Human Activity Recognition Process Using 3-D Posture Data

In this paper, we present a method for recognizing human activities using information sensed by an RGB-D camera, namely the Microsoft Kinect. Our approach is based on the estimation of some relevant joints of the human body by means of the Kinect; three different machine learning techniques, i.e., K...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on human-machine systems Vol. 45; no. 5; pp. 586 - 597
Main Authors Gaglio, Salvatore, Re, Giuseppe Lo, Morana, Marco
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we present a method for recognizing human activities using information sensed by an RGB-D camera, namely the Microsoft Kinect. Our approach is based on the estimation of some relevant joints of the human body by means of the Kinect; three different machine learning techniques, i.e., K-means clustering, support vector machines, and hidden Markov models, are combined to detect the postures involved while performing an activity, to classify them, and to model each activity as a spatiotemporal evolution of known postures. Experiments were performed on Kinect Activity Recognition Dataset, a new dataset, and on CAD-60, a public dataset. Experimental results show that our solution outperforms four relevant works based on RGB-D image fusion, hierarchical Maximum Entropy Markov Model, Markov Random Fields, and Eigenjoints, respectively. The performance we achieved, i.e., precision/recall of 77.3% and 76.7%, and the ability to recognize the activities in real time show promise for applied use.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2291
2168-2305
DOI:10.1109/THMS.2014.2377111