossref_primary_10_1371_journal_pone_0317595
crossref_primary_10_1016_j_jri_2022_103653
crossref_primary_10_1002_rmb2_12105
crossref_primary_10_1007_s10552_020_01338_5
crossref_primary_10_1097_TP_0000000000002035
crossref_primary_10_1152_physrev_00050_2021
crossref_primary_10_1097_GCO_0000000000000468
crossref_primary_10_1016_j_bbadis_2021_166231
crossref_primary_10_1155_2023_2675966
crossref_primary_10_3390_medicina60010025
crossref_primary_10_1016_j_jri_2022_103782
crossref_primary_10_1128_spectrum_01676_22
crossref_primary_10_3390_life13071531
crossref_primary_10_1007_s13224_024_02064_7
crossref_primary_10_3390_ijms23105756
crossref_primary_10_3389_fendo_2022_813791
crossref_primary_10_1186_s40168_021_01184_w
crossref_primary_10_3390_microorganisms11010148
crossref_primary_10_61399_ikcusbfd_1219405
crossref_primary_10_1093_biolre_ioaa183
crossref_primary_10_1016_j_ajog_2018_10_018
crossref_primary_10_1186_s12941_024_00710_6
crossref_primary_10_1016_j_ajog_2018_10_017
crossref_primary_10_3390_cancers14194909
crossref_primary_10_1002_rmb2_12332
crossref_primary_10_17352_2455_2976_000146
crossref_primary_10_1002_rmb2_12576
crossref_primary_10_1007_s10304_022_00469_z
crossref_primary_10_17116_kurort202310006192
crossref_primary_10_1016_j_jsxm_2022_04_009
crossref_primary_10_21886_2219_8075_2023_14_3_5_15
crossref_primary_10_1055_s_0043_1778067
crossref_primary_10_3390_ijms252312600
crossref_primary_10_1186_s12866_024_03612_x
crossref_primary_10_3389_fendo_2024_1380187
crossref_primary_10_1021_acsnano_4c13593
crossref_primary_10_1002_rmb2_12441
crossref_primary_10_3390_ijms252010923
crossref_primary_10_3390_pathogens10020090
crossref_primary_10_3389_fmed_2020_00217
crossref_primary_10_1093_biolre_ioy257
crossref_primary_10_17749_2313_7347_ob_gyn_rep_2023_433
crossref_primary_10_1016_j_placenta_2024_05_125
crossref_primary_10_1093_humupd_dmad013
crossref_primary_10_1007_s10815_018_1130_8
crossref_primary_10_1093_humrep_dead194
crossref_primary_10_3892_mmr_2019_10092
crossref_primary_10_1007_s10815_022_02573_2
crossref_primary_10_1038_s41598_022_12095_7
crossref_primary_10_1016_j_fertnstert_2018_01_022
crossref_primary_10_1055_s_0043_1778056
crossref_primary_10_3389_fendo_2019_00935
crossref_primary_10_1016_j_jri_2022_103736
crossref_primary_10_3390_diagnostics12071576
crossref_primary_10_1007_s00404_021_06171_y
crossref_primary_10_1038_s41585_019_0250_y
crossref_primary_10_17116_repro20243004151
crossref_primary_10_1016_j_fertnstert_2016_11_028
crossref_primary_10_1093_gpbjnl_qzad005
crossref_primary_10_3390_biomedicines12071476
crossref_primary_10_1016_j_gtc_2019_04_004
crossref_primary_10_1111_1471_0528_15178
crossref_primary_10_1186_s12978_018_0653_x
crossref_primary_10_3390_ijms25042237
crossref_primary_10_32708_uutfd_731738
crossref_primary_10_1016_j_rbmo_2019_04_006
crossref_primary_10_1016_j_rbmo_2021_07_018
crossref_primary_10_3390_jcm12155069
crossref_primary_10_1016_j_jri_2022_103627
crossref_primary_10_17116_repro20232904168
crossref_primary_10_3390_ijms24032995
crossref_primary_10_2478_jbcr_2021_0022
crossref_primary_10_33920_med_14_2401_01
crossref_primary_10_1186_s43043_020_00050_3
crossref_primary_10_1016_j_theriogenology_2019_04_022
crossref_primary_10_3389_fmicb_2023_1075900
crossref_primary_10_3390_jpm11060546
crossref_primary_10_3389_fendo_2023_1096050
crossref_primary_10_1016_j_jogoh_2020_101727
crossref_primary_10_1016_j_xfss_2021_01_002
crossref_primary_10_1016_j_rbmo_2021_12_014
crossref_primary_10_1093_jas_skz210
crossref_primary_10_1016_j_cell_2024_07_029
crossref_primary_10_1093_jas_skz212
crossref_primary_10_17116_repro20192504127
crossref_primary_10_3390_microorganisms12091789
crossref_primary_10_3390_nu15020362
crossref_primary_10_1099_jmm_0_001741
crossref_primary_10_1038_s41598_025_92906_9
crossref_primary_10_1055_s_0043_1778017
crossref_primary_10_1111_ajo_12754
crossref_primary_10_1016_j_bpobgyn_2023_102365
crossref_primary_10_1111_aji_13652
crossref_primary_10_1111_aogs_14847
crossref_primary_10_1097_GCO_0000000000000357
crossref_primary_10_1016_j_addr_2021_113955
crossref_primary_10_3390_jcm13020457
crossref_primary_10_3389_fcimb_2023_1177366
crossref_primary_10_3390_ijms25010622
crossref_primary_10_1093_humrep_deae190
crossref_primary_10_1080_19396368_2023_2195040
crossref_primary_10_26416_ObsGin_71_2_2023_8877
crossref_primary_10_1016_j_jri_2022_103634
crossref_primary_10_1002_rmb2_12523
crossref_primary_10_1155_2022_4624311
crossref_primary_10_1007_s10815_022_02628_4
crossref_primary_10_1016_j_ogc_2023_09_002
crossref_primary_10_24075_brsmu_2020_012
crossref_primary_10_3390_biomedicines11092391
crossref_primary_10_1016_j_rbmo_2021_06_004
crossref_primary_10_1093_hropen_hoad023
crossref_primary_10_26442_20795696_2021_6_201300
crossref_primary_10_31640_JVD_7_8_2019_2
crossref_primary_10_38025_2078_1962_2023_22_1_110_116
crossref_primary_10_1016_j_fertnstert_2018_09_020
crossref_primary_10_1016_j_fertnstert_2021_11_032
crossref_primary_10_1016_j_jri_2023_103944
crossref_primary_10_17749_2313_7347_ob_gyn_rep_2025_592
crossref_primary_10_1186_s12905_022_01750_w
crossref_primary_10_17749_2313_7347_ob_gyn_rep_2024_555
Cites_doi 10.1093/humrep/det096
10.1371/journal.pone.0032543
10.1093/humrep/17.2.337
10.1093/nar/gkn879
10.1073/pnas.1502875112
10.1016/S0140-6736(99)02415-0
10.1055/s-0033-1361821
10.1128/CMR.00075-15
10.1016/j.jpag.2008.01.073
10.1186/2049-2618-2-4
10.1073/pnas.1002611107
10.1093/bioinformatics/btq461
10.1038/163688a0
10.1093/humrep/14.9.2411
10.1016/j.patrec.2005.10.010
10.1126/scitranslmed.3003605
10.1016/j.ajog.2014.11.043
10.1210/jc.2013-2205
10.1016/S1472-6483(10)61737-3
10.1006/geno.1997.4995
10.1016/j.fertnstert.2008.10.019
10.1016/j.fertnstert.2004.05.076
10.1007/s10815-011-9694-6
10.1128/IAI.00101-08
10.1038/nrg3182
10.1086/345761
10.1093/oxfordjournals.humrep.a019470
10.1046/j.1365-2672.2002.01547.x
10.1016/S0015-0282(98)00277-5
10.1136/bmj.308.6924.295
10.1016/S0015-0282(00)01624-1
10.4049/jimmunol.1300661
10.1038/nmeth.f.303
10.1186/2049-2618-2-18
10.1136/bmj.319.7204.220
10.1007/s10815-015-0614-z
10.1016/j.fertnstert.2010.04.063
10.1016/j.fertnstert.2012.09.046
10.14806/ej.17.1.200
10.1007/s10815-007-9146-5
10.1093/bioinformatics/btr381
10.3109/00016349509008942
10.1016/j.fertnstert.2013.05.004
10.1016/j.cell.2014.07.019
10.1016/j.ajog.2004.01.002
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ajog.2016.09.075
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-6868
EndPage 703
ExternalDocumentID 27717732
10_1016_j_ajog_2016_09_075
S0002937816307827
1_s2_0_S0002937816307827
Genre Journal Article
GroupedDBID ---
--K
--M
-ET
.1-
.55
.FO
.GJ
.XZ
.~1
0R~
1B1
1CY
1P~
1~.
1~5
23M
2KS
354
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
6J9
7-5
85S
8F7
8P~
AAEDT
AAEDW
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYJJ
AAYWO
ABBQC
ABCQX
ABDPE
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABOCM
ABPMR
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFCHL
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGNAY
AGQPQ
AGUBO
AGYEJ
AHDLI
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
C5W
CAG
COF
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IH2
IHE
J1W
K-O
KOM
LPU
M41
MO0
N4W
N9A
NEJ
NQ-
O-L
O9-
OAUVE
OBH
OCB
OGEVE
OHH
OHT
OMK
OQ.
OVD
P-8
P-9
P2P
PC.
PH~
Q38
R2-
ROL
RPZ
RXW
SDF
SEL
SES
SEW
SJN
SPCBC
SSH
SSZ
T5K
TAE
TEORI
TWZ
UDS
UGJ
UHB
UHS
UHU
UKR
UNMZH
UV1
VH1
VVN
WH7
WOQ
WOW
X6Y
X7M
XFW
YFH
YOC
YYQ
YZZ
Z5R
ZGI
ZXP
ZY1
~G-
~H1
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
NCXOZ
RIG
AAIAV
ABLVK
ABYKQ
ADOJD
AFDAS
AHPSJ
AJBFU
EFLBG
G8K
LCYCR
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c462t-c36de80ba99ba8398691f277a399241b31bd63a00705b30b663b357c9603ae133
IEDL.DBID .~1
ISSN 0002-9378
1097-6868
IngestDate Fri Jul 11 02:52:27 EDT 2025
Wed Feb 19 02:40:48 EST 2025
Tue Jul 01 04:43:02 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Fri Feb 23 02:29:20 EST 2024
Tue Feb 25 20:08:01 EST 2025
Tue Aug 26 17:15:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords bacterial pathogens
endometrial microbiota
embryo implantation
endometrial receptivity array
assisted reproductive techniques
Language English
License Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-c36de80ba99ba8398691f277a399241b31bd63a00705b30b663b357c9603ae133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9340-6207
PMID 27717732
PQID 1835378674
PQPubID 23479
PageCount 20
ParticipantIDs proquest_miscellaneous_1835378674
pubmed_primary_27717732
crossref_primary_10_1016_j_ajog_2016_09_075
crossref_citationtrail_10_1016_j_ajog_2016_09_075
elsevier_sciencedirect_doi_10_1016_j_ajog_2016_09_075
elsevier_clinicalkeyesjournals_1_s2_0_S0002937816307827
elsevier_clinicalkey_doi_10_1016_j_ajog_2016_09_075
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of obstetrics and gynecology
PublicationTitleAlternate Am J Obstet Gynecol
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Sim, Cox, Wopereis, Martin, Knol, Li (bib25) 2012; 7
Burton, Reid (bib3) 2002; 186
Mitchell, Haick, Nkwopara (bib20) 2015; 212
Cole, Wang, Cardenas (bib28) 2009; 37
Spurbeck, Arvidson (bib32) 2008; 76
Romero, Chaiworapongsa, Kuivaniemi, Tromp (bib12) 2004; 190
Franasiak, Werner, Juneau (bib37) 2016; 33
Salim, Ben-Shlomo, Colodner, Keness, Shalev (bib16) 2002; 17
Møller, Kristiansen, Thorsen, Frost, Mogensen (bib19) 1995; 74
Ralph, Rutherford, Wilson (bib10) 1999; 319
Hay, Lamont, Taylor-Robinson, Morgan, Ison, Pearson (bib11) 1994; 308
González, Vázquez-Baeza, Knight (bib2) 2014; 158
Liversedge, Turner, Horner, Keay, Jenkins, Hull (bib34) 1999; 14
Fanchin, Harmas, Benaoudia, Lundkvist, Olivennes, Frydman (bib13) 1998; 70
Ruiz-Alonso, Blesa, Díaz-Gimeno (bib24) 2013; 100
Romero, Hassan, Gajer (bib9) 2014; 2
Caporaso, Kuczynski, Stombaugh (bib26) 2010; 7
Onderdonk, Delaney, Fichorova (bib6) 2016; 29
Shannon CE. The mathematical theory of communication. University of Illinois Press. Illinis book edition, 1963.
Hyman, Herndon, Jiang (bib33) 2012; 29
Dominguez, Gadea, Mercader, Esteban, Pellicer, Simón (bib40) 2010; 93
Egbase, al-Sharhan, al-Othman, al-Mutawa, Udo, Grudzinskas (bib14) 1996; 11
Edgar (bib27) 2010; 26
Romero, Hassan, Gajer (bib7) 2014; 2
Moore, Soules, Klein, Fujimoto, Agnew, Eschenbach (bib15) 2000; 74
Sirota, Zarek, Segars (bib1) 2014; 32
Pavlova, Kilic, Kilic (bib4) 2002; 92
Ravel, Gajer, Abdo (bib8) 2011; 108
Cha J, Vilella F, Dey SK, Simón C. Molecular interplay in successful implantation. Science. S. Sanders. Washington; Nov. 12, 2013; Ten critical topics in reproductive medicine: 44-8.
Vilella, Ramirez, Berlanga (bib23) 2013; 98
Egbase, Udo, al-Sharhan, Grudzinskas (bib36) 1999; 354
Selman, Mariani, Barnocchi (bib17) 2007; 24
Simpson EH. Measurement of diversity. Nature 1949;163:688-8.
Yamamoto, Zhou, Williams, Hochwalt, Forney (bib39) 2009; 22
Gajer, Brotman, Bai (bib5) 2012; 4
Cho, Blaser (bib22) 2012; 13
van Oostrum, De Sutter, Meys, Verstraelen (bib35) 2013; 28
Skarin, Sylwan (bib38) 1986; 94
DiGiulio, Callahan, McMurdie (bib31) 2015; 112
Romero, Espinoza, Mazor (bib18) 2004; 82
Racicot, Cardenas, Wunsche (bib21) 2013; 191
Edgar (10.1016/j.ajog.2016.09.075_bib47) 2011; 27
Ravel (10.1016/j.ajog.2016.09.075_bib8) 2011; 108
Dominguez (10.1016/j.ajog.2016.09.075_bib40) 2010; 93
Møller (10.1016/j.ajog.2016.09.075_bib19) 1995; 74
Pearson (10.1016/j.ajog.2016.09.075_bib45) 1997; 46
Burton (10.1016/j.ajog.2016.09.075_bib3) 2002; 186
Onderdonk (10.1016/j.ajog.2016.09.075_bib6) 2016; 29
Cole (10.1016/j.ajog.2016.09.075_bib28) 2009; 37
Pavlova (10.1016/j.ajog.2016.09.075_bib4) 2002; 92
Egbase (10.1016/j.ajog.2016.09.075_bib36) 1999; 354
Caporaso (10.1016/j.ajog.2016.09.075_bib26) 2010; 7
Liversedge (10.1016/j.ajog.2016.09.075_bib34) 1999; 14
Sirota (10.1016/j.ajog.2016.09.075_bib1) 2014; 32
Romero (10.1016/j.ajog.2016.09.075_bib9) 2014; 2
Edgar (10.1016/j.ajog.2016.09.075_bib27) 2010; 26
Salim (10.1016/j.ajog.2016.09.075_bib16) 2002; 17
Romero (10.1016/j.ajog.2016.09.075_bib18) 2004; 82
Hyman (10.1016/j.ajog.2016.09.075_bib33) 2012; 29
10.1016/j.ajog.2016.09.075_bib30
Franasiak (10.1016/j.ajog.2016.09.075_bib37) 2016; 33
Selman (10.1016/j.ajog.2016.09.075_bib17) 2007; 24
González (10.1016/j.ajog.2016.09.075_bib2) 2014; 158
Cho (10.1016/j.ajog.2016.09.075_bib22) 2012; 13
Fawcett (10.1016/j.ajog.2016.09.075_bib48) 2006; 27
Romero (10.1016/j.ajog.2016.09.075_bib12) 2004; 190
Mitchell (10.1016/j.ajog.2016.09.075_bib20) 2015; 212
Racicot (10.1016/j.ajog.2016.09.075_bib21) 2013; 191
Romero (10.1016/j.ajog.2016.09.075_bib7) 2014; 2
Spurbeck (10.1016/j.ajog.2016.09.075_bib32) 2008; 76
Sim (10.1016/j.ajog.2016.09.075_bib25) 2012; 7
Ruiz-Alonso (10.1016/j.ajog.2016.09.075_bib24) 2013; 100
Egbase (10.1016/j.ajog.2016.09.075_bib14) 1996; 11
DiGiulio (10.1016/j.ajog.2016.09.075_bib31) 2015; 112
Vilella (10.1016/j.ajog.2016.09.075_bib23) 2013; 98
Skarin (10.1016/j.ajog.2016.09.075_bib38) 1986; 94
van der Gaast (10.1016/j.ajog.2016.09.075_bib42) 2003; 7
Díaz-Gimeno (10.1016/j.ajog.2016.09.075_bib43) 2011; 95
10.1016/j.ajog.2016.09.075_bib29
Ralph (10.1016/j.ajog.2016.09.075_bib10) 1999; 319
Díaz-Gimeno (10.1016/j.ajog.2016.09.075_bib44) 2013; 99
Hay (10.1016/j.ajog.2016.09.075_bib11) 1994; 308
van Oostrum (10.1016/j.ajog.2016.09.075_bib35) 2013; 28
10.1016/j.ajog.2016.09.075_bib41
Fanchin (10.1016/j.ajog.2016.09.075_bib13) 1998; 70
Gajer (10.1016/j.ajog.2016.09.075_bib5) 2012; 4
Martin (10.1016/j.ajog.2016.09.075_bib46) 2011; 17
Moore (10.1016/j.ajog.2016.09.075_bib15) 2000; 74
Yamamoto (10.1016/j.ajog.2016.09.075_bib39) 2009; 22
27725136 - Am J Obstet Gynecol. 2016 Dec;215(6):682-683
References_xml – volume: 7
  start-page: 335
  year: 2010
  end-page: 336
  ident: bib26
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat Methods
– volume: 17
  start-page: 337
  year: 2002
  end-page: 340
  ident: bib16
  article-title: Bacterial colonization of the uterine cervix and success rate in assisted reproduction: results of a prospective survey
  publication-title: Hum Reprod
– volume: 94
  start-page: 399
  year: 1986
  end-page: 403
  ident: bib38
  article-title: Vaginal lactobacilli inhibiting growth of
  publication-title: Acta Pathol Microbiol Immunol Scand B
– volume: 100
  start-page: 818
  year: 2013
  end-page: 824
  ident: bib24
  article-title: The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure
  publication-title: Fertil Steril
– volume: 4
  year: 2012
  ident: bib5
  article-title: Temporal dynamics of the human vaginal microbiota
  publication-title: Sci Transl Med
– volume: 158
  start-page: 690
  year: 2014
  end-page: 691
  ident: bib2
  article-title: SnapShot: the human microbiome
  publication-title: Cell
– volume: 319
  start-page: 220
  year: 1999
  end-page: 223
  ident: bib10
  article-title: Influence of bacterial vaginosis on conception and miscarriage in the first trimester: cohort study
  publication-title: BMJ
– volume: 11
  start-page: 1687
  year: 1996
  end-page: 1689
  ident: bib14
  article-title: Incidence of microbial growth from the tip of the embryo transfer catheter after embryo transfer in relation to clinical pregnancy rate following in-vitro fertilization and embryo transfer
  publication-title: Hum Reprod
– volume: 92
  start-page: 451
  year: 2002
  end-page: 459
  ident: bib4
  article-title: Genetic diversity of vaginal lactobacilli from women in different countries based on 16S rRNA gene sequences
  publication-title: J Appl Microbiol
– volume: 22
  start-page: 11
  year: 2009
  end-page: 18
  ident: bib39
  article-title: Bacterial populations in the vaginas of healthy adolescent women
  publication-title: J Pediatr Adolesc Gynecol
– volume: 82
  start-page: 799
  year: 2004
  end-page: 804
  ident: bib18
  article-title: Can endometrial infection/inflammation explain implantation failure, spontaneous abortion, and preterm birth after in vitro fertilization?
  publication-title: Fertil Steril
– volume: 76
  start-page: 3124
  year: 2008
  end-page: 3130
  ident: bib32
  article-title: Inhibition of
  publication-title: Infect Immun
– volume: 308
  start-page: 295
  year: 1994
  end-page: 298
  ident: bib11
  article-title: Abnormal bacterial colonization of the genital tract and subsequent preterm delivery and late miscarriage
  publication-title: BMJ
– volume: 7
  start-page: e32543
  year: 2012
  ident: bib25
  article-title: Improved detection of bifidobacteria with optimized 16S rRNA-gene based pyrosequencing
  publication-title: PLoS One
– volume: 186
  start-page: 1770
  year: 2002
  end-page: 1780
  ident: bib3
  article-title: Evaluation of the bacterial vaginal flora of 20 postmenopausal women by direct (Nugent score) and molecular (polymerase chain reaction and denaturing gradient gel electrophoresis) techniques
  publication-title: J Infect Dis
– volume: 29
  start-page: 223
  year: 2016
  end-page: 238
  ident: bib6
  article-title: The human microbiome during bacterial vaginosis
  publication-title: Clin Microbiol Rev
– volume: 29
  start-page: 105
  year: 2012
  end-page: 115
  ident: bib33
  article-title: The dynamics of the vaginal microbiome during infertility therapy with in vitro fertilization-embryo transfer
  publication-title: J Assist Reprod Genet
– volume: 191
  start-page: 934
  year: 2013
  end-page: 941
  ident: bib21
  article-title: Viral infection of the pregnant cervix predisposes to ascending bacterial infection
  publication-title: J Immunol
– volume: 32
  start-page: 35
  year: 2014
  end-page: 42
  ident: bib1
  article-title: Potential influence of the microbiome on infertility and assisted reproductive technology
  publication-title: Semin Reprod Med
– volume: 190
  start-page: 1509
  year: 2004
  end-page: 1519
  ident: bib12
  article-title: Bacterial vaginosis, the inflammatory response and the risk of preterm birth: a role for genetic epidemiology in the prevention of preterm birth
  publication-title: Am J Obstet Gynecol
– volume: 108
  start-page: 4680
  year: 2011
  end-page: 4687
  ident: bib8
  article-title: Vaginal microbiome of reproductive-age women
  publication-title: Proc Natl Acad Sci U S A
– volume: 93
  start-page: 774
  year: 2010
  end-page: 782.e1
  ident: bib40
  article-title: Embryologic outcome and secretome profile of implanted blastocysts obtained after coculture in human endometrial epithelial cells versus the sequential system
  publication-title: Fertil Steril
– reference: Cha J, Vilella F, Dey SK, Simón C. Molecular interplay in successful implantation. Science. S. Sanders. Washington; Nov. 12, 2013; Ten critical topics in reproductive medicine: 44-8.
– volume: 212
  start-page: 611.e1
  year: 2015
  end-page: 611.e9
  ident: bib20
  article-title: Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women
  publication-title: Am J Obstet Gynecol
– volume: 13
  start-page: 260
  year: 2012
  end-page: 270
  ident: bib22
  article-title: The human microbiome: at the interface of health and disease
  publication-title: Nat Rev Genet
– volume: 74
  start-page: 216
  year: 1995
  end-page: 219
  ident: bib19
  article-title: Sterility of the uterine cavity
  publication-title: Acta Obstet Gynecol Scand
– volume: 98
  start-page: 4123
  year: 2013
  end-page: 4132
  ident: bib23
  article-title: PGE2 and PGF2 concentrations in human endometrial fluid as biomarkers for embryonic implantation
  publication-title: J Clin Endocrinol Metab
– volume: 14
  start-page: 2411
  year: 1999
  end-page: 2415
  ident: bib34
  article-title: The influence of bacterial vaginosis on in-vitro fertilization and embryo implantation during assisted reproduction treatment
  publication-title: Hum Reprod
– volume: 112
  start-page: 11060
  year: 2015
  end-page: 11065
  ident: bib31
  article-title: Temporal and spatial variation of the human microbiota during pregnancy
  publication-title: Proc Natl Acad Sci U S A
– volume: 2
  start-page: 18
  year: 2014
  ident: bib9
  article-title: The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term
  publication-title: Microbiome
– volume: 2
  start-page: 4
  year: 2014
  ident: bib7
  article-title: The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women
  publication-title: Microbiome
– volume: 74
  start-page: 1118
  year: 2000
  end-page: 1124
  ident: bib15
  article-title: Bacteria in the transfer catheter tip influence the live-birth rate after in vitro fertilization
  publication-title: Fertil Steril
– volume: 26
  start-page: 2460
  year: 2010
  end-page: 2461
  ident: bib27
  article-title: Search and clustering orders of magnitude faster than BLAST
  publication-title: Bioinformatics
– volume: 37
  start-page: D141
  year: 2009
  end-page: D145
  ident: bib28
  article-title: The ribosomal database project: improved alignments and new tools for rRNA analysis
  publication-title: Nucleic Acids Res
– reference: Simpson EH. Measurement of diversity. Nature 1949;163:688-8.
– volume: 354
  start-page: 651
  year: 1999
  end-page: 652
  ident: bib36
  article-title: Prophylactic antibiotics and endocervical microbial inoculation of the endometrium at embryo transfer
  publication-title: Lancet
– volume: 24
  start-page: 395
  year: 2007
  end-page: 399
  ident: bib17
  article-title: Examination of bacterial contamination at the time of embryo transfer, and its impact on the IVF/pregnancy outcome
  publication-title: J Assist Reprod Genet
– reference: Shannon CE. The mathematical theory of communication. University of Illinois Press. Illinis book edition, 1963.
– volume: 70
  start-page: 866
  year: 1998
  end-page: 870
  ident: bib13
  article-title: Microbial flora of the cervix assessed at the time of embryo transfer adversely affects in vitro fertilization outcome
  publication-title: Fertil Steril
– volume: 28
  start-page: 1809
  year: 2013
  end-page: 1815
  ident: bib35
  article-title: Risks associated with bacterial vaginosis in infertility patients: a systematic review and meta-analysis
  publication-title: Hum Reprod
– volume: 33
  start-page: 129
  year: 2016
  end-page: 136
  ident: bib37
  article-title: Endometrial microbiome at the time of embryo transfer: next-generation sequencing of the 16S ribosomal subunit
  publication-title: J Assist Reprod Genet
– volume: 28
  start-page: 1809
  year: 2013
  ident: 10.1016/j.ajog.2016.09.075_bib35
  article-title: Risks associated with bacterial vaginosis in infertility patients: a systematic review and meta-analysis
  publication-title: Hum Reprod
  doi: 10.1093/humrep/det096
– volume: 7
  start-page: e32543
  year: 2012
  ident: 10.1016/j.ajog.2016.09.075_bib25
  article-title: Improved detection of bifidobacteria with optimized 16S rRNA-gene based pyrosequencing
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0032543
– volume: 17
  start-page: 337
  year: 2002
  ident: 10.1016/j.ajog.2016.09.075_bib16
  article-title: Bacterial colonization of the uterine cervix and success rate in assisted reproduction: results of a prospective survey
  publication-title: Hum Reprod
  doi: 10.1093/humrep/17.2.337
– volume: 37
  start-page: D141
  year: 2009
  ident: 10.1016/j.ajog.2016.09.075_bib28
  article-title: The ribosomal database project: improved alignments and new tools for rRNA analysis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn879
– volume: 112
  start-page: 11060
  year: 2015
  ident: 10.1016/j.ajog.2016.09.075_bib31
  article-title: Temporal and spatial variation of the human microbiota during pregnancy
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1502875112
– volume: 354
  start-page: 651
  year: 1999
  ident: 10.1016/j.ajog.2016.09.075_bib36
  article-title: Prophylactic antibiotics and endocervical microbial inoculation of the endometrium at embryo transfer
  publication-title: Lancet
  doi: 10.1016/S0140-6736(99)02415-0
– volume: 32
  start-page: 35
  year: 2014
  ident: 10.1016/j.ajog.2016.09.075_bib1
  article-title: Potential influence of the microbiome on infertility and assisted reproductive technology
  publication-title: Semin Reprod Med
  doi: 10.1055/s-0033-1361821
– volume: 29
  start-page: 223
  year: 2016
  ident: 10.1016/j.ajog.2016.09.075_bib6
  article-title: The human microbiome during bacterial vaginosis
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.00075-15
– volume: 22
  start-page: 11
  year: 2009
  ident: 10.1016/j.ajog.2016.09.075_bib39
  article-title: Bacterial populations in the vaginas of healthy adolescent women
  publication-title: J Pediatr Adolesc Gynecol
  doi: 10.1016/j.jpag.2008.01.073
– volume: 2
  start-page: 4
  year: 2014
  ident: 10.1016/j.ajog.2016.09.075_bib7
  article-title: The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women
  publication-title: Microbiome
  doi: 10.1186/2049-2618-2-4
– volume: 108
  start-page: 4680
  issue: Suppl
  year: 2011
  ident: 10.1016/j.ajog.2016.09.075_bib8
  article-title: Vaginal microbiome of reproductive-age women
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1002611107
– volume: 26
  start-page: 2460
  year: 2010
  ident: 10.1016/j.ajog.2016.09.075_bib27
  article-title: Search and clustering orders of magnitude faster than BLAST
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq461
– ident: 10.1016/j.ajog.2016.09.075_bib30
  doi: 10.1038/163688a0
– volume: 14
  start-page: 2411
  year: 1999
  ident: 10.1016/j.ajog.2016.09.075_bib34
  article-title: The influence of bacterial vaginosis on in-vitro fertilization and embryo implantation during assisted reproduction treatment
  publication-title: Hum Reprod
  doi: 10.1093/humrep/14.9.2411
– volume: 27
  start-page: 861
  year: 2006
  ident: 10.1016/j.ajog.2016.09.075_bib48
  article-title: An introduction to ROC analysis
  publication-title: ROC Analysis in Pattern Recognition
  doi: 10.1016/j.patrec.2005.10.010
– volume: 4
  year: 2012
  ident: 10.1016/j.ajog.2016.09.075_bib5
  article-title: Temporal dynamics of the human vaginal microbiota
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3003605
– volume: 212
  start-page: 611.e1
  year: 2015
  ident: 10.1016/j.ajog.2016.09.075_bib20
  article-title: Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2014.11.043
– volume: 98
  start-page: 4123
  year: 2013
  ident: 10.1016/j.ajog.2016.09.075_bib23
  article-title: PGE2 and PGF2 concentrations in human endometrial fluid as biomarkers for embryonic implantation
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2013-2205
– volume: 7
  start-page: 105
  year: 2003
  ident: 10.1016/j.ajog.2016.09.075_bib42
  article-title: Endometrial secretion aspiration prior to embryo transfer does not reduce implantation rates
  publication-title: Reprod Biomed Online
  doi: 10.1016/S1472-6483(10)61737-3
– volume: 46
  start-page: 24
  year: 1997
  ident: 10.1016/j.ajog.2016.09.075_bib45
  article-title: Comparison of DNA sequences with protein sequences
  publication-title: Genomics
  doi: 10.1006/geno.1997.4995
– ident: 10.1016/j.ajog.2016.09.075_bib41
– volume: 93
  start-page: 774
  year: 2010
  ident: 10.1016/j.ajog.2016.09.075_bib40
  article-title: Embryologic outcome and secretome profile of implanted blastocysts obtained after coculture in human endometrial epithelial cells versus the sequential system
  publication-title: Fertil Steril
  doi: 10.1016/j.fertnstert.2008.10.019
– volume: 82
  start-page: 799
  year: 2004
  ident: 10.1016/j.ajog.2016.09.075_bib18
  article-title: Can endometrial infection/inflammation explain implantation failure, spontaneous abortion, and preterm birth after in vitro fertilization?
  publication-title: Fertil Steril
  doi: 10.1016/j.fertnstert.2004.05.076
– volume: 29
  start-page: 105
  year: 2012
  ident: 10.1016/j.ajog.2016.09.075_bib33
  article-title: The dynamics of the vaginal microbiome during infertility therapy with in vitro fertilization-embryo transfer
  publication-title: J Assist Reprod Genet
  doi: 10.1007/s10815-011-9694-6
– volume: 76
  start-page: 3124
  year: 2008
  ident: 10.1016/j.ajog.2016.09.075_bib32
  article-title: Inhibition of Neisseria gonorrhoeae epithelial cell interactions by vaginal Lactobacillus species
  publication-title: Infect Immun
  doi: 10.1128/IAI.00101-08
– volume: 94
  start-page: 399
  year: 1986
  ident: 10.1016/j.ajog.2016.09.075_bib38
  article-title: Vaginal lactobacilli inhibiting growth of Gardnerella vaginalis, Mobiluncus and other bacterial species cultured from vaginal content of women with bacterial vaginosis
  publication-title: Acta Pathol Microbiol Immunol Scand B
– volume: 13
  start-page: 260
  year: 2012
  ident: 10.1016/j.ajog.2016.09.075_bib22
  article-title: The human microbiome: at the interface of health and disease
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3182
– volume: 186
  start-page: 1770
  year: 2002
  ident: 10.1016/j.ajog.2016.09.075_bib3
  article-title: Evaluation of the bacterial vaginal flora of 20 postmenopausal women by direct (Nugent score) and molecular (polymerase chain reaction and denaturing gradient gel electrophoresis) techniques
  publication-title: J Infect Dis
  doi: 10.1086/345761
– volume: 11
  start-page: 1687
  year: 1996
  ident: 10.1016/j.ajog.2016.09.075_bib14
  article-title: Incidence of microbial growth from the tip of the embryo transfer catheter after embryo transfer in relation to clinical pregnancy rate following in-vitro fertilization and embryo transfer
  publication-title: Hum Reprod
  doi: 10.1093/oxfordjournals.humrep.a019470
– volume: 92
  start-page: 451
  year: 2002
  ident: 10.1016/j.ajog.2016.09.075_bib4
  article-title: Genetic diversity of vaginal lactobacilli from women in different countries based on 16S rRNA gene sequences
  publication-title: J Appl Microbiol
  doi: 10.1046/j.1365-2672.2002.01547.x
– volume: 70
  start-page: 866
  year: 1998
  ident: 10.1016/j.ajog.2016.09.075_bib13
  article-title: Microbial flora of the cervix assessed at the time of embryo transfer adversely affects in vitro fertilization outcome
  publication-title: Fertil Steril
  doi: 10.1016/S0015-0282(98)00277-5
– volume: 308
  start-page: 295
  year: 1994
  ident: 10.1016/j.ajog.2016.09.075_bib11
  article-title: Abnormal bacterial colonization of the genital tract and subsequent preterm delivery and late miscarriage
  publication-title: BMJ
  doi: 10.1136/bmj.308.6924.295
– volume: 74
  start-page: 1118
  year: 2000
  ident: 10.1016/j.ajog.2016.09.075_bib15
  article-title: Bacteria in the transfer catheter tip influence the live-birth rate after in vitro fertilization
  publication-title: Fertil Steril
  doi: 10.1016/S0015-0282(00)01624-1
– volume: 191
  start-page: 934
  year: 2013
  ident: 10.1016/j.ajog.2016.09.075_bib21
  article-title: Viral infection of the pregnant cervix predisposes to ascending bacterial infection
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1300661
– volume: 7
  start-page: 335
  year: 2010
  ident: 10.1016/j.ajog.2016.09.075_bib26
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat Methods
  doi: 10.1038/nmeth.f.303
– volume: 2
  start-page: 18
  year: 2014
  ident: 10.1016/j.ajog.2016.09.075_bib9
  article-title: The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term
  publication-title: Microbiome
  doi: 10.1186/2049-2618-2-18
– volume: 319
  start-page: 220
  year: 1999
  ident: 10.1016/j.ajog.2016.09.075_bib10
  article-title: Influence of bacterial vaginosis on conception and miscarriage in the first trimester: cohort study
  publication-title: BMJ
  doi: 10.1136/bmj.319.7204.220
– volume: 33
  start-page: 129
  year: 2016
  ident: 10.1016/j.ajog.2016.09.075_bib37
  article-title: Endometrial microbiome at the time of embryo transfer: next-generation sequencing of the 16S ribosomal subunit
  publication-title: J Assist Reprod Genet
  doi: 10.1007/s10815-015-0614-z
– volume: 95
  start-page: 50
  year: 2011
  ident: 10.1016/j.ajog.2016.09.075_bib43
  article-title: A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature
  publication-title: Fertil Steril
  doi: 10.1016/j.fertnstert.2010.04.063
– volume: 99
  start-page: 508
  year: 2013
  ident: 10.1016/j.ajog.2016.09.075_bib44
  article-title: The accuracy and reproducibility of the endometrial receptivity array is superior to histology as a diagnostic method for endometrial receptivity
  publication-title: Fertil Steril
  doi: 10.1016/j.fertnstert.2012.09.046
– volume: 17
  start-page: 10
  year: 2011
  ident: 10.1016/j.ajog.2016.09.075_bib46
  article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads
  publication-title: EMBnet J
  doi: 10.14806/ej.17.1.200
– volume: 24
  start-page: 395
  year: 2007
  ident: 10.1016/j.ajog.2016.09.075_bib17
  article-title: Examination of bacterial contamination at the time of embryo transfer, and its impact on the IVF/pregnancy outcome
  publication-title: J Assist Reprod Genet
  doi: 10.1007/s10815-007-9146-5
– volume: 27
  start-page: 2194
  year: 2011
  ident: 10.1016/j.ajog.2016.09.075_bib47
  article-title: UCHIME improves sensitivity and speed of chimera detection
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr381
– volume: 74
  start-page: 216
  year: 1995
  ident: 10.1016/j.ajog.2016.09.075_bib19
  article-title: Sterility of the uterine cavity
  publication-title: Acta Obstet Gynecol Scand
  doi: 10.3109/00016349509008942
– volume: 100
  start-page: 818
  year: 2013
  ident: 10.1016/j.ajog.2016.09.075_bib24
  article-title: The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure
  publication-title: Fertil Steril
  doi: 10.1016/j.fertnstert.2013.05.004
– ident: 10.1016/j.ajog.2016.09.075_bib29
– volume: 158
  start-page: 690
  year: 2014
  ident: 10.1016/j.ajog.2016.09.075_bib2
  article-title: SnapShot: the human microbiome
  publication-title: Cell
  doi: 10.1016/j.cell.2014.07.019
– volume: 190
  start-page: 1509
  year: 2004
  ident: 10.1016/j.ajog.2016.09.075_bib12
  article-title: Bacterial vaginosis, the inflammatory response and the risk of preterm birth: a role for genetic epidemiology in the prevention of preterm birth
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2004.01.002
– reference: 27725136 - Am J Obstet Gynecol. 2016 Dec;215(6):682-683
SSID ssj0002292
Score 2.6598349
Snippet Bacterial cells in the human body account for 1–3% of total body weight and are at least equal in number to human cells. Recent research has focused on...
Background Bacterial cells in the human body account for 1–3% of total body weight and are at least equal in number to human cells. Recent research has focused...
Bacterial cells in the human body account for 1-3% of total body weight and are at least equal in number to human cells. Recent research has focused on...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 684
SubjectTerms assisted reproductive techniques
bacterial pathogens
Bacterial Typing Techniques
Case-Control Studies
Embryo Implantation
Embryo Transfer
endometrial microbiota
endometrial receptivity array
Endometrium - microbiology
Female
Fertilization in Vitro
Gardnerella vaginalis - genetics
Genome, Bacterial
Humans
Infertility - therapy
Lactobacillus - genetics
Live Birth - epidemiology
Logistic Models
Luteinizing Hormone
Menstrual Cycle
Microbiota - genetics
Multivariate Analysis
Obstetrics and Gynecology
Pilot Projects
Polymerase Chain Reaction
Pregnancy
Pregnancy Rate
Prevotella - genetics
Principal Component Analysis
Prospective Studies
RNA, Ribosomal, 16S - genetics
Sequence Analysis, RNA
Spain - epidemiology
Treatment Outcome
Vagina - microbiology
Title Evidence that the endometrial microbiota has an effect on implantation success or failure
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0002937816307827
https://www.clinicalkey.es/playcontent/1-s2.0-S0002937816307827
https://dx.doi.org/10.1016/j.ajog.2016.09.075
https://www.ncbi.nlm.nih.gov/pubmed/27717732
https://www.proquest.com/docview/1835378674
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQSKiXqpQ-lpdcqbcqJbGdODkiBFqo4AQSPVl2MluC2GRFstf-dmZiZ1EFpVIvkRJ55GQynvksfzPD2NdUa2perCJZ5C5SoJPIQZJGIk_LuFRVLhTlDl9cZtNrdX6T3qyx4zEXhmiVwfd7nz546_DkMGjzcFHXlOMbY6zSOSIKinOUUa6UJiv__vuJ5iFEIUYITKND4ozneNm79hfRu7Kh1ilxDV8OTn8Dn0MQOn3H3gb0yI_8C26xNWjes82LcD6-zX6OTUJ5f2t7vACHpmrnMDTn4PPal13qLb-1HbcN93QO3ja8ni_urc9Dani3HPoo8vaBz2xNzPUP7Pr05Op4GoXmCVGpMtFHpcwqyGNni8JZREF5ViQzobWlSrQqcTJxVSYtlftJnYwdIg8nU13ijkZawJ3rR7betA18ZhxlpRZKFzCzCnJtQWFMg8rGGVSxKycsGbVmylBZnBpc3JuRQnZnSNOGNG3iwqCmJ-zbSmbh62q8OlqOP8OMGaPo4wy6_Vel9EtS0IVl2pnEdMLE5pkpTVi6kvzDGv8545fRUgwuUzp7sQ20S5wJkS5OkGk1YZ-8Ca2-G_9KorUUO_856y57Q3eeZLPH1vuHJewjVOrdwbAWDtjG0dmP6eUjPacQCw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDbS5lPS9farQWzGxJdmyjyE0bJrsnhJIT0KyZxuHrL3E3v-fkSUvlKYJ9OKD7UH2aDTzCX0zA_AtVco1L5aRKHIbSVRJZDFJI56nZVzKKufS5Q7PF9nsQv68TC934GjMhXG0yuD7vU8fvHW4cxC0ebCua5fjG1OsUjkhChfn1BPYddWp0gnsHp6czhZbh8x5wUcU7ARC7oyneZnr9rdjeGVDuVNHN7w_Pv0Lfw5x6HgfngcAyQ79N76AHWxewtN5OCJ_Bb_GPqGsvzI9XZBhU7UrHPpzsFXtKy_1hl2ZjpmGeUYHaxtWr9Y3xqciNazbDK0UWXvLlqZ25PXXcHH84_xoFoX-CVEpM95HpcgqzGNrisIaAkJ5ViRLrpRxxWhlYkViq0wYV_EntSK2BD6sSFVJmxphkDavb2DStA2-A0ayQnGpClwaibkyKCmsYWXiDKvYllNIRq3pMhQXdz0ubvTIIrvWTtPaaVrHhSZNT-H7VmbtS2s8-LYYJ0OPSaPk5jR5_gel1H1S2IWV2ulEd1zH-i9rmkK6lfzDIB8d8etoKZpWqjt-MQ22GxqJwC4NkCk5hbfehLb_TbOSKCX4-_8c9Qs8m53Pz_TZyeL0A-y5J55z8xEm_e0GPxFy6u3nsDLuAIhJErw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+that+the+endometrial+microbiota+has+an+effect+on+implantation+success+or+failure&rft.jtitle=American+journal+of+obstetrics+and+gynecology&rft.au=Moreno%2C+Inmaculada&rft.au=Codo%C3%B1er%2C+Francisco+M.&rft.au=Vilella%2C+Felipe&rft.au=Valbuena%2C+Diana&rft.date=2016-12-01&rft.pub=Elsevier+Inc&rft.issn=0002-9378&rft.volume=215&rft.issue=6&rft.spage=684&rft.epage=703&rft_id=info:doi/10.1016%2Fj.ajog.2016.09.075&rft.externalDocID=S0002937816307827
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00029378%2FS0002937816X00130%2Fcov150h.gif