Navigated TMS in the ICU: Introducing Motor Mapping to the Critical Care Setting

Navigated transcranial magnetic stimulation (nTMS) is a modality for noninvasive cortical mapping. Specifically, nTMS motor mapping is an objective measure of motor function, offering quantitative diagnostic information regardless of subject cooperation or consciousness. Thus far, it has mostly been...

Full description

Saved in:
Bibliographic Details
Published inBrain sciences Vol. 10; no. 12; p. 1005
Main Authors Schramm, Severin, Haddad, Alexander F., Chyall, Lawrence, Krieg, Sandro M., Sollmann, Nico, Tarapore, Phiroz E.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 18.12.2020
MDPI AG
Subjects
Online AccessGet full text
ISSN2076-3425
2076-3425
DOI10.3390/brainsci10121005

Cover

Loading…
Abstract Navigated transcranial magnetic stimulation (nTMS) is a modality for noninvasive cortical mapping. Specifically, nTMS motor mapping is an objective measure of motor function, offering quantitative diagnostic information regardless of subject cooperation or consciousness. Thus far, it has mostly been restricted to the outpatient setting. This study evaluates the feasibility of nTMS motor mapping in the intensive care unit (ICU) setting and solves the challenges encountered in this special environment. We compared neuronavigation based on computed tomography (CT) and magnetic resonance imaging (MRI). We performed motor mappings in neurocritical patients under varying conditions (e.g., sedation or hemicraniectomy). Furthermore, we identified ways of minimizing electromyography (EMG) noise in the interference-rich ICU environment. Motor mapping was performed in 21 patients (six females, median age: 69 years). In 18 patients, motor evoked potentials (MEPs) were obtained. In three patients, MEPs could not be evoked. No adverse reactions occurred. We found CT to offer a comparable neuronavigation to MRI (CT maximum e-field 52 ± 14 V/m vs. MRI maximum e-field 52 ± 11 V/m; p = 0.6574). We detailed EMG noise reduction methods and found that propofol sedation of up to 80 mcg/kg/h did not inhibit MEPs. Yet, nTMS equipment interfered with exposed pulse oximetry. nTMS motor mapping application and use was illustrated in three clinical cases. In conclusion, we present an approach for the safe and reliable use of nTMS motor mapping in the ICU setting and outline possible benefits. Our findings support further studies regarding the clinical value of nTMS in critical care settings.
AbstractList Navigated transcranial magnetic stimulation (nTMS) is a modality for noninvasive cortical mapping. Specifically, nTMS motor mapping is an objective measure of motor function, offering quantitative diagnostic information regardless of subject cooperation or consciousness. Thus far, it has mostly been restricted to the outpatient setting. This study evaluates the feasibility of nTMS motor mapping in the intensive care unit (ICU) setting and solves the challenges encountered in this special environment. We compared neuronavigation based on computed tomography (CT) and magnetic resonance imaging (MRI). We performed motor mappings in neurocritical patients under varying conditions (e.g., sedation or hemicraniectomy). Furthermore, we identified ways of minimizing electromyography (EMG) noise in the interference-rich ICU environment. Motor mapping was performed in 21 patients (six females, median age: 69 years). In 18 patients, motor evoked potentials (MEPs) were obtained. In three patients, MEPs could not be evoked. No adverse reactions occurred. We found CT to offer a comparable neuronavigation to MRI (CT maximum e-field 52 ± 14 V/m vs. MRI maximum e-field 52 ± 11 V/m; p = 0.6574). We detailed EMG noise reduction methods and found that propofol sedation of up to 80 mcg/kg/h did not inhibit MEPs. Yet, nTMS equipment interfered with exposed pulse oximetry. nTMS motor mapping application and use was illustrated in three clinical cases. In conclusion, we present an approach for the safe and reliable use of nTMS motor mapping in the ICU setting and outline possible benefits. Our findings support further studies regarding the clinical value of nTMS in critical care settings.Navigated transcranial magnetic stimulation (nTMS) is a modality for noninvasive cortical mapping. Specifically, nTMS motor mapping is an objective measure of motor function, offering quantitative diagnostic information regardless of subject cooperation or consciousness. Thus far, it has mostly been restricted to the outpatient setting. This study evaluates the feasibility of nTMS motor mapping in the intensive care unit (ICU) setting and solves the challenges encountered in this special environment. We compared neuronavigation based on computed tomography (CT) and magnetic resonance imaging (MRI). We performed motor mappings in neurocritical patients under varying conditions (e.g., sedation or hemicraniectomy). Furthermore, we identified ways of minimizing electromyography (EMG) noise in the interference-rich ICU environment. Motor mapping was performed in 21 patients (six females, median age: 69 years). In 18 patients, motor evoked potentials (MEPs) were obtained. In three patients, MEPs could not be evoked. No adverse reactions occurred. We found CT to offer a comparable neuronavigation to MRI (CT maximum e-field 52 ± 14 V/m vs. MRI maximum e-field 52 ± 11 V/m; p = 0.6574). We detailed EMG noise reduction methods and found that propofol sedation of up to 80 mcg/kg/h did not inhibit MEPs. Yet, nTMS equipment interfered with exposed pulse oximetry. nTMS motor mapping application and use was illustrated in three clinical cases. In conclusion, we present an approach for the safe and reliable use of nTMS motor mapping in the ICU setting and outline possible benefits. Our findings support further studies regarding the clinical value of nTMS in critical care settings.
Navigated transcranial magnetic stimulation (nTMS) is a modality for noninvasive cortical mapping. Specifically, nTMS motor mapping is an objective measure of motor function, offering quantitative diagnostic information regardless of subject cooperation or consciousness. Thus far, it has mostly been restricted to the outpatient setting. This study evaluates the feasibility of nTMS motor mapping in the intensive care unit (ICU) setting and solves the challenges encountered in this special environment. We compared neuronavigation based on computed tomography (CT) and magnetic resonance imaging (MRI). We performed motor mappings in neurocritical patients under varying conditions (e.g., sedation or hemicraniectomy). Furthermore, we identified ways of minimizing electromyography (EMG) noise in the interference-rich ICU environment. Motor mapping was performed in 21 patients (six females, median age: 69 years). In 18 patients, motor evoked potentials (MEPs) were obtained. In three patients, MEPs could not be evoked. No adverse reactions occurred. We found CT to offer a comparable neuronavigation to MRI (CT maximum e-field 52 ± 14 V/m vs. MRI maximum e-field 52 ± 11 V/m; p = 0.6574). We detailed EMG noise reduction methods and found that propofol sedation of up to 80 mcg/kg/h did not inhibit MEPs. Yet, nTMS equipment interfered with exposed pulse oximetry. nTMS motor mapping application and use was illustrated in three clinical cases. In conclusion, we present an approach for the safe and reliable use of nTMS motor mapping in the ICU setting and outline possible benefits. Our findings support further studies regarding the clinical value of nTMS in critical care settings.
Navigated transcranial magnetic stimulation (nTMS) is a modality for noninvasive cortical mapping. Specifically, nTMS motor mapping is an objective measure of motor function, offering quantitative diagnostic information regardless of subject cooperation or consciousness. Thus far, it has mostly been restricted to the outpatient setting. This study evaluates the feasibility of nTMS motor mapping in the intensive care unit (ICU) setting and solves the challenges encountered in this special environment. We compared neuronavigation based on computed tomography (CT) and magnetic resonance imaging (MRI). We performed motor mappings in neurocritical patients under varying conditions (e.g., sedation or hemicraniectomy). Furthermore, we identified ways of minimizing electromyography (EMG) noise in the interference-rich ICU environment. Motor mapping was performed in 21 patients (six females, median age: 69 years). In 18 patients, motor evoked potentials (MEPs) were obtained. In three patients, MEPs could not be evoked. No adverse reactions occurred. We found CT to offer a comparable neuronavigation to MRI (CT maximum e-field 52 ± 14 V/m vs. MRI maximum e-field 52 ± 11 V/m; = 0.6574). We detailed EMG noise reduction methods and found that propofol sedation of up to 80 mcg/kg/h did not inhibit MEPs. Yet, nTMS equipment interfered with exposed pulse oximetry. nTMS motor mapping application and use was illustrated in three clinical cases. In conclusion, we present an approach for the safe and reliable use of nTMS motor mapping in the ICU setting and outline possible benefits. Our findings support further studies regarding the clinical value of nTMS in critical care settings.
Navigated transcranial magnetic stimulation (nTMS) is a modality for noninvasive cortical mapping. Specifically, nTMS motor mapping is an objective measure of motor function, offering quantitative diagnostic information regardless of subject cooperation or consciousness. Thus far, it has mostly been restricted to the outpatient setting. This study evaluates the feasibility of nTMS motor mapping in the intensive care unit (ICU) setting and solves the challenges encountered in this special environment. We compared neuronavigation based on computed tomography (CT) and magnetic resonance imaging (MRI). We performed motor mappings in neurocritical patients under varying conditions (e.g., sedation or hemicraniectomy). Furthermore, we identified ways of minimizing electromyography (EMG) noise in the interference-rich ICU environment. Motor mapping was performed in 21 patients (six females, median age: 69 years). In 18 patients, motor evoked potentials (MEPs) were obtained. In three patients, MEPs could not be evoked. No adverse reactions occurred. We found CT to offer a comparable neuronavigation to MRI (CT maximum e-field 52 ± 14 V/m vs. MRI maximum e-field 52 ± 11 V/m; p = 0.6574). We detailed EMG noise reduction methods and found that propofol sedation of up to 80 mcg/kg/h did not inhibit MEPs. Yet, nTMS equipment interfered with exposed pulse oximetry. nTMS motor mapping application and use was illustrated in three clinical cases. In conclusion, we present an approach for the safe and reliable use of nTMS motor mapping in the ICU setting and outline possible benefits. Our findings support further studies regarding the clinical value of nTMS in critical care settings.
Author Schramm, Severin
Haddad, Alexander F.
Chyall, Lawrence
Krieg, Sandro M.
Tarapore, Phiroz E.
Sollmann, Nico
AuthorAffiliation 2 Department of Neurosurgery, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA 94110, USA; Alexander.Haddad@ucsf.edu (A.F.H.); Lawrence.Chyall@sfdph.org (L.C.); Phiroz.Tarapore@ucsf.edu (P.E.T.)
1 Department of Neurosurgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; Sandro.Krieg@tum.de
4 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
3 TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany; Nico.Sollmann@tum.de
AuthorAffiliation_xml – name: 3 TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany; Nico.Sollmann@tum.de
– name: 2 Department of Neurosurgery, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA 94110, USA; Alexander.Haddad@ucsf.edu (A.F.H.); Lawrence.Chyall@sfdph.org (L.C.); Phiroz.Tarapore@ucsf.edu (P.E.T.)
– name: 4 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
– name: 1 Department of Neurosurgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; Sandro.Krieg@tum.de
Author_xml – sequence: 1
  givenname: Severin
  surname: Schramm
  fullname: Schramm, Severin
– sequence: 2
  givenname: Alexander F.
  surname: Haddad
  fullname: Haddad, Alexander F.
– sequence: 3
  givenname: Lawrence
  surname: Chyall
  fullname: Chyall, Lawrence
– sequence: 4
  givenname: Sandro M.
  orcidid: 0000-0003-4050-1531
  surname: Krieg
  fullname: Krieg, Sandro M.
– sequence: 5
  givenname: Nico
  orcidid: 0000-0002-8120-2223
  surname: Sollmann
  fullname: Sollmann, Nico
– sequence: 6
  givenname: Phiroz E.
  surname: Tarapore
  fullname: Tarapore, Phiroz E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33352857$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1PGzEQhi1EBTTlzgntsZe0_lrb20OlakXbSKStBJytsXc2GG3WqddB6r-vQ6ACpPpie-adZzx-35LDMY5IyBmjH4Ro6EeXIIyTD4wyziitD8gJp1rNheT14bPzMTmdpjtalqFU1PSIHAsham5qfUJ-_YD7sIKMXXW9vKrCWOVbrBbtzadqMeYUu60P46paxhxTtYTNZnfL8UHVppCDh6FqIWF1hTmX5DvypodhwtPHfUZuvl5ct9_nlz-_Ldovl3MvFc9zkJ6hQe9N03glFDOOayVqw7uaQc8RHKe9A-mo6ZhWTJaA16A7VkYCLWZksed2Ee7sJoU1pD82QrAPgZhWFlJ53oCWeyWF6V3TGSc5GhCCOd2j7JRDVe9Yn_eszdatsfNYJofhBfRlZgy3dhXvrdaqbnhTAO8fASn-3uKU7TpMHocBRozbyXKphWRclv-fkfPnvf41ebKkCNRe4FOcpoS99SFDDnHXOgyWUbuz3762vxTSV4VP7P-W_AU1NLOR
CitedBy_id crossref_primary_10_3390_brainsci11070897
crossref_primary_10_1016_j_bas_2025_104229
crossref_primary_10_3390_brainsci12050628
crossref_primary_10_3390_brainsci13030451
Cites_doi 10.1016/j.clinph.2014.08.028
10.1016/j.neuroimage.2008.09.040
10.1186/s12868-016-0321-4
10.1186/1471-2202-14-94
10.1007/s00701-016-2970-6
10.1093/neuros/nyz049
10.1016/j.clinph.2015.11.042
10.3171/2009.8.FOCUS09145
10.1251/bpo115
10.1023/B:BRAT.0000006333.93597.9d
10.1016/S1567-424X(09)70205-3
10.25259/SNI-124-2019
10.3171/jns.2002.96.3.0571
10.1016/j.neuroscience.2016.02.012
10.1016/j.neuron.2004.12.033
10.1007/978-1-4939-0879-0
10.3171/2012.5.JNS112124
10.1017/cjn.2015.52
10.1007/s00701-017-3187-z
10.1002/ana.24779
10.1016/j.neucli.2018.05.038
10.1016/j.neulet.2018.03.026
10.1097/00003246-200010000-00029
10.1055/s-0037-1608770
10.1016/j.neucli.2016.05.001
10.1016/j.clinph.2020.05.026
10.2217/cns.14.25
10.1111/dmcn.14490
10.1016/j.neucli.2009.03.002
10.1007/978-1-4939-0879-0_3
10.1016/j.clinph.2004.06.018
10.1111/j.1600-0404.2011.01623.x
10.1093/cercor/bhh080
10.1007/s00221-006-0468-9
10.1097/00008506-200401000-00008
10.1007/978-3-319-54918-7_4
10.1227/00006123-199110000-00011
10.1093/bja/aeg211
10.1088/0031-9155/59/1/203
10.1007/s12028-007-0012-1
10.1038/s41598-020-57695-3
10.1016/j.clinph.2014.05.021
10.1007/s12028-014-0041-5
10.1016/j.clinph.2009.08.016
10.1016/j.clinph.2020.09.025
10.1093/neuonc/nou007
10.1007/s10072-017-2824-x
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/brainsci10121005
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2076-3425
ExternalDocumentID oai_doaj_org_article_2c6438fb9d8b42e8a331b7fe4d6be657
PMC7765929
33352857
10_3390_brainsci10121005
Genre Journal Article
GroupedDBID 53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
3V.
NPM
7X8
PQGLB
5PM
PUEGO
ID FETCH-LOGICAL-c462t-a4c1e8ecc899c63618b2763582d51af2eab20fba4b08d17614ab2c7a7d1425a73
IEDL.DBID M48
ISSN 2076-3425
IngestDate Wed Aug 27 01:28:10 EDT 2025
Thu Aug 21 18:19:20 EDT 2025
Fri Jul 11 02:34:49 EDT 2025
Thu Jan 02 22:58:08 EST 2025
Tue Jul 01 02:32:44 EDT 2025
Thu Apr 24 22:52:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords brain stimulation
neuromonitoring
intensive care
functional mapping
motor evoked potentials
motor mapping
ICU
nTMS
neurocritical care
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-a4c1e8ecc899c63618b2763582d51af2eab20fba4b08d17614ab2c7a7d1425a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4050-1531
0000-0002-8120-2223
OpenAccessLink https://doaj.org/article/2c6438fb9d8b42e8a331b7fe4d6be657
PMID 33352857
PQID 2473412400
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_2c6438fb9d8b42e8a331b7fe4d6be657
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7765929
proquest_miscellaneous_2473412400
pubmed_primary_33352857
crossref_citationtrail_10_3390_brainsci10121005
crossref_primary_10_3390_brainsci10121005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201218
PublicationDateYYYYMMDD 2020-12-18
PublicationDate_xml – month: 12
  year: 2020
  text: 20201218
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Brain sciences
PublicationTitleAlternate Brain Sci
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Williamson (ref_29) 2017; 38
Tallus (ref_43) 2012; 126
Amantini (ref_16) 2009; 39
Wang (ref_35) 2009; 27
Lotto (ref_46) 2004; 16
Lefaucheur (ref_6) 2014; 125
Krieg (ref_8) 2017; 159
Scheufler (ref_34) 2002; 96
Huang (ref_7) 2005; 45
Greve (ref_44) 2020; 131
Zyss (ref_17) 2018; 48
Rossi (ref_21) 2009; 120
ref_25
Lefaucheur (ref_14) 2016; 46
ref_24
Treggiari (ref_38) 2007; 6
Jellinek (ref_32) 1991; 29
Picht (ref_13) 2014; 3
Sollmann (ref_36) 2020; 131
Theilen (ref_18) 2000; 28
ref_27
Krieg (ref_15) 2014; 16
Vargas (ref_51) 2004; 14
Darling (ref_50) 2006; 174
Julkunen (ref_11) 2009; 44
Ziemann (ref_42) 1996; 40
Awiszus (ref_26) 2003; Volume 56
Andresen (ref_40) 2020; 86
Schrader (ref_28) 2004; 115
Andresen (ref_41) 2019; 1
Tarapore (ref_5) 2016; 127
Herwig (ref_10) 2003; 16
Casarotto (ref_20) 2016; 80
Azabou (ref_19) 2017; 38
Sollmann (ref_3) 2016; 158
Tarapore (ref_9) 2012; 117
Goldsworthy (ref_48) 2016; 320
Reaz (ref_23) 2006; 8
Ziemann (ref_45) 2015; 126
Varley (ref_37) 2020; 10
Pinto (ref_31) 2019; 10
Andreasson (ref_47) 2020; 62
Nathan (ref_33) 2003; 91
Raboel (ref_39) 2012; 2012
ref_1
Algethamy (ref_30) 2015; 42
ref_2
Laakso (ref_12) 2013; 59
Biabani (ref_49) 2018; 674
Menon (ref_22) 2014; 21
ref_4
References_xml – volume: 126
  start-page: 1847
  year: 2015
  ident: ref_45
  article-title: TMS and drugs revisited 2014
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2014.08.028
– volume: 44
  start-page: 790
  year: 2009
  ident: ref_11
  article-title: Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.09.040
– ident: ref_24
  doi: 10.1186/s12868-016-0321-4
– ident: ref_25
  doi: 10.1186/1471-2202-14-94
– volume: 158
  start-page: 2277
  year: 2016
  ident: ref_3
  article-title: Comparison between electric-field-navigated and line-navigated TMS for cortical motor mapping in patients with brain tumors
  publication-title: Acta Neurochir.
  doi: 10.1007/s00701-016-2970-6
– volume: 86
  start-page: 231
  year: 2020
  ident: ref_40
  article-title: Long-term effect of decompressive craniectomy on intracranial pressure and possible implications for intracranial fluid movements
  publication-title: Neurosurgery
  doi: 10.1093/neuros/nyz049
– volume: 127
  start-page: 1895
  year: 2016
  ident: ref_5
  article-title: Safety and tolerability of navigated TMS for preoperative mapping in neurosurgical patients
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2015.11.042
– volume: 27
  start-page: E7
  year: 2009
  ident: ref_35
  article-title: Impact of anesthesia on transcranial electric motor evoked potential monitoring during spine surgery: A review of the literature
  publication-title: Neurosurg. Focus
  doi: 10.3171/2009.8.FOCUS09145
– volume: 8
  start-page: 11
  year: 2006
  ident: ref_23
  article-title: Techniques of EMG signal analysis: Detection, processing, classification and applications
  publication-title: Biol. Proced. Online
  doi: 10.1251/bpo115
– volume: 16
  start-page: 95
  year: 2003
  ident: ref_10
  article-title: Using the international 10–20 EEG system for positioning of transcranial magnetic stimulation
  publication-title: Brain Topogr.
  doi: 10.1023/B:BRAT.0000006333.93597.9d
– ident: ref_1
– volume: Volume 56
  start-page: 13
  year: 2003
  ident: ref_26
  article-title: TMS and threshold hunting
  publication-title: Supplements to Clinical Neurophysiology
  doi: 10.1016/S1567-424X(09)70205-3
– volume: 10
  start-page: 134
  year: 2019
  ident: ref_31
  article-title: Computed tomography-guided navigated transcranial magnetic stimulation for preoperative brain motor mapping in brain lesion resection: A case report
  publication-title: Surg. Neurol. Int.
  doi: 10.25259/SNI-124-2019
– volume: 96
  start-page: 571
  year: 2002
  ident: ref_34
  article-title: Total intravenous anesthesia for intraoperative monitoring of the motor pathways: An integral view combining clinical and experimental data
  publication-title: J. Neurosurg.
  doi: 10.3171/jns.2002.96.3.0571
– volume: 320
  start-page: 205
  year: 2016
  ident: ref_48
  article-title: Minimum number of trials required for within-and between-session reliability of TMS measures of corticospinal excitability
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2016.02.012
– volume: 45
  start-page: 201
  year: 2005
  ident: ref_7
  article-title: Theta burst stimulation of the human motor cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.12.033
– ident: ref_2
  doi: 10.1007/978-1-4939-0879-0
– volume: 117
  start-page: 354
  year: 2012
  ident: ref_9
  article-title: Preoperative multimodal motor mapping: A comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation
  publication-title: J. Neurosurg.
  doi: 10.3171/2012.5.JNS112124
– volume: 42
  start-page: 324
  year: 2015
  ident: ref_30
  article-title: Added value of MRI over CT of the brain in intensive care unit patients
  publication-title: Can. J. Neurol. Sci.
  doi: 10.1017/cjn.2015.52
– volume: 159
  start-page: 1187
  year: 2017
  ident: ref_8
  article-title: Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers; workshop report
  publication-title: Acta Neurochir.
  doi: 10.1007/s00701-017-3187-z
– volume: 80
  start-page: 718
  year: 2016
  ident: ref_20
  article-title: Stratification of unresponsive patients by an independently validated index of brain complexity
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.24779
– volume: 48
  start-page: 143
  year: 2018
  ident: ref_17
  article-title: Recommendations for the use of electroencephalography and evoked potentials in comatose patients
  publication-title: Neurophysiol. Clin.
  doi: 10.1016/j.neucli.2018.05.038
– volume: 2012
  start-page: 950393
  year: 2012
  ident: ref_39
  article-title: Intracranial pressure monitoring: Invasive versus non-invasive methods—A review
  publication-title: Crit. Care Res. Pract.
– volume: 674
  start-page: 94
  year: 2018
  ident: ref_49
  article-title: The minimal number of TMS trials required for the reliable assessment of corticospinal excitability, short interval intracortical inhibition, and intracortical facilitation
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2018.03.026
– volume: 28
  start-page: 3522
  year: 2000
  ident: ref_18
  article-title: Electroencephalogram silence ratio for early outcome prognosis in severe head trauma
  publication-title: Crit. Care Med.
  doi: 10.1097/00003246-200010000-00029
– volume: 38
  start-page: 840
  year: 2017
  ident: ref_29
  article-title: Imaging in neurocritical care practice
  publication-title: Semin. Respir. Crit. Care Med.
  doi: 10.1055/s-0037-1608770
– volume: 46
  start-page: 125
  year: 2016
  ident: ref_14
  article-title: The value of preoperative functional cortical mapping using navigated TMS
  publication-title: Neurophysiol. Clin./Clin. Neurophysiol.
  doi: 10.1016/j.neucli.2016.05.001
– volume: 131
  start-page: 2307
  year: 2020
  ident: ref_44
  article-title: Motor evoked potentials during revascularization in ischemic stroke predict motor pathway ischemia and clinical outcome
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2020.05.026
– volume: 3
  start-page: 299
  year: 2014
  ident: ref_13
  article-title: Current and potential utility of transcranial magnetic stimulation in the diagnostics before brain tumor surgery
  publication-title: CNS Oncol.
  doi: 10.2217/cns.14.25
– volume: 1
  start-page: 1
  year: 2019
  ident: ref_41
  article-title: Intracranial pressure before and after cranioplasty: Insights into intracranial physiology
  publication-title: J. Neurosurg.
– volume: 62
  start-page: 793
  year: 2020
  ident: ref_47
  article-title: Cortical excitability measured with transcranial magnetic stimulation in children with epilepsy before and after antiepileptic drugs
  publication-title: Dev. Med. Child Neurol.
  doi: 10.1111/dmcn.14490
– volume: 39
  start-page: 71
  year: 2009
  ident: ref_16
  article-title: Consensus on the use of neurophysiological tests in the intensive care unit (ICU): Electroencephalogram (EEG), evoked potentials (EP), and electroneuromyography (ENMG)
  publication-title: Neurophysiol. Clin./Clin. Neurophysiol.
  doi: 10.1016/j.neucli.2009.03.002
– ident: ref_4
  doi: 10.1007/978-1-4939-0879-0_3
– volume: 115
  start-page: 2728
  year: 2004
  ident: ref_28
  article-title: Seizure incidence during single-and paired-pulse transcranial magnetic stimulation (TMS) in individuals with epilepsy
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2004.06.018
– volume: 126
  start-page: 178
  year: 2012
  ident: ref_43
  article-title: Long-lasting TMS motor threshold elevation in mild traumatic brain injury
  publication-title: Acta Neurol. Scand.
  doi: 10.1111/j.1600-0404.2011.01623.x
– volume: 14
  start-page: 1200
  year: 2004
  ident: ref_51
  article-title: The influence of hand posture on corticospinal excitability during motor imagery: A transcranial magnetic stimulation study
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhh080
– volume: 174
  start-page: 376
  year: 2006
  ident: ref_50
  article-title: Variability of motor potentials evoked by transcranial magnetic stimulation depends on muscle activation
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-006-0468-9
– volume: 16
  start-page: 32
  year: 2004
  ident: ref_46
  article-title: Effects of anesthetic agents and physiologic changes on intraoperative motor evoked potentials
  publication-title: J. Neurosurg. Anesthesiol.
  doi: 10.1097/00008506-200401000-00008
– ident: ref_27
  doi: 10.1007/978-3-319-54918-7_4
– volume: 29
  start-page: 551
  year: 1991
  ident: ref_32
  article-title: Noninvasive intraoperative monitoring of motor evoked potentials under propofol anesthesia: Effects of spinal surgery on the amplitude and latency of motor evoked potentials
  publication-title: Neurosurgery
  doi: 10.1227/00006123-199110000-00011
– volume: 91
  start-page: 493
  year: 2003
  ident: ref_33
  article-title: Influence of propofol concentrations on multipulse transcranial motor evoked potentials
  publication-title: Br. J. Anaesth.
  doi: 10.1093/bja/aeg211
– volume: 40
  start-page: 367
  year: 1996
  ident: ref_42
  article-title: Effects of antiepileptic drugs on motor cortex excitability in humans: A transcranial magnetic stimulation study
  publication-title: Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc.
– volume: 59
  start-page: 203
  year: 2013
  ident: ref_12
  article-title: Effects of coil orientation on the electric field induced by TMS over the hand motor area
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/59/1/203
– volume: 6
  start-page: 104
  year: 2007
  ident: ref_38
  article-title: Role of intracranial pressure values and patterns in predicting outcome in traumatic brain injury: A systematic review
  publication-title: Neurocritical Care
  doi: 10.1007/s12028-007-0012-1
– volume: 10
  start-page: 1
  year: 2020
  ident: ref_37
  article-title: consciousness & Brain functional complexity in propofol Anaesthesia
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-57695-3
– volume: 125
  start-page: 2150
  year: 2014
  ident: ref_6
  article-title: Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS)
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2014.05.021
– volume: 21
  start-page: 1
  year: 2014
  ident: ref_22
  article-title: Consensus summary statement of the international multidisciplinary consensus conference on multimodality monitoring in neurocritical care
  publication-title: Neurocritical Care
  doi: 10.1007/s12028-014-0041-5
– volume: 120
  start-page: 2008
  year: 2009
  ident: ref_21
  article-title: Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2009.08.016
– volume: 131
  start-page: 2887
  year: 2020
  ident: ref_36
  article-title: Paired-pulse navigated TMS is more effective than single-pulse navigated TMS for mapping upper extremity muscles in brain tumor patients
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2020.09.025
– volume: 16
  start-page: 1274
  year: 2014
  ident: ref_15
  article-title: Preoperative motor mapping by navigated transcranial magnetic brain stimulation improves outcome for motor eloquent lesions
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/nou007
– volume: 38
  start-page: 715
  year: 2017
  ident: ref_19
  article-title: Neurophysiological assessment of brain dysfunction in critically ill patients: An update
  publication-title: Neurol. Sci.
  doi: 10.1007/s10072-017-2824-x
SSID ssj0000800350
Score 2.1589243
Snippet Navigated transcranial magnetic stimulation (nTMS) is a modality for noninvasive cortical mapping. Specifically, nTMS motor mapping is an objective measure of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1005
SubjectTerms brain stimulation
ICU
intensive care
motor mapping
neurocritical care
nTMS
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEBUlp1xKm6Stmw8UCIUeFq8-VpJzS0KCHXAoJAbfFkkrtS7JOiR2IP8-M9q1sUNJL7nuSqyYGTHzVqP3CDkysfBWKJUFrXwmixgzp2WRRYuiaZFH5VOX75Xqj-TluBivSH1hT1hDD9wYrss95EwTXa8yTvJgrBDM6RhkpVxQRbpHDjlvBUz9besgUeTNuaQAXN91qLgAWQX5rFiOanUreSjR9f-rxnzdKrmSey4-kY9t0UhPmsV-Jh9CvUW2T2oAzHfP9AdNbZzp__g2-XVln5A2I1T0ZnhNJzWFEo8OzkbHdIBd6dXcQ7aiwymAbTq0SM_wm86madRC94DirSR6HVJP9A4ZXZzfnPWzVjYh81LxWWalZ8GAawBKeSUUM44j7ZzhVcFs5ME6nkdnpctNxTTkZ3jgtdUVgw1stfhCNuppHb4RmnPXC8EGw4SWtqedyW1kRrnCKFEJ3iHdhRFL33KKo7TFbQnYAs1evjZ7h_xczrhv-DTeGHuKflmOQybs9ADio2zjo_xffHTI4cKrJewcPA6xdZjOH0sutUDt7TzvkK-Nl5efEngVzeBsveb_tbWsv6knfxI7t9Z4Ut37_h6L3yWbHPE94xkze2Rj9jAP-1AEzdxBivcX92wGsA
  priority: 102
  providerName: Directory of Open Access Journals
Title Navigated TMS in the ICU: Introducing Motor Mapping to the Critical Care Setting
URI https://www.ncbi.nlm.nih.gov/pubmed/33352857
https://www.proquest.com/docview/2473412400
https://pubmed.ncbi.nlm.nih.gov/PMC7765929
https://doaj.org/article/2c6438fb9d8b42e8a331b7fe4d6be657
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEA7SgvRFqvXHVj0iiODD2s2PTXKCSFtaWuGOYnvQtyXJJm2l7ur1Tux_70xu7-yV09dsNrtkJsx8yeT7CHlrYumtUCoPWvlcljHmTssyjxZF0yKPyqcq36E6Gskv5-X53-vR3QTerIR2qCc1Gl9_-P3z9jMs-E-IOAGy7zgUU4CAgVRVLBGarkNc0ijkMOiS_W9dbiSSZCsH8J4L8NbZueXKQTbIQ4H3kQwGrjshKzH7r0pH71dV3glTh5vkUZdf0t2ZQzwmD0LzhGztNoCtv9_SdzRVfKat9C1yMrS_kGEj1PRscEqvGgrZID3eH32kx1jAXk89BDY6aAGX04FFJocLOmlTr7lEAsULTPQ0pPLpp2R0eHC2f5R3Cgu5l4pPcis9CwasCKjLK6GYcRwZ6gyvS2YjD9bxIjorXWFqpiGUQ4PXVtcMZs9q8YysNW0TXhBacNcPwQbDhJa2r50pbGRGudIoUQuekZ35JFa-ox9HFYzrCmAIWqC6b4GMvF-88WNGvfGfvntol0U_JM1ODe34ourWYMU9pF8mun5tnOTBWCGY0zHIWrmgSp2RN3OrVrDI8OTENqGd3lRcaoEy3UWRkeczKy8-NfeSjOgl-y_9y_KT5uoyEXlrjYfa_e1_jvmSbHDE94znzLwia5PxNLyGJGjiemR972B48rWXNhF6ydP_AHdmBhU
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Navigated+TMS+in+the+ICU%3A+Introducing+Motor+Mapping+to+the+Critical+Care+Setting&rft.jtitle=Brain+sciences&rft.au=Schramm%2C+Severin&rft.au=Haddad%2C+Alexander+F&rft.au=Chyall%2C+Lawrence&rft.au=Krieg%2C+Sandro+M&rft.date=2020-12-18&rft.issn=2076-3425&rft.eissn=2076-3425&rft.volume=10&rft.issue=12&rft_id=info:doi/10.3390%2Fbrainsci10121005&rft_id=info%3Apmid%2F33352857&rft.externalDocID=33352857
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3425&client=summon