Supervised Spectral-Spatial Hyperspectral Image Classification With Weighted Markov Random Fields
This paper presents a new approach for hyperspectral image classification exploiting spectral-spatial information. Under the maximum a posteriori framework, we propose a supervised classification model which includes a spectral data fidelity term and a spatially adaptive Markov random field (MRF) pr...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 53; no. 3; pp. 1490 - 1503 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a new approach for hyperspectral image classification exploiting spectral-spatial information. Under the maximum a posteriori framework, we propose a supervised classification model which includes a spectral data fidelity term and a spatially adaptive Markov random field (MRF) prior in the hidden field. The data fidelity term adopted in this paper is learned from the sparse multinomial logistic regression (SMLR) classifier, while the spatially adaptive MRF prior is modeled by a spatially adaptive total variation (SpATV) regularization to enforce a spatially smooth classifier. To further improve the classification accuracy, the true labels of training samples are fixed as an additional constraint in the proposed model. Thus, our model takes full advantage of exploiting the spatial and contextual information present in the hyperspectral image. An efficient hyperspectral image classification algorithm, named SMLR-SpATV, is then developed to solve the final proposed model using the alternating direction method of multipliers. Experimental results on real hyperspectral data sets demonstrate that the proposed approach outperforms many state-of-the-art methods in terms of the overall accuracy, average accuracy, and kappa (k) statistic. |
---|---|
AbstractList | This paper presents a new approach for hyperspectral image classification exploiting spectral-spatial information. Under the maximum a posteriori framework, we propose a supervised classification model which includes a spectral data fidelity term and a spatially adaptive Markov random field (MRF) prior in the hidden field. The data fidelity term adopted in this paper is learned from the sparse multinomial logistic regression (SMLR) classifier, while the spatially adaptive MRF prior is modeled by a spatially adaptive total variation (SpATV) regularization to enforce a spatially smooth classifier. To further improve the classification accuracy, the true labels of training samples are fixed as an additional constraint in the proposed model. Thus, our model takes full advantage of exploiting the spatial and contextual information present in the hyperspectral image. An efficient hyperspectral image classification algorithm, named SMLR-SpATV, is then developed to solve the final proposed model using the alternating direction method of multipliers. Experimental results on real hyperspectral data sets demonstrate that the proposed approach outperforms many state-of-the-art methods in terms of the overall accuracy, average accuracy, and kappa $(k)$ statistic. |
Author | Le Sun Jianjun Liu Liang Xiao Zhihui Wei Zebin Wu |
Author_xml | – sequence: 1 givenname: Le surname: Sun fullname: Sun, Le – sequence: 2 givenname: Zebin surname: Wu fullname: Wu, Zebin – sequence: 3 givenname: Jianjun surname: Liu fullname: Liu, Jianjun – sequence: 4 givenname: Liang surname: Xiao fullname: Xiao, Liang – sequence: 5 givenname: Zhihui surname: Wei fullname: Wei, Zhihui |
BookMark | eNqFkc1LwzAYxoMoOD_-APFS8OKlM19N06MMtwkTwSo7hix9u0W7tiatsP_ezA0PO2gugTy_53nJ-5yh47qpAaErgoeE4OzudfKSDykmfEgZD4ceoQFJEhljwfkxGmCSiZjKjJ6iM-_fcSATkg6QzvsW3Jf1UER5C6ZzuorzVndWV9F0EzS_f40e13oJ0ajS3tvSmoA0dTS33Sqag12uupDwpN1H8xW96Lpo1tHYQlX4C3RS6srD5f4-R2_jh9fRNJ49Tx5H97PYcEG7eEESVtCEy4KnWuiikBAEI3GKTZbpkpfUUGxkCbAARgwRySIFLU0GrCSasXN0u8ttXfPZg-_U2noDVaVraHqvSMp5ShgW2f-ooBgLSrkM6M0B-t70rg4fUSQRnNGQmgSK7CjjGu8dlKp1dq3dRhGstv2obT9q24_a9xM86YHH2O5nqWHbtvrTeb1zWgD4nSRkmgWZfQMA2qAC |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1007_s13042_019_01038_w crossref_primary_10_1109_JSTARS_2015_2468593 crossref_primary_10_1109_TGRS_2024_3351486 crossref_primary_10_1007_s00500_016_2246_3 crossref_primary_10_1016_j_image_2020_116111 crossref_primary_10_1007_s00500_020_04989_3 crossref_primary_10_1109_TGRS_2016_2616489 crossref_primary_10_1109_TGRS_2018_2828601 crossref_primary_10_3390_app122111299 crossref_primary_10_1007_s10207_023_00739_2 crossref_primary_10_3390_rs13142751 crossref_primary_10_1080_01431161_2017_1375613 crossref_primary_10_1109_TGRS_2018_2884771 crossref_primary_10_1109_ACCESS_2019_2891938 crossref_primary_10_1109_JSTARS_2019_2915588 crossref_primary_10_1109_TGRS_2022_3203488 crossref_primary_10_1109_TGRS_2017_2766094 crossref_primary_10_1109_TGRS_2022_3208897 crossref_primary_10_1109_TGRS_2020_3035642 crossref_primary_10_1109_TGRS_2019_2945255 crossref_primary_10_3390_rs12010126 crossref_primary_10_1109_TGRS_2015_2466657 crossref_primary_10_1109_LGRS_2016_2637561 crossref_primary_10_1109_TGRS_2020_3014286 crossref_primary_10_17221_109_2024_CJFS crossref_primary_10_3390_rs12091528 crossref_primary_10_1109_TGRS_2022_3180935 crossref_primary_10_1080_01431161_2022_2089069 crossref_primary_10_1007_s12517_021_08127_7 crossref_primary_10_1109_TGRS_2018_2809912 crossref_primary_10_1109_JSTARS_2015_2413931 crossref_primary_10_3390_ijgi7100412 crossref_primary_10_1109_JSTARS_2016_2559524 crossref_primary_10_1016_j_image_2021_116416 crossref_primary_10_1142_S021969131640004X crossref_primary_10_1109_TGRS_2017_2743102 crossref_primary_10_1109_TGRS_2022_3191541 crossref_primary_10_1117_1_JRS_12_035003 crossref_primary_10_1109_TGRS_2022_3232498 crossref_primary_10_3390_rs10121956 crossref_primary_10_3390_rs13040820 crossref_primary_10_1109_JSTARS_2023_3294623 crossref_primary_10_1109_ACCESS_2020_3027776 crossref_primary_10_1080_10106049_2020_1734874 crossref_primary_10_1109_TGRS_2018_2801387 crossref_primary_10_1109_JSTARS_2016_2549045 crossref_primary_10_1109_TGRS_2017_2762593 crossref_primary_10_1109_TGRS_2017_2754511 crossref_primary_10_3390_rs13173393 crossref_primary_10_1016_j_isprsjprs_2019_09_006 crossref_primary_10_1109_JSTARS_2019_2915842 crossref_primary_10_1016_j_isprsjprs_2017_10_006 crossref_primary_10_1016_j_micpro_2021_104313 crossref_primary_10_1109_TCSVT_2019_2946723 crossref_primary_10_1109_JSTARS_2018_2789401 crossref_primary_10_1109_TGRS_2023_3242776 crossref_primary_10_1109_LGRS_2024_3365615 crossref_primary_10_1109_TGRS_2019_2900509 crossref_primary_10_3390_rs13020324 crossref_primary_10_1109_JSTARS_2018_2866595 crossref_primary_10_1109_TGRS_2019_2936486 crossref_primary_10_1080_01431161_2018_1492175 crossref_primary_10_1109_TCYB_2015_2453359 crossref_primary_10_1016_j_jag_2021_102367 crossref_primary_10_1109_TGRS_2023_3260634 crossref_primary_10_1109_TGRS_2018_2829400 crossref_primary_10_1016_j_knosys_2020_106319 crossref_primary_10_1109_JSTARS_2019_2915272 crossref_primary_10_1007_s00500_023_09418_9 crossref_primary_10_3390_rs9121255 crossref_primary_10_1109_TNNLS_2019_2957527 crossref_primary_10_1016_j_isprsjprs_2019_06_018 crossref_primary_10_1109_TIM_2021_3116289 crossref_primary_10_1117_1_OE_56_11_113106 crossref_primary_10_1109_LGRS_2018_2885809 crossref_primary_10_1109_TGRS_2015_2465899 crossref_primary_10_3390_rs16224202 crossref_primary_10_1007_s10489_021_02805_5 crossref_primary_10_1109_TCYB_2016_2609882 crossref_primary_10_1002_rse2_182 crossref_primary_10_3390_rs14081951 crossref_primary_10_1109_ACCESS_2019_2955810 crossref_primary_10_1109_LGRS_2015_2408433 crossref_primary_10_1109_TGRS_2019_2951445 crossref_primary_10_1080_0952813X_2019_1647566 crossref_primary_10_1109_JSTARS_2021_3056124 crossref_primary_10_3390_rs11131599 crossref_primary_10_3390_rs11242897 crossref_primary_10_1016_j_neucom_2023_01_054 crossref_primary_10_1109_TGRS_2020_3042274 crossref_primary_10_1109_ACCESS_2021_3099631 crossref_primary_10_1109_TGRS_2020_3031928 crossref_primary_10_1080_01431161_2020_1856960 crossref_primary_10_1109_ACCESS_2018_2808474 crossref_primary_10_1109_JSTARS_2021_3062872 crossref_primary_10_1109_TGRS_2017_2765364 crossref_primary_10_1007_s12524_018_00934_y crossref_primary_10_3390_math7040318 crossref_primary_10_1109_LGRS_2022_3208935 crossref_primary_10_1016_j_infrared_2024_105425 crossref_primary_10_3390_ijgi7070284 crossref_primary_10_1007_s12517_021_06516_6 crossref_primary_10_1049_ipr2_12382 crossref_primary_10_1109_JSTARS_2016_2640449 crossref_primary_10_3390_rs9030203 crossref_primary_10_3390_electronics9122137 crossref_primary_10_1109_JSTARS_2022_3189105 crossref_primary_10_1109_TGRS_2019_2933588 crossref_primary_10_1080_01431161_2024_2326535 crossref_primary_10_3390_rs15030632 crossref_primary_10_1016_j_sigpro_2017_11_007 crossref_primary_10_1109_JSTARS_2019_2950946 crossref_primary_10_1109_TGRS_2021_3091860 crossref_primary_10_1007_s00500_023_07875_w crossref_primary_10_3390_rs16030539 crossref_primary_10_3390_rs9101042 crossref_primary_10_1016_j_optlastec_2018_08_044 crossref_primary_10_1109_TMM_2021_3140001 crossref_primary_10_1109_TGRS_2015_2469691 crossref_primary_10_1080_01431161_2018_1430403 crossref_primary_10_1109_ACCESS_2017_2768580 crossref_primary_10_1080_01431161_2024_2370500 crossref_primary_10_3390_s17112603 crossref_primary_10_1016_j_infrared_2022_104241 crossref_primary_10_3390_rs15092367 crossref_primary_10_3390_rs9080775 crossref_primary_10_1109_TGRS_2022_3144158 crossref_primary_10_3390_s19235276 crossref_primary_10_1109_JSTARS_2017_2755639 crossref_primary_10_1109_ACCESS_2018_2873674 crossref_primary_10_1109_JSTARS_2021_3076198 crossref_primary_10_1109_TGRS_2019_2893180 crossref_primary_10_1587_transinf_2016EDP7322 crossref_primary_10_1109_JSTARS_2015_2470129 crossref_primary_10_1109_TGRS_2016_2623742 crossref_primary_10_1016_j_displa_2021_102114 crossref_primary_10_1080_01431161_2020_1723172 crossref_primary_10_1117_1_JRS_14_046503 crossref_primary_10_1080_01431161_2021_2019849 crossref_primary_10_1109_MGRS_2016_2616418 crossref_primary_10_1109_TGRS_2018_2815613 crossref_primary_10_1080_01431161_2022_2102952 crossref_primary_10_1109_JSTARS_2019_2938208 crossref_primary_10_1007_s11045_019_00658_3 crossref_primary_10_1109_LGRS_2019_2949893 crossref_primary_10_1109_JSTARS_2022_3173893 crossref_primary_10_3390_app10196680 crossref_primary_10_3390_rs10101639 crossref_primary_10_1007_s12652_017_0586_1 crossref_primary_10_1109_JSTARS_2020_3023483 crossref_primary_10_1080_22797254_2019_1692637 crossref_primary_10_3390_rs11070833 crossref_primary_10_3390_rs11161954 crossref_primary_10_3390_s20051414 crossref_primary_10_3390_s20164413 crossref_primary_10_1109_JSTARS_2020_2995445 crossref_primary_10_1007_s11227_020_03474_w crossref_primary_10_1049_el_2015_2259 crossref_primary_10_1109_ACCESS_2020_3016171 crossref_primary_10_3390_rs14164065 crossref_primary_10_3390_rs9121330 crossref_primary_10_1016_j_asoc_2020_106230 crossref_primary_10_1109_JSTARS_2020_3014492 |
Cites_doi | 10.1109/TGRS.2011.2129595 10.1109/TGRS.2011.2128330 10.1109/TGRS.2002.805087 10.1109/79.974718 10.1109/TGRS.2007.895416 10.1109/TGRS.2011.2162649 10.1109/TGRS.2012.2185054 10.1109/CVPR.2005.85 10.1007/BF00048682 10.1117/12.339824 10.1109/TPAMI.2005.127 10.1137/090767558 10.1109/LGRS.2011.2172770 10.1016/j.patcog.2010.01.016 10.1109/TGRS.2004.831865 10.1109/LGRS.2005.857031 10.1109/TGRS.2010.2060550 10.1109/LGRS.2012.2205216 10.1109/TGRS.2010.2059706 10.1109/TGRS.2012.2230268 10.1109/TGRS.2010.2062526 10.1109/IGARSS.2007.4423673 10.1109/TGRS.2003.817269 10.1109/TIT.1968.1054102 10.1109/TPAMI.1984.4767596 10.1109/TGRS.2012.2205263 10.1137/080725891 10.1016/j.rse.2007.07.028 10.1109/TGRS.2012.2201730 10.1109/LGRS.2010.2046618 10.1109/TGRS.2011.2140119 10.1109/TPAMI.2003.1240112 10.1109/TGRS.2012.2191590 10.1109/LGRS.2011.2145353 10.1109/WHISPERS.2010.5594877 10.1109/TGRS.2008.922034 10.1109/TGRS.2012.2211882 10.1109/LGRS.2010.2047711 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2015 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 7SP F28 |
DOI | 10.1109/TGRS.2014.2344442 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database Aerospace Database Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 1503 |
ExternalDocumentID | 3440373541 10_1109_TGRS_2014_2344442 6879444 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61101194; 61071146 funderid: 10.13039/501100001809 – fundername: Jiangsu Provincial Natural Science Foundation of China grantid: BK2011701 – fundername: Project of China Geological Survey grantid: 1212011120227 – fundername: National Scientific Equipment Developing Project of China grantid: 2012YQ050250 – fundername: Jiangsu Planned Projects for Postdoctoral Research Funds grantid: 0901008B – fundername: Research Fund for the Doctoral Program of Higher Education of China grantid: 20113219120024; 20123219120043 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 7SP F28 |
ID | FETCH-LOGICAL-c462t-b153d2548d47a6add8ec46c8070c99af4f2c20c8feebe31c165b7ea8c9e3f1a33 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Sun Aug 24 03:46:38 EDT 2025 Fri Jul 11 00:28:11 EDT 2025 Mon Jun 30 08:28:16 EDT 2025 Tue Jul 01 01:33:56 EDT 2025 Thu Apr 24 23:11:50 EDT 2025 Tue Aug 26 16:39:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | alternating direction method of multipliers (ADMM) sparse multinomial logistic regression (SMLR) spatially adaptive TV constraint hyperspectral classification (HC) |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-b153d2548d47a6add8ec46c8070c99af4f2c20c8feebe31c165b7ea8c9e3f1a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1564327445 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | proquest_journals_1564327445 proquest_miscellaneous_1744713069 crossref_primary_10_1109_TGRS_2014_2344442 ieee_primary_6879444 crossref_citationtrail_10_1109_TGRS_2014_2344442 proquest_miscellaneous_1620062248 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-01 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref12 ref15 ref36 ref14 ref31 bioucas-dias (ref10) 2009 ref11 ref32 mclachlan (ref46) 1997 ref2 ref1 ref39 ripley (ref33) 1991 ref17 ref16 lellmann (ref44) 0 ref19 esser (ref37) 2009 ref18 gualtieri (ref3) 0; 3584 schmidt (ref38) 2011 li (ref13) 2013; 10 figueiredo (ref42) 0 ref24 ref45 ref23 sun (ref30) 0 ref26 ref25 ref20 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref6 ref5 ref40 |
References_xml | – ident: ref19 doi: 10.1109/TGRS.2011.2129595 – ident: ref24 doi: 10.1109/TGRS.2011.2128330 – year: 1991 ident: ref33 publication-title: Statistical Inference for Spatial Processes – ident: ref27 doi: 10.1109/TGRS.2002.805087 – ident: ref2 doi: 10.1109/79.974718 – ident: ref17 doi: 10.1109/TGRS.2007.895416 – ident: ref25 doi: 10.1109/TGRS.2011.2162649 – ident: ref45 doi: 10.1109/TGRS.2012.2185054 – year: 2009 ident: ref37 publication-title: Applications of Lagrangian-based alternating direction methods and connections to split Bregman – year: 2011 ident: ref38 article-title: Generalized fast approximate energy minimization via graph cuts: Alpha-expansion beta-shrink moves publication-title: Arxiv Preprint ArXiv 1108 5710 – ident: ref43 doi: 10.1109/CVPR.2005.85 – ident: ref7 doi: 10.1007/BF00048682 – volume: 3584 start-page: 221 year: 0 ident: ref3 article-title: Support vector machines for hyperspectral remote sensing classification publication-title: Proc SPIE doi: 10.1117/12.339824 – ident: ref9 doi: 10.1109/TPAMI.2005.127 – ident: ref36 doi: 10.1137/090767558 – ident: ref34 doi: 10.1109/LGRS.2011.2172770 – ident: ref14 doi: 10.1016/j.patcog.2010.01.016 – ident: ref4 doi: 10.1109/TGRS.2004.831865 – ident: ref16 doi: 10.1109/LGRS.2005.857031 – ident: ref29 doi: 10.1109/TGRS.2010.2060550 – volume: 10 start-page: 318 year: 2013 ident: ref13 article-title: Semisupervised hyperspectral image classification using soft sparse multinomial logistic regression publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2012.2205216 – ident: ref8 doi: 10.1109/TGRS.2010.2059706 – ident: ref40 doi: 10.1109/TGRS.2012.2230268 – ident: ref15 doi: 10.1109/TGRS.2010.2062526 – year: 1997 ident: ref46 publication-title: The EM Algorithm and Extensions – start-page: 150 year: 0 ident: ref44 article-title: Convex multi-class image labeling by simplex-constrained total variation publication-title: Proc 2nd Int Conf Scale Space Variational Methods Comput Vis – ident: ref12 doi: 10.1109/IGARSS.2007.4423673 – ident: ref28 doi: 10.1109/TGRS.2003.817269 – ident: ref1 doi: 10.1109/TIT.1968.1054102 – ident: ref31 doi: 10.1109/TPAMI.1984.4767596 – ident: ref26 doi: 10.1109/TGRS.2012.2205263 – year: 2009 ident: ref10 publication-title: Logistic regression via variable splitting and augmented Lagrangian tools – ident: ref35 doi: 10.1137/080725891 – ident: ref6 doi: 10.1016/j.rse.2007.07.028 – ident: ref20 doi: 10.1109/TGRS.2012.2201730 – ident: ref18 doi: 10.1109/LGRS.2010.2046618 – ident: ref32 doi: 10.1109/TGRS.2011.2140119 – ident: ref41 doi: 10.1109/TPAMI.2003.1240112 – ident: ref39 doi: 10.1109/TGRS.2012.2191590 – ident: ref23 doi: 10.1109/LGRS.2011.2145353 – start-page: 74 year: 0 ident: ref42 article-title: Bayesian image segmentation using Gaussian field priors publication-title: Proc Energy Minimization Methods Comput Vis Pattern Recog – ident: ref11 doi: 10.1109/WHISPERS.2010.5594877 – start-page: 110 year: 0 ident: ref30 article-title: Supervised hyperspectral image classification combining sparse unmixing and spatial constraint publication-title: Proc Int CVRS – ident: ref5 doi: 10.1109/TGRS.2008.922034 – ident: ref22 doi: 10.1109/TGRS.2012.2211882 – ident: ref21 doi: 10.1109/LGRS.2010.2047711 |
SSID | ssj0014517 |
Score | 2.5651953 |
Snippet | This paper presents a new approach for hyperspectral image classification exploiting spectral-spatial information. Under the maximum a posteriori framework, we... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1490 |
SubjectTerms | Accuracy Adaptation models Algorithms alternating direction method of multipliers (ADMM) Bayes methods Classification Classifiers hyperspectral classification (HC) Hyperspectral imaging Image classification Magnetorheological fluids sparse multinomial logistic regression (SMLR) spatially adaptive TV constraint Spectra Statistical methods Training Vectors |
Title | Supervised Spectral-Spatial Hyperspectral Image Classification With Weighted Markov Random Fields |
URI | https://ieeexplore.ieee.org/document/6879444 https://www.proquest.com/docview/1564327445 https://www.proquest.com/docview/1620062248 https://www.proquest.com/docview/1744713069 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lSrBodAWxEJBRuqparbxI974iBDLUqkc-lB7ixzbURE0qboJB349M042KlBV3KJk7Fj6xmPPG2DfyYyauKskq7hHBaVUSalEhTteem5DxWcpJTiffNWLC3V8lV2tweGYCxNCiMFnYUqP0ZfvG9eRqexI58g9Sq3DOipufa7W6DFQGR9So3WCSoQYPJg8NUfnn0_PKIhLTYXE4Ur8cQbFpir_SOJ4vMyfwclqYX1Uyfdp15ZT9-uvmo3_u_LnsDXcM9mHnjG2YS3UO_D0XvXBHdiM0Z9uuQv2rLslmbEMnlFDerJ-JNSsGJmTLVBT7RMy8S37coMCiMVWmhRkFHFll9_aa3YZjaw4A6X_ND_Zqa19c8PmFCK3fAEX80_nHxfJ0HshcUqLNilREnpUHnOvZlajEMwDfnA5SghnjK1UJZxIXV4F5ALJHddZOQs2dybIilspX8JG3dThFTCjRerxomkCDnOutCkvBfcmU9KanNsJpCs0CjcUJqf-GD-KqKCkpiAACwKwGACcwME45LavyvEY8S4BMhIOWExgbwV5MezbZUGlcyQVTcwm8H78jDuO3Ci2Dk2HNJrMMHj1yR-hwSlQ_U-1ef3w39_AE1xj1kez7cFGe9eFt3i9act3ka9_A--d9xk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQceLQgFgoYiRMi2_i58REhli10e2i3am-R4zgCQZOKTTjw65lxshEvVdyixHYsfePxvAfgpZeamrirRFe8RAWlUEmhRIUnXpbchYrPUkpwXh6Zxan6cK7Pt-D1mAsTQojBZ2FKj9GXXza-I1PZvsmQepS6Btfx3te8z9YafQZK8yE52iSoRojBh8lTu796f3xCYVxqKiQuoMRvt1Bsq_IXL44XzPwuLDdb6-NKvky7tpj6H39Ubfzfvd-DO4Okyd70pHEftkK9A7d_qT-4Azdi_Kdf74I76S6Ja6xDyaglPdk_EmpXjOTJFqir9imZ-JYdXCALYrGZJoUZRWTZ2ef2EzuLZlZcgRKAmu_s2NVlc8HmFCS3fgCn83ert4tk6L6QeGVEmxTIC0tUH7NSzZxBNpgF_OAz5BHeWlepSniR-qwKSAeSe250MQsu8zbIijspH8J23dThETBrRFqiqGkDTvO-cCkvBC-tVtLZjLsJpBs0cj-UJqcOGV_zqKKkNicAcwIwHwCcwKtxymVfl-OqwbsEyDhwwGICexvI8-HkrnMqniOpbKKewIvxM545cqS4OjQdjjFkiEHhJ7tiDC4xQwHB2Mf__vtzuLlYLQ_zw4Ojj0_gFu5X97Fte7DdfuvCUxR22uJZpPGf9Lr6Yg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+Spectral-Spatial+Hyperspectral+Image+Classification+With+Weighted+Markov+Random+Fields&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Sun%2C+Le&rft.au=Wu%2C+Zebin&rft.au=Liu%2C+Jianjun&rft.au=Xiao%2C+Liang&rft.date=2015-03-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=53&rft.issue=3&rft.spage=1490&rft.epage=1503&rft_id=info:doi/10.1109%2FTGRS.2014.2344442&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |