Controlling Human Upright Posture: Velocity Information Is More Accurate Than Position or Acceleration
1 Program in Neuroscience & Cognitive Science, 2 Departments of Kinesiology and 3 Biology, University of Maryland, College Park, Maryland 20742-2611; and 4 Neurological Sciences Institute, Oregon Health & Science University, Portland, Oregon 97239-3098 Submitted 13 October 2003; accepted in...
Saved in:
Published in | Journal of neurophysiology Vol. 92; no. 4; pp. 2368 - 2379 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Am Phys Soc
01.10.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1 Program in Neuroscience & Cognitive Science, 2 Departments of Kinesiology and 3 Biology, University of Maryland, College Park, Maryland 20742-2611; and 4 Neurological Sciences Institute, Oregon Health & Science University, Portland, Oregon 97239-3098
Submitted 13 October 2003;
accepted in final form 5 May 2004
The problem of how the nervous system fuses sensory information from multiple modalities for upright stance control remains largely unsolved. It is well established that the visual, vestibular, and somatosensory modalities provide position and rate (e.g., velocity, acceleration) information for estimation of body dynamics. However, it is unknown whether any particular property dominates when multisensory information is fused. Our recent stochastic analysis of postural sway during quiet stance suggested that sensory input provides more accurate information about the body's velocity than its position or acceleration. Here we tested this prediction by degrading major sources of velocity information through removal/attenuation of sensory information from vision and proprioception. Experimental measures of postural sway were compared with model predictions to determine whether sway behavior was indicative of a deficit in velocity information rather than position or acceleration information. Subjects stood with eyes closed on a support surface that was 1 ) fixed, 2 ) foam, or 3 ) sway-referenced. Six measures characterizing the stochastic structure of postural sway behaved in a manner consistent with model predictions of degraded velocity information. Results were inconsistent with the effect of degrading only position or acceleration information. These findings support the hypothesis that velocity information is the most accurate form of sensory information used to stabilize posture during quiet stance. Our results are consistent with the assumption that changes in sway behavior resulting from commonly used experimental manipulations (e.g., foam, sway-referencing, eyes closed) are primarily attributed to loss of accurate velocity information.
Address for reprint requests and othercorrespondence: J. Jeka, University of Maryland, College Park, MD 20742-2611(E-mail: jjeka{at}umd.edu ). |
---|---|
AbstractList | The problem of how the nervous system fuses sensory information from multiple modalities for upright stance control remains largely unsolved. It is well established that the visual, vestibular, and somatosensory modalities provide position and rate (e.g., velocity, acceleration) information for estimation of body dynamics. However, it is unknown whether any particular property dominates when multisensory information is fused. Our recent stochastic analysis of postural sway during quiet stance suggested that sensory input provides more accurate information about the body's velocity than its position or acceleration. Here we tested this prediction by degrading major sources of velocity information through removal/attenuation of sensory information from vision and proprioception. Experimental measures of postural sway were compared with model predictions to determine whether sway behavior was indicative of a deficit in velocity information rather than position or acceleration information. Subjects stood with eyes closed on a support surface that was 1) fixed, 2) foam, or 3) sway-referenced. Six measures characterizing the stochastic structure of postural sway behaved in a manner consistent with model predictions of degraded velocity information. Results were inconsistent with the effect of degrading only position or acceleration information. These findings support the hypothesis that velocity information is the most accurate form of sensory information used to stabilize posture during quiet stance. Our results are consistent with the assumption that changes in sway behavior resulting from commonly used experimental manipulations (e.g., foam, sway-referencing, eyes closed) are primarily attributed to loss of accurate velocity information. 1 Program in Neuroscience & Cognitive Science, 2 Departments of Kinesiology and 3 Biology, University of Maryland, College Park, Maryland 20742-2611; and 4 Neurological Sciences Institute, Oregon Health & Science University, Portland, Oregon 97239-3098 Submitted 13 October 2003; accepted in final form 5 May 2004 The problem of how the nervous system fuses sensory information from multiple modalities for upright stance control remains largely unsolved. It is well established that the visual, vestibular, and somatosensory modalities provide position and rate (e.g., velocity, acceleration) information for estimation of body dynamics. However, it is unknown whether any particular property dominates when multisensory information is fused. Our recent stochastic analysis of postural sway during quiet stance suggested that sensory input provides more accurate information about the body's velocity than its position or acceleration. Here we tested this prediction by degrading major sources of velocity information through removal/attenuation of sensory information from vision and proprioception. Experimental measures of postural sway were compared with model predictions to determine whether sway behavior was indicative of a deficit in velocity information rather than position or acceleration information. Subjects stood with eyes closed on a support surface that was 1 ) fixed, 2 ) foam, or 3 ) sway-referenced. Six measures characterizing the stochastic structure of postural sway behaved in a manner consistent with model predictions of degraded velocity information. Results were inconsistent with the effect of degrading only position or acceleration information. These findings support the hypothesis that velocity information is the most accurate form of sensory information used to stabilize posture during quiet stance. Our results are consistent with the assumption that changes in sway behavior resulting from commonly used experimental manipulations (e.g., foam, sway-referencing, eyes closed) are primarily attributed to loss of accurate velocity information. Address for reprint requests and othercorrespondence: J. Jeka, University of Maryland, College Park, MD 20742-2611(E-mail: jjeka{at}umd.edu ). The problem of how the nervous system fuses sensory information from multiple modalities for upright stance control remains largely unsolved. It is well established that the visual, vestibular, and somatosensory modalities provide position and rate (e.g., velocity, acceleration) information for estimation of body dynamics. However, it is unknown whether any particular property dominates when multisensory information is fused. Our recent stochastic analysis of postural sway during quiet stance suggested that sensory input provides more accurate information about the body's velocity than its position or acceleration. Here we tested this prediction by degrading major sources of velocity information through removal/attenuation of sensory information from vision and proprioception. Experimental measures of postural sway were compared with model predictions to determine whether sway behavior was indicative of a deficit in velocity information rather than position or acceleration information. Subjects stood with eyes closed on a support surface that was 1) fixed, 2) foam, or 3) sway-referenced. Six measures characterizing the stochastic structure of postural sway behaved in a manner consistent with model predictions of degraded velocity information. Results were inconsistent with the effect of degrading only position or acceleration information. These findings support the hypothesis that velocity information is the most accurate form of sensory information used to stabilize posture during quiet stance. Our results are consistent with the assumption that changes in sway behavior resulting from commonly used experimental manipulations (e.g., foam, sway-referencing, eyes closed) are primarily attributed to loss of accurate velocity information.The problem of how the nervous system fuses sensory information from multiple modalities for upright stance control remains largely unsolved. It is well established that the visual, vestibular, and somatosensory modalities provide position and rate (e.g., velocity, acceleration) information for estimation of body dynamics. However, it is unknown whether any particular property dominates when multisensory information is fused. Our recent stochastic analysis of postural sway during quiet stance suggested that sensory input provides more accurate information about the body's velocity than its position or acceleration. Here we tested this prediction by degrading major sources of velocity information through removal/attenuation of sensory information from vision and proprioception. Experimental measures of postural sway were compared with model predictions to determine whether sway behavior was indicative of a deficit in velocity information rather than position or acceleration information. Subjects stood with eyes closed on a support surface that was 1) fixed, 2) foam, or 3) sway-referenced. Six measures characterizing the stochastic structure of postural sway behaved in a manner consistent with model predictions of degraded velocity information. Results were inconsistent with the effect of degrading only position or acceleration information. These findings support the hypothesis that velocity information is the most accurate form of sensory information used to stabilize posture during quiet stance. Our results are consistent with the assumption that changes in sway behavior resulting from commonly used experimental manipulations (e.g., foam, sway-referencing, eyes closed) are primarily attributed to loss of accurate velocity information. |
Author | Jeka, John Peterka, Robert Kiemel, Tim Creath, Robert Horak, Fay |
Author_xml | – sequence: 1 fullname: Jeka, John – sequence: 2 fullname: Kiemel, Tim – sequence: 3 fullname: Creath, Robert – sequence: 4 fullname: Horak, Fay – sequence: 5 fullname: Peterka, Robert |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15140910$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi1URNPCkSvaE5w2-NteblVEaaQiOKRcLWd3NtnIawfbK8i_x0lDD0gVJ1v288zY816hCx88IPSW4Dkhgn7c-TnGjWZzijF7gWbljNZENPoCzTAue4aVukRXKe0wxkpg-gpdEkE4bgieoX4RfI7BucFvqrtptL562Mdhs83V95DyFOFT9QNcaId8qJa-D3G0eQi-Wqbqa4hQ3bTtFG2GarUtbnGG03WIxxtwEE_4a_Syty7Bm_N6jR5uP68Wd_X9ty_Lxc193XJJc21bRayChlvRYdX0StvWMsmlhbUAqXjXiU5QWwDopV2DFIRwZduOdoI3kl2j94919zH8nCBlMw6pPMNZD2FKRkrdaM3xf0GitBSaHSu-O4PTeoTOlOGMNh7M3xEWgD0CbQwpRehNmdXp0znawRmCzTEos_PmFJQ5BlWs-h_rqfAz_LnLtmTza4hg9ttDGoILm4O5nZxbwe9cnIYabiiT2uy7vlgfnrdKgyea_QGQJ7WS |
CitedBy_id | crossref_primary_10_1007_s00221_006_0848_1 crossref_primary_10_1016_j_jbiomech_2011_08_018 crossref_primary_10_1038_s42003_024_07093_6 crossref_primary_10_1016_j_jbmt_2023_04_039 crossref_primary_10_1016_j_neulet_2004_11_071 crossref_primary_10_1016_j_gaitpost_2012_01_011 crossref_primary_10_1016_j_gaitpost_2013_03_022 crossref_primary_10_1007_s00221_006_0502_y crossref_primary_10_3389_fnhum_2022_839799 crossref_primary_10_1016_j_humov_2015_09_004 crossref_primary_10_12659_MSM_883824 crossref_primary_10_3389_fnbot_2024_1429952 crossref_primary_10_1016_j_actpsy_2017_11_004 crossref_primary_10_1109_TBME_2010_2095500 crossref_primary_10_1016_j_gaitpost_2022_02_002 crossref_primary_10_3109_08990220_2014_958217 crossref_primary_10_3389_fnhum_2024_1471132 crossref_primary_10_58962_HSTRPT_2021_2_1_33_38 crossref_primary_10_1080_10255842_2014_946915 crossref_primary_10_1152_jn_01312_2007 crossref_primary_10_1016_j_neuroimage_2020_117450 crossref_primary_10_1109_TNSRE_2022_3154707 crossref_primary_10_1016_j_jbmt_2021_07_013 crossref_primary_10_3389_fneur_2021_756984 crossref_primary_10_1007_s10439_010_0137_9 crossref_primary_10_1016_j_exger_2023_112200 crossref_primary_10_1080_00222895_2018_1468310 crossref_primary_10_1063_1_4871880 crossref_primary_10_1080_00222895_2018_1468312 crossref_primary_10_1016_j_jbiomech_2015_04_024 crossref_primary_10_3233_JAD_230305 crossref_primary_10_1016_j_apmr_2014_05_001 crossref_primary_10_2978_jsas_17_209 crossref_primary_10_1186_s12877_017_0682_2 crossref_primary_10_1016_j_gaitpost_2019_06_010 crossref_primary_10_1134_S0362119722020025 crossref_primary_10_1519_JSC_0b013e3181d32213 crossref_primary_10_1123_ijatt_17_3_20 crossref_primary_10_1016_j_gaitpost_2008_04_018 crossref_primary_10_1080_00222895_2014_916651 crossref_primary_10_3389_fnhum_2016_00228 crossref_primary_10_1016_j_spinee_2022_04_013 crossref_primary_10_1007_s12576_010_0129_4 crossref_primary_10_1016_j_humov_2021_102803 crossref_primary_10_1016_j_humov_2019_05_007 crossref_primary_10_1016_j_orthtr_2021_05_002 crossref_primary_10_1007_s00422_005_0016_x crossref_primary_10_1016_j_jbiomech_2021_110485 crossref_primary_10_1113_jphysiol_2009_168690 crossref_primary_10_1007_s00221_022_06510_8 crossref_primary_10_1016_j_gaitpost_2005_04_009 crossref_primary_10_1007_s00221_011_2935_1 crossref_primary_10_1152_jn_00075_2024 crossref_primary_10_1080_00140139_2014_994566 crossref_primary_10_1113_jphysiol_2004_076307 crossref_primary_10_1016_j_gaitpost_2019_12_023 crossref_primary_10_1097_00019052_200502000_00005 crossref_primary_10_1016_j_gaitpost_2008_12_009 crossref_primary_10_1080_00222895_2010_481693 crossref_primary_10_1007_s00221_006_0620_6 crossref_primary_10_1016_j_arr_2020_101117 crossref_primary_10_1089_dia_2012_0152 crossref_primary_10_1016_j_praneu_2021_10_006 crossref_primary_10_1007_s00221_005_0224_6 crossref_primary_10_1088_1748_3182_3_2_026002 crossref_primary_10_1080_02640414_2015_1076572 crossref_primary_10_1113_jphysiol_2006_116772 crossref_primary_10_1590_S1807_59322009000800014 crossref_primary_10_1016_j_exger_2024_112383 crossref_primary_10_3389_fnhum_2023_1239071 crossref_primary_10_1186_1755_7682_7_1 crossref_primary_10_1007_s00221_013_3655_5 crossref_primary_10_2522_ptj_20060262 crossref_primary_10_3109_09593985_2015_1110848 crossref_primary_10_1016_j_gaitpost_2016_09_028 crossref_primary_10_1016_j_gaitpost_2014_06_017 crossref_primary_10_1209_0295_5075_109_48001 crossref_primary_10_1371_journal_pone_0048449 crossref_primary_10_3389_fncom_2023_1218707 crossref_primary_10_1007_s00221_007_1236_1 crossref_primary_10_1016_j_humov_2013_05_005 crossref_primary_10_1038_s41598_017_01265_7 crossref_primary_10_1371_journal_pone_0242790 crossref_primary_10_1080_00222895_2022_2074956 crossref_primary_10_7600_jpfsm_2_29 crossref_primary_10_1080_02640414_2023_2260237 crossref_primary_10_1080_08952841_2024_2325195 crossref_primary_10_1016_j_clinph_2012_12_001 crossref_primary_10_1016_j_gaitpost_2008_11_008 crossref_primary_10_1007_s11055_008_0029_8 crossref_primary_10_1016_j_jbiomech_2019_109400 crossref_primary_10_1242_jeb_048124 crossref_primary_10_4015_S1016237211002682 crossref_primary_10_1142_S0219519419400499 crossref_primary_10_1111_ane_12388 crossref_primary_10_1016_j_exger_2024_112360 crossref_primary_10_3389_fnhum_2017_00016 crossref_primary_10_1016_j_humov_2021_102845 crossref_primary_10_1016_j_jelekin_2006_10_004 crossref_primary_10_3390_healthcare11192681 crossref_primary_10_1134_S0022093025010090 crossref_primary_10_1007_s00221_018_5235_1 crossref_primary_10_1080_08990220_2018_1445988 crossref_primary_10_1016_j_clinph_2016_03_018 crossref_primary_10_3390_jfmk9030142 crossref_primary_10_2522_ptj_20110432 crossref_primary_10_1152_jn_01144_2004 crossref_primary_10_3390_s24010202 crossref_primary_10_1016_j_wneu_2020_09_040 crossref_primary_10_1016_j_neuroscience_2020_04_028 crossref_primary_10_1242_jeb_042572 crossref_primary_10_1186_s12984_018_0467_7 crossref_primary_10_3389_fnhum_2023_1229484 crossref_primary_10_1249_MSS_0000000000001615 crossref_primary_10_1007_s00221_013_3561_x crossref_primary_10_3389_fnins_2018_00171 crossref_primary_10_1177_0018720820950534 crossref_primary_10_1134_S0362119713030171 crossref_primary_10_3389_fbioe_2020_00866 crossref_primary_10_1016_j_humov_2011_07_017 crossref_primary_10_1113_jphysiol_2007_140046 crossref_primary_10_1016_j_gaitpost_2012_11_006 crossref_primary_10_1016_j_ssci_2015_12_012 crossref_primary_10_3390_s23218881 crossref_primary_10_1152_jn_01243_2005 crossref_primary_10_1123_jab_2016_0359 crossref_primary_10_1016_j_gaitpost_2015_01_008 crossref_primary_10_1016_j_infbeh_2006_07_005 crossref_primary_10_1016_j_gaitpost_2006_09_007 crossref_primary_10_1134_S0362119714010204 crossref_primary_10_1080_09638288_2024_2395454 crossref_primary_10_1016_j_gaitpost_2021_02_010 crossref_primary_10_1016_j_gaitpost_2011_04_007 crossref_primary_10_1080_0361073X_2023_2172304 crossref_primary_10_1519_JPT_0000000000000023 crossref_primary_10_1007_s00221_010_2171_0 crossref_primary_10_1523_JNEUROSCI_2116_17_2018 crossref_primary_10_1007_s00422_015_0655_5 crossref_primary_10_1098_rsif_2011_0212 crossref_primary_10_1152_jn_00856_2004 crossref_primary_10_3390_sports5040086 crossref_primary_10_1109_TNSRE_2007_897016 crossref_primary_10_1152_jn_00453_2005 crossref_primary_10_1109_TNSRE_2006_886732 crossref_primary_10_1007_s00221_021_06063_2 crossref_primary_10_3928_19425864_20140710_04 crossref_primary_10_1007_s00421_007_0476_x crossref_primary_10_1016_j_humov_2006_12_002 crossref_primary_10_4274_mirt_galenos_2021_22590 crossref_primary_10_3390_s22010368 crossref_primary_10_3389_fnagi_2017_00202 crossref_primary_10_1016_j_gaitpost_2006_05_009 crossref_primary_10_1080_07399332_2023_2219991 crossref_primary_10_3390_biomimetics7040232 crossref_primary_10_1016_j_medengphy_2009_06_004 crossref_primary_10_12968_ijtr_2013_20_6_280 crossref_primary_10_1007_s00221_013_3592_3 crossref_primary_10_3389_fnhum_2021_773091 crossref_primary_10_1007_s00422_004_0535_x crossref_primary_10_1089_neu_2015_4238 crossref_primary_10_1007_s00221_018_5444_7 crossref_primary_10_1007_s00221_007_1145_3 crossref_primary_10_1038_s41598_019_53028_1 crossref_primary_10_1016_j_jelekin_2013_04_006 crossref_primary_10_1016_j_procs_2017_05_117 crossref_primary_10_1123_jab_29_2_174 crossref_primary_10_1016_S2173_5735_07_70303_4 crossref_primary_10_1038_nrn3122 crossref_primary_10_1113_jphysiol_2006_118786 crossref_primary_10_1016_j_gaitpost_2005_12_008 crossref_primary_10_1016_j_humov_2016_08_002 crossref_primary_10_1016_j_gaitpost_2020_09_019 crossref_primary_10_1002_dev_20431 crossref_primary_10_1016_j_humov_2022_103014 crossref_primary_10_1016_j_bbr_2021_113437 crossref_primary_10_1111_joor_12400 crossref_primary_10_1016_S0001_6519_07_74880_X crossref_primary_10_1080_14647893_2022_2078295 crossref_primary_10_3182_20100913_3_US_2015_00053 crossref_primary_10_1016_j_humov_2017_01_006 crossref_primary_10_1265_jjh_21004 crossref_primary_10_1016_j_humov_2016_04_010 crossref_primary_10_1080_08990220_2022_2157386 crossref_primary_10_1123_mc_2018_0098 crossref_primary_10_1007_s00421_013_2627_6 crossref_primary_10_1007_s13246_017_0606_7 crossref_primary_10_1371_journal_pcbi_1001089 crossref_primary_10_3389_fpsyg_2021_661312 crossref_primary_10_1007_s00221_010_2414_0 crossref_primary_10_1007_s00221_012_3210_9 crossref_primary_10_1016_j_jpsychires_2016_08_013 crossref_primary_10_1038_nn1986 crossref_primary_10_1016_j_gaitpost_2013_12_009 crossref_primary_10_1007_s00221_010_2498_6 crossref_primary_10_1113_jphysiol_2007_140053 crossref_primary_10_1088_1741_2552_acc54f crossref_primary_10_1016_j_jelekin_2013_10_015 crossref_primary_10_1051_sm_2011107 crossref_primary_10_1098_rsif_2012_0077 crossref_primary_10_3389_fneur_2022_929132 crossref_primary_10_1007_s00221_008_1526_2 crossref_primary_10_1016_j_jbiomech_2021_110288 crossref_primary_10_1155_2018_9014232 |
Cites_doi | 10.1007/BF00238522 10.1152/jn.1971.34.4.635 10.1016/S0167-9457(01)00024-0 10.1080/0899022021000037782 10.1152/jn.00730.2002 10.1007/BF00198467 10.1152/jn.2002.88.3.1097 10.1152/jn.1971.34.4.661 10.1152/jn.1980.43.5.1426 10.1113/jphysiol.2002.025049 10.1007/s004220000196 10.1152/jn.00516.2003 10.1007/PL00005698 10.1016/S0165-0173(98)00032-0 10.1007/BF02454152 10.1007/s004220050587 10.1152/physrev.1992.72.1.33 10.1007/BF00241542 10.1007/s002210050506 10.1152/jn.1994.72.5.2269 10.3109/00016489309135778 10.1002/cphy.cp120107 10.1007/s002210000615 10.1007/BF00365601 10.2307/1130806 10.1016/S0079-6123(08)60820-1 10.2190/VXN3-N3RT-54JB-X16X 10.1152/jn.1999.82.3.1622 10.1007/s004220050527 10.1007/s002210000436 10.1007/978-1-4757-5702-6 10.1123/mcj.2.1.13 10.1007/BF00202609 10.1007/PL00005600 10.1523/JNEUROSCI.02-05-00536.1982 10.1152/jn.1998.80.3.1211 10.1080/00222895.1996.10544598 10.1007/s002210000412 10.1007/BF00242186 10.1109/10.362914 10.1007/s00422-002-0333-2 10.1152/jn.2002.88.4.2157 10.1152/jn.1971.34.4.676 10.1002/9780470316672 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 |
DOI | 10.1152/jn.00983.2003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 2379 |
ExternalDocumentID | 15140910 10_1152_jn_00983_2003 jn_92_4_2368 |
Genre | Clinical Trial Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: AG-06457 – fundername: NIA NIH HHS grantid: AG-17960 – fundername: NINDS NIH HHS grantid: NS-046065 – fundername: NIDCD NIH HHS grantid: DC-01849 – fundername: NINDS NIH HHS grantid: NS-35070 |
GroupedDBID | - 0VX 1Z7 2WC 39C 3O- 41 53G 55 5GY 5VS AALRV ABFLS ABIVO ABPTK ABUFD ABZEH ACGFS ACNCT ADACO ADBBV ADBIT ADKLL AENEX AETEA AFFNX ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FH7 FRP GJ GX1 H~9 KQ8 L7B MVM NEJ O0- OHT OK1 P2P RAP RHF RHI RPL SJN UHB UPT UQL WH7 WOQ WOW X X7M ZA5 ZGI ZXP ZY4 --- -DZ -~X .55 .GJ 18M 1CY 29L 4.4 41~ 8M5 AAYXX ABCQX ABHWK ABJNI ABKWE ACGFO ADFNX ADHGD ADIYS AFOSN AI. AIZAD BKKCC BTFSW CITATION EMOBN H13 ITBOX RPRKH TR2 VH1 W8F XJT XOL XSW YBH YQT YSK ABTAH CGR CUY CVF ECM EIF NPM VXZ 7TK 7X8 |
ID | FETCH-LOGICAL-c462t-ac71a7e94a5d079f78aca3646aeb5e674dd5d52a94aef6abe651147acd2d54963 |
ISSN | 0022-3077 |
IngestDate | Thu Jul 10 22:32:56 EDT 2025 Fri Jul 11 09:14:07 EDT 2025 Wed Feb 19 01:39:13 EST 2025 Thu Apr 24 22:53:22 EDT 2025 Tue Jul 01 01:16:46 EDT 2025 Tue Jan 05 17:53:14 EST 2021 Mon May 06 12:25:28 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c462t-ac71a7e94a5d079f78aca3646aeb5e674dd5d52a94aef6abe651147acd2d54963 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 15140910 |
PQID | 17865836 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_17865836 proquest_miscellaneous_66898840 pubmed_primary_15140910 crossref_primary_10_1152_jn_00983_2003 crossref_citationtrail_10_1152_jn_00983_2003 highwire_physiology_jn_92_4_2368 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20041001 2004-10-00 2004-Oct |
PublicationDateYYYYMMDD | 2004-10-01 |
PublicationDate_xml | – month: 10 year: 2004 text: 20041001 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2004 |
Publisher | Am Phys Soc |
Publisher_xml | – name: Am Phys Soc |
References | R21 R20 R23 R22 R25 R24 R27 R26 R29 R28 R1 R2 R3 R4 R5 R6 R7 R8 R9 R30 R32 R31 R34 R33 R36 R35 R38 R37 R39 R41 R40 R43 R42 R45 R44 R47 R46 R49 R48 R50 R52 R51 R10 R53 R12 R56 R11 R55 R14 R13 R16 R15 R18 R17 R19 |
References_xml | – ident: R49 doi: 10.1007/BF00238522 – ident: R14 doi: 10.1152/jn.1971.34.4.635 – ident: R8 doi: 10.1016/S0167-9457(01)00024-0 – ident: R17 doi: 10.1080/0899022021000037782 – ident: R32 doi: 10.1152/jn.00730.2002 – ident: R11 doi: 10.1007/BF00198467 – ident: R43 doi: 10.1152/jn.2002.88.3.1097 – ident: R13 doi: 10.1152/jn.1971.34.4.661 – ident: R36 doi: 10.1152/jn.1980.43.5.1426 – ident: R1 – ident: R30 doi: 10.1113/jphysiol.2002.025049 – ident: R52 – ident: R33 – ident: R51 doi: 10.1007/s004220000196 – ident: R45 doi: 10.1152/jn.00516.2003 – ident: R28 doi: 10.1007/PL00005698 – ident: R35 doi: 10.1016/S0165-0173(98)00032-0 – ident: R39 – ident: R41 doi: 10.1007/BF02454152 – ident: R42 doi: 10.1007/s004220050587 – ident: R9 doi: 10.1152/physrev.1992.72.1.33 – ident: R10 doi: 10.1007/BF00241542 – ident: R27 doi: 10.1007/s002210050506 – ident: R12 doi: 10.1152/jn.1994.72.5.2269 – ident: R20 doi: 10.3109/00016489309135778 – ident: R29 – ident: R18 doi: 10.1002/cphy.cp120107 – ident: R46 doi: 10.1007/s002210000615 – ident: R19 doi: 10.1007/BF00365601 – ident: R2 doi: 10.2307/1130806 – ident: R4 doi: 10.1016/S0079-6123(08)60820-1 – ident: R56 doi: 10.2190/VXN3-N3RT-54JB-X16X – ident: R6 – ident: R38 doi: 10.1152/jn.1999.82.3.1622 – ident: R50 doi: 10.1007/s004220050527 – ident: R47 doi: 10.1007/s002210000436 – ident: R53 doi: 10.1007/978-1-4757-5702-6 – ident: R22 doi: 10.1123/mcj.2.1.13 – ident: R7 – ident: R48 doi: 10.1007/BF00202609 – ident: R23 doi: 10.1007/PL00005600 – ident: R3 – ident: R40 doi: 10.1523/JNEUROSCI.02-05-00536.1982 – ident: R31 – ident: R55 doi: 10.1152/jn.1998.80.3.1211 – ident: R5 doi: 10.1080/00222895.1996.10544598 – ident: R21 doi: 10.1007/s002210000412 – ident: R24 – ident: R44 doi: 10.1007/BF00242186 – ident: R26 doi: 10.1109/10.362914 – ident: R25 doi: 10.1007/s00422-002-0333-2 – ident: R37 doi: 10.1152/jn.2002.88.4.2157 – ident: R15 doi: 10.1152/jn.1971.34.4.676 – ident: R16 doi: 10.1002/9780470316672 – ident: R34 |
SSID | ssj0007502 |
Score | 2.264529 |
Snippet | 1 Program in Neuroscience & Cognitive Science, 2 Departments of Kinesiology and 3 Biology, University of Maryland, College Park, Maryland 20742-2611; and 4... The problem of how the nervous system fuses sensory information from multiple modalities for upright stance control remains largely unsolved. It is well... |
SourceID | proquest pubmed crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2368 |
SubjectTerms | Acceleration Adult Algorithms Ankle - physiology Female Foot - physiology Humans Male Models, Neurological Motion Movement - physiology Postural Balance - physiology Posture - physiology Proprioception - physiology |
Title | Controlling Human Upright Posture: Velocity Information Is More Accurate Than Position or Acceleration |
URI | http://jn.physiology.org/cgi/content/abstract/92/4/2368 https://www.ncbi.nlm.nih.gov/pubmed/15140910 https://www.proquest.com/docview/17865836 https://www.proquest.com/docview/66898840 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZW5cIFAeWxPH1AvdCU1LEdh1tVUfUhEEi7qDfLcSZqC82u9nGA38CPZuw4j213pcIlWjmzyWa_L-OxPf6GkHciA27zMouYLZ2odq4ilVgW5dyAMgCZAjc18PmLPB7z03NxPhj86WUtLRf5nv29dl_J_6CKbYir2yX7D8i2F8UG_Iz44hERxuOdMD6s88z9jvJ6Nn489aNtX4N3OfP7zr8D9lcu1g47jzzgJ3N8m2fgikUsnVjE-9GF84Yhg8slqeMZ7JFmHXC3I1ivhemnRlbm5k_hh7mZ5Xt2Cdd1PgCSo133cAHrRZff3VIMaemd9FHI8GlmJXib37aySyAOJVogOFdsw_BJ9b1vxnos431XmtT1dkK3zJK66Mxtly-chOxVteekUROv8Nr1bc16_o0ur01E9EMgwfRVpf3XdS0de4_hoMN5zbNvnfY8xlad9jw-WaPYKtiHlbuvRjiN6vTmEYyPZEYPyYMAID2o-fSIDKB6TLYPKrOYXP-iO_Rri-g2KXsUo55iNFCMBop9pA3BaI9g9GROHcFoQzDqCEYbgtHJjPYJ9oSMjz6NDo-jUJojslyyRWRsum9SyLgRRZxmZaqMNYnk0kAuQKa8KEQhmEEDKKXJQWJgz1NjC1YIjk7_KdmqJhU8J5TFuYLMnbIlZxixlhgwsZhBbq0sCz4ku83fqW3QrXflU37qteANyU5rPq0FWzYZ7jbY6O5V0W7mZ4QkQeOMaa4dDfW0KIeErjPHS7ZmQ_K2gVijk3Yrb6aCyXKu91OFkX4iN1tIqTKleDwkz2pudD9eOE26_fjFXR_sJbnfvZGvyNZitoTXGDkv8jee0H8B-EXGjg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlling+Human+Upright+Posture%3A+Velocity+Information+Is+More+Accurate+Than+Position+or+Acceleration&rft.jtitle=Journal+of+neurophysiology&rft.au=Jeka%2C+John&rft.au=Kiemel%2C+Tim&rft.au=Creath%2C+Robert&rft.au=Horak%2C+Fay&rft.date=2004-10-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=92&rft.issue=4&rft.spage=2368&rft.epage=2379&rft_id=info:doi/10.1152%2Fjn.00983.2003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_jn_00983_2003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |