Supervised Spectral-Spatial Hyperspectral Image Classification With Weighted Markov Random Fields

This paper presents a new approach for hyperspectral image classification exploiting spectral-spatial information. Under the maximum a posteriori framework, we propose a supervised classification model which includes a spectral data fidelity term and a spatially adaptive Markov random field (MRF) pr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 53; no. 3; pp. 1490 - 1503
Main Authors Sun, Le, Wu, Zebin, Liu, Jianjun, Xiao, Liang, Wei, Zhihui
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a new approach for hyperspectral image classification exploiting spectral-spatial information. Under the maximum a posteriori framework, we propose a supervised classification model which includes a spectral data fidelity term and a spatially adaptive Markov random field (MRF) prior in the hidden field. The data fidelity term adopted in this paper is learned from the sparse multinomial logistic regression (SMLR) classifier, while the spatially adaptive MRF prior is modeled by a spatially adaptive total variation (SpATV) regularization to enforce a spatially smooth classifier. To further improve the classification accuracy, the true labels of training samples are fixed as an additional constraint in the proposed model. Thus, our model takes full advantage of exploiting the spatial and contextual information present in the hyperspectral image. An efficient hyperspectral image classification algorithm, named SMLR-SpATV, is then developed to solve the final proposed model using the alternating direction method of multipliers. Experimental results on real hyperspectral data sets demonstrate that the proposed approach outperforms many state-of-the-art methods in terms of the overall accuracy, average accuracy, and kappa (k) statistic.
AbstractList This paper presents a new approach for hyperspectral image classification exploiting spectral-spatial information. Under the maximum a posteriori framework, we propose a supervised classification model which includes a spectral data fidelity term and a spatially adaptive Markov random field (MRF) prior in the hidden field. The data fidelity term adopted in this paper is learned from the sparse multinomial logistic regression (SMLR) classifier, while the spatially adaptive MRF prior is modeled by a spatially adaptive total variation (SpATV) regularization to enforce a spatially smooth classifier. To further improve the classification accuracy, the true labels of training samples are fixed as an additional constraint in the proposed model. Thus, our model takes full advantage of exploiting the spatial and contextual information present in the hyperspectral image. An efficient hyperspectral image classification algorithm, named SMLR-SpATV, is then developed to solve the final proposed model using the alternating direction method of multipliers. Experimental results on real hyperspectral data sets demonstrate that the proposed approach outperforms many state-of-the-art methods in terms of the overall accuracy, average accuracy, and kappa $(k)$ statistic.
Author Le Sun
Jianjun Liu
Liang Xiao
Zhihui Wei
Zebin Wu
Author_xml – sequence: 1
  givenname: Le
  surname: Sun
  fullname: Sun, Le
– sequence: 2
  givenname: Zebin
  surname: Wu
  fullname: Wu, Zebin
– sequence: 3
  givenname: Jianjun
  surname: Liu
  fullname: Liu, Jianjun
– sequence: 4
  givenname: Liang
  surname: Xiao
  fullname: Xiao, Liang
– sequence: 5
  givenname: Zhihui
  surname: Wei
  fullname: Wei, Zhihui
BookMark eNqFkc1LwzAYxoMoOD_-APFS8OKlM19N06MMtwkTwSo7hix9u0W7tiatsP_ezA0PO2gugTy_53nJ-5yh47qpAaErgoeE4OzudfKSDykmfEgZD4ceoQFJEhljwfkxGmCSiZjKjJ6iM-_fcSATkg6QzvsW3Jf1UER5C6ZzuorzVndWV9F0EzS_f40e13oJ0ajS3tvSmoA0dTS33Sqag12uupDwpN1H8xW96Lpo1tHYQlX4C3RS6srD5f4-R2_jh9fRNJ49Tx5H97PYcEG7eEESVtCEy4KnWuiikBAEI3GKTZbpkpfUUGxkCbAARgwRySIFLU0GrCSasXN0u8ttXfPZg-_U2noDVaVraHqvSMp5ShgW2f-ooBgLSrkM6M0B-t70rg4fUSQRnNGQmgSK7CjjGu8dlKp1dq3dRhGstv2obT9q24_a9xM86YHH2O5nqWHbtvrTeb1zWgD4nSRkmgWZfQMA2qAC
CODEN IGRSD2
CitedBy_id crossref_primary_10_1007_s13042_019_01038_w
crossref_primary_10_1109_JSTARS_2015_2468593
crossref_primary_10_1109_TGRS_2024_3351486
crossref_primary_10_1007_s00500_016_2246_3
crossref_primary_10_1016_j_image_2020_116111
crossref_primary_10_1007_s00500_020_04989_3
crossref_primary_10_1109_TGRS_2016_2616489
crossref_primary_10_1109_TGRS_2018_2828601
crossref_primary_10_3390_app122111299
crossref_primary_10_1007_s10207_023_00739_2
crossref_primary_10_3390_rs13142751
crossref_primary_10_1080_01431161_2017_1375613
crossref_primary_10_1109_TGRS_2018_2884771
crossref_primary_10_1109_ACCESS_2019_2891938
crossref_primary_10_1109_JSTARS_2019_2915588
crossref_primary_10_1109_TGRS_2022_3203488
crossref_primary_10_1109_TGRS_2017_2766094
crossref_primary_10_1109_TGRS_2022_3208897
crossref_primary_10_1109_TGRS_2020_3035642
crossref_primary_10_1109_TGRS_2019_2945255
crossref_primary_10_3390_rs12010126
crossref_primary_10_1109_TGRS_2015_2466657
crossref_primary_10_1109_LGRS_2016_2637561
crossref_primary_10_1109_TGRS_2020_3014286
crossref_primary_10_17221_109_2024_CJFS
crossref_primary_10_3390_rs12091528
crossref_primary_10_1109_TGRS_2022_3180935
crossref_primary_10_1080_01431161_2022_2089069
crossref_primary_10_1007_s12517_021_08127_7
crossref_primary_10_1109_TGRS_2018_2809912
crossref_primary_10_1109_JSTARS_2015_2413931
crossref_primary_10_3390_ijgi7100412
crossref_primary_10_1109_JSTARS_2016_2559524
crossref_primary_10_1016_j_image_2021_116416
crossref_primary_10_1142_S021969131640004X
crossref_primary_10_1109_TGRS_2017_2743102
crossref_primary_10_1109_TGRS_2022_3191541
crossref_primary_10_1117_1_JRS_12_035003
crossref_primary_10_1109_TGRS_2022_3232498
crossref_primary_10_3390_rs10121956
crossref_primary_10_3390_rs13040820
crossref_primary_10_1109_JSTARS_2023_3294623
crossref_primary_10_1109_ACCESS_2020_3027776
crossref_primary_10_1080_10106049_2020_1734874
crossref_primary_10_1109_TGRS_2018_2801387
crossref_primary_10_1109_JSTARS_2016_2549045
crossref_primary_10_1109_TGRS_2017_2762593
crossref_primary_10_1109_TGRS_2017_2754511
crossref_primary_10_3390_rs13173393
crossref_primary_10_1016_j_isprsjprs_2019_09_006
crossref_primary_10_1109_JSTARS_2019_2915842
crossref_primary_10_1016_j_isprsjprs_2017_10_006
crossref_primary_10_1016_j_micpro_2021_104313
crossref_primary_10_1109_TCSVT_2019_2946723
crossref_primary_10_1109_JSTARS_2018_2789401
crossref_primary_10_1109_TGRS_2023_3242776
crossref_primary_10_1109_LGRS_2024_3365615
crossref_primary_10_1109_TGRS_2019_2900509
crossref_primary_10_3390_rs13020324
crossref_primary_10_1109_JSTARS_2018_2866595
crossref_primary_10_1109_TGRS_2019_2936486
crossref_primary_10_1080_01431161_2018_1492175
crossref_primary_10_1109_TCYB_2015_2453359
crossref_primary_10_1016_j_jag_2021_102367
crossref_primary_10_1109_TGRS_2023_3260634
crossref_primary_10_1109_TGRS_2018_2829400
crossref_primary_10_1016_j_knosys_2020_106319
crossref_primary_10_1109_JSTARS_2019_2915272
crossref_primary_10_1007_s00500_023_09418_9
crossref_primary_10_3390_rs9121255
crossref_primary_10_1109_TNNLS_2019_2957527
crossref_primary_10_1016_j_isprsjprs_2019_06_018
crossref_primary_10_1109_TIM_2021_3116289
crossref_primary_10_1117_1_OE_56_11_113106
crossref_primary_10_1109_LGRS_2018_2885809
crossref_primary_10_1109_TGRS_2015_2465899
crossref_primary_10_3390_rs16224202
crossref_primary_10_1007_s10489_021_02805_5
crossref_primary_10_1109_TCYB_2016_2609882
crossref_primary_10_1002_rse2_182
crossref_primary_10_3390_rs14081951
crossref_primary_10_1109_ACCESS_2019_2955810
crossref_primary_10_1109_LGRS_2015_2408433
crossref_primary_10_1109_TGRS_2019_2951445
crossref_primary_10_1080_0952813X_2019_1647566
crossref_primary_10_1109_JSTARS_2021_3056124
crossref_primary_10_3390_rs11131599
crossref_primary_10_3390_rs11242897
crossref_primary_10_1016_j_neucom_2023_01_054
crossref_primary_10_1109_TGRS_2020_3042274
crossref_primary_10_1109_ACCESS_2021_3099631
crossref_primary_10_1109_TGRS_2020_3031928
crossref_primary_10_1080_01431161_2020_1856960
crossref_primary_10_1109_ACCESS_2018_2808474
crossref_primary_10_1109_JSTARS_2021_3062872
crossref_primary_10_1109_TGRS_2017_2765364
crossref_primary_10_1007_s12524_018_00934_y
crossref_primary_10_3390_math7040318
crossref_primary_10_1109_LGRS_2022_3208935
crossref_primary_10_1016_j_infrared_2024_105425
crossref_primary_10_3390_ijgi7070284
crossref_primary_10_1007_s12517_021_06516_6
crossref_primary_10_1049_ipr2_12382
crossref_primary_10_1109_JSTARS_2016_2640449
crossref_primary_10_3390_rs9030203
crossref_primary_10_3390_electronics9122137
crossref_primary_10_1109_JSTARS_2022_3189105
crossref_primary_10_1109_TGRS_2019_2933588
crossref_primary_10_1080_01431161_2024_2326535
crossref_primary_10_3390_rs15030632
crossref_primary_10_1016_j_sigpro_2017_11_007
crossref_primary_10_1109_JSTARS_2019_2950946
crossref_primary_10_1109_TGRS_2021_3091860
crossref_primary_10_1007_s00500_023_07875_w
crossref_primary_10_3390_rs16030539
crossref_primary_10_3390_rs9101042
crossref_primary_10_1016_j_optlastec_2018_08_044
crossref_primary_10_1109_TMM_2021_3140001
crossref_primary_10_1109_TGRS_2015_2469691
crossref_primary_10_1080_01431161_2018_1430403
crossref_primary_10_1109_ACCESS_2017_2768580
crossref_primary_10_1080_01431161_2024_2370500
crossref_primary_10_3390_s17112603
crossref_primary_10_1016_j_infrared_2022_104241
crossref_primary_10_3390_rs15092367
crossref_primary_10_3390_rs9080775
crossref_primary_10_1109_TGRS_2022_3144158
crossref_primary_10_3390_s19235276
crossref_primary_10_1109_JSTARS_2017_2755639
crossref_primary_10_1109_ACCESS_2018_2873674
crossref_primary_10_1109_JSTARS_2021_3076198
crossref_primary_10_1109_TGRS_2019_2893180
crossref_primary_10_1587_transinf_2016EDP7322
crossref_primary_10_1109_JSTARS_2015_2470129
crossref_primary_10_1109_TGRS_2016_2623742
crossref_primary_10_1016_j_displa_2021_102114
crossref_primary_10_1080_01431161_2020_1723172
crossref_primary_10_1117_1_JRS_14_046503
crossref_primary_10_1080_01431161_2021_2019849
crossref_primary_10_1109_MGRS_2016_2616418
crossref_primary_10_1109_TGRS_2018_2815613
crossref_primary_10_1080_01431161_2022_2102952
crossref_primary_10_1109_JSTARS_2019_2938208
crossref_primary_10_1007_s11045_019_00658_3
crossref_primary_10_1109_LGRS_2019_2949893
crossref_primary_10_1109_JSTARS_2022_3173893
crossref_primary_10_3390_app10196680
crossref_primary_10_3390_rs10101639
crossref_primary_10_1007_s12652_017_0586_1
crossref_primary_10_1109_JSTARS_2020_3023483
crossref_primary_10_1080_22797254_2019_1692637
crossref_primary_10_3390_rs11070833
crossref_primary_10_3390_rs11161954
crossref_primary_10_3390_s20051414
crossref_primary_10_3390_s20164413
crossref_primary_10_1109_JSTARS_2020_2995445
crossref_primary_10_1007_s11227_020_03474_w
crossref_primary_10_1049_el_2015_2259
crossref_primary_10_1109_ACCESS_2020_3016171
crossref_primary_10_3390_rs14164065
crossref_primary_10_3390_rs9121330
crossref_primary_10_1016_j_asoc_2020_106230
crossref_primary_10_1109_JSTARS_2020_3014492
Cites_doi 10.1109/TGRS.2011.2129595
10.1109/TGRS.2011.2128330
10.1109/TGRS.2002.805087
10.1109/79.974718
10.1109/TGRS.2007.895416
10.1109/TGRS.2011.2162649
10.1109/TGRS.2012.2185054
10.1109/CVPR.2005.85
10.1007/BF00048682
10.1117/12.339824
10.1109/TPAMI.2005.127
10.1137/090767558
10.1109/LGRS.2011.2172770
10.1016/j.patcog.2010.01.016
10.1109/TGRS.2004.831865
10.1109/LGRS.2005.857031
10.1109/TGRS.2010.2060550
10.1109/LGRS.2012.2205216
10.1109/TGRS.2010.2059706
10.1109/TGRS.2012.2230268
10.1109/TGRS.2010.2062526
10.1109/IGARSS.2007.4423673
10.1109/TGRS.2003.817269
10.1109/TIT.1968.1054102
10.1109/TPAMI.1984.4767596
10.1109/TGRS.2012.2205263
10.1137/080725891
10.1016/j.rse.2007.07.028
10.1109/TGRS.2012.2201730
10.1109/LGRS.2010.2046618
10.1109/TGRS.2011.2140119
10.1109/TPAMI.2003.1240112
10.1109/TGRS.2012.2191590
10.1109/LGRS.2011.2145353
10.1109/WHISPERS.2010.5594877
10.1109/TGRS.2008.922034
10.1109/TGRS.2012.2211882
10.1109/LGRS.2010.2047711
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7SP
F28
DOI 10.1109/TGRS.2014.2344442
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database
Aerospace Database

Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1503
ExternalDocumentID 3440373541
10_1109_TGRS_2014_2344442
6879444
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61101194; 61071146
  funderid: 10.13039/501100001809
– fundername: Jiangsu Provincial Natural Science Foundation of China
  grantid: BK2011701
– fundername: Project of China Geological Survey
  grantid: 1212011120227
– fundername: National Scientific Equipment Developing Project of China
  grantid: 2012YQ050250
– fundername: Jiangsu Planned Projects for Postdoctoral Research Funds
  grantid: 0901008B
– fundername: Research Fund for the Doctoral Program of Higher Education of China
  grantid: 20113219120024; 20123219120043
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7SP
F28
ID FETCH-LOGICAL-c462t-b153d2548d47a6add8ec46c8070c99af4f2c20c8feebe31c165b7ea8c9e3f1a33
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Sun Aug 24 03:46:38 EDT 2025
Fri Jul 11 00:28:11 EDT 2025
Mon Jun 30 08:28:16 EDT 2025
Tue Jul 01 01:33:56 EDT 2025
Thu Apr 24 23:11:50 EDT 2025
Tue Aug 26 16:39:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords alternating direction method of multipliers (ADMM)
sparse multinomial logistic regression (SMLR)
spatially adaptive TV constraint
hyperspectral classification (HC)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-b153d2548d47a6add8ec46c8070c99af4f2c20c8feebe31c165b7ea8c9e3f1a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1564327445
PQPubID 23500
PageCount 14
ParticipantIDs proquest_journals_1564327445
proquest_miscellaneous_1744713069
crossref_primary_10_1109_TGRS_2014_2344442
ieee_primary_6879444
crossref_citationtrail_10_1109_TGRS_2014_2344442
proquest_miscellaneous_1620062248
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref15
ref36
ref14
ref31
bioucas-dias (ref10) 2009
ref11
ref32
mclachlan (ref46) 1997
ref2
ref1
ref39
ripley (ref33) 1991
ref17
ref16
lellmann (ref44) 0
ref19
esser (ref37) 2009
ref18
gualtieri (ref3) 0; 3584
schmidt (ref38) 2011
li (ref13) 2013; 10
figueiredo (ref42) 0
ref24
ref45
ref23
sun (ref30) 0
ref26
ref25
ref20
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref6
ref5
ref40
References_xml – ident: ref19
  doi: 10.1109/TGRS.2011.2129595
– ident: ref24
  doi: 10.1109/TGRS.2011.2128330
– year: 1991
  ident: ref33
  publication-title: Statistical Inference for Spatial Processes
– ident: ref27
  doi: 10.1109/TGRS.2002.805087
– ident: ref2
  doi: 10.1109/79.974718
– ident: ref17
  doi: 10.1109/TGRS.2007.895416
– ident: ref25
  doi: 10.1109/TGRS.2011.2162649
– ident: ref45
  doi: 10.1109/TGRS.2012.2185054
– year: 2009
  ident: ref37
  publication-title: Applications of Lagrangian-based alternating direction methods and connections to split Bregman
– year: 2011
  ident: ref38
  article-title: Generalized fast approximate energy minimization via graph cuts: Alpha-expansion beta-shrink moves
  publication-title: Arxiv Preprint ArXiv 1108 5710
– ident: ref43
  doi: 10.1109/CVPR.2005.85
– ident: ref7
  doi: 10.1007/BF00048682
– volume: 3584
  start-page: 221
  year: 0
  ident: ref3
  article-title: Support vector machines for hyperspectral remote sensing classification
  publication-title: Proc SPIE
  doi: 10.1117/12.339824
– ident: ref9
  doi: 10.1109/TPAMI.2005.127
– ident: ref36
  doi: 10.1137/090767558
– ident: ref34
  doi: 10.1109/LGRS.2011.2172770
– ident: ref14
  doi: 10.1016/j.patcog.2010.01.016
– ident: ref4
  doi: 10.1109/TGRS.2004.831865
– ident: ref16
  doi: 10.1109/LGRS.2005.857031
– ident: ref29
  doi: 10.1109/TGRS.2010.2060550
– volume: 10
  start-page: 318
  year: 2013
  ident: ref13
  article-title: Semisupervised hyperspectral image classification using soft sparse multinomial logistic regression
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2012.2205216
– ident: ref8
  doi: 10.1109/TGRS.2010.2059706
– ident: ref40
  doi: 10.1109/TGRS.2012.2230268
– ident: ref15
  doi: 10.1109/TGRS.2010.2062526
– year: 1997
  ident: ref46
  publication-title: The EM Algorithm and Extensions
– start-page: 150
  year: 0
  ident: ref44
  article-title: Convex multi-class image labeling by simplex-constrained total variation
  publication-title: Proc 2nd Int Conf Scale Space Variational Methods Comput Vis
– ident: ref12
  doi: 10.1109/IGARSS.2007.4423673
– ident: ref28
  doi: 10.1109/TGRS.2003.817269
– ident: ref1
  doi: 10.1109/TIT.1968.1054102
– ident: ref31
  doi: 10.1109/TPAMI.1984.4767596
– ident: ref26
  doi: 10.1109/TGRS.2012.2205263
– year: 2009
  ident: ref10
  publication-title: Logistic regression via variable splitting and augmented Lagrangian tools
– ident: ref35
  doi: 10.1137/080725891
– ident: ref6
  doi: 10.1016/j.rse.2007.07.028
– ident: ref20
  doi: 10.1109/TGRS.2012.2201730
– ident: ref18
  doi: 10.1109/LGRS.2010.2046618
– ident: ref32
  doi: 10.1109/TGRS.2011.2140119
– ident: ref41
  doi: 10.1109/TPAMI.2003.1240112
– ident: ref39
  doi: 10.1109/TGRS.2012.2191590
– ident: ref23
  doi: 10.1109/LGRS.2011.2145353
– start-page: 74
  year: 0
  ident: ref42
  article-title: Bayesian image segmentation using Gaussian field priors
  publication-title: Proc Energy Minimization Methods Comput Vis Pattern Recog
– ident: ref11
  doi: 10.1109/WHISPERS.2010.5594877
– start-page: 110
  year: 0
  ident: ref30
  article-title: Supervised hyperspectral image classification combining sparse unmixing and spatial constraint
  publication-title: Proc Int CVRS
– ident: ref5
  doi: 10.1109/TGRS.2008.922034
– ident: ref22
  doi: 10.1109/TGRS.2012.2211882
– ident: ref21
  doi: 10.1109/LGRS.2010.2047711
SSID ssj0014517
Score 2.5651953
Snippet This paper presents a new approach for hyperspectral image classification exploiting spectral-spatial information. Under the maximum a posteriori framework, we...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1490
SubjectTerms Accuracy
Adaptation models
Algorithms
alternating direction method of multipliers (ADMM)
Bayes methods
Classification
Classifiers
hyperspectral classification (HC)
Hyperspectral imaging
Image classification
Magnetorheological fluids
sparse multinomial logistic regression (SMLR)
spatially adaptive TV constraint
Spectra
Statistical methods
Training
Vectors
Title Supervised Spectral-Spatial Hyperspectral Image Classification With Weighted Markov Random Fields
URI https://ieeexplore.ieee.org/document/6879444
https://www.proquest.com/docview/1564327445
https://www.proquest.com/docview/1620062248
https://www.proquest.com/docview/1744713069
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lSrBodAWxEJBRuqparbxI974iBDLUqkc-lB7ixzbURE0qboJB349M042KlBV3KJk7Fj6xmPPG2DfyYyauKskq7hHBaVUSalEhTteem5DxWcpJTiffNWLC3V8lV2tweGYCxNCiMFnYUqP0ZfvG9eRqexI58g9Sq3DOipufa7W6DFQGR9So3WCSoQYPJg8NUfnn0_PKIhLTYXE4Ur8cQbFpir_SOJ4vMyfwclqYX1Uyfdp15ZT9-uvmo3_u_LnsDXcM9mHnjG2YS3UO_D0XvXBHdiM0Z9uuQv2rLslmbEMnlFDerJ-JNSsGJmTLVBT7RMy8S37coMCiMVWmhRkFHFll9_aa3YZjaw4A6X_ND_Zqa19c8PmFCK3fAEX80_nHxfJ0HshcUqLNilREnpUHnOvZlajEMwDfnA5SghnjK1UJZxIXV4F5ALJHddZOQs2dybIilspX8JG3dThFTCjRerxomkCDnOutCkvBfcmU9KanNsJpCs0CjcUJqf-GD-KqKCkpiAACwKwGACcwME45LavyvEY8S4BMhIOWExgbwV5MezbZUGlcyQVTcwm8H78jDuO3Ci2Dk2HNJrMMHj1yR-hwSlQ_U-1ef3w39_AE1xj1kez7cFGe9eFt3i9act3ka9_A--d9xk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQceLQgFgoYiRMi2_i58REhli10e2i3am-R4zgCQZOKTTjw65lxshEvVdyixHYsfePxvAfgpZeamrirRFe8RAWlUEmhRIUnXpbchYrPUkpwXh6Zxan6cK7Pt-D1mAsTQojBZ2FKj9GXXza-I1PZvsmQepS6Btfx3te8z9YafQZK8yE52iSoRojBh8lTu796f3xCYVxqKiQuoMRvt1Bsq_IXL44XzPwuLDdb6-NKvky7tpj6H39Ubfzfvd-DO4Okyd70pHEftkK9A7d_qT-4Azdi_Kdf74I76S6Ja6xDyaglPdk_EmpXjOTJFqir9imZ-JYdXCALYrGZJoUZRWTZ2ef2EzuLZlZcgRKAmu_s2NVlc8HmFCS3fgCn83ert4tk6L6QeGVEmxTIC0tUH7NSzZxBNpgF_OAz5BHeWlepSniR-qwKSAeSe250MQsu8zbIijspH8J23dThETBrRFqiqGkDTvO-cCkvBC-tVtLZjLsJpBs0cj-UJqcOGV_zqKKkNicAcwIwHwCcwKtxymVfl-OqwbsEyDhwwGICexvI8-HkrnMqniOpbKKewIvxM545cqS4OjQdjjFkiEHhJ7tiDC4xQwHB2Mf__vtzuLlYLQ_zw4Ojj0_gFu5X97Fte7DdfuvCUxR22uJZpPGf9Lr6Yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+Spectral-Spatial+Hyperspectral+Image+Classification+With+Weighted+Markov+Random+Fields&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Sun%2C+Le&rft.au=Wu%2C+Zebin&rft.au=Liu%2C+Jianjun&rft.au=Xiao%2C+Liang&rft.date=2015-03-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=53&rft.issue=3&rft.spage=1490&rft.epage=1503&rft_id=info:doi/10.1109%2FTGRS.2014.2344442&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon