Controlling Human Upright Posture: Velocity Information Is More Accurate Than Position or Acceleration

1 Program in Neuroscience & Cognitive Science, 2 Departments of Kinesiology and 3 Biology, University of Maryland, College Park, Maryland 20742-2611; and 4 Neurological Sciences Institute, Oregon Health & Science University, Portland, Oregon 97239-3098 Submitted 13 October 2003; accepted in...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 92; no. 4; pp. 2368 - 2379
Main Authors Jeka, John, Kiemel, Tim, Creath, Robert, Horak, Fay, Peterka, Robert
Format Journal Article
LanguageEnglish
Published United States Am Phys Soc 01.10.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1 Program in Neuroscience & Cognitive Science, 2 Departments of Kinesiology and 3 Biology, University of Maryland, College Park, Maryland 20742-2611; and 4 Neurological Sciences Institute, Oregon Health & Science University, Portland, Oregon 97239-3098 Submitted 13 October 2003; accepted in final form 5 May 2004 The problem of how the nervous system fuses sensory information from multiple modalities for upright stance control remains largely unsolved. It is well established that the visual, vestibular, and somatosensory modalities provide position and rate (e.g., velocity, acceleration) information for estimation of body dynamics. However, it is unknown whether any particular property dominates when multisensory information is fused. Our recent stochastic analysis of postural sway during quiet stance suggested that sensory input provides more accurate information about the body's velocity than its position or acceleration. Here we tested this prediction by degrading major sources of velocity information through removal/attenuation of sensory information from vision and proprioception. Experimental measures of postural sway were compared with model predictions to determine whether sway behavior was indicative of a deficit in velocity information rather than position or acceleration information. Subjects stood with eyes closed on a support surface that was 1 ) fixed, 2 ) foam, or 3 ) sway-referenced. Six measures characterizing the stochastic structure of postural sway behaved in a manner consistent with model predictions of degraded velocity information. Results were inconsistent with the effect of degrading only position or acceleration information. These findings support the hypothesis that velocity information is the most accurate form of sensory information used to stabilize posture during quiet stance. Our results are consistent with the assumption that changes in sway behavior resulting from commonly used experimental manipulations (e.g., foam, sway-referencing, eyes closed) are primarily attributed to loss of accurate velocity information. Address for reprint requests and othercorrespondence: J. Jeka, University of Maryland, College Park, MD 20742-2611(E-mail: jjeka{at}umd.edu ).
AbstractList The problem of how the nervous system fuses sensory information from multiple modalities for upright stance control remains largely unsolved. It is well established that the visual, vestibular, and somatosensory modalities provide position and rate (e.g., velocity, acceleration) information for estimation of body dynamics. However, it is unknown whether any particular property dominates when multisensory information is fused. Our recent stochastic analysis of postural sway during quiet stance suggested that sensory input provides more accurate information about the body's velocity than its position or acceleration. Here we tested this prediction by degrading major sources of velocity information through removal/attenuation of sensory information from vision and proprioception. Experimental measures of postural sway were compared with model predictions to determine whether sway behavior was indicative of a deficit in velocity information rather than position or acceleration information. Subjects stood with eyes closed on a support surface that was 1) fixed, 2) foam, or 3) sway-referenced. Six measures characterizing the stochastic structure of postural sway behaved in a manner consistent with model predictions of degraded velocity information. Results were inconsistent with the effect of degrading only position or acceleration information. These findings support the hypothesis that velocity information is the most accurate form of sensory information used to stabilize posture during quiet stance. Our results are consistent with the assumption that changes in sway behavior resulting from commonly used experimental manipulations (e.g., foam, sway-referencing, eyes closed) are primarily attributed to loss of accurate velocity information.
1 Program in Neuroscience & Cognitive Science, 2 Departments of Kinesiology and 3 Biology, University of Maryland, College Park, Maryland 20742-2611; and 4 Neurological Sciences Institute, Oregon Health & Science University, Portland, Oregon 97239-3098 Submitted 13 October 2003; accepted in final form 5 May 2004 The problem of how the nervous system fuses sensory information from multiple modalities for upright stance control remains largely unsolved. It is well established that the visual, vestibular, and somatosensory modalities provide position and rate (e.g., velocity, acceleration) information for estimation of body dynamics. However, it is unknown whether any particular property dominates when multisensory information is fused. Our recent stochastic analysis of postural sway during quiet stance suggested that sensory input provides more accurate information about the body's velocity than its position or acceleration. Here we tested this prediction by degrading major sources of velocity information through removal/attenuation of sensory information from vision and proprioception. Experimental measures of postural sway were compared with model predictions to determine whether sway behavior was indicative of a deficit in velocity information rather than position or acceleration information. Subjects stood with eyes closed on a support surface that was 1 ) fixed, 2 ) foam, or 3 ) sway-referenced. Six measures characterizing the stochastic structure of postural sway behaved in a manner consistent with model predictions of degraded velocity information. Results were inconsistent with the effect of degrading only position or acceleration information. These findings support the hypothesis that velocity information is the most accurate form of sensory information used to stabilize posture during quiet stance. Our results are consistent with the assumption that changes in sway behavior resulting from commonly used experimental manipulations (e.g., foam, sway-referencing, eyes closed) are primarily attributed to loss of accurate velocity information. Address for reprint requests and othercorrespondence: J. Jeka, University of Maryland, College Park, MD 20742-2611(E-mail: jjeka{at}umd.edu ).
The problem of how the nervous system fuses sensory information from multiple modalities for upright stance control remains largely unsolved. It is well established that the visual, vestibular, and somatosensory modalities provide position and rate (e.g., velocity, acceleration) information for estimation of body dynamics. However, it is unknown whether any particular property dominates when multisensory information is fused. Our recent stochastic analysis of postural sway during quiet stance suggested that sensory input provides more accurate information about the body's velocity than its position or acceleration. Here we tested this prediction by degrading major sources of velocity information through removal/attenuation of sensory information from vision and proprioception. Experimental measures of postural sway were compared with model predictions to determine whether sway behavior was indicative of a deficit in velocity information rather than position or acceleration information. Subjects stood with eyes closed on a support surface that was 1) fixed, 2) foam, or 3) sway-referenced. Six measures characterizing the stochastic structure of postural sway behaved in a manner consistent with model predictions of degraded velocity information. Results were inconsistent with the effect of degrading only position or acceleration information. These findings support the hypothesis that velocity information is the most accurate form of sensory information used to stabilize posture during quiet stance. Our results are consistent with the assumption that changes in sway behavior resulting from commonly used experimental manipulations (e.g., foam, sway-referencing, eyes closed) are primarily attributed to loss of accurate velocity information.The problem of how the nervous system fuses sensory information from multiple modalities for upright stance control remains largely unsolved. It is well established that the visual, vestibular, and somatosensory modalities provide position and rate (e.g., velocity, acceleration) information for estimation of body dynamics. However, it is unknown whether any particular property dominates when multisensory information is fused. Our recent stochastic analysis of postural sway during quiet stance suggested that sensory input provides more accurate information about the body's velocity than its position or acceleration. Here we tested this prediction by degrading major sources of velocity information through removal/attenuation of sensory information from vision and proprioception. Experimental measures of postural sway were compared with model predictions to determine whether sway behavior was indicative of a deficit in velocity information rather than position or acceleration information. Subjects stood with eyes closed on a support surface that was 1) fixed, 2) foam, or 3) sway-referenced. Six measures characterizing the stochastic structure of postural sway behaved in a manner consistent with model predictions of degraded velocity information. Results were inconsistent with the effect of degrading only position or acceleration information. These findings support the hypothesis that velocity information is the most accurate form of sensory information used to stabilize posture during quiet stance. Our results are consistent with the assumption that changes in sway behavior resulting from commonly used experimental manipulations (e.g., foam, sway-referencing, eyes closed) are primarily attributed to loss of accurate velocity information.
Author Jeka, John
Peterka, Robert
Kiemel, Tim
Creath, Robert
Horak, Fay
Author_xml – sequence: 1
  fullname: Jeka, John
– sequence: 2
  fullname: Kiemel, Tim
– sequence: 3
  fullname: Creath, Robert
– sequence: 4
  fullname: Horak, Fay
– sequence: 5
  fullname: Peterka, Robert
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15140910$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URNPCkSvaE5w2-NteblVEaaQiOKRcLWd3NtnIawfbK8i_x0lDD0gVJ1v288zY816hCx88IPSW4Dkhgn7c-TnGjWZzijF7gWbljNZENPoCzTAue4aVukRXKe0wxkpg-gpdEkE4bgieoX4RfI7BucFvqrtptL562Mdhs83V95DyFOFT9QNcaId8qJa-D3G0eQi-Wqbqa4hQ3bTtFG2GarUtbnGG03WIxxtwEE_4a_Syty7Bm_N6jR5uP68Wd_X9ty_Lxc193XJJc21bRayChlvRYdX0StvWMsmlhbUAqXjXiU5QWwDopV2DFIRwZduOdoI3kl2j94919zH8nCBlMw6pPMNZD2FKRkrdaM3xf0GitBSaHSu-O4PTeoTOlOGMNh7M3xEWgD0CbQwpRehNmdXp0znawRmCzTEos_PmFJQ5BlWs-h_rqfAz_LnLtmTza4hg9ttDGoILm4O5nZxbwe9cnIYabiiT2uy7vlgfnrdKgyea_QGQJ7WS
CitedBy_id crossref_primary_10_1007_s00221_006_0848_1
crossref_primary_10_1016_j_jbiomech_2011_08_018
crossref_primary_10_1038_s42003_024_07093_6
crossref_primary_10_1016_j_jbmt_2023_04_039
crossref_primary_10_1016_j_neulet_2004_11_071
crossref_primary_10_1016_j_gaitpost_2012_01_011
crossref_primary_10_1016_j_gaitpost_2013_03_022
crossref_primary_10_1007_s00221_006_0502_y
crossref_primary_10_3389_fnhum_2022_839799
crossref_primary_10_1016_j_humov_2015_09_004
crossref_primary_10_12659_MSM_883824
crossref_primary_10_3389_fnbot_2024_1429952
crossref_primary_10_1016_j_actpsy_2017_11_004
crossref_primary_10_1109_TBME_2010_2095500
crossref_primary_10_1016_j_gaitpost_2022_02_002
crossref_primary_10_3109_08990220_2014_958217
crossref_primary_10_3389_fnhum_2024_1471132
crossref_primary_10_58962_HSTRPT_2021_2_1_33_38
crossref_primary_10_1080_10255842_2014_946915
crossref_primary_10_1152_jn_01312_2007
crossref_primary_10_1016_j_neuroimage_2020_117450
crossref_primary_10_1109_TNSRE_2022_3154707
crossref_primary_10_1016_j_jbmt_2021_07_013
crossref_primary_10_3389_fneur_2021_756984
crossref_primary_10_1007_s10439_010_0137_9
crossref_primary_10_1016_j_exger_2023_112200
crossref_primary_10_1080_00222895_2018_1468310
crossref_primary_10_1063_1_4871880
crossref_primary_10_1080_00222895_2018_1468312
crossref_primary_10_1016_j_jbiomech_2015_04_024
crossref_primary_10_3233_JAD_230305
crossref_primary_10_1016_j_apmr_2014_05_001
crossref_primary_10_2978_jsas_17_209
crossref_primary_10_1186_s12877_017_0682_2
crossref_primary_10_1016_j_gaitpost_2019_06_010
crossref_primary_10_1134_S0362119722020025
crossref_primary_10_1519_JSC_0b013e3181d32213
crossref_primary_10_1123_ijatt_17_3_20
crossref_primary_10_1016_j_gaitpost_2008_04_018
crossref_primary_10_1080_00222895_2014_916651
crossref_primary_10_3389_fnhum_2016_00228
crossref_primary_10_1016_j_spinee_2022_04_013
crossref_primary_10_1007_s12576_010_0129_4
crossref_primary_10_1016_j_humov_2021_102803
crossref_primary_10_1016_j_humov_2019_05_007
crossref_primary_10_1016_j_orthtr_2021_05_002
crossref_primary_10_1007_s00422_005_0016_x
crossref_primary_10_1016_j_jbiomech_2021_110485
crossref_primary_10_1113_jphysiol_2009_168690
crossref_primary_10_1007_s00221_022_06510_8
crossref_primary_10_1016_j_gaitpost_2005_04_009
crossref_primary_10_1007_s00221_011_2935_1
crossref_primary_10_1152_jn_00075_2024
crossref_primary_10_1080_00140139_2014_994566
crossref_primary_10_1113_jphysiol_2004_076307
crossref_primary_10_1016_j_gaitpost_2019_12_023
crossref_primary_10_1097_00019052_200502000_00005
crossref_primary_10_1016_j_gaitpost_2008_12_009
crossref_primary_10_1080_00222895_2010_481693
crossref_primary_10_1007_s00221_006_0620_6
crossref_primary_10_1016_j_arr_2020_101117
crossref_primary_10_1089_dia_2012_0152
crossref_primary_10_1016_j_praneu_2021_10_006
crossref_primary_10_1007_s00221_005_0224_6
crossref_primary_10_1088_1748_3182_3_2_026002
crossref_primary_10_1080_02640414_2015_1076572
crossref_primary_10_1113_jphysiol_2006_116772
crossref_primary_10_1590_S1807_59322009000800014
crossref_primary_10_1016_j_exger_2024_112383
crossref_primary_10_3389_fnhum_2023_1239071
crossref_primary_10_1186_1755_7682_7_1
crossref_primary_10_1007_s00221_013_3655_5
crossref_primary_10_2522_ptj_20060262
crossref_primary_10_3109_09593985_2015_1110848
crossref_primary_10_1016_j_gaitpost_2016_09_028
crossref_primary_10_1016_j_gaitpost_2014_06_017
crossref_primary_10_1209_0295_5075_109_48001
crossref_primary_10_1371_journal_pone_0048449
crossref_primary_10_3389_fncom_2023_1218707
crossref_primary_10_1007_s00221_007_1236_1
crossref_primary_10_1016_j_humov_2013_05_005
crossref_primary_10_1038_s41598_017_01265_7
crossref_primary_10_1371_journal_pone_0242790
crossref_primary_10_1080_00222895_2022_2074956
crossref_primary_10_7600_jpfsm_2_29
crossref_primary_10_1080_02640414_2023_2260237
crossref_primary_10_1080_08952841_2024_2325195
crossref_primary_10_1016_j_clinph_2012_12_001
crossref_primary_10_1016_j_gaitpost_2008_11_008
crossref_primary_10_1007_s11055_008_0029_8
crossref_primary_10_1016_j_jbiomech_2019_109400
crossref_primary_10_1242_jeb_048124
crossref_primary_10_4015_S1016237211002682
crossref_primary_10_1142_S0219519419400499
crossref_primary_10_1111_ane_12388
crossref_primary_10_1016_j_exger_2024_112360
crossref_primary_10_3389_fnhum_2017_00016
crossref_primary_10_1016_j_humov_2021_102845
crossref_primary_10_1016_j_jelekin_2006_10_004
crossref_primary_10_3390_healthcare11192681
crossref_primary_10_1134_S0022093025010090
crossref_primary_10_1007_s00221_018_5235_1
crossref_primary_10_1080_08990220_2018_1445988
crossref_primary_10_1016_j_clinph_2016_03_018
crossref_primary_10_3390_jfmk9030142
crossref_primary_10_2522_ptj_20110432
crossref_primary_10_1152_jn_01144_2004
crossref_primary_10_3390_s24010202
crossref_primary_10_1016_j_wneu_2020_09_040
crossref_primary_10_1016_j_neuroscience_2020_04_028
crossref_primary_10_1242_jeb_042572
crossref_primary_10_1186_s12984_018_0467_7
crossref_primary_10_3389_fnhum_2023_1229484
crossref_primary_10_1249_MSS_0000000000001615
crossref_primary_10_1007_s00221_013_3561_x
crossref_primary_10_3389_fnins_2018_00171
crossref_primary_10_1177_0018720820950534
crossref_primary_10_1134_S0362119713030171
crossref_primary_10_3389_fbioe_2020_00866
crossref_primary_10_1016_j_humov_2011_07_017
crossref_primary_10_1113_jphysiol_2007_140046
crossref_primary_10_1016_j_gaitpost_2012_11_006
crossref_primary_10_1016_j_ssci_2015_12_012
crossref_primary_10_3390_s23218881
crossref_primary_10_1152_jn_01243_2005
crossref_primary_10_1123_jab_2016_0359
crossref_primary_10_1016_j_gaitpost_2015_01_008
crossref_primary_10_1016_j_infbeh_2006_07_005
crossref_primary_10_1016_j_gaitpost_2006_09_007
crossref_primary_10_1134_S0362119714010204
crossref_primary_10_1080_09638288_2024_2395454
crossref_primary_10_1016_j_gaitpost_2021_02_010
crossref_primary_10_1016_j_gaitpost_2011_04_007
crossref_primary_10_1080_0361073X_2023_2172304
crossref_primary_10_1519_JPT_0000000000000023
crossref_primary_10_1007_s00221_010_2171_0
crossref_primary_10_1523_JNEUROSCI_2116_17_2018
crossref_primary_10_1007_s00422_015_0655_5
crossref_primary_10_1098_rsif_2011_0212
crossref_primary_10_1152_jn_00856_2004
crossref_primary_10_3390_sports5040086
crossref_primary_10_1109_TNSRE_2007_897016
crossref_primary_10_1152_jn_00453_2005
crossref_primary_10_1109_TNSRE_2006_886732
crossref_primary_10_1007_s00221_021_06063_2
crossref_primary_10_3928_19425864_20140710_04
crossref_primary_10_1007_s00421_007_0476_x
crossref_primary_10_1016_j_humov_2006_12_002
crossref_primary_10_4274_mirt_galenos_2021_22590
crossref_primary_10_3390_s22010368
crossref_primary_10_3389_fnagi_2017_00202
crossref_primary_10_1016_j_gaitpost_2006_05_009
crossref_primary_10_1080_07399332_2023_2219991
crossref_primary_10_3390_biomimetics7040232
crossref_primary_10_1016_j_medengphy_2009_06_004
crossref_primary_10_12968_ijtr_2013_20_6_280
crossref_primary_10_1007_s00221_013_3592_3
crossref_primary_10_3389_fnhum_2021_773091
crossref_primary_10_1007_s00422_004_0535_x
crossref_primary_10_1089_neu_2015_4238
crossref_primary_10_1007_s00221_018_5444_7
crossref_primary_10_1007_s00221_007_1145_3
crossref_primary_10_1038_s41598_019_53028_1
crossref_primary_10_1016_j_jelekin_2013_04_006
crossref_primary_10_1016_j_procs_2017_05_117
crossref_primary_10_1123_jab_29_2_174
crossref_primary_10_1016_S2173_5735_07_70303_4
crossref_primary_10_1038_nrn3122
crossref_primary_10_1113_jphysiol_2006_118786
crossref_primary_10_1016_j_gaitpost_2005_12_008
crossref_primary_10_1016_j_humov_2016_08_002
crossref_primary_10_1016_j_gaitpost_2020_09_019
crossref_primary_10_1002_dev_20431
crossref_primary_10_1016_j_humov_2022_103014
crossref_primary_10_1016_j_bbr_2021_113437
crossref_primary_10_1111_joor_12400
crossref_primary_10_1016_S0001_6519_07_74880_X
crossref_primary_10_1080_14647893_2022_2078295
crossref_primary_10_3182_20100913_3_US_2015_00053
crossref_primary_10_1016_j_humov_2017_01_006
crossref_primary_10_1265_jjh_21004
crossref_primary_10_1016_j_humov_2016_04_010
crossref_primary_10_1080_08990220_2022_2157386
crossref_primary_10_1123_mc_2018_0098
crossref_primary_10_1007_s00421_013_2627_6
crossref_primary_10_1007_s13246_017_0606_7
crossref_primary_10_1371_journal_pcbi_1001089
crossref_primary_10_3389_fpsyg_2021_661312
crossref_primary_10_1007_s00221_010_2414_0
crossref_primary_10_1007_s00221_012_3210_9
crossref_primary_10_1016_j_jpsychires_2016_08_013
crossref_primary_10_1038_nn1986
crossref_primary_10_1016_j_gaitpost_2013_12_009
crossref_primary_10_1007_s00221_010_2498_6
crossref_primary_10_1113_jphysiol_2007_140053
crossref_primary_10_1088_1741_2552_acc54f
crossref_primary_10_1016_j_jelekin_2013_10_015
crossref_primary_10_1051_sm_2011107
crossref_primary_10_1098_rsif_2012_0077
crossref_primary_10_3389_fneur_2022_929132
crossref_primary_10_1007_s00221_008_1526_2
crossref_primary_10_1016_j_jbiomech_2021_110288
crossref_primary_10_1155_2018_9014232
Cites_doi 10.1007/BF00238522
10.1152/jn.1971.34.4.635
10.1016/S0167-9457(01)00024-0
10.1080/0899022021000037782
10.1152/jn.00730.2002
10.1007/BF00198467
10.1152/jn.2002.88.3.1097
10.1152/jn.1971.34.4.661
10.1152/jn.1980.43.5.1426
10.1113/jphysiol.2002.025049
10.1007/s004220000196
10.1152/jn.00516.2003
10.1007/PL00005698
10.1016/S0165-0173(98)00032-0
10.1007/BF02454152
10.1007/s004220050587
10.1152/physrev.1992.72.1.33
10.1007/BF00241542
10.1007/s002210050506
10.1152/jn.1994.72.5.2269
10.3109/00016489309135778
10.1002/cphy.cp120107
10.1007/s002210000615
10.1007/BF00365601
10.2307/1130806
10.1016/S0079-6123(08)60820-1
10.2190/VXN3-N3RT-54JB-X16X
10.1152/jn.1999.82.3.1622
10.1007/s004220050527
10.1007/s002210000436
10.1007/978-1-4757-5702-6
10.1123/mcj.2.1.13
10.1007/BF00202609
10.1007/PL00005600
10.1523/JNEUROSCI.02-05-00536.1982
10.1152/jn.1998.80.3.1211
10.1080/00222895.1996.10544598
10.1007/s002210000412
10.1007/BF00242186
10.1109/10.362914
10.1007/s00422-002-0333-2
10.1152/jn.2002.88.4.2157
10.1152/jn.1971.34.4.676
10.1002/9780470316672
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1152/jn.00983.2003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts

MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 2379
ExternalDocumentID 15140910
10_1152_jn_00983_2003
jn_92_4_2368
Genre Clinical Trial
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: AG-06457
– fundername: NIA NIH HHS
  grantid: AG-17960
– fundername: NINDS NIH HHS
  grantid: NS-046065
– fundername: NIDCD NIH HHS
  grantid: DC-01849
– fundername: NINDS NIH HHS
  grantid: NS-35070
GroupedDBID -
0VX
1Z7
2WC
39C
3O-
41
53G
55
5GY
5VS
AALRV
ABFLS
ABIVO
ABPTK
ABUFD
ABZEH
ACGFS
ACNCT
ADACO
ADBBV
ADBIT
ADKLL
AENEX
AETEA
AFFNX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FH7
FRP
GJ
GX1
H~9
KQ8
L7B
MVM
NEJ
O0-
OHT
OK1
P2P
RAP
RHF
RHI
RPL
SJN
UHB
UPT
UQL
WH7
WOQ
WOW
X
X7M
ZA5
ZGI
ZXP
ZY4
---
-DZ
-~X
.55
.GJ
18M
1CY
29L
4.4
41~
8M5
AAYXX
ABCQX
ABHWK
ABJNI
ABKWE
ACGFO
ADFNX
ADHGD
ADIYS
AFOSN
AI.
AIZAD
BKKCC
BTFSW
CITATION
EMOBN
H13
ITBOX
RPRKH
TR2
VH1
W8F
XJT
XOL
XSW
YBH
YQT
YSK
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7TK
7X8
ID FETCH-LOGICAL-c462t-ac71a7e94a5d079f78aca3646aeb5e674dd5d52a94aef6abe651147acd2d54963
ISSN 0022-3077
IngestDate Thu Jul 10 22:32:56 EDT 2025
Fri Jul 11 09:14:07 EDT 2025
Wed Feb 19 01:39:13 EST 2025
Thu Apr 24 22:53:22 EDT 2025
Tue Jul 01 01:16:46 EDT 2025
Tue Jan 05 17:53:14 EST 2021
Mon May 06 12:25:28 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c462t-ac71a7e94a5d079f78aca3646aeb5e674dd5d52a94aef6abe651147acd2d54963
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 15140910
PQID 17865836
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_17865836
proquest_miscellaneous_66898840
pubmed_primary_15140910
crossref_primary_10_1152_jn_00983_2003
crossref_citationtrail_10_1152_jn_00983_2003
highwire_physiology_jn_92_4_2368
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20041001
2004-10-00
2004-Oct
PublicationDateYYYYMMDD 2004-10-01
PublicationDate_xml – month: 10
  year: 2004
  text: 20041001
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2004
Publisher Am Phys Soc
Publisher_xml – name: Am Phys Soc
References R21
R20
R23
R22
R25
R24
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R30
R32
R31
R34
R33
R36
R35
R38
R37
R39
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R50
R52
R51
R10
R53
R12
R56
R11
R55
R14
R13
R16
R15
R18
R17
R19
References_xml – ident: R49
  doi: 10.1007/BF00238522
– ident: R14
  doi: 10.1152/jn.1971.34.4.635
– ident: R8
  doi: 10.1016/S0167-9457(01)00024-0
– ident: R17
  doi: 10.1080/0899022021000037782
– ident: R32
  doi: 10.1152/jn.00730.2002
– ident: R11
  doi: 10.1007/BF00198467
– ident: R43
  doi: 10.1152/jn.2002.88.3.1097
– ident: R13
  doi: 10.1152/jn.1971.34.4.661
– ident: R36
  doi: 10.1152/jn.1980.43.5.1426
– ident: R1
– ident: R30
  doi: 10.1113/jphysiol.2002.025049
– ident: R52
– ident: R33
– ident: R51
  doi: 10.1007/s004220000196
– ident: R45
  doi: 10.1152/jn.00516.2003
– ident: R28
  doi: 10.1007/PL00005698
– ident: R35
  doi: 10.1016/S0165-0173(98)00032-0
– ident: R39
– ident: R41
  doi: 10.1007/BF02454152
– ident: R42
  doi: 10.1007/s004220050587
– ident: R9
  doi: 10.1152/physrev.1992.72.1.33
– ident: R10
  doi: 10.1007/BF00241542
– ident: R27
  doi: 10.1007/s002210050506
– ident: R12
  doi: 10.1152/jn.1994.72.5.2269
– ident: R20
  doi: 10.3109/00016489309135778
– ident: R29
– ident: R18
  doi: 10.1002/cphy.cp120107
– ident: R46
  doi: 10.1007/s002210000615
– ident: R19
  doi: 10.1007/BF00365601
– ident: R2
  doi: 10.2307/1130806
– ident: R4
  doi: 10.1016/S0079-6123(08)60820-1
– ident: R56
  doi: 10.2190/VXN3-N3RT-54JB-X16X
– ident: R6
– ident: R38
  doi: 10.1152/jn.1999.82.3.1622
– ident: R50
  doi: 10.1007/s004220050527
– ident: R47
  doi: 10.1007/s002210000436
– ident: R53
  doi: 10.1007/978-1-4757-5702-6
– ident: R22
  doi: 10.1123/mcj.2.1.13
– ident: R7
– ident: R48
  doi: 10.1007/BF00202609
– ident: R23
  doi: 10.1007/PL00005600
– ident: R3
– ident: R40
  doi: 10.1523/JNEUROSCI.02-05-00536.1982
– ident: R31
– ident: R55
  doi: 10.1152/jn.1998.80.3.1211
– ident: R5
  doi: 10.1080/00222895.1996.10544598
– ident: R21
  doi: 10.1007/s002210000412
– ident: R24
– ident: R44
  doi: 10.1007/BF00242186
– ident: R26
  doi: 10.1109/10.362914
– ident: R25
  doi: 10.1007/s00422-002-0333-2
– ident: R37
  doi: 10.1152/jn.2002.88.4.2157
– ident: R15
  doi: 10.1152/jn.1971.34.4.676
– ident: R16
  doi: 10.1002/9780470316672
– ident: R34
SSID ssj0007502
Score 2.264529
Snippet 1 Program in Neuroscience & Cognitive Science, 2 Departments of Kinesiology and 3 Biology, University of Maryland, College Park, Maryland 20742-2611; and 4...
The problem of how the nervous system fuses sensory information from multiple modalities for upright stance control remains largely unsolved. It is well...
SourceID proquest
pubmed
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2368
SubjectTerms Acceleration
Adult
Algorithms
Ankle - physiology
Female
Foot - physiology
Humans
Male
Models, Neurological
Motion
Movement - physiology
Postural Balance - physiology
Posture - physiology
Proprioception - physiology
Title Controlling Human Upright Posture: Velocity Information Is More Accurate Than Position or Acceleration
URI http://jn.physiology.org/cgi/content/abstract/92/4/2368
https://www.ncbi.nlm.nih.gov/pubmed/15140910
https://www.proquest.com/docview/17865836
https://www.proquest.com/docview/66898840
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZW5cIFAeWxPH1AvdCU1LEdh1tVUfUhEEi7qDfLcSZqC82u9nGA38CPZuw4j213pcIlWjmzyWa_L-OxPf6GkHciA27zMouYLZ2odq4ilVgW5dyAMgCZAjc18PmLPB7z03NxPhj86WUtLRf5nv29dl_J_6CKbYir2yX7D8i2F8UG_Iz44hERxuOdMD6s88z9jvJ6Nn489aNtX4N3OfP7zr8D9lcu1g47jzzgJ3N8m2fgikUsnVjE-9GF84Yhg8slqeMZ7JFmHXC3I1ivhemnRlbm5k_hh7mZ5Xt2Cdd1PgCSo133cAHrRZff3VIMaemd9FHI8GlmJXib37aySyAOJVogOFdsw_BJ9b1vxnos431XmtT1dkK3zJK66Mxtly-chOxVteekUROv8Nr1bc16_o0ur01E9EMgwfRVpf3XdS0de4_hoMN5zbNvnfY8xlad9jw-WaPYKtiHlbuvRjiN6vTmEYyPZEYPyYMAID2o-fSIDKB6TLYPKrOYXP-iO_Rri-g2KXsUo55iNFCMBop9pA3BaI9g9GROHcFoQzDqCEYbgtHJjPYJ9oSMjz6NDo-jUJojslyyRWRsum9SyLgRRZxmZaqMNYnk0kAuQKa8KEQhmEEDKKXJQWJgz1NjC1YIjk7_KdmqJhU8J5TFuYLMnbIlZxixlhgwsZhBbq0sCz4ku83fqW3QrXflU37qteANyU5rPq0FWzYZ7jbY6O5V0W7mZ4QkQeOMaa4dDfW0KIeErjPHS7ZmQ_K2gVijk3Yrb6aCyXKu91OFkX4iN1tIqTKleDwkz2pudD9eOE26_fjFXR_sJbnfvZGvyNZitoTXGDkv8jee0H8B-EXGjg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlling+Human+Upright+Posture%3A+Velocity+Information+Is+More+Accurate+Than+Position+or+Acceleration&rft.jtitle=Journal+of+neurophysiology&rft.au=Jeka%2C+John&rft.au=Kiemel%2C+Tim&rft.au=Creath%2C+Robert&rft.au=Horak%2C+Fay&rft.date=2004-10-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=92&rft.issue=4&rft.spage=2368&rft.epage=2379&rft_id=info:doi/10.1152%2Fjn.00983.2003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_jn_00983_2003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon