Advances in Anti-Tumor Treatments Targeting the CD47/SIRPα Axis

CD47 is an immunoglobulin that is overexpressed on the surface of many types of cancer cells. CD47 forms a signaling complex with signal-regulatory protein α (SIRPα), enabling the escape of these cancer cells from macrophage-mediated phagocytosis. In recent years, CD47 has been shown to be highly ex...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in immunology Vol. 11; p. 18
Main Authors Zhang, Wenting, Huang, Qinghua, Xiao, Weiwei, Zhao, Yue, Pi, Jiang, Xu, Huan, Zhao, Hongxia, Xu, Junfa, Evans, Colin E., Jin, Hua
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 28.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract CD47 is an immunoglobulin that is overexpressed on the surface of many types of cancer cells. CD47 forms a signaling complex with signal-regulatory protein α (SIRPα), enabling the escape of these cancer cells from macrophage-mediated phagocytosis. In recent years, CD47 has been shown to be highly expressed by various types of solid tumors and to be associated with poor patient prognosis in various types of cancer. A growing number of studies have since demonstrated that inhibiting the CD47-SIRPα signaling pathway promotes the adaptive immune response and enhances the phagocytosis of tumor cells by macrophages. Improved understanding in this field of research could lead to the development of novel and effective anti-tumor treatments that act through the inhibition of CD47 signaling in cancer cells. In this review, we describe the structure and function of CD47, provide an overview of studies that have aimed to inhibit CD47-dependent avoidance of macrophage-mediated phagocytosis by tumor cells, and assess the potential and challenges for targeting the CD47-SIRPα signaling pathway in anti-cancer therapy.
AbstractList CD47 is an immunoglobulin that is overexpressed on the surface of many types of cancer cells. CD47 forms a signaling complex with signal-regulatory protein α (SIRPα), enabling the escape of these cancer cells from macrophage-mediated phagocytosis. In recent years, CD47 has been shown to be highly expressed by various types of solid tumors and to be associated with poor patient prognosis in various types of cancer. A growing number of studies have since demonstrated that inhibiting the CD47-SIRPα signaling pathway promotes the adaptive immune response and enhances the phagocytosis of tumor cells by macrophages. Improved understanding in this field of research could lead to the development of novel and effective anti-tumor treatments that act through the inhibition of CD47 signaling in cancer cells. In this review, we describe the structure and function of CD47, provide an overview of studies that have aimed to inhibit CD47-dependent avoidance of macrophage-mediated phagocytosis by tumor cells, and assess the potential and challenges for targeting the CD47-SIRPα signaling pathway in anti-cancer therapy.
CD47 is an immunoglobulin that is overexpressed on the surface of many types of cancer cells. CD47 forms a signaling complex with signal-regulatory protein α (SIRPα), enabling the escape of these cancer cells from macrophage-mediated phagocytosis. In recent years, CD47 has been shown to be highly expressed by various types of solid tumors and to be associated with poor patient prognosis in various types of cancer. A growing number of studies have since demonstrated that inhibiting the CD47-SIRPα signaling pathway promotes the adaptive immune response and enhances the phagocytosis of tumor cells by macrophages. Improved understanding in this field of research could lead to the development of novel and effective anti-tumor treatments that act through the inhibition of CD47 signaling in cancer cells. In this review, we describe the structure and function of CD47, provide an overview of studies that have aimed to inhibit CD47-dependent avoidance of macrophage-mediated phagocytosis by tumor cells, and assess the potential and challenges for targeting the CD47-SIRPα signaling pathway in anti-cancer therapy.CD47 is an immunoglobulin that is overexpressed on the surface of many types of cancer cells. CD47 forms a signaling complex with signal-regulatory protein α (SIRPα), enabling the escape of these cancer cells from macrophage-mediated phagocytosis. In recent years, CD47 has been shown to be highly expressed by various types of solid tumors and to be associated with poor patient prognosis in various types of cancer. A growing number of studies have since demonstrated that inhibiting the CD47-SIRPα signaling pathway promotes the adaptive immune response and enhances the phagocytosis of tumor cells by macrophages. Improved understanding in this field of research could lead to the development of novel and effective anti-tumor treatments that act through the inhibition of CD47 signaling in cancer cells. In this review, we describe the structure and function of CD47, provide an overview of studies that have aimed to inhibit CD47-dependent avoidance of macrophage-mediated phagocytosis by tumor cells, and assess the potential and challenges for targeting the CD47-SIRPα signaling pathway in anti-cancer therapy.
Author Xu, Huan
Pi, Jiang
Huang, Qinghua
Zhao, Yue
Zhang, Wenting
Evans, Colin E.
Jin, Hua
Xu, Junfa
Xiao, Weiwei
Zhao, Hongxia
AuthorAffiliation 4 Key Laboratory for Tropical Diseases Control of the Ministry of Education, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
5 School of Biomedical and Pharmaceutical Science, Guangdong University of Technology , Guangzhou , China
1 Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The Scientific Research Center of Dongguan, College of Pharmacy, Institute of Clinical Laboratory Medicine, Guangdong Medical University , Dongguan , China
6 Feinberg School of Medicine, Northwestern University , Chicago, IL , United States
2 Marine Medical Research Institute of Guangdong Zhanjiang , Zhanjiang , China
3 Biosafety Level-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University , Guangzhou , China
AuthorAffiliation_xml – name: 1 Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The Scientific Research Center of Dongguan, College of Pharmacy, Institute of Clinical Laboratory Medicine, Guangdong Medical University , Dongguan , China
– name: 2 Marine Medical Research Institute of Guangdong Zhanjiang , Zhanjiang , China
– name: 3 Biosafety Level-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University , Guangzhou , China
– name: 5 School of Biomedical and Pharmaceutical Science, Guangdong University of Technology , Guangzhou , China
– name: 6 Feinberg School of Medicine, Northwestern University , Chicago, IL , United States
– name: 4 Key Laboratory for Tropical Diseases Control of the Ministry of Education, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
Author_xml – sequence: 1
  givenname: Wenting
  surname: Zhang
  fullname: Zhang, Wenting
– sequence: 2
  givenname: Qinghua
  surname: Huang
  fullname: Huang, Qinghua
– sequence: 3
  givenname: Weiwei
  surname: Xiao
  fullname: Xiao, Weiwei
– sequence: 4
  givenname: Yue
  surname: Zhao
  fullname: Zhao, Yue
– sequence: 5
  givenname: Jiang
  surname: Pi
  fullname: Pi, Jiang
– sequence: 6
  givenname: Huan
  surname: Xu
  fullname: Xu, Huan
– sequence: 7
  givenname: Hongxia
  surname: Zhao
  fullname: Zhao, Hongxia
– sequence: 8
  givenname: Junfa
  surname: Xu
  fullname: Xu, Junfa
– sequence: 9
  givenname: Colin E.
  surname: Evans
  fullname: Evans, Colin E.
– sequence: 10
  givenname: Hua
  surname: Jin
  fullname: Jin, Hua
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32082311$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAUhS3UipbSPSuUJZtM7WvHSTaI0ZSfkSoVwbC2PM711FViF9up4LF4EZ6JzExbtUhd-co-5zu-Oq_IgQ8eCXnD6Izzpj2zbhjGGVCgM0opa16QYyalKDmAOHg0H5HTlK4nCRUt57x6SY440AY4Y8fkw7y71d5gKpwv5j67cjUOIRariDoP6HMqVjpuMDu_KfIVFotzUZ99X377-vdPMf_l0mtyaHWf8PTuPCE_Pn1cLb6UF5efl4v5RWmEhFxq02LDqGa1EJbbSrdd1XLWWgZoDDdgpMa6stCYqm1FhdZaCYzpdQeIteYnZLnndkFfq5voBh1_q6Cd2l2EuFE6Zmd6VDgFAOs6JkAIxPXaSlNVIA0zgFzyifV-z7oZ1wN2Zloz6v4J9OmLd1dqE25VTSkHISfAuztADD9HTFkNLhnse-0xjEkBl0BrWUM9Sd8-znoIua9gEtC9wMSQUkT7IGFUbYtWu6LVtmi1K3qyyP8sxmWdXdj-1vXPG_8BbiWuDw
CitedBy_id crossref_primary_10_3389_fonc_2021_788365
crossref_primary_10_1007_s00262_021_03131_y
crossref_primary_10_1016_j_isci_2024_109546
crossref_primary_10_1002_ange_202318544
crossref_primary_10_3390_ijms22083836
crossref_primary_10_3390_biomedicines12102306
crossref_primary_10_1186_s12935_024_03482_3
crossref_primary_10_1016_j_intimp_2022_109475
crossref_primary_10_3390_biomedicines9080935
crossref_primary_10_1016_j_bioactmat_2022_10_016
crossref_primary_10_1038_s42003_023_04581_z
crossref_primary_10_1093_molehr_gaac010
crossref_primary_10_3389_fimmu_2020_610523
crossref_primary_10_3390_ph17010005
crossref_primary_10_1158_2767_9764_CRC_23_0634
crossref_primary_10_1007_s00262_024_03708_3
crossref_primary_10_1016_j_heliyon_2023_e17959
crossref_primary_10_1038_s41565_022_01245_7
crossref_primary_10_3390_curroncol30050379
crossref_primary_10_3389_fimmu_2023_1264774
crossref_primary_10_3389_fimmu_2021_694055
crossref_primary_10_1002_jnr_25361
crossref_primary_10_1016_j_semcancer_2022_01_005
crossref_primary_10_1021_acs_jproteome_4c00197
crossref_primary_10_1021_acsami_1c08329
crossref_primary_10_3389_fimmu_2021_705999
crossref_primary_10_3389_fcell_2021_696640
crossref_primary_10_3389_fimmu_2022_923598
crossref_primary_10_1016_j_nantod_2021_101209
crossref_primary_10_3389_fgene_2021_750675
crossref_primary_10_1038_s41598_022_16766_3
crossref_primary_10_3389_fonc_2020_586580
crossref_primary_10_1111_odi_14367
crossref_primary_10_1002_adtp_202100083
crossref_primary_10_1016_j_colsurfb_2022_112655
crossref_primary_10_1002_adma_202002054
crossref_primary_10_1186_s40364_021_00327_3
crossref_primary_10_3389_fonc_2024_1378647
crossref_primary_10_1021_acs_langmuir_3c02898
crossref_primary_10_1177_1934578X221133579
crossref_primary_10_1016_j_jri_2023_103982
crossref_primary_10_3390_pharmaceutics13101670
crossref_primary_10_1016_j_lungcan_2022_11_014
crossref_primary_10_1016_j_biomaterials_2021_121105
crossref_primary_10_1126_sciadv_ade3942
crossref_primary_10_1016_j_gendis_2023_101104
crossref_primary_10_1208_s12248_023_00845_y
crossref_primary_10_3389_fimmu_2023_1185985
crossref_primary_10_3390_antib9030044
crossref_primary_10_3389_fcell_2022_873226
crossref_primary_10_1002_EXP_20210166
crossref_primary_10_1186_s12951_022_01760_8
crossref_primary_10_1016_j_cej_2023_148069
crossref_primary_10_1002_jev2_12379
crossref_primary_10_1016_j_tjog_2024_12_006
crossref_primary_10_3390_cancers13040641
crossref_primary_10_3390_ijms241814101
crossref_primary_10_1016_j_jmb_2022_167787
crossref_primary_10_1016_j_drudis_2020_11_003
crossref_primary_10_1007_s10238_024_01417_w
crossref_primary_10_1177_17588359221076194
crossref_primary_10_1007_s10549_021_06406_1
crossref_primary_10_3389_fimmu_2020_573326
crossref_primary_10_1002_adhm_202401270
crossref_primary_10_1016_j_biopha_2023_114618
crossref_primary_10_1016_j_critrevonc_2023_103939
crossref_primary_10_3390_cancers13040775
crossref_primary_10_3389_fimmu_2022_830292
crossref_primary_10_1016_j_intimp_2023_110951
crossref_primary_10_1182_blood_2021011396
crossref_primary_10_1021_acs_jmedchem_4c00843
crossref_primary_10_1080_07391102_2023_2217511
crossref_primary_10_1007_s00432_022_04292_8
crossref_primary_10_1016_j_ijpharm_2023_122872
crossref_primary_10_1111_bph_16304
crossref_primary_10_1002_btm2_10285
crossref_primary_10_3390_cancers13246229
crossref_primary_10_1007_s13346_022_01252_0
crossref_primary_10_1038_s41574_020_0398_9
crossref_primary_10_3389_fonc_2022_884196
crossref_primary_10_2147_BTT_S267278
crossref_primary_10_2147_IJN_S442876
crossref_primary_10_1158_1078_0432_CCR_21_1248
crossref_primary_10_1186_s13045_022_01328_x
crossref_primary_10_3389_fphar_2023_1228962
crossref_primary_10_3389_fcell_2021_692800
crossref_primary_10_3390_diseases10030060
crossref_primary_10_1186_s12885_023_10636_5
crossref_primary_10_1155_2021_5582792
crossref_primary_10_3390_cancers14092158
crossref_primary_10_3390_polym15020318
crossref_primary_10_1111_dme_14724
crossref_primary_10_3390_cancers12123605
crossref_primary_10_3389_fbioe_2022_887463
crossref_primary_10_3389_fimmu_2020_599253
crossref_primary_10_3390_cancers17030342
crossref_primary_10_3390_ijms23020604
crossref_primary_10_3390_ijms24021148
crossref_primary_10_2147_JIR_S308707
crossref_primary_10_1021_acsomega_3c01703
crossref_primary_10_1038_s41418_024_01347_w
crossref_primary_10_3389_fphar_2022_880139
crossref_primary_10_3389_fphar_2022_1008797
crossref_primary_10_1002_hon_2855
crossref_primary_10_1136_jitc_2020_001580
crossref_primary_10_1007_s13577_024_01144_0
crossref_primary_10_3390_cells10010011
crossref_primary_10_3390_cancers14143546
crossref_primary_10_1002_2211_5463_13084
crossref_primary_10_3389_fonc_2022_872999
crossref_primary_10_1186_s43162_020_00018_9
crossref_primary_10_3389_fimmu_2021_643771
crossref_primary_10_1016_j_omto_2023_100747
crossref_primary_10_1002_cam4_5489
crossref_primary_10_3389_fimmu_2024_1495032
crossref_primary_10_1155_2022_7188972
crossref_primary_10_3960_jslrt_23012
crossref_primary_10_1515_mr_2022_0033
crossref_primary_10_1016_j_ejmech_2024_117019
crossref_primary_10_3390_genes12091364
crossref_primary_10_3390_ijms242015072
crossref_primary_10_3389_fimmu_2024_1476565
crossref_primary_10_1007_s11033_021_06547_y
crossref_primary_10_1016_j_peptides_2025_171354
crossref_primary_10_1002_cjp2_309
crossref_primary_10_1111_cas_14999
crossref_primary_10_1007_s00262_020_02728_z
crossref_primary_10_3389_fimmu_2021_622064
crossref_primary_10_1177_17588359221086916
crossref_primary_10_1038_s41419_024_06616_7
crossref_primary_10_1186_s40364_023_00456_x
crossref_primary_10_1021_jacs_3c05052
crossref_primary_10_1016_j_jbc_2023_103024
crossref_primary_10_1016_j_radmp_2022_07_005
crossref_primary_10_1155_2022_3790097
crossref_primary_10_3390_cells11223591
crossref_primary_10_3389_fimmu_2023_1256995
crossref_primary_10_1016_j_ccell_2022_10_012
crossref_primary_10_1007_s12672_024_00951_z
crossref_primary_10_3389_fmicb_2022_839585
crossref_primary_10_3389_fmolb_2022_1019477
crossref_primary_10_1002_jcb_30273
crossref_primary_10_1016_j_phrs_2020_105111
crossref_primary_10_3390_jpm13060885
crossref_primary_10_3892_ol_2024_14389
crossref_primary_10_1186_s40164_021_00252_z
crossref_primary_10_1016_j_semcancer_2025_01_007
crossref_primary_10_1158_2159_8290_CD_23_0383
crossref_primary_10_3389_fddsv_2023_1182146
crossref_primary_10_1021_acsnano_4c13463
crossref_primary_10_3390_pharmaceutics15030946
crossref_primary_10_32604_or_2023_042383
crossref_primary_10_1142_S0218339021500182
crossref_primary_10_5115_acb_22_161
crossref_primary_10_3390_diagnostics13010052
crossref_primary_10_1039_D2BM00189F
crossref_primary_10_2174_1381612829666230529094128
crossref_primary_10_3390_biomedicines11041117
crossref_primary_10_15407_biotech14_04_005
crossref_primary_10_3389_fimmu_2022_922782
crossref_primary_10_3390_cancers12123529
crossref_primary_10_3390_ijms25169117
crossref_primary_10_1016_j_ejphar_2022_175178
crossref_primary_10_1016_j_jaccao_2022_11_011
crossref_primary_10_1016_j_jiph_2020_07_003
crossref_primary_10_1016_j_biopha_2022_113628
crossref_primary_10_3389_fimmu_2025_1513555
crossref_primary_10_3390_cancers13225633
crossref_primary_10_1038_s41467_024_46310_y
crossref_primary_10_1016_j_mtbio_2024_101178
crossref_primary_10_1126_scitranslmed_adl5800
crossref_primary_10_3390_antib12040074
crossref_primary_10_1016_j_intimp_2023_110255
crossref_primary_10_1002_anie_202318544
crossref_primary_10_3389_fimmu_2022_1027235
crossref_primary_10_1002_adfm_202006220
crossref_primary_10_1186_s12885_022_10114_4
crossref_primary_10_1186_s40364_023_00538_w
crossref_primary_10_1038_s41573_022_00618_w
crossref_primary_10_1155_2020_9435030
crossref_primary_10_3389_fonc_2020_01543
crossref_primary_10_3390_diagnostics11040668
crossref_primary_10_3390_metabo14030163
crossref_primary_10_3390_pharmaceutics15020695
crossref_primary_10_1016_j_jcyt_2022_07_001
crossref_primary_10_1080_19420862_2025_2457471
crossref_primary_10_3390_pharmaceutics12080754
crossref_primary_10_1055_s_0043_1777704
crossref_primary_10_1002_advs_202206213
crossref_primary_10_3389_fimmu_2020_593219
crossref_primary_10_1038_s41417_021_00372_y
crossref_primary_10_1111_bjh_19264
crossref_primary_10_1016_j_medidd_2022_100139
crossref_primary_10_1016_j_jconrel_2021_01_023
crossref_primary_10_1136_jitc_2024_010813
crossref_primary_10_2147_IJN_S452184
crossref_primary_10_1002_pros_24432
crossref_primary_10_1021_jacsau_4c01251
crossref_primary_10_3389_fimmu_2025_1524781
crossref_primary_10_1007_s11886_023_01908_4
crossref_primary_10_1016_j_bioactmat_2023_08_022
crossref_primary_10_3389_fmed_2022_982399
crossref_primary_10_1158_2326_6066_CIR_22_0030
crossref_primary_10_3390_biom13060902
crossref_primary_10_1186_s13045_022_01335_y
crossref_primary_10_1016_j_tranon_2021_101129
crossref_primary_10_1016_j_heliyon_2024_e36839
crossref_primary_10_2174_1381612828666221006123144
crossref_primary_10_3389_fimmu_2024_1348852
crossref_primary_10_3390_ijms22126560
crossref_primary_10_1136_jitc_2022_005560
crossref_primary_10_3389_fmolb_2023_1154074
crossref_primary_10_1186_s13046_024_02982_4
crossref_primary_10_3389_fimmu_2025_1556209
crossref_primary_10_3389_fimmu_2024_1423775
crossref_primary_10_23736_S2724_542X_23_02944_9
crossref_primary_10_1021_acs_bioconjchem_1c00362
crossref_primary_10_3389_fonc_2022_911410
crossref_primary_10_1182_bloodadvances_2021005722
crossref_primary_10_3390_cancers14215374
crossref_primary_10_1038_s41568_022_00466_1
crossref_primary_10_1007_s12032_022_01859_w
crossref_primary_10_3390_biology13050307
crossref_primary_10_1182_blood_2022016774
crossref_primary_10_3390_ijms242317056
crossref_primary_10_3390_biomedicines12092152
crossref_primary_10_3390_vaccines9070724
crossref_primary_10_1080_13543784_2022_2152324
crossref_primary_10_1016_j_leukres_2023_107388
crossref_primary_10_1016_j_heliyon_2023_e20507
crossref_primary_10_1002_EXP_20240027
crossref_primary_10_1038_s41420_022_00817_9
crossref_primary_10_1007_s40674_021_00189_8
crossref_primary_10_1016_S1470_2045_21_00584_2
crossref_primary_10_1016_j_nantod_2024_102437
crossref_primary_10_1021_acs_molpharmaceut_4c01277
crossref_primary_10_3390_cancers15215229
crossref_primary_10_1186_s12885_021_08045_7
crossref_primary_10_3389_fimmu_2022_949140
crossref_primary_10_3390_molecules28073147
crossref_primary_10_1182_blood_2021014485
crossref_primary_10_1016_j_jconrel_2021_11_028
crossref_primary_10_1161_CIRCRESAHA_123_323662
crossref_primary_10_3390_pharmaceutics14020267
crossref_primary_10_1080_14737140_2023_2229029
crossref_primary_10_1016_j_cellimm_2020_104258
Cites_doi 10.18632/oncotarget.4282
10.1158/0008-5472.CAN-10-2238
10.1016/j.leukres.2015.04.007
10.4049/jimmunol.161.4.1853
10.1016/j.bbrc.2006.03.094
10.1038/leu.2013.313
10.3389/fimmu.2017.00404
10.1002/adma.201805888
10.1056/NEJMoa1807315
10.1093/carcin/bgy041
10.1186/s13046-018-0824-1
10.1111/j.1365-2141.2007.06729.x
10.1038/s41565-018-0319-4
10.1016/j.prp.2018.10.021
10.1016/S0962-8924(00)01906-1
10.3390/ijms16023391
10.18632/oncotarget.13349
10.1186/s12943-018-0768-2
10.1016/j.pep.2012.07.002
10.1080/19420862.2017.1409319
10.1016/j.bbagen.2017.01.035
10.1038/s41591-019-0498-z
10.1016/j.cell.2009.05.045
10.1016/j.molimm.2004.06.013
10.1038/s41598-019-40436-6
10.18632/oncotarget.14500
10.1038/ni1527
10.1074/jbc.RA117.000633
10.1371/journal.pone.0201832
10.1038/s41419-018-1285-3
10.1242/jcs.108.11.3419
10.1016/S0021-9258(17)42058-8
10.1021/acs.molpharmaceut.8b00076
10.1016/S1499-3872(14)60011-4
10.1080/1042819042000201989
10.1111/liv.12963
10.1159/000132568
10.1186/s12931-018-0729-8
10.1016/j.tranon.2018.12.001
10.3389/fimmu.2018.02909
10.1016/j.ygyno.2016.08.325
10.1016/j.leukres.2004.09.005
10.1158/1078-0432.CCR-14-1399
10.1172/JCI81603
10.1016/j.ejca.2013.06.005
10.1186/s12885-015-1980-8
10.1038/nri1859
10.3390/cancers9100139
10.1080/2162402X.2017.1397248
10.1084/jem.20030705
10.1172/jci.insight.89140
10.1016/B978-0-12-800267-4.00003-1
10.1182/blood.V96.1.234.013k06_234_241
10.1158/1078-0432.CCR-16-1700
10.1073/pnas.1106550108
10.1084/jem.20041509
10.1038/bcj.2017.7
10.1007/s12079-015-0283-9
10.1016/j.bbrc.2004.01.128
10.1158/0008-5472.CAN-03-1708
10.1182/blood-2004-09-3585
10.1002/cam4.478
10.1126/scitranslmed.3001375
10.1016/j.cellsig.2011.04.001
10.1039/C4NR02889A
10.1126/science.aaa8172
10.1126/science.1203486
10.1038/srep29719
10.1073/pnas.1710877114
10.1159/000342537
10.3760/cma.j.issn.1001-9391.2018.09.003
10.1158/0008-5472.CAN-14-0037-T
10.1007/s00428-018-2332-2
10.1002/jcb.28314
10.1038/s41590-017-0004-z
10.1016/j.blre.2018.04.005
10.1002/adma.201604253
10.1371/journal.pone.0153550
10.1016/S1473-0502(02)00070-8
10.1038/nrurol.2014.318
10.1126/science.1238856
10.3390/nano8110953
10.1093/annonc/mdx755
10.1080/2162402X.2018.1484981
10.1016/j.cell.2015.08.068
10.1080/2162402X.2017.1391973
10.1016/j.cell.2010.07.044
10.1182/blood-2011-10-386805
10.1038/leu.2012.141
10.15171/apb.2017.041
10.1080/19420862.2015.1062192
10.1158/2326-6066.CIR-16-0105
10.1158/1078-0432.CCR-17-2283
10.3389/fonc.2019.00056
10.1371/journal.pone.0137345
10.3892/br.2018.1102
10.1073/pnas.1305569110
10.1158/1078-0432.CCR-15-2503
10.1016/j.bbrc.2018.12.175
10.1091/mbc.e04-01-0019
10.1158/1078-0432.CCR-10-0349
10.1016/j.ymthe.2018.09.012
10.1158/1535-7163.MCT-17-1095
10.1073/pnas.1721434116
10.1111/imr.12527
10.2174/1871520615666151008123223
10.1111/j.1476-5381.2012.02099.x
10.1073/pnas.1121623109
10.1016/j.it.2010.04.001
10.1016/j.tranon.2018.10.007
10.1073/pnas.1121629109
10.1038/nm.3931
10.1182/blood-2011-02-338020
10.3390/cancers6031769
10.7868/S0026898417010153
10.1016/S1040-8428(01)00203-7
10.1002/ags3.12205
10.1073/pnas.1604268113
10.3892/ol.2017.6257
10.1158/0008-5472.CAN-08-3358
10.1182/blood.V65.1.79.bloodjournal65179
10.1038/bjc.2017.173
10.1182/blood-2009-03-211920
10.2147/IJN.S139507
10.2217/nnm-2016-0302
10.1016/j.exphem.2010.12.011
10.1016/j.coi.2012.01.010
10.1182/blood-2005-05-1896
10.1007/s10549-018-4884-x
10.1007/s12032-018-1145-0
10.1111/j.1537-2995.2007.01348.x
10.1111/cas.13885
10.1016/j.ejca.2017.02.013
10.1158/1078-0432.CCR-14-2520
10.1074/jbc.M115.648220
10.1371/journal.pmed.1001796
10.1080/19420862.2019.1624123
10.18632/oncotarget.6227
10.1016/j.cell.2009.05.046
10.1038/s41419-018-0601-2
10.1016/j.tcb.2008.12.001
10.1016/j.canlet.2015.02.036
ContentType Journal Article
Copyright Copyright © 2020 Zhang, Huang, Xiao, Zhao, Pi, Xu, Zhao, Xu, Evans and Jin.
Copyright © 2020 Zhang, Huang, Xiao, Zhao, Pi, Xu, Zhao, Xu, Evans and Jin. 2020 Zhang, Huang, Xiao, Zhao, Pi, Xu, Zhao, Xu, Evans and Jin
Copyright_xml – notice: Copyright © 2020 Zhang, Huang, Xiao, Zhao, Pi, Xu, Zhao, Xu, Evans and Jin.
– notice: Copyright © 2020 Zhang, Huang, Xiao, Zhao, Pi, Xu, Zhao, Xu, Evans and Jin. 2020 Zhang, Huang, Xiao, Zhao, Pi, Xu, Zhao, Xu, Evans and Jin
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3389/fimmu.2020.00018
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access资源_DOAJ
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access资源_DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-3224
ExternalDocumentID oai_doaj_org_article_ef3f21dd14244eebbf6c5526c1c2e363
PMC7003246
32082311
10_3389_fimmu_2020_00018
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
  grantid: No.81801649
– fundername: National Natural Science Foundation of China
  grantid: Grants 81572184
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-ac9e810a1744f3f5a9d59319f12ecc3c2c6ae75f28c59945efff6211abd2ee7a3
IEDL.DBID M48
ISSN 1664-3224
IngestDate Wed Aug 27 01:19:28 EDT 2025
Thu Aug 21 13:43:38 EDT 2025
Thu Jul 10 19:32:15 EDT 2025
Thu Apr 03 07:04:41 EDT 2025
Thu Apr 24 22:56:41 EDT 2025
Tue Jul 01 00:39:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords phagocytosis
CD47
CD47/SIRPa axis
immunotherapy
signal-regulatory protein α (SIRPα)
Language English
License Copyright © 2020 Zhang, Huang, Xiao, Zhao, Pi, Xu, Zhao, Xu, Evans and Jin.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-ac9e810a1744f3f5a9d59319f12ecc3c2c6ae75f28c59945efff6211abd2ee7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Nurit Hollander, Tel Aviv University, Israel
These authors have contributed equally to this work
Reviewed by: Sharareh Gholamin, Stanford University, United States; Michael Dougan, Massachusetts General Hospital and Harvard Medical School, United States
This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fimmu.2020.00018
PMID 32082311
PQID 2362076727
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ef3f21dd14244eebbf6c5526c1c2e363
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7003246
proquest_miscellaneous_2362076727
pubmed_primary_32082311
crossref_primary_10_3389_fimmu_2020_00018
crossref_citationtrail_10_3389_fimmu_2020_00018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-28
PublicationDateYYYYMMDD 2020-01-28
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-28
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in immunology
PublicationTitleAlternate Front Immunol
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Matozaki (B7) 2009; 19
Reinhold (B14) 1995; 108
Li (B48) 2017; 9
Day (B123) 2015; 163
Zhang (B70) 2016; 11
Matlung (B18) 2017; 276
McGreal (B10) 2004; 41
Sim (B129) 2019; 11
Adams (B136) 1998; 161
Vaeteewoottacharn (B46) 2019; 12
Xiao (B65) 2015; 360
Manna (B85) 2004; 64
Oldenborg (B126) 2004; 45
Lo (B99) 2016; 36
Ratnikova (B16) 2017; 51
Li (B53) 2018; 7
Chao (B58) 2012; 24
Locy (B9) 2018; 9
Leclair (B91) 2018; 9
Sharma (B4) 2015; 348
Weiskopf (B41) 2016; 126
Rodríguez (B93) 2018; 26
Davis (B139) 2018; 8
Li (B108) 2018; 37
Kim (B29) 2012; 26
Boukhari (B94) 2015; 35
McCracken (B8) 2015; 21
Ma (B66) 2017; 29
Weiskopf (B128) 2017; 76
Brightwell (B49) 2016; 143
Stone (B52) 2015; 12
Kim (B79) 2008; 29
Lv (B109) 2018; 19
Koduru (B12) 2018; 293
Gao (B17) 2018; 36
Uluçkan (B97) 2009; 69
Piccione Emily (B140) 2015; 7
Pan (B25) 2014; 6
Michaels (B54) 2018; 24
Ishikawa-Sekigami (B21) 2006; 107
Wu (B101) 2018; 15
Housman (B122) 2014; 6
Soto-Pantoja (B74) 2014; 74
Abe (B55) 2018; 472
Chen (B135) 2019; 14
Jaiswal (B37) 2009; 138
De Beck (B86) 2018; 7
Liu (B62) 2015; 10
Huang (B114) 2018; 17
Martinez-Torres (B89) 2015; 12
Mohanty (B34) 2019; 10
Willingham (B33) 2012; 109
Kikuchi (B84) 2005; 29
Chao (B42) 2010; 142
Kukreja (B98) 2009; 114
Sockolosky Jonathan (B142) 2016; 113
Jaffe (B22) 1985; 65
Doyen (B26) 2003; 198
Lindberg (B13) 1994; 269
Cabrales (B102) 2019; 12
Liu (B72) 2015; 21
Russ (B35) 2018; 32
Ali (B76) 2019; 9
Saumet (B80) 2005; 106
Petrova (B133) 2017; 23
Rendtlew Danielsen (B44) 2007; 138
Ponce Laia (B144) 2017; 8
Pietsch (B88) 2017; 7
Cioffi (B6) 2015; 21
Chao (B31) 2011; 71
Chao (B32) 2011; 118
Roberts (B64) 2015; 9
Tang (B110) 2018; 29
Lo (B115) 2005; 201
Yoshida (B56) 2015; 4
Zhao (B82) 2011; 108
Stengel (B105) 2011; 23
Barkal Amira (B116) 2018; 19
Buatois (B127) 2018; 17
Jaiswal (B36) 2010; 31
Majeti (B38) 2009; 138
Barclay Neil (B20) 2006; 6
Takahashi (B100) 2018; 9
Weiskopf (B63) 2016; 4
Burger (B27) 2012; 119
Klimp (B11) 2002; 44
Song (B87) 2018; 120
Piccione (B95) 2016; 22
Zhang (B120) 2018; 39
Wu (B23) 2018; 7
Lin (B60) 2012; 85
Barrera (B103) 2017; 117
Kikuchi (B83) 2004; 315
Tseng (B71) 2013; 110
Wang (B47) 2015; 16
Chowdhury (B138) 2019; 25
Uscanga-Palomeque (B90) 2019; 110
Advani (B111) 2018; 379
Golubovskaya (B75) 2017; 9
Jindal (B77) 2018; 35
Liu (B118) 2017; 12
Takenaka (B137) 2007; 8
Anniss Angela (B132) 2002; 27
Liu (B51) 2017; 8
Marcus (B2) 2014; 122
Zhang (B96) 2014; 13
Sick (B3) 2012; 167
Hutter (B69) 2019; 116
Zhang (B112) 2016; 16
Schreiber (B1) 2011; 331
Zeng (B59) 2016; 7
Yang (B113) 2015; 6
Yanagita (B143) 2017; 2
Ho Chia Chi (B130) 2015; 290
Per-Arne (B24) 2012; 39
Edris (B30) 2012; 109
Mansoori (B121) 2017; 7
Rivera (B45) 2015; 15
Sudo (B57) 2017; 14
Kauder (B134) 2018; 13
Weiskopf (B124) 2013; 341
Chao (B73) 2010; 2
Nagahara (B50) 2010; 16
Zhou (B78) 2019; 31
Zhao (B5) 2016; 6
Zhang (B68) 2013; 49
Miyashita (B106) 2004; 15
Xu (B104) 2015; 6
Rezaei (B119) 2017; 12
Feliz-Mosquea (B81) 2018; 172
Brown (B15) 2001; 11
Galli (B40) 2015; 39
Xu (B61) 2019; 509
Yang (B39) 2019; 215
Catani (B125) 2011; 39
Kumar (B43) 2014; 28
Abe (B67) 2018; 2
Sukowati (B92) 2019; 9
Yoshida (B107) 2000; 96
Ring (B19) 2017; 114
Trabulo (B117) 2017; 1861
Liu (B141) 2018; 10
Ishikawa-Sekigami (B28) 2006; 343
Khandelwal (B131) 2007; 47
References_xml – volume: 6
  start-page: 23662
  year: 2015
  ident: B104
  article-title: Cd47 blockade inhibits tumor progression human osteosarcoma in xenograft models
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4282
– volume: 71
  start-page: 1374
  year: 2011
  ident: B31
  article-title: Therapeutic antibody targeting of cd47 eliminates human acute lymphoblastic leukemia
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-10-2238
– volume: 39
  start-page: 749
  year: 2015
  ident: B40
  article-title: Cd47 protein expression in acute myeloid leukemia: a tissue microarray-based analysis
  publication-title: Leuk Res
  doi: 10.1016/j.leukres.2015.04.007
– volume: 9
  start-page: 2901
  year: 2017
  ident: B48
  article-title: Overexpression of cd47 predicts poor prognosis and promotes cancer cell invasion in high-grade serous ovarian carcinoma
  publication-title: Am J Transl Res
– volume: 161
  start-page: 1853
  year: 1998
  ident: B136
  article-title: Signal-regulatory protein is selectively expressed by myeloid and neuronal cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.161.4.1853
– volume: 343
  start-page: 1197
  year: 2006
  ident: B28
  article-title: Enhanced phagocytosis of cd47-deficient red blood cells by splenic macrophages requires shps-1
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2006.03.094
– volume: 28
  start-page: 1122
  year: 2014
  ident: B43
  article-title: Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients
  publication-title: Leukemia
  doi: 10.1038/leu.2013.313
– volume: 8
  start-page: 404
  year: 2017
  ident: B51
  article-title: Anti-cd47 antibody as a targeted therapeutic agent for human lung cancer and cancer stem cells
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2017.00404
– volume: 31
  start-page: e1805888
  year: 2019
  ident: B78
  article-title: Tumor microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and cd47 blockade
  publication-title: Adv Mater
  doi: 10.1002/adma.201805888
– volume: 379
  start-page: 1711
  year: 2018
  ident: B111
  article-title: Cd47 blockade by hu5f9-g4 and rituximab in non-hodgkin's lymphoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1807315
– volume: 39
  start-page: 689
  year: 2018
  ident: B120
  article-title: Disrupting cd47-sirpα axis alone or combined with autophagy depletion for the therapy of glioblastoma
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgy041
– volume: 37
  start-page: 141
  year: 2018
  ident: B108
  article-title: Mir-182 suppresses invadopodia formation and metastasis in non-small cell lung cancer by targeting cortactin gene
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-018-0824-1
– volume: 138
  start-page: 756
  year: 2007
  ident: B44
  article-title: Dysregulation of cd47 and the ligands thrombospondin 1 and 2 in multiple myeloma
  publication-title: Br J Haematol
  doi: 10.1111/j.1365-2141.2007.06729.x
– volume: 14
  start-page: 89
  year: 2019
  ident: B135
  article-title: In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment
  publication-title: Nat Nanotechnol
  doi: 10.1038/s41565-018-0319-4
– volume: 215
  start-page: 265
  year: 2019
  ident: B39
  article-title: Expression and significance of cd47, pd1 and pdl1 in t-cell acute lymphoblastic lymphoma/leukemia
  publication-title: Pathol Res Pract
  doi: 10.1016/j.prp.2018.10.021
– volume: 11
  start-page: 130
  year: 2001
  ident: B15
  article-title: Integrin-associated protein (cd47) and its ligands
  publication-title: Trends Cell Biol
  doi: 10.1016/S0962-8924(00)01906-1
– volume: 16
  start-page: 3391
  year: 2015
  ident: B47
  article-title: Expression and significance of cd44, cd47 and c-met in ovarian clear cell carcinoma
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms16023391
– volume: 7
  start-page: 83040
  year: 2016
  ident: B59
  article-title: A fully human anti-cd47 blocking antibody with therapeutic potential for cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.13349
– volume: 17
  start-page: 12
  year: 2018
  ident: B114
  article-title: Mir-708 promotes phagocytosis to eradicate t-all cells by targeting cd47
  publication-title: Mol Cancer
  doi: 10.1186/s12943-018-0768-2
– volume: 85
  start-page: 109
  year: 2012
  ident: B60
  article-title: Soluble extracellular domains of human sirpα and cd47 expressed in escherichia coli enhances the phagocytosis of leukemia cells by macrophages in vitro
  publication-title: Protein Expr Purif
  doi: 10.1016/j.pep.2012.07.002
– volume: 10
  start-page: 315
  year: 2018
  ident: B141
  article-title: Elimination of tumor by cd47/pd-l1 dual-targeting fusion protein that engages innate and adaptive immune responses
  publication-title: MAbs
  doi: 10.1080/19420862.2017.1409319
– volume: 1861
  start-page: 1597
  year: 2017
  ident: B117
  article-title: Multifunctionalized iron oxide nanoparticles for selective targeting of pancreatic cancer cells
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbagen.2017.01.035
– volume: 25
  start-page: 1057
  year: 2019
  ident: B138
  article-title: Programmable bacteria induce durable tumor regression and systemic antitumor immunity
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0498-z
– volume: 138
  start-page: 286
  year: 2009
  ident: B38
  article-title: Cd47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2009.05.045
– volume: 41
  start-page: 1109
  year: 2004
  ident: B10
  article-title: Divergent roles for c-type lectins expressed by cells of the innate immune system
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2004.06.013
– volume: 9
  start-page: 4026
  year: 2019
  ident: B92
  article-title: Hyaluronic acid inhibition by 4-methylumbelliferone reduces the expression of cancer stem cells markers during hepatocarcinogenesis
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-40436-6
– volume: 8
  start-page: 11284
  year: 2017
  ident: B144
  article-title: Sirpα-antibody fusion proteins stimulate phagocytosis and promote elimination of acute myeloid leukemia cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14500
– volume: 8
  start-page: 1313
  year: 2007
  ident: B137
  article-title: Polymorphism in sirpa modulates engraftment of human hematopoietic stem cells
  publication-title: Nat Immunol
  doi: 10.1038/ni1527
– volume: 293
  start-page: 15055
  year: 2018
  ident: B12
  article-title: The contribution of cross-talk between the cell-surface proteins cd36 and cd47-tsp-1 in osteoclast formation and function
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA117.000633
– volume: 13
  start-page: e0201832
  year: 2018
  ident: B134
  article-title: Alx148 blocks cd47 and enhances innate and adaptive antitumor immunity with a favorable safety profile
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0201832
– volume: 10
  start-page: 36
  year: 2019
  ident: B34
  article-title: Nanoparticle enhanced mri can monitor macrophage response to cd47 mab immunotherapy in osteosarcoma
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-018-1285-3
– volume: 108
  start-page: 3419
  year: 1995
  ident: B14
  article-title: In vivo expression of alternatively spliced forms of integrin-associated protein (cd47)
  publication-title: J Cell Sci
  doi: 10.1242/jcs.108.11.3419
– volume: 269
  start-page: 1567
  year: 1994
  ident: B13
  article-title: Rh-related antigen cd47 is the signal-transducer integrin-associated protein
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(17)42058-8
– volume: 15
  start-page: 3032
  year: 2018
  ident: B101
  article-title: A glutamine-rich carrier efficiently delivers anti-cd47 sirna driven by a “glutamine trap” to inhibit lung cancer cell growth
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.8b00076
– volume: 13
  start-page: 81
  year: 2014
  ident: B96
  article-title: Effect of cd74 on the prognosis of patients with resectable pancreatic cancer
  publication-title: Hepatobiliary Pancreat Dis Int
  doi: 10.1016/S1499-3872(14)60011-4
– volume: 45
  start-page: 1319
  year: 2004
  ident: B126
  article-title: Role of cd47 in erythroid cells and in autoimmunity
  publication-title: Leuk Lymphoma
  doi: 10.1080/1042819042000201989
– volume: 36
  start-page: 737
  year: 2016
  ident: B99
  article-title: Anti-cd47 antibody suppresses tumour growth and augments the effect of chemotherapy treatment in hepatocellular carcinoma
  publication-title: Liver Int
  doi: 10.1111/liv.12963
– volume: 29
  start-page: 28
  year: 2008
  ident: B79
  article-title: Association of cd47 with natural killer cell-mediated cytotoxicity of head-and-neck squamous cell carcinoma lines
  publication-title: Tumour Biol
  doi: 10.1159/000132568
– volume: 19
  start-page: 27
  year: 2018
  ident: B109
  article-title: Endothelial cdc42 deficiency impairs endothelial regeneration and vascular repair after inflammatory vascular injury
  publication-title: Respir Res
  doi: 10.1186/s12931-018-0729-8
– volume: 12
  start-page: 626
  year: 2019
  ident: B102
  article-title: Rrx-001 acts as a dual small molecule checkpoint inhibitor by downregulating cd47 on cancer cells and sirp-α on monocytes/macrophages
  publication-title: Transl Oncol
  doi: 10.1016/j.tranon.2018.12.001
– volume: 9
  start-page: 2909
  year: 2018
  ident: B9
  article-title: Immunomodulation of the tumor microenvironment: Turn foe into friend
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.02909
– volume: 143
  start-page: 393
  year: 2016
  ident: B49
  article-title: The cd47 “don't eat me signal” is highly expressed in human ovarian cancer
  publication-title: Gynecol Oncol
  doi: 10.1016/j.ygyno.2016.08.325
– volume: 29
  start-page: 445
  year: 2005
  ident: B84
  article-title: Apoptosis inducing bivalent single-chain antibody fragments against cd47 showed antitumor potency for multiple myeloma
  publication-title: Leuk Res
  doi: 10.1016/j.leukres.2004.09.005
– volume: 21
  start-page: 2325
  year: 2015
  ident: B6
  article-title: Inhibition of cd47 effectively targets pancreatic cancer stem cells via dual mechanisms
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-14-1399
– volume: 126
  start-page: 2610
  year: 2016
  ident: B41
  article-title: Cd47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer
  publication-title: J Clin Investig
  doi: 10.1172/JCI81603
– volume: 49
  start-page: 3320
  year: 2013
  ident: B68
  article-title: Crosstalk between colon cancer cells and macrophages via inflammatory mediators and cd47 promotes tumour cell migration
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2013.06.005
– volume: 15
  start-page: 964
  year: 2015
  ident: B45
  article-title: Expression of mouse cd47 on human cancer cells profoundly increases tumor metastasis in murine models
  publication-title: BMC Cancer
  doi: 10.1186/s12885-015-1980-8
– volume: 6
  start-page: 457
  year: 2006
  ident: B20
  article-title: The sirp family of receptors and immune regulation
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri1859
– volume: 9
  start-page: 139
  year: 2017
  ident: B75
  article-title: Cd47-car-t cells effectively kill target cancer cells and block pancreatic tumor growth
  publication-title: Cancers
  doi: 10.3390/cancers9100139
– volume: 7
  start-page: e1397248
  year: 2018
  ident: B23
  article-title: Anti-cd47 treatment enhances anti-tumor t-cell immunity and improves immunosuppressive environment in head and neck squamous cell carcinoma
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2017.1397248
– volume: 198
  start-page: 1277
  year: 2003
  ident: B26
  article-title: Thrombospondin 1 is an autocrine negative regulator of human dendritic cell activation
  publication-title: J Exp Med
  doi: 10.1084/jem.20030705
– volume: 2
  start-page: e89140
  year: 2017
  ident: B143
  article-title: Anti-sirpα antibodies as a potential new tool for cancer immunotherapy
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.89140
– volume: 122
  start-page: 91
  year: 2014
  ident: B2
  article-title: Recognition of tumors by the innate immune system and natural killer cells
  publication-title: Adv Immunol
  doi: 10.1016/B978-0-12-800267-4.00003-1
– volume: 96
  start-page: 234
  year: 2000
  ident: B107
  article-title: Integrin-associated protein/cd47 regulates motile activity in human b-cell lines through cdc42
  publication-title: Blood
  doi: 10.1182/blood.V96.1.234.013k06_234_241
– volume: 23
  start-page: 1068
  year: 2017
  ident: B133
  article-title: Tti-621 (sirpαfc): a cd47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-16-1700
– volume: 108
  start-page: 18342
  year: 2011
  ident: B82
  article-title: Cd47-signal regulatory protein-α (sirpα) interactions form a barrier for antibody-mediated tumor cell destruction
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1106550108
– volume: 201
  start-page: 291
  year: 2005
  ident: B115
  article-title: Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit
  publication-title: J Exp Med
  doi: 10.1084/jem.20041509
– volume: 7
  start-page: e536
  year: 2017
  ident: B88
  article-title: Anti-leukemic activity and tolerability of anti-human cd47 monoclonal antibodies
  publication-title: Blood Cancer J
  doi: 10.1038/bcj.2017.7
– volume: 9
  start-page: 101
  year: 2015
  ident: B64
  article-title: Therapeutic targeting of the thrombospondin-1 receptor cd47 to treat liver cancer
  publication-title: J Cell Commun Signal
  doi: 10.1007/s12079-015-0283-9
– volume: 315
  start-page: 912
  year: 2004
  ident: B83
  article-title: A bivalent single-chain fv fragment against cd47 induces apoptosis for leukemic cells
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2004.01.128
– volume: 64
  start-page: 1026
  year: 2004
  ident: B85
  article-title: Cd47 mediates killing of breast tumor cells via gi-dependent inhibition of protein kinase a
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-03-1708
– volume: 106
  start-page: 658
  year: 2005
  ident: B80
  article-title: Type 3 repeat/c-terminal domain of thrombospondin-1 triggers caspase-independent cell death through cd47/alphavbeta3 in promyelocytic leukemia nb4 cells
  publication-title: Blood
  doi: 10.1182/blood-2004-09-3585
– volume: 4
  start-page: 1322
  year: 2015
  ident: B56
  article-title: CD47 is an adverse prognostic factor and a therapeutic target in gastric cancer
  publication-title: Cancer Med.
  doi: 10.1002/cam4.478
– volume: 2
  start-page: 63ra94
  year: 2010
  ident: B73
  article-title: Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by cd47
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3001375
– volume: 23
  start-page: 1415
  year: 2011
  ident: B105
  article-title: Cdc42 in oncogenic transformation, invasion, and tumorigenesis
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2011.04.001
– volume: 6
  start-page: 9951
  year: 2014
  ident: B25
  article-title: Studying the mechanism of cd47-sirpα interactions on red blood cells by single molecule force spectroscopy
  publication-title: Nanoscale
  doi: 10.1039/C4NR02889A
– volume: 348
  start-page: 56
  year: 2015
  ident: B4
  article-title: The future of immune checkpoint therapy
  publication-title: Science
  doi: 10.1126/science.aaa8172
– volume: 331
  start-page: 1565
  year: 2011
  ident: B1
  article-title: Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion
  publication-title: Science
  doi: 10.1126/science.1203486
– volume: 6
  start-page: 29719
  year: 2016
  ident: B5
  article-title: Cd47 promotes tumor invasion and metastasis in non-small cell lung cancer
  publication-title: Sci Rep
  doi: 10.1038/srep29719
– volume: 114
  start-page: E10578
  year: 2017
  ident: B19
  article-title: Anti-sirpα antibody immunotherapy enhances neutrophil and macrophage antitumor activity
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1710877114
– volume: 39
  start-page: 315
  year: 2012
  ident: B24
  article-title: Role of cd47 and signal regulatory protein alpha (sirpα) in regulating the clearance of viable or aged blood cells
  publication-title: Transfus Med Hemother
  doi: 10.1159/000342537
– volume: 36
  start-page: 653
  year: 2018
  ident: B17
  article-title: [the role of tsp-1-cd47 in ros-mediated pulmonary fibrosis induced by paraquat]
  publication-title: Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi
  doi: 10.3760/cma.j.issn.1001-9391.2018.09.003
– volume: 74
  start-page: 6771
  year: 2014
  ident: B74
  article-title: Cd47 in the tumor microenvironment limits cooperation between antitumor t-cell immunity and radiotherapy
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-0037-T
– volume: 472
  start-page: 643
  year: 2018
  ident: B55
  article-title: Cd47 expression in epstein-barr virus-associated gastric carcinoma: coexistence with tumor immunity lowering the ratio of cd8/foxp3 t cells
  publication-title: Virchows Archiv
  doi: 10.1007/s00428-018-2332-2
– volume: 120
  start-page: 10303
  year: 2018
  ident: B87
  article-title: Inhibited cd47 gene affects the clearance of acute myelogenous leukemia stem cells
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.28314
– volume: 19
  start-page: 76
  year: 2018
  ident: B116
  article-title: Engagement of mhc class I by the inhibitory receptor lilrb1 suppresses macrophages and is a target of cancer immunotherapy
  publication-title: Nat Immunol
  doi: 10.1038/s41590-017-0004-z
– volume: 32
  start-page: 480
  year: 2018
  ident: B35
  article-title: Blocking “don't eat me” signal of cd47-sirpα in hematological malignancies, an in-depth review
  publication-title: Blood Rev
  doi: 10.1016/j.blre.2018.04.005
– volume: 29
  start-page: 1604253
  year: 2017
  ident: B66
  article-title: Fluorogenic 2d peptidosheet unravels cd47 as a potential biomarker for profiling hepatocellular carcinoma and cholangiocarcinoma tissues
  publication-title: Adv Mater
  doi: 10.1002/adma.201604253
– volume: 11
  start-page: e0153550
  year: 2016
  ident: B70
  article-title: Anti-cd47 treatment stimulates phagocytosis of glioblastoma by m1 and m2 polarized macrophages and promotes m1 polarized macrophages in vivo
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0153550
– volume: 27
  start-page: 233
  year: 2002
  ident: B132
  article-title: Expression of cd47 (integrin-associated protein) decreases on red blood cells during storage
  publication-title: Transfus Apher Sci
  doi: 10.1016/S1473-0502(02)00070-8
– volume: 12
  start-page: 6
  year: 2015
  ident: B52
  article-title: Bladder cancer: on the dot–targeted molecular imaging
  publication-title: Nat Rev Urol
  doi: 10.1038/nrurol.2014.318
– volume: 341
  start-page: 88
  year: 2013
  ident: B124
  article-title: Engineered sirpα variants as immunotherapeutic adjuvants to anticancer antibodies
  publication-title: Science
  doi: 10.1126/science.1238856
– volume: 8
  start-page: 953
  year: 2018
  ident: B139
  article-title: A raman imaging approach using cd47 antibody-labeled sers nanoparticles for identifying breast cancer and its potential to guide surgical resection
  publication-title: Nanomaterials
  doi: 10.3390/nano8110953
– volume: 29
  start-page: 84
  year: 2018
  ident: B110
  article-title: Comprehensive analysis of the clinical immuno-oncology landscape
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdx755
– volume: 7
  start-page: e1484981
  year: 2018
  ident: B86
  article-title: Epigenetic treatment of multiple myeloma mediates tumor intrinsic and extrinsic immunomodulatory effects
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2018.1484981
– volume: 163
  start-page: 39
  year: 2015
  ident: B123
  article-title: Preclinical mouse cancer models: a maze of opportunities and challenges
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.068
– volume: 7
  start-page: e1391973
  year: 2018
  ident: B53
  article-title: Blocking the cd47-sirpα axis by delivery of anti-cd47 antibody induces antitumor effects in glioma and glioma stem cells
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2017.1391973
– volume: 142
  start-page: 699
  year: 2010
  ident: B42
  article-title: Anti-cd47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-hodgkin lymphoma
  publication-title: Cell
  doi: 10.1016/j.cell.2010.07.044
– volume: 119
  start-page: 5512
  year: 2012
  ident: B27
  article-title: Cd47 functions as a molecular switch for erythrocyte phagocytosis
  publication-title: Blood
  doi: 10.1182/blood-2011-10-386805
– volume: 26
  start-page: 2538
  year: 2012
  ident: B29
  article-title: Anti-cd47 antibodies promote phagocytosis and inhibit the growth of human myeloma cells
  publication-title: Leukemia
  doi: 10.1038/leu.2012.141
– volume: 7
  start-page: 339
  year: 2017
  ident: B121
  article-title: The different mechanisms of cancer drug resistance: A brief review
  publication-title: Adv Pharm Bull
  doi: 10.15171/apb.2017.041
– volume: 7
  start-page: 946
  year: 2015
  ident: B140
  article-title: A bispecific antibody targeting cd47 and cd20 selectively binds and eliminates dual antigen expressing lymphoma cells
  publication-title: MAbs
  doi: 10.1080/19420862.2015.1062192
– volume: 4
  start-page: 1072
  year: 2016
  ident: B63
  article-title: Eradication of canine diffuse large b-cell lymphoma in a murine xenograft model with cd47 blockade and anti-cd20
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-16-0105
– volume: 24
  start-page: 1415
  year: 2018
  ident: B54
  article-title: Cd47 blockade as an adjuvant immunotherapy for resectable pancreatic cancer
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-17-2283
– volume: 9
  start-page: 56
  year: 2019
  ident: B76
  article-title: Genetic redirection of t cells for the treatment of pancreatic cancer
  publication-title: Front Oncol
  doi: 10.3389/fonc.2019.00056
– volume: 10
  start-page: e0137345
  year: 2015
  ident: B62
  article-title: Pre-clinical development of a humanized anti-cd47 antibody with anti-cancer therapeutic potential
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0137345
– volume: 9
  start-page: 3
  year: 2018
  ident: B100
  article-title: Molecular functions of sirpα and its role in cancer
  publication-title: Biomed Rep
  doi: 10.3892/br.2018.1102
– volume: 110
  start-page: 11103
  year: 2013
  ident: B71
  article-title: Anti-cd47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor t-cell response
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1305569110
– volume: 22
  start-page: 5109
  year: 2016
  ident: B95
  article-title: Sirpα-antibody fusion proteins selectively bind and eliminate dual antigen-expressing tumor cells
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-15-2503
– volume: 509
  start-page: 739
  year: 2019
  ident: B61
  article-title: Cd47/sirpα blocking enhances cd19/cd3-bispecific t cell engager antibody-mediated lysis of b cell malignancies
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2018.12.175
– volume: 15
  start-page: 3950
  year: 2004
  ident: B106
  article-title: Promotion of neurite and filopodium formation by cd47: roles of integrins, rac, and cdc42
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e04-01-0019
– volume: 16
  start-page: 4625
  year: 2010
  ident: B50
  article-title: Correlated expression of cd47 and sirpa in bone marrow and in peripheral blood predicts recurrence in breast cancer patients
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-10-0349
– volume: 26
  start-page: 2738
  year: 2018
  ident: B93
  article-title: 4mu decreases cd47 expression on hepatic cancer stem cells and primes a potent antitumor t cell response induced by interleukin-12
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2018.09.012
– volume: 17
  start-page: 1739
  year: 2018
  ident: B127
  article-title: Preclinical development of a bispecific antibody that safely and effectively targets cd19 and cd47 for the treatment of b-cell lymphoma and leukemia
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-17-1095
– volume: 116
  start-page: 997
  year: 2019
  ident: B69
  article-title: Microglia are effector cells of cd47-sirpα antiphagocytic axis disruption against glioblastoma
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1721434116
– volume: 276
  start-page: 145
  year: 2017
  ident: B18
  article-title: The cd47-sirpα signaling axis as an innate immune checkpoint in cancer
  publication-title: Immunol Rev
  doi: 10.1111/imr.12527
– volume: 16
  start-page: 658
  year: 2016
  ident: B112
  article-title: Targeting the cancer biomarker cd47: a review on the diverse mechanisms of the cd47 pathway in cancer treatment
  publication-title: Anti-cancer Agents Med Chem
  doi: 10.2174/1871520615666151008123223
– volume: 167
  start-page: 1415
  year: 2012
  ident: B3
  article-title: Cd47 update: a multifaceted actor in the tumour microenvironment of potential therapeutic interest
  publication-title: Br J Pharmacol
  doi: 10.1111/j.1476-5381.2012.02099.x
– volume: 109
  start-page: 6662
  year: 2012
  ident: B33
  article-title: The cd47-signal regulatory protein alpha (sirpa) interaction is a therapeutic target for human solid tumors
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1121623109
– volume: 31
  start-page: 212
  year: 2010
  ident: B36
  article-title: Macrophages as mediators of tumor immunosurveillance
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2010.04.001
– volume: 12
  start-page: 217
  year: 2019
  ident: B46
  article-title: Attenuation of cd47-sirpα signal in cholangiocarcinoma potentiates tumor-associated macrophage-mediated phagocytosis and suppresses intrahepatic metastasis
  publication-title: Transl Oncol
  doi: 10.1016/j.tranon.2018.10.007
– volume: 109
  start-page: 6656
  year: 2012
  ident: B30
  article-title: Antibody therapy targeting the cd47 protein is effective in a model of aggressive metastatic leiomyosarcoma
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1121629109
– volume: 35
  start-page: 149
  year: 2015
  ident: B94
  article-title: Cd47 activation-induced uhrf1 over-expression is associated with silencing of tumor suppressor gene p16ink4a in glioblastoma cells
  publication-title: Anticancer Res
– volume: 21
  start-page: 1209
  year: 2015
  ident: B72
  article-title: Cd47 blockade triggers t cell-mediated destruction of immunogenic tumors
  publication-title: Nat Med
  doi: 10.1038/nm.3931
– volume: 118
  start-page: 4890
  year: 2011
  ident: B32
  article-title: Extranodal dissemination of non-hodgkin lymphoma requires cd47 and is inhibited by anti-cd47 antibody therapy
  publication-title: Blood
  doi: 10.1182/blood-2011-02-338020
– volume: 6
  start-page: 1769
  year: 2014
  ident: B122
  article-title: Drug resistance in cancer: an overview
  publication-title: Cancers
  doi: 10.3390/cancers6031769
– volume: 51
  start-page: 251
  year: 2017
  ident: B16
  article-title: [cd47 receptor as a primary target for cancer therapy]
  publication-title: Mol Biol
  doi: 10.7868/S0026898417010153
– volume: 44
  start-page: 143
  year: 2002
  ident: B11
  article-title: A potential role of macrophage activation in the treatment of cancer
  publication-title: Crit Rev Oncol/Hematol
  doi: 10.1016/S1040-8428(01)00203-7
– volume: 2
  start-page: 451
  year: 2018
  ident: B67
  article-title: Signal regulatory protein alpha blockade potentiates tumoricidal effects of macrophages on gastroenterological neoplastic cells in syngeneic immunocompetent mice
  publication-title: Ann Gastroenterol Surg
  doi: 10.1002/ags3.12205
– volume: 113
  start-page: E2646
  year: 2016
  ident: B142
  article-title: Durable antitumor responses to cd47 blockade require adaptive immune stimulation
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1604268113
– volume: 14
  start-page: 801
  year: 2017
  ident: B57
  article-title: Significance of cd47 expression in gastric cancer
  publication-title: Oncol Lett
  doi: 10.3892/ol.2017.6257
– volume: 69
  start-page: 3196
  year: 2009
  ident: B97
  article-title: Cd47 regulates bone mass and tumor metastasis to bone
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-3358
– volume: 65
  start-page: 79
  year: 1985
  ident: B22
  article-title: Monocytes and macrophages synthesize and secrete thrombospondin
  publication-title: Blood
  doi: 10.1182/blood.V65.1.79.bloodjournal65179
– volume: 117
  start-page: 385
  year: 2017
  ident: B103
  article-title: Cd47 overexpression is associated with decreased neutrophil apoptosis/phagocytosis and poor prognosis in non-small-cell lung cancer patients
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2017.173
– volume: 114
  start-page: 3413
  year: 2009
  ident: B98
  article-title: Dominant role of cd47-thrombospondin-1 interactions in myeloma-induced fusion of human dendritic cells: Implications for bone disease
  publication-title: Blood
  doi: 10.1182/blood-2009-03-211920
– volume: 12
  start-page: 5255
  year: 2017
  ident: B118
  article-title: Mithramycin-loaded mpeg-plga nanoparticles exert potent antitumor efficacy against pancreatic carcinoma
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S139507
– volume: 12
  start-page: 597
  year: 2017
  ident: B119
  article-title: Development of anti-cd47 single-chain variable fragment targeted magnetic nanoparticles for treatment of human bladder cancer
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2016-0302
– volume: 39
  start-page: 486
  year: 2011
  ident: B125
  article-title: The cd47 pathway is deregulated in human immune thrombocytopenia
  publication-title: Exp Hematol
  doi: 10.1016/j.exphem.2010.12.011
– volume: 24
  start-page: 225
  year: 2012
  ident: B58
  article-title: The cd47-sirpα pathway in cancer immune evasion and potential therapeutic implications
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2012.01.010
– volume: 107
  start-page: 341
  year: 2006
  ident: B21
  article-title: Shps-1 promotes the survival of circulating erythrocytes through inhibition of phagocytosis by splenic macrophages
  publication-title: Blood
  doi: 10.1182/blood-2005-05-1896
– volume: 172
  start-page: 69
  year: 2018
  ident: B81
  article-title: Combination of anthracyclines and anti-cd47 therapy inhibit invasive breast cancer growth while preventing cardiac toxicity by regulation of autophagy
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-018-4884-x
– volume: 35
  start-page: 84
  year: 2018
  ident: B77
  article-title: Chimeric antigen receptor t cell therapy in pancreatic cancer: from research to practice
  publication-title: Med Oncol
  doi: 10.1007/s12032-018-1145-0
– volume: 47
  start-page: 1725
  year: 2007
  ident: B131
  article-title: Reduced expression of cd47 during murine red blood cell (rbc) senescence and its role in rbc clearance from the circulation
  publication-title: Transfusion
  doi: 10.1111/j.1537-2995.2007.01348.x
– volume: 110
  start-page: 256
  year: 2019
  ident: B90
  article-title: Cd47 agonist peptide pkhb1 induces immunogenic cell death in t-cell acute lymphoblastic leukemia cells
  publication-title: Cancer Sci
  doi: 10.1111/cas.13885
– volume: 76
  start-page: 100
  year: 2017
  ident: B128
  article-title: Cancer immunotherapy targeting the cd47/sirpα axis
  publication-title: Euro J Cancer
  doi: 10.1016/j.ejca.2017.02.013
– volume: 21
  start-page: 3597
  year: 2015
  ident: B8
  article-title: Molecular pathways: activating t cells after cancer cell phagocytosis from blockade of cd47 “don't eat me” signals
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-14-2520
– volume: 290
  start-page: 12650
  year: 2015
  ident: B130
  article-title: “Velcro” engineering of high affinity cd47 ectodomain as signal regulatory protein α (sirpα) antagonists that enhance antibody-dependent cellular phagocytosis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M115.648220
– volume: 12
  start-page: e1001796
  year: 2015
  ident: B89
  article-title: Cd47 agonist peptides induce programmed cell death in refractory chronic lymphocytic leukemia b cells via plcγ1 activation: Evidence from mice and humans
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001796
– volume: 11
  start-page: 1036
  year: 2019
  ident: B129
  article-title: Discovery of high affinity, pan-allelic, and pan-mammalian reactive antibodies against the myeloid checkpoint receptor sirpα
  publication-title: MAbs
  doi: 10.1080/19420862.2019.1624123
– volume: 6
  start-page: 43712
  year: 2015
  ident: B113
  article-title: Mir-192 suppresses leptomeningeal dissemination of medulloblastoma by modulating cell proliferation and anchoring through the regulation of dhfr, integrins, and cd47
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.6227
– volume: 138
  start-page: 271
  year: 2009
  ident: B37
  article-title: Cd47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis
  publication-title: Cell
  doi: 10.1016/j.cell.2009.05.046
– volume: 9
  start-page: 544
  year: 2018
  ident: B91
  article-title: Cd47-ligation induced cell death in t-acute lymphoblastic leukemia
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-018-0601-2
– volume: 19
  start-page: 72
  year: 2009
  ident: B7
  article-title: Functions and molecular mechanisms of the cd47-sirpalpha signalling pathway
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2008.12.001
– volume: 360
  start-page: 302
  year: 2015
  ident: B65
  article-title: Antibody mediated therapy targeting cd47 inhibits tumor progression of hepatocellular carcinoma
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2015.02.036
SSID ssj0000493335
Score 2.6329386
SecondaryResourceType review_article
Snippet CD47 is an immunoglobulin that is overexpressed on the surface of many types of cancer cells. CD47 forms a signaling complex with signal-regulatory protein α...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 18
SubjectTerms Adaptive Immunity - drug effects
Animals
Antibodies, Monoclonal, Humanized - therapeutic use
Antigens, Differentiation - chemistry
Antigens, Differentiation - metabolism
Antineoplastic Agents, Immunological - therapeutic use
CD47
CD47 Antigen - antagonists & inhibitors
CD47 Antigen - chemistry
CD47 Antigen - immunology
CD47 Antigen - metabolism
CD47/SIRPa axis
Humans
Immunology
immunotherapy
Immunotherapy - methods
Macrophages - immunology
Neoplasms - drug therapy
phagocytosis
Phagocytosis - drug effects
Receptors, Immunologic - chemistry
Receptors, Immunologic - metabolism
Signal Transduction - drug effects
signal-regulatory protein α (SIRPα)
Xenograft Model Antitumor Assays
SummonAdditionalLinks – databaseName: Open Access资源_DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kQfAirs_4ogUvHsKkq1_JzXF1WT2I6CzsLXQ61RhxMrIzA-vP8o_4m6zunhlmRPTiNQ_SfFWdqi9V-Yqx5956EazBUisfCUoc5I6mK2sHlVRGdtCnBtn35uxcvbvQF3ujvmJPWJYHzsBNMMgAou_TH1mIXReM1xqMFx5QmqTzSTFvj0x9yXmvlFLnuiSxsGYShvl8TXwQYitXFWd87MWhJNf_pxzz91bJvdhzeovd3CSNfJoXe8yu4XibXc9jJL_fYS-nuZC_5MPIp-NqKGfr-eKSz7ZN5Es-Sw3fFKY4JXz85LWyk09vP374-YNPr4blXXZ--mZ2clZuJiOUXhlYlc43WIvKEZ1QhI92Ta8b2kxBAJlEevDGodUBaq-bRmkMIRiieq7rAdE6eY8djYsRHzAeFfEkNgDEi5S0Va2Es8p5VMGKvqsKNtni1PqNbHicXvG1JfoQkW0Tsm1ENlWy64K92N3xLUtm_OXaVxH63XVR7DodIBdoNy7Q_ssFCvZsa7iWNkeseLgRF-tlCxSeKxuLzQW7nw25e5SEWGQUomD2wMQHazk8Mw6fkwC3pVchKPPwfyz-EbsR4YhfdaB-zI5Wl2t8QnnOqnuaXPoXvlz7eg
  priority: 102
  providerName: Directory of Open Access Journals
Title Advances in Anti-Tumor Treatments Targeting the CD47/SIRPα Axis
URI https://www.ncbi.nlm.nih.gov/pubmed/32082311
https://www.proquest.com/docview/2362076727
https://pubmed.ncbi.nlm.nih.gov/PMC7003246
https://doaj.org/article/ef3f21dd14244eebbf6c5526c1c2e363
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BEagXxLOYR2UkLhxMvG_7gGgolIIEQpBIuVnr9W5r1DgQJ1L7s_gj_U3Mrp1AUMSBiw_2rmx_s-OZb2c8A_DMKEOckjYR3HiC4hu5W1kmmaYp45KVtAoJsp_k8Zh_mIjJ79-jewDbrdTO95Maz89enP-4eIUK_9IzTrS3A1dPp0uketRnaaUkuwrX0C4p38_gY-_sf-t8YcaY6GKVWyfuwg1GfeiJkA0zFar5b3NB_86k_MM0Hd2Cm71PGQ-7RXAbrtjmDlzvukxe3IWDYRfnb-O6iYfNok5Gy-lsHo9WOeZtPAr54GjFYvQH48M3XA2-vv_y-fJnPDyv23swPno7OjxO-sYJieGSLhJtcpuRVCPb4I45ofNK5KhrjlCUGDPUSG2VcDQzIs-5sM45iUxQlxW1Vml2H3aaWWMfQOwL5jGbU4q0iTOVZpxoxbWx3ClSlWkEgxVOhemrivvmFmcFsgsPchFALjzIIdCdRfB8PeN7V1HjH2Nfe-jX43wt7HBiNj8petUqLL4iJVUV_tmztiydNEJQaYihlkkWwdOV4ArUHR8Q0Y2dLduCovVOlY9FR7DXCXJ9q9VCiEBtiHjjWTavNPVpqM-t8EtJuXz43zMfwa7HwO_00Owx7CzmS_sEfZ9FuR_2DPD4bkL2w_L-BS8mBQk
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Anti-Tumor+Treatments+Targeting+the+CD47%2FSIRP%CE%B1+Axis&rft.jtitle=Frontiers+in+immunology&rft.au=Zhang%2C+Wenting&rft.au=Huang%2C+Qinghua&rft.au=Xiao%2C+Weiwei&rft.au=Zhao%2C+Yue&rft.date=2020-01-28&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-3224&rft.volume=11&rft_id=info:doi/10.3389%2Ffimmu.2020.00018&rft_id=info%3Apmid%2F32082311&rft.externalDocID=PMC7003246
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon