Circular RNAs in Human Cancer
Circular RNAs (circRNAs) are a class of endogenous single-stranded covalently closed RNAs, primarily produced from pre-mRNAs via non-canonical back-splicing. circRNAs are highly conserved, stable, and expressed in tissue- and development-specific pattern. circRNAs play essential roles in physiologic...
Saved in:
Published in | Frontiers in oncology Vol. 10; p. 577118 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
18.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Circular RNAs (circRNAs) are a class of endogenous single-stranded covalently closed RNAs, primarily produced from pre-mRNAs
via
non-canonical back-splicing. circRNAs are highly conserved, stable, and expressed in tissue- and development-specific pattern. circRNAs play essential roles in physiological process as well as cancer biology. By the advances of deep sequencing and bioinformatics, the number of circRNAs have increased explosively. circRNAs function as miRNA/protein sponge, protein scaffold, protein recruitment, enhancer of protein function, as well as templates for translation involved in the regulation of transcription/splicing, translation, protein degradation, and pri-miRNA processing in human cancers and contributed to the pathogenesis of cancer. Numerous circRNAs may function in diverse manners. In this review, we survey the current understanding of circRNA functions in human cancer including miRNA sponge, circRNA-protein interaction, and circRNA-encoded protein, and summarize available databases for circRNA annotation and functional prediction. |
---|---|
AbstractList | Circular RNAs (circRNAs) are a class of endogenous single-stranded covalently closed RNAs, primarily produced from pre-mRNAs
via
non-canonical back-splicing. circRNAs are highly conserved, stable, and expressed in tissue- and development-specific pattern. circRNAs play essential roles in physiological process as well as cancer biology. By the advances of deep sequencing and bioinformatics, the number of circRNAs have increased explosively. circRNAs function as miRNA/protein sponge, protein scaffold, protein recruitment, enhancer of protein function, as well as templates for translation involved in the regulation of transcription/splicing, translation, protein degradation, and pri-miRNA processing in human cancers and contributed to the pathogenesis of cancer. Numerous circRNAs may function in diverse manners. In this review, we survey the current understanding of circRNA functions in human cancer including miRNA sponge, circRNA-protein interaction, and circRNA-encoded protein, and summarize available databases for circRNA annotation and functional prediction. Circular RNAs (circRNAs) are a class of endogenous single-stranded covalently closed RNAs, primarily produced from pre-mRNAs via non-canonical back-splicing. circRNAs are highly conserved, stable, and expressed in tissue- and development-specific pattern. circRNAs play essential roles in physiological process as well as cancer biology. By the advances of deep sequencing and bioinformatics, the number of circRNAs have increased explosively. circRNAs function as miRNA/protein sponge, protein scaffold, protein recruitment, enhancer of protein function, as well as templates for translation involved in the regulation of transcription/splicing, translation, protein degradation, and pri-miRNA processing in human cancers and contributed to the pathogenesis of cancer. Numerous circRNAs may function in diverse manners. In this review, we survey the current understanding of circRNA functions in human cancer including miRNA sponge, circRNA-protein interaction, and circRNA-encoded protein, and summarize available databases for circRNA annotation and functional prediction. Circular RNAs (circRNAs) are a class of endogenous single-stranded covalently closed RNAs, primarily produced from pre-mRNAs non-canonical back-splicing. circRNAs are highly conserved, stable, and expressed in tissue- and development-specific pattern. circRNAs play essential roles in physiological process as well as cancer biology. By the advances of deep sequencing and bioinformatics, the number of circRNAs have increased explosively. circRNAs function as miRNA/protein sponge, protein scaffold, protein recruitment, enhancer of protein function, as well as templates for translation involved in the regulation of transcription/splicing, translation, protein degradation, and pri-miRNA processing in human cancers and contributed to the pathogenesis of cancer. Numerous circRNAs may function in diverse manners. In this review, we survey the current understanding of circRNA functions in human cancer including miRNA sponge, circRNA-protein interaction, and circRNA-encoded protein, and summarize available databases for circRNA annotation and functional prediction. Circular RNAs (circRNAs) are a class of endogenous single-stranded covalently closed RNAs, primarily produced from pre-mRNAs via non-canonical back-splicing. circRNAs are highly conserved, stable, and expressed in tissue- and development-specific pattern. circRNAs play essential roles in physiological process as well as cancer biology. By the advances of deep sequencing and bioinformatics, the number of circRNAs have increased explosively. circRNAs function as miRNA/protein sponge, protein scaffold, protein recruitment, enhancer of protein function, as well as templates for translation involved in the regulation of transcription/splicing, translation, protein degradation, and pri-miRNA processing in human cancers and contributed to the pathogenesis of cancer. Numerous circRNAs may function in diverse manners. In this review, we survey the current understanding of circRNA functions in human cancer including miRNA sponge, circRNA-protein interaction, and circRNA-encoded protein, and summarize available databases for circRNA annotation and functional prediction.Circular RNAs (circRNAs) are a class of endogenous single-stranded covalently closed RNAs, primarily produced from pre-mRNAs via non-canonical back-splicing. circRNAs are highly conserved, stable, and expressed in tissue- and development-specific pattern. circRNAs play essential roles in physiological process as well as cancer biology. By the advances of deep sequencing and bioinformatics, the number of circRNAs have increased explosively. circRNAs function as miRNA/protein sponge, protein scaffold, protein recruitment, enhancer of protein function, as well as templates for translation involved in the regulation of transcription/splicing, translation, protein degradation, and pri-miRNA processing in human cancers and contributed to the pathogenesis of cancer. Numerous circRNAs may function in diverse manners. In this review, we survey the current understanding of circRNA functions in human cancer including miRNA sponge, circRNA-protein interaction, and circRNA-encoded protein, and summarize available databases for circRNA annotation and functional prediction. |
Author | Li, Huijun Cheng, Liming Lu, Yanjun Wang, Xiong |
AuthorAffiliation | Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology , Wuhan , China |
AuthorAffiliation_xml | – name: Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology , Wuhan , China |
Author_xml | – sequence: 1 givenname: Xiong surname: Wang fullname: Wang, Xiong – sequence: 2 givenname: Huijun surname: Li fullname: Li, Huijun – sequence: 3 givenname: Yanjun surname: Lu fullname: Lu, Yanjun – sequence: 4 givenname: Liming surname: Cheng fullname: Cheng, Liming |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33537235$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1LXDEUxUNRqrWz78YySzcz5juZTUGG2hkQBbHQXbjvvkQjbxKbvCf0v_eNY0ULzSbh5pzfvdzzieylnDwhXxidC2EXpyEnnHPK6VwZw5j9QA45F3K2kOLX3pv3AZnUek_HoxVlVHwkB0IoYbhQh-R4GQsOHZTp9eVZncY0XQ0bSNMlJPTlM9kP0FU_ebmPyM_z7zfL1ezi6sd6eXYxQ6l5P0NBLTZSBlCWGgzIFbbKW7TAaINog1cKfRCgWoYAXASDTQsWFso344xHZL3jthnu3UOJGyh_XIbongu53DoofcTOO4ahFaCtNtJI1ogFDVw0jTQgVfCajqxvO9bD0Gx8iz71Bbp30Pc_Kd652_zojJWWaTMCTl4AJf8efO3dJlb0XQfJ56E6Lq2WWinDRunXt71em_zd7yigOwGWXGvx4VXCqNum6LYpum2KbpfiaNH_WDD20Me8nTZ2_zc-AdOKoUA |
CitedBy_id | crossref_primary_10_3389_fonc_2023_1097956 crossref_primary_10_1007_s40618_022_01921_4 crossref_primary_10_4274_balkanmedj_galenos_2022_2022_2_50 crossref_primary_10_1007_s12031_024_02285_5 crossref_primary_10_3390_cancers14215196 crossref_primary_10_1093_toxsci_kfac072 crossref_primary_10_1186_s12931_021_01840_7 crossref_primary_10_1186_s12935_021_02316_w crossref_primary_10_1080_21655979_2022_2053796 crossref_primary_10_1002_1873_3468_14196 crossref_primary_10_3390_ijms22158346 crossref_primary_10_2174_1567205019666220613142303 crossref_primary_10_3389_fonc_2024_1275009 crossref_primary_10_1002_cbf_3952 crossref_primary_10_1007_s00204_022_03297_z crossref_primary_10_1007_s12672_024_01003_2 crossref_primary_10_1186_s12301_024_00442_1 crossref_primary_10_3389_fonc_2021_665246 crossref_primary_10_3389_fonc_2024_1430051 crossref_primary_10_3390_vetsci9050205 crossref_primary_10_1186_s12929_024_01047_0 crossref_primary_10_1111_cas_15147 crossref_primary_10_1097_CAD_0000000000001286 crossref_primary_10_3389_fphys_2022_972407 crossref_primary_10_1007_s10528_023_10386_w |
Cites_doi | 10.2147/OTT.S226300 10.1038/s41388-017-0019-9 10.1007/978-1-4939-6716-2_8 10.1016/j.canlet.2016.12.006 10.1016/j.bioorg.2020.103811 10.1007/s13402-020-00503-x 10.1080/21691401.2019.1652623 10.2144/00286ir0 10.1016/j.ebiom.2019.05.032 10.1158/1541-7786.MCR-18-0284 10.1016/j.bbrc.2018.10.026 10.7150/thno.24106 10.1038/s41467-019-12651-2 10.1038/s41598-019-47189-2 10.1093/nar/gkt006 10.18632/aging.102861 10.3389/fgene.2019.00981 10.1016/j.molcel.2020.01.021 10.1016/0092-8674(93)90279-y 10.1038/cdd.2016.133 10.1186/s12943-019-0969-3 10.26355/eurrev_201911_19435 10.2147/OTT.S201310 10.1089/cbr.2019.2965 10.1002/ijc.32311 10.1093/jnci/djx166 10.1007/978-1-4939-6433-8_4 10.2147/OTT.S158316 10.1158/1541-7786.MCR-19-0998 10.1186/1471-2105-14-S2-S4 10.1186/s12943-020-01160-2 10.1186/s12943-017-0719-3 10.1080/15384101.2019.1601477 10.1016/j.jgg.2018.07.006 10.1186/s12935-019-1055-z 10.1186/s12943-019-1010-6 10.1186/s13046-020-01758-w 10.1186/s13046-019-1398-2 10.1016/j.mcp.2020.101562 10.1089/humc.2019.079 10.2147/OTT.S216320 10.4143/crt.2017.537 10.1186/s12943-020-01179-5 10.1261/rna.043687.113 10.1080/15476286.2019.1600395 10.1186/s13046-018-0936-7 10.26355/eurrev_202003_20506 10.3748/wjg.v25.i16.1964 10.1080/15384047.2019.1669995 10.1186/s12943-019-1060-9 10.4149/gpb2019037 10.1186/s13059-020-02018-y 10.4149/neo_2018_180710N460 10.1016/j.bbrc.2019.03.214 10.1159/000495876 10.1186/s13046-017-0614-1 10.1111/jcmm.13587 10.1038/s41419-018-0503-3 10.1111/1440-1681.13273 10.1093/nar/gkt1248 10.1186/s12943-020-01184-8 10.1186/s12943-019-1098-8 10.1016/j.biopha.2018.12.007 10.1093/nar/gkv940 10.1186/s12943-018-0914-x 10.1186/s12943-019-1078-z 10.1016/j.aohep.2020.01.002 10.1016/j.molcel.2017.02.017 10.1016/j.ebiom.2017.09.015 10.1002/jcp.27162 10.1038/s41388-018-0369-y 10.7150/thno.32796 10.1155/2017/8421614 10.1002/jbt.22458 10.1016/j.bbrc.2020.01.055 10.1093/bioinformatics/btr209 10.15252/embr.201643581 10.1002/cam4.2650 10.1016/j.gene.2019.144099 10.1159/000489208 10.1093/bioinformatics/btt495 10.1002/advs.201800654 10.1002/jcla.23215 10.1016/j.omtn.2018.10.008 10.1007/s43032-019-00008-5 10.1038/nature11928 10.1111/cas.13901 10.1038/nature11993 10.1111/1759-7714.13131 10.15252/emmm.201910835 10.1016/j.ctrv.2012.04.006 10.1002/mgg3.749 10.1186/s12943-019-1095-y 10.3390/ijms21041398 10.1186/s13046-020-01779-5 10.1042/BSR20192779 10.1038/srep27436 10.1186/s12943-020-1135-7 10.1093/nar/gkz311 10.1038/s41418-018-0220-6 10.1016/j.biopha.2019.108932 10.26355/eurrev_202002_20345 10.1186/s12943-019-1056-5 10.2147/OTT.S230795 10.1002/ijc.32549 10.1002/jcb.29570 10.2147/CMAR.S174778 10.1242/bio.043687 10.1093/bioinformatics/btx446 10.1111/jcmm.14925 10.1080/15476286.2015.1128065 10.1186/s12943-019-1006-2 10.1093/nar/gkm391 10.1186/s12943-019-1046-7 10.1186/s12943-020-01152-2 10.3892/ol.2019.11150 10.18632/aging.102312 10.1093/nar/gkv1273 10.1080/21691401.2019.1671857 10.7150/thno.42174 10.1002/1878-0261.12656 10.1126/science.7536344 10.1038/s41419-019-2028-9 10.1186/s12935-019-0926-7 10.1002/jcb.29631 10.1002/jcp.29589 10.1093/nar/gkp981 10.21037/tlcr.2019.11.04 10.1111/1759-7714.13274 10.7150/jca.36500 10.1186/s12943-020-1147-3 10.1093/carcin/bgy144 10.15252/embr.201948467 10.1016/j.biopha.2019.108611 10.3390/cancers11020194 10.1002/advs.201900949 10.1242/dev.128074 10.26355/eurrev_201911_19433 10.1038/280339a0 10.2147/OTT.S131597 10.1038/s41576-019-0158-7 10.1016/j.bbrc.2019.03.213 10.3892/or.2020.7702 10.1111/jcmm.15019 10.1186/s12943-018-0908-8 10.3748/wjg.v25.i35.5300 10.1016/j.biopha.2020.109941 10.1093/bib/bbw081 10.1093/nar/gkv1175 10.1038/srep34985 10.1016/j.dld.2019.04.012 10.1371/journal.pone.0158347 10.18632/aging.102530 10.1016/j.molcel.2013.08.017 10.1042/BSR20182433 10.2147/CMAR.S203137 10.1093/nar/gkx863 10.1186/s12943-019-1121-0 10.1038/s41467-018-06862-2 10.1186/s12935-020-01178-y 10.1016/j.ymthe.2020.03.002 10.1038/s41392-020-00300-w 10.1016/j.bbrc.2019.03.121 10.1016/j.bbrc.2018.12.046 10.1158/0008-5472.CAN-20-0554 10.1186/s10020-018-0039-0 10.1158/0008-5472.CAN-18-1559 10.1016/j.omtn.2019.07.023 10.1002/hep.30795 10.1016/j.omtn.2020.09.007 10.1186/s12943-019-1094-z 10.3389/fgene.2013.00283 10.1186/s13046-020-01555-5 10.1016/j.canlet.2020.04.006 10.1002/path.5125 10.1186/s12943-020-1139-3 10.1038/s41419-018-0454-8 10.1186/s12935-020-1122-5 10.1002/hep.29270 10.1002/jcb.26201 10.1186/s13059-019-1685-4 10.1093/nar/gki394 10.1016/j.molcel.2017.02.021 10.1186/s12943-018-0771-7 10.1016/j.ccell.2019.12.007 10.1038/s41419-017-0204-3 10.1186/s12943-018-0933-7 10.1186/s12943-020-01272-9 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Wang, Li, Lu and Cheng. Copyright © 2021 Wang, Li, Lu and Cheng 2021 Wang, Li, Lu and Cheng |
Copyright_xml | – notice: Copyright © 2021 Wang, Li, Lu and Cheng. – notice: Copyright © 2021 Wang, Li, Lu and Cheng 2021 Wang, Li, Lu and Cheng |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fonc.2020.577118 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2234-943X |
ExternalDocumentID | oai_doaj_org_article_1cfd3a68674741b390f23bb47a45fe60 PMC7848167 33537235 10_3389_fonc_2020_577118 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 81572071, 81000331 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EJD EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c462t-c308cb44fa5807cfc25cd5e8c8a10bcc8fe55cef3a5d1caa23f7cbda8a95eb943 |
IEDL.DBID | M48 |
ISSN | 2234-943X |
IngestDate | Wed Aug 27 01:28:04 EDT 2025 Thu Aug 21 18:43:17 EDT 2025 Thu Jul 10 17:15:55 EDT 2025 Thu Apr 03 07:02:50 EDT 2025 Tue Jul 01 04:38:02 EDT 2025 Thu Apr 24 23:04:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | translation miRNA peptide circRNA transcription |
Language | English |
License | Copyright © 2021 Wang, Li, Lu and Cheng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-c308cb44fa5807cfc25cd5e8c8a10bcc8fe55cef3a5d1caa23f7cbda8a95eb943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Sebastian Giusti, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Marilia Seelaender, University of São Paulo, Brazil This article was submitted to Molecular and Cellular Oncology, a section of the journal Frontiers in Oncology These authors have contributed equally to this work Edited by: Aamir Ahmad, University of Alabama at Birmingham, United States |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fonc.2020.577118 |
PMID | 33537235 |
PQID | 2486465571 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1cfd3a68674741b390f23bb47a45fe60 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7848167 proquest_miscellaneous_2486465571 pubmed_primary_33537235 crossref_primary_10_3389_fonc_2020_577118 crossref_citationtrail_10_3389_fonc_2020_577118 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-18 |
PublicationDateYYYYMMDD | 2021-01-18 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in oncology |
PublicationTitleAlternate | Front Oncol |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | He (B22) 2019; 11 Yang (B85) 2019; 51 Zhu (B82) 2019; 8 Yang (B91) 2020; 43 Liang (B141) 2019; 20 Hu (B61) 2020; 52 Yan (B150) 2020; 44 Ye (B145) 2019; 18 Zhao (B123) 2020; 121 Yang (B51) 2020; 24 Li (B19) 2017; 18 Wang (B74) 2019; 116 Li (B79) 2019; 19 Li (B41) 2019; 12 Zhang (B105) 2019; 47 Kong (B182) 2007; 35 Sang (B29) 2018; 16 Zhao (B178) 2018; 45 Liu (B68) 2019; 23 Yao (B94) 2020; 13 Du (B130) 2020; 28 Olexiouk (B179) 2016; 44 Agostini (B175) 2013; 29 Fischer (B190) 2020; 78 Sun (B60) 2020; 34 Xia (B139) 2019; 18 Wei (B58) 2020; 13 Wei (B100) 2019; 44 Liu (B93) 2019; 513 Zang (B13) 2020; 24 Liang (B33) 2020; 19 Du (B65) 2019; 47 Mokrejs (B177) 2010; 38 Dudekula (B163) 2016; 13 Li (B101) 2018; 51 Tian (B18) 2020; 19 Chen (B66) 2017; 388 Barrett (B12) 2016; 143 Yang (B138) 2018; 110 Zheng (B142) 2019; 18 Li (B27) 2018; 46 Wang (B104) 2019; 39 Hansen (B4) 2013; 495 Du (B112) 2018; 37 Liu (B84) 2019; 30 Xue (B90) 2019; 10 Song (B152) 2020; 5 Kong (B191) 2020; 483 Wang (B14) 2019; 18 Cui (B42) 2019; 38 Glazar (B161) 2014; 20 Liu (B67) 2018; 50 Sun (B15) 2019; 145 Wang (B98) 2020; 35 Gu (B144) 2018; 13 Du (B125) 2017; 24 Yang (B72) 2019; 18 Zheng (B167) 2016; 44 DiChiacchio (B173) 2016; 1490 Wang (B183) 2013; 41 Lei (B136) 2020; 19 Memczak (B5) 2013; 495 Wang (B37) 2019; 66 Chen (B75) 2018; 9 Fu (B77) 2020; 11 Dong (B96) 2020; 12 Ayati (B151) 2020; 99 Xia (B160) 2018; 46 Li (B114) 2019; 11 Zhang (B132) 2013; 51 Su (B89) 2018; 22 Zhang (B59) 2017; 16 Sun (B6) 2020; 19 Liu (B171) 2016; 44 Zeng (B23) 2019; 234 Bi (B119) 2018; 37 Yang (B43) 2020; 27 Wu (B9) 2020; 19 Li (B21) 2019; 508 Wang (B39) 2018; 10 Han (B186) 2020; 19 Jie (B187) 2020; 19 Yan (B46) 2020; 524 Legnini (B135) 2017; 66 Wang (B106) 2019; 8 Xiong (B153) 2017; 2017 Wu (B55) 2018; 23 Feng (B113) 2019; 10 Chen (B189) 2019; 10 Chen (B76) 2019; 110 Yang (B20) 2018; 17 Wu (B64) 2019; 23 Yu (B70) 2016; 11 Lu (B95) 2020; 21 Pan (B137) 2020; 19 Li (B174) 2014; 42 Yu (B92) 2020; 39 He (B36) 2017; 36 Liang (B30) 2017; 7 Mann (B176) 2017; 1543 Hsu (B2) 1979; 280 Xia (B159) 2017; 18 Schmidt (B8) 2019; 47 Chen (B188) 2020; 7 Zhang (B54) 2020; 20 Chen (B162) 2016; 6 Lin (B180) 2011; 27 Geng (B97) 2020; 18 Ren (B34) 2019; 38 Kristensen (B1) 2019; 20 Zhang (B25) 2019; 39 Barbagallo (B116) 2019; 11 Ding (B81) 2020; 19 Yang (B129) 2020; 19 Zhang (B88) 2018; 11 Sun (B126) 2019; 9 Chen (B17) 2020; 21 Yang (B48) 2019; 11 Hoff (B147) 2012; 38 Zhi (B143) 2019; 1 Baassiri (B158) 2020; 21 Quan (B57) 2020; 34 Chen (B131) 2019; 26 Wang (B38) 2018; 505 Liu (B28) 2018; 17 Li (B53) 2019; 112 Hu (B128) 2019; 18 Zeng (B45) 2018; 9 Kolekar (B164) 2016; 6 Yang (B24) 2020; 9 Li (B157) 2019; 7 Min (B165) 2005; 33 Li (B7) 2017; 24 Zhao (B168) 2018; 9 Huang (B108) 2020; 10 Qi (B80) 2019; 25 Meng (B184) 2017; 33 Li (B83) 2020; 47 Huang (B155) 2019; 18 Zhu (B122) 2019; 9 Greene (B154) 2019; 9 Zhang (B44) 2020; 24 Nan (B127) 2019; 6 Yang (B31) 2019; 18 Wang (B121) 2020; 14 Su (B69) 2019; 11 Guo (B86) 2019; 513 Stothard (B181) 2000; 28 Liu (B124) 2020; 235 Wang (B103) 2019; 12 Han (B78) 2017; 66 Huang (B109) 2019; 18 Li (B87) 2020; 11 Zhang (B11) 2018; 9 Fu (B71) 2019; 19 Wang (B117) 2020; 24 Liu (B169) 2019; 16 Ding (B107) 2020; 22 Fan (B49) 2019; 1 Song (B63) 2020; 126 Pan (B56) 2018; 119 Ding (B111) 2019; 18 Li (B47) 2018; 246 Hanniford (B10) 2020; 37 Wang (B118) 2019; 18 Ghosal (B170) 2013; 4 Bi (B26) 2019; 18 Qin (B102) 2019; 111 Wu (B16) 2018; 24 Zhan (B120) 2019; 40 Chen (B148) 2020; 19 Wang (B52) 2019; 512 Chen (B35) 2018; 8 Wei (B73) 2020; 71 Zhang (B50) 2019; 25 Tang (B40) 2017; 10 Chen (B133) 1995; 268 Sun (B146) 2020; 39 Pamudurti (B134) 2017; 66 Liu (B149) 2020; 17 Yang (B115) 2019; 79 Zeng (B32) 2018; 17 Wang (B99) 2019; 720 Wu (B166) 2020; 21 Yang (B110) 2019; 18 Sun (B185) 2019; 10 Sun (B156) 2020; 39 Zhang (B140) 2018; 37 Capel (B3) 1993; 73 Ma (B62) 2020; 20 Chang (B172) 2013 |
References_xml | – volume: 13 year: 2020 ident: B58 article-title: circHIPK3 Promotes Cell Proliferation and Migration of Gastric Cancer by Sponging miR-107 and Regulating BDNF Expression publication-title: OncoTargets Ther doi: 10.2147/OTT.S226300 – volume: 37 year: 2018 ident: B140 article-title: A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis publication-title: Oncogene doi: 10.1038/s41388-017-0019-9 – volume: 1543 year: 2017 ident: B176 article-title: Computational Prediction of RNA-Protein Interactions publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-6716-2_8 – volume: 388 year: 2017 ident: B66 article-title: Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer publication-title: Cancer Lett doi: 10.1016/j.canlet.2016.12.006 – volume: 99 year: 2020 ident: B151 article-title: A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy publication-title: Bioorganic Chem doi: 10.1016/j.bioorg.2020.103811 – volume: 43 year: 2020 ident: B91 article-title: CircRNA BIRC6 promotes non-small cell lung cancer cell progression by sponging microRNA-145 publication-title: Cell Oncol doi: 10.1007/s13402-020-00503-x – volume: 47 year: 2019 ident: B105 article-title: Circular RNA ZFR accelerates non-small cell lung cancer progression by acting as a miR-101-3p sponge to enhance CUL4B expression publication-title: Artif cells Nanomed Biotechnol doi: 10.1080/21691401.2019.1652623 – volume: 28 start-page: 1102, 4 year: 2000 ident: B181 article-title: The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. publication-title: BioTechniques doi: 10.2144/00286ir0 – volume: 44 year: 2019 ident: B100 article-title: The circRNA circPTPRA suppresses epithelial-mesenchymal transitioning and metastasis of NSCLC cells by sponging miR-96-5p publication-title: EBioMedicine doi: 10.1016/j.ebiom.2019.05.032 – volume: 16 year: 2018 ident: B29 article-title: Circular RNA ciRS-7 Maintains Metastatic Phenotypes as a ceRNA of miR-1299 to Target MMPs publication-title: Mol Cancer Res MCR doi: 10.1158/1541-7786.MCR-18-0284 – volume: 505 start-page: 996 year: 2018 ident: B38 article-title: Upregulation of circ-UBAP2 predicts poor prognosis and promotes triple-negative breast cancer progression through the miR-661/MTA1 pathway publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2018.10.026 – volume: 8 year: 2018 ident: B35 article-title: circEPSTI1 as a Prognostic Marker and Mediator of Triple-Negative Breast Cancer Progression publication-title: Theranostics doi: 10.7150/thno.24106 – volume: 10 start-page: 4695 year: 2019 ident: B189 article-title: N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis publication-title: Nat Commun doi: 10.1038/s41467-019-12651-2 – volume: 9 start-page: 10739 year: 2019 ident: B154 article-title: Circular RNAs are differentially expressed in prostate cancer and are potentially associated with resistance to enzalutamide publication-title: Sci Rep doi: 10.1038/s41598-019-47189-2 – volume: 41 start-page: e74 year: 2013 ident: B183 article-title: CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt006 – volume: 12 year: 2020 ident: B96 article-title: The circular RNA NT5E promotes non-small cell lung cancer cell growth via sponging microRNA-134 publication-title: Aging doi: 10.18632/aging.102861 – volume: 10 year: 2019 ident: B185 article-title: CircCode: A Powerful Tool for Identifying circRNA Coding Ability publication-title: Front Genet doi: 10.3389/fgene.2019.00981 – volume: 78 start-page: 70 year: 2020 ident: B190 article-title: Structure-Mediated RNA Decay by UPF1 and G3BP1 publication-title: Mol Cell doi: 10.1016/j.molcel.2020.01.021 – volume: 73 year: 1993 ident: B3 article-title: Circular transcripts of the testis-determining gene Sry in adult mouse testis publication-title: Cell doi: 10.1016/0092-8674(93)90279-y – volume: 24 year: 2017 ident: B125 article-title: Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity publication-title: Cell Death Differentiation doi: 10.1038/cdd.2016.133 – volume: 18 start-page: 71 year: 2019 ident: B155 article-title: Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression publication-title: Mol Cancer doi: 10.1186/s12943-019-0969-3 – volume: 23 year: 2019 ident: B64 article-title: Circular RNA circ-PRKCI promotes cell proliferation and invasion by binding to microRNA-545 in gastric cancer publication-title: Eur Rev Med Pharmacol Sci doi: 10.26355/eurrev_201911_19435 – volume: 12 year: 2019 ident: B41 article-title: circANKS1B regulates FOXM1 expression and promotes cell migration and invasion by functioning as a sponge of the miR-149 in colorectal cancer publication-title: OncoTargets Ther doi: 10.2147/OTT.S201310 – volume: 7 year: 2017 ident: B30 article-title: Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271 publication-title: Am J Cancer Res – volume: 35 year: 2020 ident: B98 article-title: Circ_0014130 Participates in the Proliferation and Apoptosis of Nonsmall Cell Lung Cancer Cells via the miR-142-5p/IGF-1 Axis publication-title: Cancer Biotherapy Radiopharmaceuticals doi: 10.1089/cbr.2019.2965 – volume: 145 year: 2019 ident: B15 article-title: Circular RNA CEP128 promotes bladder cancer progression by regulating Mir-145-5p/Myd88 via MAPK signaling pathway publication-title: Int J Cancer doi: 10.1002/ijc.32311 – volume: 110 year: 2018 ident: B138 article-title: Novel Role of FBXW7 Circular RNA in Repressing Glioma Tumorigenesis publication-title: J Natl Cancer Institute doi: 10.1093/jnci/djx166 – volume: 1490 start-page: 51 year: 2016 ident: B173 article-title: Predicting RNA-RNA Interactions Using RNAstructure publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-6433-8_4 – volume: 11 year: 2018 ident: B88 article-title: Overexpressed CDR1as functions as an oncogene to promote the tumor progression via miR-7 in non-small-cell lung cancer publication-title: OncoTargets Ther doi: 10.2147/OTT.S158316 – volume: 18 year: 2020 ident: B97 article-title: Circular RNA hsa_circ_0014130 Inhibits Apoptosis in Non-Small Cell Lung Cancer by Sponging miR-136-5p and Upregulating BCL2 publication-title: Mol Cancer Res MCR doi: 10.1158/1541-7786.MCR-19-0998 – start-page: S4 year: 2013 ident: B172 article-title: An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs publication-title: BMC Bioinf doi: 10.1186/1471-2105-14-S2-S4 – volume: 19 start-page: 56 year: 2020 ident: B187 article-title: CircMRPS35 suppresses gastric cancer progression via recruiting KAT7 to govern histone modification publication-title: Mol Cancer doi: 10.1186/s12943-020-01160-2 – volume: 16 start-page: 151 year: 2017 ident: B59 article-title: Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression publication-title: Mol Cancer doi: 10.1186/s12943-017-0719-3 – volume: 18 year: 2019 ident: B72 article-title: circ-BIRC6, a circular RNA, promotes hepatocellular carcinoma progression by targeting the miR-3918/Bcl2 axis publication-title: Cell Cycle doi: 10.1080/15384101.2019.1601477 – volume: 45 year: 2018 ident: B178 article-title: IRESfinder: Identifying RNA internal ribosome entry site in eukaryotic cell using framed k-mer features publication-title: J Genet Genomics = Yi Chuan xue bao doi: 10.1016/j.jgg.2018.07.006 – volume: 19 start-page: 338 year: 2019 ident: B71 article-title: Circular RNA ABCB10 promotes hepatocellular carcinoma progression by increasing HMG20A expression by sponging miR-670-3p publication-title: Cancer Cell Int doi: 10.1186/s12935-019-1055-z – volume: 18 start-page: 47 year: 2019 ident: B142 article-title: A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling publication-title: Mol Cancer doi: 10.1186/s12943-019-1010-6 – volume: 39 start-page: 246 year: 2020 ident: B156 article-title: Circular RNA MCTP2 inhibits cisplatin resistance in gastric cancer by miR-99a-5p-mediated induction of MTMR3 expression publication-title: J Exp Clin Cancer Res CR doi: 10.1186/s13046-020-01758-w – volume: 38 start-page: 388 year: 2019 ident: B34 article-title: Knockdown of circDENND4C inhibits glycolysis, migration and invasion by up-regulating miR-200b/c in breast cancer under hypoxia publication-title: J Exp Clin Cancer Res CR doi: 10.1186/s13046-019-1398-2 – volume: 52 year: 2020 ident: B61 article-title: Circular RNA MTO1 suppresses tumorigenesis of gastric carcinoma by sponging miR-3200-5p and targeting PEBP1 publication-title: Mol Cell Probes doi: 10.1016/j.mcp.2020.101562 – volume: 30 year: 2019 ident: B84 article-title: Circular RNA circVAPA Promotes Cell Proliferation in Hepatocellular Carcinoma publication-title: Hum Gene Ther Clin Dev doi: 10.1089/humc.2019.079 – volume: 12 year: 2019 ident: B103 article-title: Circular RNA SMARCA5 inhibits the proliferation, migration, and invasion of non-small cell lung cancer by miR-19b-3p/HOXA9 axis publication-title: OncoTargets Ther doi: 10.2147/OTT.S216320 – volume: 50 year: 2018 ident: B67 article-title: Circular RNA-ZFR Inhibited Cell Proliferation and Promoted Apoptosis in Gastric Cancer by Sponging miR-130a/miR-107 and Modulating PTEN publication-title: Cancer Res Treat Off J Korean Cancer Assoc doi: 10.4143/crt.2017.537 – volume: 19 start-page: 71 year: 2020 ident: B137 article-title: A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer publication-title: Mol Cancer doi: 10.1186/s12943-020-01179-5 – volume: 20 year: 2014 ident: B161 article-title: circBase: a database for circular RNAs publication-title: RNA doi: 10.1261/rna.043687.113 – volume: 16 start-page: 899 year: 2019 ident: B169 article-title: Circbank: a comprehensive database for circRNA with standard nomenclature publication-title: RNA Biol doi: 10.1080/15476286.2019.1600395 – volume: 37 start-page: 275 year: 2018 ident: B119 article-title: CircRNA circRNA_102171 promotes papillary thyroid cancer progression through modulating CTNNBIP1-dependent activation of beta-catenin pathway publication-title: J Exp Clin Cancer Res CR doi: 10.1186/s13046-018-0936-7 – volume: 24 year: 2020 ident: B44 article-title: Circular RNA circDENND4C facilitates proliferation, migration and glycolysis of colorectal cancer cells through miR-760/GLUT1 axis publication-title: Eur Rev Med Pharmacol Sci doi: 10.26355/eurrev_202003_20506 – volume: 25 year: 2019 ident: B80 article-title: Role and mechanism of circ-PRKCI in hepatocellular carcinoma publication-title: World J Gastroenterol doi: 10.3748/wjg.v25.i16.1964 – volume: 21 year: 2020 ident: B95 article-title: Circular RNA HIPK3 induces cell proliferation and inhibits apoptosis in non-small cell lung cancer through sponging miR-149 publication-title: Cancer Biol Ther doi: 10.1080/15384047.2019.1669995 – volume: 18 start-page: 133 year: 2019 ident: B26 article-title: Circular RNA circ-ZKSCAN1 inhibits bladder cancer progression through miR-1178-3p/p21 axis and acts as a prognostic factor of recurrence publication-title: Mol Cancer doi: 10.1186/s12943-019-1060-9 – volume: 38 year: 2019 ident: B42 article-title: circCDYL/microRNA-105-5p participates in modulating growth and migration of colon cancer cells publication-title: Gen Physiol Biophys doi: 10.4149/gpb2019037 – volume: 21 start-page: 101 year: 2020 ident: B166 article-title: CircAtlas: an integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes publication-title: Genome Biol doi: 10.1186/s13059-020-02018-y – volume: 66 year: 2019 ident: B37 article-title: Circ-ITCH regulates triple-negative breast cancer progression through the Wnt/beta-catenin pathway publication-title: Neoplasma doi: 10.4149/neo_2018_180710N460 – volume: 513 year: 2019 ident: B86 article-title: A novel circular RNA circ-ZNF652 promotes hepatocellular carcinoma metastasis through inducing snail-mediated epithelial-mesenchymal transition by sponging miR-203/miR-502-5p publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2019.03.214 – volume: 51 year: 2018 ident: B101 article-title: Circular RNA circPVT1 Promotes Proliferation and Invasion Through Sponging miR-125b and Activating E2F2 Signaling in Non-Small Cell Lung Cancer publication-title: Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol doi: 10.1159/000495876 – volume: 36 start-page: 145 year: 2017 ident: B36 article-title: circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a publication-title: J Exp Clin Cancer Res CR doi: 10.1186/s13046-017-0614-1 – volume: 22 year: 2018 ident: B89 article-title: CiRS-7 targeting miR-7 modulates the progression of non-small cell lung cancer in a manner dependent on NF-kappaB signalling publication-title: J Cell Mol Med doi: 10.1111/jcmm.13587 – volume: 9 start-page: 475 year: 2018 ident: B168 article-title: circRNA disease: a manually curated database of experimentally supported circRNA-disease associations publication-title: Cell Death Dis doi: 10.1038/s41419-018-0503-3 – volume: 47 year: 2020 ident: B83 article-title: Downregulation of circular RNA circPVT1 restricts cell growth of hepatocellular carcinoma through downregulation of Sirtuin 7 via microRNA-3666 publication-title: Clin Exp Pharmacol Physiol doi: 10.1111/1440-1681.13273 – volume: 42 year: 2014 ident: B174 article-title: starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1248 – volume: 19 start-page: 60 year: 2020 ident: B186 article-title: CircLONP2 enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of microRNA-17 publication-title: Mol Cancer doi: 10.1186/s12943-020-01184-8 – volume: 18 start-page: 166 year: 2019 ident: B109 article-title: Circular RNA circERBB2 promotes gallbladder cancer progression by regulating PA2G4-dependent rDNA transcription publication-title: Mol Cancer doi: 10.1186/s12943-019-1098-8 – volume: 111 year: 2019 ident: B102 article-title: Circular RNA PVT1 acts as a competing endogenous RNA for miR-497 in promoting non-small cell lung cancer progression publication-title: Biomed Pharmacother = Biomed Pharmacother doi: 10.1016/j.biopha.2018.12.007 – volume: 44 year: 2016 ident: B171 article-title: CircNet: a database of circular RNAs derived from transcriptome sequencing data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv940 – volume: 17 start-page: 160 year: 2018 ident: B32 article-title: The pro-metastasis effect of circANKS1B in breast cancer publication-title: Mol Cancer doi: 10.1186/s12943-018-0914-x – volume: 18 start-page: 145 year: 2019 ident: B14 article-title: Circular RNA FOXP1 promotes tumor progression and Warburg effect in gallbladder cancer by regulating PKLR expression publication-title: Mol Cancer doi: 10.1186/s12943-019-1078-z – volume: 19 year: 2020 ident: B81 article-title: Circ-PRMT5 enhances the proliferation, migration and glycolysis of hepatoma cells by targeting miR-188-5p/HK2 axis publication-title: Ann Hepatol doi: 10.1016/j.aohep.2020.01.002 – volume: 66 start-page: 22 year: 2017 ident: B135 article-title: Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis publication-title: Mol Cell doi: 10.1016/j.molcel.2017.02.017 – volume: 24 year: 2017 ident: B7 article-title: Dynamic Organization of lncRNA and Circular RNA Regulators Collectively Controlled Cardiac Differentiation in Humans publication-title: EBioMedicine doi: 10.1016/j.ebiom.2017.09.015 – volume: 234 year: 2019 ident: B23 article-title: Circular RNA circ-VANGL1 as a competing endogenous RNA contributes to bladder cancer progression by regulating miR-605-3p/VANGL1 pathway publication-title: J Cell Physiol doi: 10.1002/jcp.27162 – volume: 37 year: 2018 ident: B112 article-title: A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy publication-title: Oncogene doi: 10.1038/s41388-018-0369-y – volume: 9 year: 2019 ident: B122 article-title: Circular RNAs negatively regulate cancer stem cells by physically binding FMRP against CCAR1 complex in hepatocellular carcinoma publication-title: Theranostics doi: 10.7150/thno.32796 – volume: 2017 year: 2017 ident: B153 article-title: Microarray Analysis of Circular RNA Expression Profile Associated with 5-Fluorouracil-Based Chemoradiation Resistance in Colorectal Cancer Cells publication-title: BioMed Res Int doi: 10.1155/2017/8421614 – volume: 34 year: 2020 ident: B57 article-title: Circular RNA circHIAT1 inhibits proliferation and epithelial-mesenchymal transition of gastric cancer cell lines through downregulation of miR-21 publication-title: J Biochem Mol Toxicol doi: 10.1002/jbt.22458 – volume: 524 year: 2020 ident: B46 article-title: CircHIPK3 promotes colorectal cancer cells proliferation and metastasis via modulating of miR-1207-5p/FMNL2 signal publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2020.01.055 – volume: 27 year: 2011 ident: B180 article-title: PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr209 – volume: 18 year: 2017 ident: B19 article-title: CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells publication-title: EMBO Rep doi: 10.15252/embr.201643581 – volume: 9 year: 2020 ident: B24 article-title: Silencing circular RNA VANGL1 inhibits progression of bladder cancer by regulating miR-1184/IGFBP2 axis publication-title: Cancer Med doi: 10.1002/cam4.2650 – volume: 720 year: 2019 ident: B99 article-title: Circular RNA circ-PRMT5 facilitates non-small cell lung cancer proliferation through upregulating EZH2 via sponging miR-377/382/498 publication-title: Gene doi: 10.1016/j.gene.2019.144099 – volume: 46 year: 2018 ident: B27 article-title: CircRNA-Cdr1as Exerts Anti-Oncogenic Functions in Bladder Cancer by Sponging MicroRNA-135a publication-title: Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol doi: 10.1159/000489208 – volume: 29 year: 2013 ident: B175 article-title: catRAPID omics: a web server for large-scale prediction of protein-RNA interactions publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt495 – volume: 6 year: 2019 ident: B127 article-title: Circular RNA circNOL10 Inhibits Lung Cancer Development by Promoting SCLM1-Mediated Transcriptional Regulation of the Humanin Polypeptide Family publication-title: Adv Sci doi: 10.1002/advs.201800654 – volume: 34 year: 2020 ident: B60 article-title: Circular RNA circMAN2B2 promotes growth and migration of gastric cancer cells by down-regulation of miR-145 publication-title: J Clin Lab Anal doi: 10.1002/jcla.23215 – volume: 13 year: 2018 ident: B144 article-title: circGprc5a Promoted Bladder Oncogenesis and Metastasis through Gprc5a-Targeting Peptide publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2018.10.008 – volume: 27 year: 2020 ident: B43 article-title: Hsa_circ_CSPP1/MiR-361-5p/ITGB1 Regulates Proliferation and Migration of Cervical Cancer (CC) by Modulating the PI3K-Akt Signaling Pathway publication-title: Reprod Sci doi: 10.1007/s43032-019-00008-5 – volume: 495 year: 2013 ident: B5 article-title: Circular RNAs are a large class of animal RNAs with regulatory potency publication-title: Nature doi: 10.1038/nature11928 – volume: 110 year: 2019 ident: B76 article-title: circLARP4 induces cellular senescence through regulating miR-761/RUNX3/p53/p21 signaling in hepatocellular carcinoma publication-title: Cancer Sci doi: 10.1111/cas.13901 – volume: 495 year: 2013 ident: B4 article-title: Natural RNA circles function as efficient microRNA sponges publication-title: Nature doi: 10.1038/nature11993 – volume: 10 year: 2019 ident: B90 article-title: CircAGFG1 sponges miR-203 to promote EMT and metastasis of non-small-cell lung cancer by upregulating ZNF281 expression publication-title: Thoracic Cancer doi: 10.1111/1759-7714.13131 – volume: 11 year: 2019 ident: B114 article-title: Therapeutic targeting of circ-CUX1/EWSR1/MAZ axis inhibits glycolysis and neuroblastoma progression publication-title: EMBO Mol Med doi: 10.15252/emmm.201910835 – volume: 38 year: 2012 ident: B147 article-title: Role of angiogenesis in the pathogenesis of cancer publication-title: Cancer Treat Rev doi: 10.1016/j.ctrv.2012.04.006 – volume: 7 start-page: e00749 year: 2019 ident: B157 article-title: Diagnostic performance of circular RNAs in human cancers: A systematic review and meta-analysis publication-title: Mol Genet Genomic Med doi: 10.1002/mgg3.749 – volume: 18 start-page: 160 year: 2019 ident: B128 article-title: circGSK3beta promotes metastasis in esophageal squamous cell carcinoma by augmenting beta-catenin signaling publication-title: Mol Cancer doi: 10.1186/s12943-019-1095-y – volume: 21 year: 2020 ident: B158 article-title: Exosomal Non Coding RNA in LIQUID Biopsies as a Promising Biomarker for Colorectal Cancer publication-title: Int J Mol Sci doi: 10.3390/ijms21041398 – volume: 39 start-page: 252 year: 2020 ident: B146 article-title: A novel circular RNA circ-LRIG3 facilitates the malignant progression of hepatocellular carcinoma by modulating the EZH2/STAT3 signaling publication-title: J Exp Clin Cancer Res CR doi: 10.1186/s13046-020-01779-5 – volume: 39 start-page: 1 year: 2019 ident: B25 article-title: CircZFR serves as a prognostic marker to promote bladder cancer progression by regulating miR-377/ZEB2 signaling publication-title: Biosci Rep doi: 10.1042/BSR20192779 – volume: 6 year: 2016 ident: B164 article-title: IRESPred: Web Server for Prediction of Cellular and Viral Internal Ribosome Entry Site (IRES) publication-title: Sci Rep doi: 10.1038/srep27436 – volume: 19 start-page: 30 year: 2020 ident: B136 article-title: Translation and functional roles of circular RNAs in human cancer publication-title: Mol Cancer doi: 10.1186/s12943-020-1135-7 – volume: 47 year: 2019 ident: B8 article-title: Molecular determinants of metazoan tricRNA biogenesis publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz311 – volume: 26 year: 2019 ident: B131 article-title: Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes publication-title: Cell Death Differentiation doi: 10.1038/s41418-018-0220-6 – volume: 116 year: 2019 ident: B74 article-title: Circular RNA circHIAT1 inhibits cell growth in hepatocellular carcinoma by regulating miR-3171/PTEN axis publication-title: Biomed Pharmacother = Biomed Pharmacother doi: 10.1016/j.biopha.2019.108932 – volume: 24 year: 2020 ident: B117 article-title: CircAGFG1 aggravates the progression of cervical cancer by downregulating p53 publication-title: Eur Rev Med Pharmacol Sci doi: 10.26355/eurrev_202002_20345 – volume: 18 start-page: 131 year: 2019 ident: B139 article-title: A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1 publication-title: Mol Cancer doi: 10.1186/s12943-019-1056-5 – volume: 23 year: 2018 ident: B55 article-title: Circ-ZNF609 promotes migration of colorectal cancer by inhibiting Gli1 expression via microRNA-150 publication-title: J BUON Off J Balkan Union Oncol – volume: 13 year: 2020 ident: B94 article-title: circGFRA1 Enhances NSCLC Progression by Sponging miR-188-3p publication-title: OncoTargets Ther doi: 10.2147/OTT.S230795 – volume: 1 start-page: 1 year: 2019 ident: B143 article-title: circLgr4 drives colorectal tumorigenesis and invasion through Lgr4-targeting peptide publication-title: Int J Cancer doi: 10.1002/ijc.32549 – volume: 1 start-page: 1 year: 2019 ident: B49 article-title: Circular RNA circMTO1 acts as an antitumor factor in rectal cancer cell lines by downregulation of miR-19b-3p publication-title: J Cell Biochem doi: 10.1002/jcb.29570 – volume: 10 year: 2018 ident: B39 article-title: CircZNF609 promotes breast cancer cell growth, migration, and invasion by elevating p70S6K1 via sponging miR-145-5p publication-title: Cancer Manage Res doi: 10.2147/CMAR.S174778 – volume: 8 start-page: 1 year: 2019 ident: B82 article-title: The circular RNA PVT1/miR-203/HOXD3 pathway promotes the progression of human hepatocellular carcinoma publication-title: Biol Open doi: 10.1242/bio.043687 – volume: 33 year: 2017 ident: B184 article-title: CircPro: an integrated tool for the identification of circRNAs with protein-coding potential publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx446 – volume: 24 year: 2020 ident: B13 article-title: circRNA circ-CCND1 promotes the proliferation of laryngeal squamous cell carcinoma through elevating CCND1 expression via interacting with HuR and miR-646 publication-title: J Cell Mol Med doi: 10.1111/jcmm.14925 – volume: 13 start-page: 34 year: 2016 ident: B163 article-title: CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs publication-title: RNA Biol doi: 10.1080/15476286.2015.1128065 – volume: 18 start-page: 45 year: 2019 ident: B111 article-title: Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4 publication-title: Mol Cancer doi: 10.1186/s12943-019-1006-2 – volume: 35 year: 2007 ident: B182 article-title: CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm391 – volume: 18 start-page: 119 year: 2019 ident: B118 article-title: Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression publication-title: Mol Cancer doi: 10.1186/s12943-019-1046-7 – volume: 19 start-page: 65 year: 2020 ident: B33 article-title: Autophagy-associated circRNA circCDYL augments autophagy and promotes breast cancer progression publication-title: Mol Cancer doi: 10.1186/s12943-020-01152-2 – volume: 19 year: 2020 ident: B18 article-title: circ-FNTA accelerates proliferation and invasion of bladder cancer publication-title: Oncol Lett doi: 10.3892/ol.2019.11150 – volume: 11 year: 2019 ident: B69 article-title: CircRNA Cdr1as functions as a competitive endogenous RNA to promote hepatocellular carcinoma progression publication-title: Aging doi: 10.18632/aging.102312 – volume: 44 year: 2016 ident: B167 article-title: deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1273 – volume: 47 year: 2019 ident: B65 article-title: Circ-PRMT5 promotes gastric cancer progression by sponging miR-145 and miR-1304 to upregulate MYC publication-title: Artif cells Nanomed Biotechnol doi: 10.1080/21691401.2019.1671857 – volume: 10 year: 2020 ident: B108 article-title: Circular RNA-protein interactions: functions, mechanisms, and identification publication-title: Theranostics doi: 10.7150/thno.42174 – volume: 14 start-page: 3253 year: 2020 ident: B121 article-title: Circ-SOX4 promotes non-small cell lung cancer progression by activating the Wnt/beta-catenin pathway publication-title: Mol Oncol doi: 10.1002/1878-0261.12656 – volume: 268 year: 1995 ident: B133 article-title: Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs publication-title: Science doi: 10.1126/science.7536344 – volume: 10 start-page: 792 year: 2019 ident: B113 article-title: Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP publication-title: Cell Death Dis doi: 10.1038/s41419-019-2028-9 – volume: 19 start-page: 211 year: 2019 ident: B79 article-title: Circular RNA MYLK promotes hepatocellular carcinoma progression by increasing Rab23 expression by sponging miR-362-3p publication-title: Cancer Cell Int doi: 10.1186/s12935-019-0926-7 – volume: 121 year: 2020 ident: B123 article-title: Circular RNA (circ-0075804) promotes the proliferation of retinoblastoma via combining heterogeneous nuclear ribonucleoprotein K (HNRNPK) to improve the stability of E2F transcription factor 3 E2F3 publication-title: J Cell Biochem doi: 10.1002/jcb.29631 – volume: 235 year: 2020 ident: B124 article-title: CircBACH1 (hsa_circ_0061395) promotes hepatocellular carcinoma growth by regulating p27 repression via HuR publication-title: J Cell Physiol doi: 10.1002/jcp.29589 – volume: 38 year: 2010 ident: B177 article-title: IRESite–a tool for the examination of viral and cellular internal ribosome entry sites publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp981 – volume: 8 year: 2019 ident: B106 article-title: Circ-ZKSCAN1 regulates FAM83A expression and inactivates MAPK signaling by targeting miR-330-5p to promote non-small cell lung cancer progression publication-title: Trans Lung Cancer Res doi: 10.21037/tlcr.2019.11.04 – volume: 11 year: 2020 ident: B87 article-title: CircRNA CDR1as knockdown inhibits progression of non-small-cell lung cancer by regulating miR-219a-5p/SOX5 axis publication-title: Thoracic Cancer doi: 10.1111/1759-7714.13274 – volume: 11 year: 2020 ident: B77 article-title: Circular RNA MAN2B2 promotes cell proliferation of hepatocellular carcinoma cells via the miRNA-217/MAPK1 axis publication-title: J Cancer doi: 10.7150/jca.36500 – volume: 19 start-page: 22 year: 2020 ident: B9 article-title: Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA publication-title: Mol Cancer doi: 10.1186/s12943-020-1147-3 – volume: 40 year: 2019 ident: B120 article-title: circCTIC1 promotes the self-renewal of colon TICs through BPTF-dependent c-Myc expression publication-title: Carcinogenesis doi: 10.1093/carcin/bgy144 – volume: 21 year: 2020 ident: B17 article-title: Androgen receptor-regulated circFNTA activates KRAS signaling to promote bladder cancer invasion publication-title: EMBO Rep doi: 10.15252/embr.201948467 – volume: 112 year: 2019 ident: B53 article-title: Circular RNA circVAPA is up-regulated and exerts oncogenic properties by sponging miR-101 in colorectal cancer publication-title: Biomed Pharmacother = Biomed Pharmacother doi: 10.1016/j.biopha.2019.108611 – volume: 11 start-page: 194 year: 2019 ident: B116 article-title: CircSMARCA5 Regulates VEGFA mRNA Splicing and Angiogenesis in Glioblastoma Multiforme Through the Binding of SRSF1 publication-title: Cancers doi: 10.3390/cancers11020194 – volume: 7 year: 2020 ident: B188 article-title: Circ-MALAT1 Functions as Both an mRNA Translation Brake and a microRNA Sponge to Promote Self-Renewal of Hepatocellular Cancer Stem Cells publication-title: Adv Sci doi: 10.1002/advs.201900949 – volume: 143 year: 2016 ident: B12 article-title: Circular RNAs: analysis, expression and potential functions publication-title: Development doi: 10.1242/dev.128074 – volume: 23 year: 2019 ident: B68 article-title: Circ-ZNF609 promotes carcinogenesis of gastric cancer cells by inhibiting miRNA-145-5p expression publication-title: Eur Rev Med Pharmacol Sci doi: 10.26355/eurrev_201911_19433 – volume: 280 year: 1979 ident: B2 article-title: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells publication-title: Nature doi: 10.1038/280339a0 – volume: 10 year: 2017 ident: B40 article-title: Silencing CDR1as inhibits colorectal cancer progression through regulating microRNA-7 publication-title: OncoTargets Ther doi: 10.2147/OTT.S131597 – volume: 20 year: 2019 ident: B1 article-title: The biogenesis, biology and characterization of circular RNAs publication-title: Nat Rev Genet doi: 10.1038/s41576-019-0158-7 – volume: 513 year: 2019 ident: B93 article-title: Circular RNA circ-FOXM1 facilitates cell progression as ceRNA to target PPDPF and MACC1 by sponging miR-1304-5p in non-small cell lung cancer publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2019.03.213 – volume: 44 year: 2020 ident: B150 article-title: Circulating RNAs, circ_4911 and circ_4302, are novel regulators of endothelial cell function under a hepatocellular carcinoma microenvironment publication-title: Oncol Rep doi: 10.3892/or.2020.7702 – volume: 24 year: 2020 ident: B51 article-title: CircPRMT5 circular RNA promotes proliferation of colorectal cancer through sponging miR-377 to induce E2F3 expression publication-title: J Cell Mol Med doi: 10.1111/jcmm.15019 – volume: 17 start-page: 161 year: 2018 ident: B28 article-title: Invasion-related circular RNA circFNDC3B inhibits bladder cancer progression through the miR-1178-3p/G3BP2/SRC/FAK axis publication-title: Mol Cancer doi: 10.1186/s12943-018-0908-8 – volume: 25 year: 2019 ident: B50 article-title: Circular RNA PIP5K1A promotes colon cancer development through inhibiting miR-1273a publication-title: World J Gastroenterol doi: 10.3748/wjg.v25.i35.5300 – volume: 126 year: 2020 ident: B63 article-title: CircPIP5K1A activates KRT80 and PI3K/AKT pathway to promote gastric cancer development through sponging miR-671-5p publication-title: Biomed Pharmacother = Biomed Pharmacother doi: 10.1016/j.biopha.2020.109941 – volume: 18 year: 2017 ident: B159 article-title: Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes publication-title: Briefings Bioinf doi: 10.1093/bib/bbw081 – volume: 44 year: 2016 ident: B179 article-title: sORFs.org: a repository of small ORFs identified by ribosome profiling publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1175 – volume: 9 year: 2019 ident: B126 article-title: Circular RNA circ-ADD3 inhibits hepatocellular carcinoma metastasis through facilitating EZH2 degradation via CDK1-mediated ubiquitination publication-title: Am J Cancer Res – volume: 6 year: 2016 ident: B162 article-title: circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations publication-title: Sci Rep doi: 10.1038/srep34985 – volume: 51 year: 2019 ident: B85 article-title: circZFR promotes cell proliferation and migration by regulating miR-511/AKT1 axis in hepatocellular carcinoma publication-title: Digest Liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver doi: 10.1016/j.dld.2019.04.012 – volume: 11 year: 2016 ident: B70 article-title: The Circular RNA Cdr1as Act as an Oncogene in Hepatocellular Carcinoma through Targeting miR-7 Expression publication-title: PLoS One doi: 10.1371/journal.pone.0158347 – volume: 11 year: 2019 ident: B22 article-title: CircPTPRA acts as a tumor suppressor in bladder cancer by sponging miR-636 and upregulating KLF9 publication-title: Aging doi: 10.18632/aging.102530 – volume: 51 start-page: 792 year: 2013 ident: B132 article-title: Circular intronic long noncoding RNAs publication-title: Mol Cell doi: 10.1016/j.molcel.2013.08.017 – volume: 39 start-page: 1 year: 2019 ident: B104 article-title: Up-regulated circular RNA VANGL1 contributes to progression of non-small cell lung cancer through inhibition of miR-195 and activation of Bcl-2 publication-title: Biosci Rep doi: 10.1042/BSR20182433 – volume: 11 year: 2019 ident: B48 article-title: Circ-ITGA7 sponges miR-3187-3p to upregulate ASXL1, suppressing colorectal cancer proliferation publication-title: Cancer Manage Res doi: 10.2147/CMAR.S203137 – volume: 46 year: 2018 ident: B160 article-title: CSCD: a database for cancer-specific circular RNAs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx863 – volume: 19 start-page: 34 year: 2020 ident: B6 article-title: Functions and clinical significance of circular RNAs in glioma publication-title: Mol Cancer doi: 10.1186/s12943-019-1121-0 – volume: 9 start-page: 4475 year: 2018 ident: B11 article-title: A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma publication-title: Nat Commun doi: 10.1038/s41467-018-06862-2 – volume: 20 start-page: 103 year: 2020 ident: B54 article-title: Circular RNA circVAPA knockdown suppresses colorectal cancer cell growth process by regulating miR-125a/CREB5 axis publication-title: Cancer Cell Int doi: 10.1186/s12935-020-01178-y – volume: 28 year: 2020 ident: B130 article-title: The Circular RNA circSKA3 Binds Integrin beta1 to Induce Invadopodium Formation Enhancing Breast Cancer Invasion publication-title: Mol Ther J Am Soc Gene Ther doi: 10.1016/j.ymthe.2020.03.002 – volume: 5 start-page: 193 year: 2020 ident: B152 article-title: Epitranscriptomics and epiproteomics in cancer drug resistance: therapeutic implications publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-020-00300-w – volume: 512 year: 2019 ident: B52 article-title: Circular RNA PVT1 promotes metastasis via miR-145 sponging in CRC publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2019.03.121 – volume: 508 year: 2019 ident: B21 article-title: Circular RNA circMTO1 suppresses bladder cancer metastasis by sponging miR-221 and inhibiting epithelial-to-mesenchymal transition publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2018.12.046 – volume: 17 start-page: 1 year: 2020 ident: B149 article-title: circIGHG-induced epithelial-to-mesenchymal transition promotes oral squamous cell carcinoma progression via miR-142-5p/IGF2BP3 signaling publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-20-0554 – volume: 24 start-page: 40 year: 2018 ident: B16 article-title: Circular RNA CEP128 acts as a sponge of miR-145-5p in promoting the bladder cancer progression via regulating SOX11 publication-title: Mol Med doi: 10.1186/s10020-018-0039-0 – volume: 79 year: 2019 ident: B115 article-title: Cis-Acting circ-CTNNB1 Promotes beta-Catenin Signaling and Cancer Progression via DDX3-Mediated Transactivation of YY1 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-18-1559 – volume: 18 start-page: 88 year: 2019 ident: B145 article-title: circFBXW7 Inhibits Malignant Progression by Sponging miR-197-3p and Encoding a 185-aa Protein in Triple-Negative Breast Cancer publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2019.07.023 – volume: 71 year: 2020 ident: B73 article-title: A Noncoding Regulatory RNAs Network Driven by Circ-CDYL Acts Specifically in the Early Stages Hepatocellular Carcinoma publication-title: Hepatology doi: 10.1002/hep.30795 – volume: 22 year: 2020 ident: B107 article-title: hsa_circ_0001955 Enhances In Vitro Proliferation, Migration, and Invasion of HCC Cells through miR-145-5p/NRAS Axis publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2020.09.007 – volume: 18 start-page: 158 year: 2019 ident: B110 article-title: Circ-HuR suppresses HuR expression and gastric cancer progression by inhibiting CNBP transactivation publication-title: Mol Cancer doi: 10.1186/s12943-019-1094-z – volume: 4 year: 2013 ident: B170 article-title: Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits publication-title: Front Genet doi: 10.3389/fgene.2013.00283 – volume: 39 start-page: 55 year: 2020 ident: B92 article-title: circFOXM1 promotes proliferation of non-small cell lung carcinoma cells by acting as a ceRNA to upregulate FAM83D publication-title: J Exp Clin Cancer Res CR doi: 10.1186/s13046-020-01555-5 – volume: 483 start-page: 59 year: 2020 ident: B191 article-title: Translatable circRNAs and lncRNAs: Driving mechanisms and functions of their translation products publication-title: Cancer Lett doi: 10.1016/j.canlet.2020.04.006 – volume: 246 year: 2018 ident: B47 article-title: Circular RNA circITGA7 inhibits colorectal cancer growth and metastasis by modulating the Ras pathway and upregulating transcription of its host gene ITGA7 publication-title: J Pathol doi: 10.1002/path.5125 – volume: 19 start-page: 13 year: 2020 ident: B129 article-title: CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer publication-title: Mol Cancer doi: 10.1186/s12943-020-1139-3 – volume: 9 start-page: 417 year: 2018 ident: B45 article-title: CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7 publication-title: Cell Death Dis doi: 10.1038/s41419-018-0454-8 – volume: 20 start-page: 81 year: 2020 ident: B62 article-title: CircPIP5K1A facilitates gastric cancer progression via miR-376c-3p/ZNF146 axis publication-title: Cancer Cell Int doi: 10.1186/s12935-020-1122-5 – volume: 66 year: 2017 ident: B78 article-title: Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression publication-title: Hepatology doi: 10.1002/hep.29270 – volume: 119 year: 2018 ident: B56 article-title: Overexpression of Circular RNA ciRS-7 Abrogates the Tumor Suppressive Effect of miR-7 on Gastric Cancer via PTEN/PI3K/AKT Signaling Pathway publication-title: J Cell Biochem doi: 10.1002/jcb.26201 – volume: 20 start-page: 84 year: 2019 ident: B141 article-title: Translation of the circular RNA circbeta-catenin promotes liver cancer cell growth through activation of the Wnt pathway publication-title: Genome Biol doi: 10.1186/s13059-019-1685-4 – volume: 33 year: 2005 ident: B165 article-title: OrfPredictor: predicting protein-coding regions in EST-derived sequences publication-title: Nucleic Acids Res doi: 10.1093/nar/gki394 – volume: 66 start-page: 9 year: 2017 ident: B134 article-title: Translation of CircRNAs publication-title: Mol Cell doi: 10.1016/j.molcel.2017.02.021 – volume: 17 start-page: 19 year: 2018 ident: B20 article-title: Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression publication-title: Mol Cancer doi: 10.1186/s12943-018-0771-7 – volume: 37 start-page: 55 year: 2020 ident: B10 article-title: Epigenetic Silencing of CDR1as Drives IGF2BP3-Mediated Melanoma Invasion and Metastasis publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.12.007 – volume: 9 start-page: 175 year: 2018 ident: B75 article-title: circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma publication-title: Cell Death Dis doi: 10.1038/s41419-017-0204-3 – volume: 18 start-page: 4 year: 2019 ident: B31 article-title: The circRNA circAGFG1 acts as a sponge of miR-195-5p to promote triple-negative breast cancer progression through regulating CCNE1 expression publication-title: Mol Cancer doi: 10.1186/s12943-018-0933-7 – volume: 19 start-page: 164 year: 2020 ident: B148 article-title: The circular RNA circ-ERBIN promotes growth and metastasis of colorectal cancer by miR-125a-5p and miR-138-5p/4EBP-1 mediated cap-independent HIF-1alpha translation publication-title: Mol Cancer doi: 10.1186/s12943-020-01272-9 |
SSID | ssj0000650103 |
Score | 2.3961582 |
SecondaryResourceType | review_article |
Snippet | Circular RNAs (circRNAs) are a class of endogenous single-stranded covalently closed RNAs, primarily produced from pre-mRNAs
via
non-canonical back-splicing.... Circular RNAs (circRNAs) are a class of endogenous single-stranded covalently closed RNAs, primarily produced from pre-mRNAs non-canonical back-splicing.... Circular RNAs (circRNAs) are a class of endogenous single-stranded covalently closed RNAs, primarily produced from pre-mRNAs via non-canonical back-splicing.... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 577118 |
SubjectTerms | circRNA miRNA Oncology peptide transcription translation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kB_Eivo1aieDFQ2yy7xxrsRShPYiF3pbdzS4WJJU-_r87SVpaEb14TTZk-L4hM5Od_Qahe1oEr8EgfWlJKFCESRMjsU0Ez32hRYgwBZxGHo74YExfJmyyNeoLesJqeeAauE5mfUE0lzzkvTQzoUT3mBhDhabMO15V6yHmbRVT9TeYwQCDel8yVGF5x89KUCzE6SMTIoMZH1txqJLr_ynH_N4quRV7-kfosEka425t7DHac-UJ2h822-KnqN2bzqt-0vh11F3E0zKu_s3HPaB0fobG_ee33iBp5h4klnK8TCxJpTWUes1kKqy3mNmCOWmlzlJjrfSOMes80azIrNaYeGFNoaXOmTM5JeeoVc5Kd4niEIQczplPNQ2JEZEhPGsB5yYdl0XIBSLUWaOgbCMKDrMpPlQoDgA3BbgpwE3VuEXoYfPEZy2I8cvaJwB2sw6krKsLgWDVEKz-IjhCd2taVHB92M_QpZutFgpTyUH-TWQRuqhp2ryKEEYEJixCYofAHVt275TT90peW8CEAS6u_sP4a3SAoQkmzZJM3qDWcr5y7ZDFLM1t5bBfPxztGA priority: 102 providerName: Directory of Open Access Journals |
Title | Circular RNAs in Human Cancer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33537235 https://www.proquest.com/docview/2486465571 https://pubmed.ncbi.nlm.nih.gov/PMC7848167 https://doaj.org/article/1cfd3a68674741b390f23bb47a45fe60 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ja9wwFBZNCiGX0LRZJhsO5NKDE1u7DyUkQxYKk0PpwNyEJEvJQPC0ngkk_z7v2c60U4ZALz54ld6T_L2n5fsIOeEltBqK1JeeQYKiXJY6TX2qZBFLqwBhStyNPLiTt0P-fSRGf7ZHdwacLk3tUE9qWD-ePv9-OYcO_w0zTsDbszipkIyQZqdCKQiYV8hHwCWFegaDLthv_8sCRQ1QbY4ynhacjdp5y6UvWcCphs5_WQz671LKv7Dp-hPZ6ILK5KJtBZvkQ6g-k7VBN23-hRz2x3Wz3jT5cXcxTcZV0ozdJ310eb1FhtdXP_u3aaeLkHou6Sz1LNPecR6t0Jny0VPhSxG01zbPnPc6BiF8iMyKMvfWUhaVd6XVthDBQb23yWo1qcIuSQCkAi1EzCyHwIlpgG-rcF9lkLqEWKFHzt6sYHxHGo7aFY8Gkge0m0G7GbSbae3WI1_nT_xqCTPeufcSDTu_D6mumxOT-t50PcfkPpbMSi0h8eG5Y0UWKXOOK8tFDBKKePzmFgNdA-c7bBUmT1NDuZZID6fyHtlp3TT_FGOCKcpEj6gFBy6UZfFKNX5o6LcVKhBItfcfFd0n6xTXwmR5musDsjqrn8IhBDMzd9QMAsDxZpQfNe31Feaw8A0 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circular+RNAs+in+Human+Cancer&rft.jtitle=Frontiers+in+oncology&rft.au=Wang%2C+Xiong&rft.au=Li%2C+Huijun&rft.au=Lu%2C+Yanjun&rft.au=Cheng%2C+Liming&rft.date=2021-01-18&rft.issn=2234-943X&rft.eissn=2234-943X&rft.volume=10&rft_id=info:doi/10.3389%2Ffonc.2020.577118&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fonc_2020_577118 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-943X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-943X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-943X&client=summon |