Navigated TMS in the ICU: Introducing Motor Mapping to the Critical Care Setting
Navigated transcranial magnetic stimulation (nTMS) is a modality for noninvasive cortical mapping. Specifically, nTMS motor mapping is an objective measure of motor function, offering quantitative diagnostic information regardless of subject cooperation or consciousness. Thus far, it has mostly been...
Saved in:
Published in | Brain sciences Vol. 10; no. 12; p. 1005 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
18.12.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
ISSN | 2076-3425 2076-3425 |
DOI | 10.3390/brainsci10121005 |
Cover
Loading…
Abstract | Navigated transcranial magnetic stimulation (nTMS) is a modality for noninvasive cortical mapping. Specifically, nTMS motor mapping is an objective measure of motor function, offering quantitative diagnostic information regardless of subject cooperation or consciousness. Thus far, it has mostly been restricted to the outpatient setting. This study evaluates the feasibility of nTMS motor mapping in the intensive care unit (ICU) setting and solves the challenges encountered in this special environment. We compared neuronavigation based on computed tomography (CT) and magnetic resonance imaging (MRI). We performed motor mappings in neurocritical patients under varying conditions (e.g., sedation or hemicraniectomy). Furthermore, we identified ways of minimizing electromyography (EMG) noise in the interference-rich ICU environment. Motor mapping was performed in 21 patients (six females, median age: 69 years). In 18 patients, motor evoked potentials (MEPs) were obtained. In three patients, MEPs could not be evoked. No adverse reactions occurred. We found CT to offer a comparable neuronavigation to MRI (CT maximum e-field 52 ± 14 V/m vs. MRI maximum e-field 52 ± 11 V/m; p = 0.6574). We detailed EMG noise reduction methods and found that propofol sedation of up to 80 mcg/kg/h did not inhibit MEPs. Yet, nTMS equipment interfered with exposed pulse oximetry. nTMS motor mapping application and use was illustrated in three clinical cases. In conclusion, we present an approach for the safe and reliable use of nTMS motor mapping in the ICU setting and outline possible benefits. Our findings support further studies regarding the clinical value of nTMS in critical care settings. |
---|---|
AbstractList | Navigated transcranial magnetic stimulation (nTMS) is a modality for noninvasive cortical mapping. Specifically, nTMS motor mapping is an objective measure of motor function, offering quantitative diagnostic information regardless of subject cooperation or consciousness. Thus far, it has mostly been restricted to the outpatient setting. This study evaluates the feasibility of nTMS motor mapping in the intensive care unit (ICU) setting and solves the challenges encountered in this special environment. We compared neuronavigation based on computed tomography (CT) and magnetic resonance imaging (MRI). We performed motor mappings in neurocritical patients under varying conditions (e.g., sedation or hemicraniectomy). Furthermore, we identified ways of minimizing electromyography (EMG) noise in the interference-rich ICU environment. Motor mapping was performed in 21 patients (six females, median age: 69 years). In 18 patients, motor evoked potentials (MEPs) were obtained. In three patients, MEPs could not be evoked. No adverse reactions occurred. We found CT to offer a comparable neuronavigation to MRI (CT maximum e-field 52 ± 14 V/m vs. MRI maximum e-field 52 ± 11 V/m; p = 0.6574). We detailed EMG noise reduction methods and found that propofol sedation of up to 80 mcg/kg/h did not inhibit MEPs. Yet, nTMS equipment interfered with exposed pulse oximetry. nTMS motor mapping application and use was illustrated in three clinical cases. In conclusion, we present an approach for the safe and reliable use of nTMS motor mapping in the ICU setting and outline possible benefits. Our findings support further studies regarding the clinical value of nTMS in critical care settings.Navigated transcranial magnetic stimulation (nTMS) is a modality for noninvasive cortical mapping. Specifically, nTMS motor mapping is an objective measure of motor function, offering quantitative diagnostic information regardless of subject cooperation or consciousness. Thus far, it has mostly been restricted to the outpatient setting. This study evaluates the feasibility of nTMS motor mapping in the intensive care unit (ICU) setting and solves the challenges encountered in this special environment. We compared neuronavigation based on computed tomography (CT) and magnetic resonance imaging (MRI). We performed motor mappings in neurocritical patients under varying conditions (e.g., sedation or hemicraniectomy). Furthermore, we identified ways of minimizing electromyography (EMG) noise in the interference-rich ICU environment. Motor mapping was performed in 21 patients (six females, median age: 69 years). In 18 patients, motor evoked potentials (MEPs) were obtained. In three patients, MEPs could not be evoked. No adverse reactions occurred. We found CT to offer a comparable neuronavigation to MRI (CT maximum e-field 52 ± 14 V/m vs. MRI maximum e-field 52 ± 11 V/m; p = 0.6574). We detailed EMG noise reduction methods and found that propofol sedation of up to 80 mcg/kg/h did not inhibit MEPs. Yet, nTMS equipment interfered with exposed pulse oximetry. nTMS motor mapping application and use was illustrated in three clinical cases. In conclusion, we present an approach for the safe and reliable use of nTMS motor mapping in the ICU setting and outline possible benefits. Our findings support further studies regarding the clinical value of nTMS in critical care settings. Navigated transcranial magnetic stimulation (nTMS) is a modality for noninvasive cortical mapping. Specifically, nTMS motor mapping is an objective measure of motor function, offering quantitative diagnostic information regardless of subject cooperation or consciousness. Thus far, it has mostly been restricted to the outpatient setting. This study evaluates the feasibility of nTMS motor mapping in the intensive care unit (ICU) setting and solves the challenges encountered in this special environment. We compared neuronavigation based on computed tomography (CT) and magnetic resonance imaging (MRI). We performed motor mappings in neurocritical patients under varying conditions (e.g., sedation or hemicraniectomy). Furthermore, we identified ways of minimizing electromyography (EMG) noise in the interference-rich ICU environment. Motor mapping was performed in 21 patients (six females, median age: 69 years). In 18 patients, motor evoked potentials (MEPs) were obtained. In three patients, MEPs could not be evoked. No adverse reactions occurred. We found CT to offer a comparable neuronavigation to MRI (CT maximum e-field 52 ± 14 V/m vs. MRI maximum e-field 52 ± 11 V/m; p = 0.6574). We detailed EMG noise reduction methods and found that propofol sedation of up to 80 mcg/kg/h did not inhibit MEPs. Yet, nTMS equipment interfered with exposed pulse oximetry. nTMS motor mapping application and use was illustrated in three clinical cases. In conclusion, we present an approach for the safe and reliable use of nTMS motor mapping in the ICU setting and outline possible benefits. Our findings support further studies regarding the clinical value of nTMS in critical care settings. Navigated transcranial magnetic stimulation (nTMS) is a modality for noninvasive cortical mapping. Specifically, nTMS motor mapping is an objective measure of motor function, offering quantitative diagnostic information regardless of subject cooperation or consciousness. Thus far, it has mostly been restricted to the outpatient setting. This study evaluates the feasibility of nTMS motor mapping in the intensive care unit (ICU) setting and solves the challenges encountered in this special environment. We compared neuronavigation based on computed tomography (CT) and magnetic resonance imaging (MRI). We performed motor mappings in neurocritical patients under varying conditions (e.g., sedation or hemicraniectomy). Furthermore, we identified ways of minimizing electromyography (EMG) noise in the interference-rich ICU environment. Motor mapping was performed in 21 patients (six females, median age: 69 years). In 18 patients, motor evoked potentials (MEPs) were obtained. In three patients, MEPs could not be evoked. No adverse reactions occurred. We found CT to offer a comparable neuronavigation to MRI (CT maximum e-field 52 ± 14 V/m vs. MRI maximum e-field 52 ± 11 V/m; = 0.6574). We detailed EMG noise reduction methods and found that propofol sedation of up to 80 mcg/kg/h did not inhibit MEPs. Yet, nTMS equipment interfered with exposed pulse oximetry. nTMS motor mapping application and use was illustrated in three clinical cases. In conclusion, we present an approach for the safe and reliable use of nTMS motor mapping in the ICU setting and outline possible benefits. Our findings support further studies regarding the clinical value of nTMS in critical care settings. Navigated transcranial magnetic stimulation (nTMS) is a modality for noninvasive cortical mapping. Specifically, nTMS motor mapping is an objective measure of motor function, offering quantitative diagnostic information regardless of subject cooperation or consciousness. Thus far, it has mostly been restricted to the outpatient setting. This study evaluates the feasibility of nTMS motor mapping in the intensive care unit (ICU) setting and solves the challenges encountered in this special environment. We compared neuronavigation based on computed tomography (CT) and magnetic resonance imaging (MRI). We performed motor mappings in neurocritical patients under varying conditions (e.g., sedation or hemicraniectomy). Furthermore, we identified ways of minimizing electromyography (EMG) noise in the interference-rich ICU environment. Motor mapping was performed in 21 patients (six females, median age: 69 years). In 18 patients, motor evoked potentials (MEPs) were obtained. In three patients, MEPs could not be evoked. No adverse reactions occurred. We found CT to offer a comparable neuronavigation to MRI (CT maximum e-field 52 ± 14 V/m vs. MRI maximum e-field 52 ± 11 V/m; p = 0.6574). We detailed EMG noise reduction methods and found that propofol sedation of up to 80 mcg/kg/h did not inhibit MEPs. Yet, nTMS equipment interfered with exposed pulse oximetry. nTMS motor mapping application and use was illustrated in three clinical cases. In conclusion, we present an approach for the safe and reliable use of nTMS motor mapping in the ICU setting and outline possible benefits. Our findings support further studies regarding the clinical value of nTMS in critical care settings. |
Author | Schramm, Severin Haddad, Alexander F. Chyall, Lawrence Krieg, Sandro M. Tarapore, Phiroz E. Sollmann, Nico |
AuthorAffiliation | 2 Department of Neurosurgery, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA 94110, USA; Alexander.Haddad@ucsf.edu (A.F.H.); Lawrence.Chyall@sfdph.org (L.C.); Phiroz.Tarapore@ucsf.edu (P.E.T.) 1 Department of Neurosurgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; Sandro.Krieg@tum.de 4 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany 3 TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany; Nico.Sollmann@tum.de |
AuthorAffiliation_xml | – name: 3 TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany; Nico.Sollmann@tum.de – name: 2 Department of Neurosurgery, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA 94110, USA; Alexander.Haddad@ucsf.edu (A.F.H.); Lawrence.Chyall@sfdph.org (L.C.); Phiroz.Tarapore@ucsf.edu (P.E.T.) – name: 4 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany – name: 1 Department of Neurosurgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; Sandro.Krieg@tum.de |
Author_xml | – sequence: 1 givenname: Severin surname: Schramm fullname: Schramm, Severin – sequence: 2 givenname: Alexander F. surname: Haddad fullname: Haddad, Alexander F. – sequence: 3 givenname: Lawrence surname: Chyall fullname: Chyall, Lawrence – sequence: 4 givenname: Sandro M. orcidid: 0000-0003-4050-1531 surname: Krieg fullname: Krieg, Sandro M. – sequence: 5 givenname: Nico orcidid: 0000-0002-8120-2223 surname: Sollmann fullname: Sollmann, Nico – sequence: 6 givenname: Phiroz E. surname: Tarapore fullname: Tarapore, Phiroz E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33352857$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1PGzEQhi1EBTTlzgntsZe0_lrb20OlakXbSKStBJytsXc2GG3WqddB6r-vQ6ACpPpie-adZzx-35LDMY5IyBmjH4Ro6EeXIIyTD4wyziitD8gJp1rNheT14bPzMTmdpjtalqFU1PSIHAsham5qfUJ-_YD7sIKMXXW9vKrCWOVbrBbtzadqMeYUu60P46paxhxTtYTNZnfL8UHVppCDh6FqIWF1hTmX5DvypodhwtPHfUZuvl5ct9_nlz-_Ldovl3MvFc9zkJ6hQe9N03glFDOOayVqw7uaQc8RHKe9A-mo6ZhWTJaA16A7VkYCLWZksed2Ee7sJoU1pD82QrAPgZhWFlJ53oCWeyWF6V3TGSc5GhCCOd2j7JRDVe9Yn_eszdatsfNYJofhBfRlZgy3dhXvrdaqbnhTAO8fASn-3uKU7TpMHocBRozbyXKphWRclv-fkfPnvf41ebKkCNRe4FOcpoS99SFDDnHXOgyWUbuz3762vxTSV4VP7P-W_AU1NLOR |
CitedBy_id | crossref_primary_10_3390_brainsci11070897 crossref_primary_10_1016_j_bas_2025_104229 crossref_primary_10_3390_brainsci12050628 crossref_primary_10_3390_brainsci13030451 |
Cites_doi | 10.1016/j.clinph.2014.08.028 10.1016/j.neuroimage.2008.09.040 10.1186/s12868-016-0321-4 10.1186/1471-2202-14-94 10.1007/s00701-016-2970-6 10.1093/neuros/nyz049 10.1016/j.clinph.2015.11.042 10.3171/2009.8.FOCUS09145 10.1251/bpo115 10.1023/B:BRAT.0000006333.93597.9d 10.1016/S1567-424X(09)70205-3 10.25259/SNI-124-2019 10.3171/jns.2002.96.3.0571 10.1016/j.neuroscience.2016.02.012 10.1016/j.neuron.2004.12.033 10.1007/978-1-4939-0879-0 10.3171/2012.5.JNS112124 10.1017/cjn.2015.52 10.1007/s00701-017-3187-z 10.1002/ana.24779 10.1016/j.neucli.2018.05.038 10.1016/j.neulet.2018.03.026 10.1097/00003246-200010000-00029 10.1055/s-0037-1608770 10.1016/j.neucli.2016.05.001 10.1016/j.clinph.2020.05.026 10.2217/cns.14.25 10.1111/dmcn.14490 10.1016/j.neucli.2009.03.002 10.1007/978-1-4939-0879-0_3 10.1016/j.clinph.2004.06.018 10.1111/j.1600-0404.2011.01623.x 10.1093/cercor/bhh080 10.1007/s00221-006-0468-9 10.1097/00008506-200401000-00008 10.1007/978-3-319-54918-7_4 10.1227/00006123-199110000-00011 10.1093/bja/aeg211 10.1088/0031-9155/59/1/203 10.1007/s12028-007-0012-1 10.1038/s41598-020-57695-3 10.1016/j.clinph.2014.05.021 10.1007/s12028-014-0041-5 10.1016/j.clinph.2009.08.016 10.1016/j.clinph.2020.09.025 10.1093/neuonc/nou007 10.1007/s10072-017-2824-x |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/brainsci10121005 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2076-3425 |
ExternalDocumentID | oai_doaj_org_article_2c6438fb9d8b42e8a331b7fe4d6be657 PMC7765929 33352857 10_3390_brainsci10121005 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM 3V. NPM 7X8 PQGLB 5PM PUEGO |
ID | FETCH-LOGICAL-c462t-a4c1e8ecc899c63618b2763582d51af2eab20fba4b08d17614ab2c7a7d1425a73 |
IEDL.DBID | M48 |
ISSN | 2076-3425 |
IngestDate | Wed Aug 27 01:28:10 EDT 2025 Thu Aug 21 18:19:20 EDT 2025 Fri Jul 11 02:34:49 EDT 2025 Thu Jan 02 22:58:08 EST 2025 Tue Jul 01 02:32:44 EDT 2025 Thu Apr 24 22:52:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | brain stimulation neuromonitoring intensive care functional mapping motor evoked potentials motor mapping ICU nTMS neurocritical care |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-a4c1e8ecc899c63618b2763582d51af2eab20fba4b08d17614ab2c7a7d1425a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4050-1531 0000-0002-8120-2223 |
OpenAccessLink | https://doaj.org/article/2c6438fb9d8b42e8a331b7fe4d6be657 |
PMID | 33352857 |
PQID | 2473412400 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2c6438fb9d8b42e8a331b7fe4d6be657 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7765929 proquest_miscellaneous_2473412400 pubmed_primary_33352857 crossref_citationtrail_10_3390_brainsci10121005 crossref_primary_10_3390_brainsci10121005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201218 |
PublicationDateYYYYMMDD | 2020-12-18 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201218 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Brain sciences |
PublicationTitleAlternate | Brain Sci |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Williamson (ref_29) 2017; 38 Tallus (ref_43) 2012; 126 Amantini (ref_16) 2009; 39 Wang (ref_35) 2009; 27 Lotto (ref_46) 2004; 16 Lefaucheur (ref_6) 2014; 125 Krieg (ref_8) 2017; 159 Scheufler (ref_34) 2002; 96 Huang (ref_7) 2005; 45 Greve (ref_44) 2020; 131 Zyss (ref_17) 2018; 48 Rossi (ref_21) 2009; 120 ref_25 Lefaucheur (ref_14) 2016; 46 ref_24 Treggiari (ref_38) 2007; 6 Jellinek (ref_32) 1991; 29 Picht (ref_13) 2014; 3 Sollmann (ref_36) 2020; 131 Theilen (ref_18) 2000; 28 ref_27 Krieg (ref_15) 2014; 16 Vargas (ref_51) 2004; 14 Darling (ref_50) 2006; 174 Julkunen (ref_11) 2009; 44 Ziemann (ref_42) 1996; 40 Awiszus (ref_26) 2003; Volume 56 Andresen (ref_40) 2020; 86 Schrader (ref_28) 2004; 115 Andresen (ref_41) 2019; 1 Tarapore (ref_5) 2016; 127 Herwig (ref_10) 2003; 16 Casarotto (ref_20) 2016; 80 Azabou (ref_19) 2017; 38 Sollmann (ref_3) 2016; 158 Tarapore (ref_9) 2012; 117 Goldsworthy (ref_48) 2016; 320 Reaz (ref_23) 2006; 8 Ziemann (ref_45) 2015; 126 Varley (ref_37) 2020; 10 Pinto (ref_31) 2019; 10 Andreasson (ref_47) 2020; 62 Nathan (ref_33) 2003; 91 Raboel (ref_39) 2012; 2012 ref_1 Algethamy (ref_30) 2015; 42 ref_2 Laakso (ref_12) 2013; 59 Biabani (ref_49) 2018; 674 Menon (ref_22) 2014; 21 ref_4 |
References_xml | – volume: 126 start-page: 1847 year: 2015 ident: ref_45 article-title: TMS and drugs revisited 2014 publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2014.08.028 – volume: 44 start-page: 790 year: 2009 ident: ref_11 article-title: Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.09.040 – ident: ref_24 doi: 10.1186/s12868-016-0321-4 – ident: ref_25 doi: 10.1186/1471-2202-14-94 – volume: 158 start-page: 2277 year: 2016 ident: ref_3 article-title: Comparison between electric-field-navigated and line-navigated TMS for cortical motor mapping in patients with brain tumors publication-title: Acta Neurochir. doi: 10.1007/s00701-016-2970-6 – volume: 86 start-page: 231 year: 2020 ident: ref_40 article-title: Long-term effect of decompressive craniectomy on intracranial pressure and possible implications for intracranial fluid movements publication-title: Neurosurgery doi: 10.1093/neuros/nyz049 – volume: 127 start-page: 1895 year: 2016 ident: ref_5 article-title: Safety and tolerability of navigated TMS for preoperative mapping in neurosurgical patients publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2015.11.042 – volume: 27 start-page: E7 year: 2009 ident: ref_35 article-title: Impact of anesthesia on transcranial electric motor evoked potential monitoring during spine surgery: A review of the literature publication-title: Neurosurg. Focus doi: 10.3171/2009.8.FOCUS09145 – volume: 8 start-page: 11 year: 2006 ident: ref_23 article-title: Techniques of EMG signal analysis: Detection, processing, classification and applications publication-title: Biol. Proced. Online doi: 10.1251/bpo115 – volume: 16 start-page: 95 year: 2003 ident: ref_10 article-title: Using the international 10–20 EEG system for positioning of transcranial magnetic stimulation publication-title: Brain Topogr. doi: 10.1023/B:BRAT.0000006333.93597.9d – ident: ref_1 – volume: Volume 56 start-page: 13 year: 2003 ident: ref_26 article-title: TMS and threshold hunting publication-title: Supplements to Clinical Neurophysiology doi: 10.1016/S1567-424X(09)70205-3 – volume: 10 start-page: 134 year: 2019 ident: ref_31 article-title: Computed tomography-guided navigated transcranial magnetic stimulation for preoperative brain motor mapping in brain lesion resection: A case report publication-title: Surg. Neurol. Int. doi: 10.25259/SNI-124-2019 – volume: 96 start-page: 571 year: 2002 ident: ref_34 article-title: Total intravenous anesthesia for intraoperative monitoring of the motor pathways: An integral view combining clinical and experimental data publication-title: J. Neurosurg. doi: 10.3171/jns.2002.96.3.0571 – volume: 320 start-page: 205 year: 2016 ident: ref_48 article-title: Minimum number of trials required for within-and between-session reliability of TMS measures of corticospinal excitability publication-title: Neuroscience doi: 10.1016/j.neuroscience.2016.02.012 – volume: 45 start-page: 201 year: 2005 ident: ref_7 article-title: Theta burst stimulation of the human motor cortex publication-title: Neuron doi: 10.1016/j.neuron.2004.12.033 – ident: ref_2 doi: 10.1007/978-1-4939-0879-0 – volume: 117 start-page: 354 year: 2012 ident: ref_9 article-title: Preoperative multimodal motor mapping: A comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation publication-title: J. Neurosurg. doi: 10.3171/2012.5.JNS112124 – volume: 42 start-page: 324 year: 2015 ident: ref_30 article-title: Added value of MRI over CT of the brain in intensive care unit patients publication-title: Can. J. Neurol. Sci. doi: 10.1017/cjn.2015.52 – volume: 159 start-page: 1187 year: 2017 ident: ref_8 article-title: Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers; workshop report publication-title: Acta Neurochir. doi: 10.1007/s00701-017-3187-z – volume: 80 start-page: 718 year: 2016 ident: ref_20 article-title: Stratification of unresponsive patients by an independently validated index of brain complexity publication-title: Ann. Neurol. doi: 10.1002/ana.24779 – volume: 48 start-page: 143 year: 2018 ident: ref_17 article-title: Recommendations for the use of electroencephalography and evoked potentials in comatose patients publication-title: Neurophysiol. Clin. doi: 10.1016/j.neucli.2018.05.038 – volume: 2012 start-page: 950393 year: 2012 ident: ref_39 article-title: Intracranial pressure monitoring: Invasive versus non-invasive methods—A review publication-title: Crit. Care Res. Pract. – volume: 674 start-page: 94 year: 2018 ident: ref_49 article-title: The minimal number of TMS trials required for the reliable assessment of corticospinal excitability, short interval intracortical inhibition, and intracortical facilitation publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2018.03.026 – volume: 28 start-page: 3522 year: 2000 ident: ref_18 article-title: Electroencephalogram silence ratio for early outcome prognosis in severe head trauma publication-title: Crit. Care Med. doi: 10.1097/00003246-200010000-00029 – volume: 38 start-page: 840 year: 2017 ident: ref_29 article-title: Imaging in neurocritical care practice publication-title: Semin. Respir. Crit. Care Med. doi: 10.1055/s-0037-1608770 – volume: 46 start-page: 125 year: 2016 ident: ref_14 article-title: The value of preoperative functional cortical mapping using navigated TMS publication-title: Neurophysiol. Clin./Clin. Neurophysiol. doi: 10.1016/j.neucli.2016.05.001 – volume: 131 start-page: 2307 year: 2020 ident: ref_44 article-title: Motor evoked potentials during revascularization in ischemic stroke predict motor pathway ischemia and clinical outcome publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2020.05.026 – volume: 3 start-page: 299 year: 2014 ident: ref_13 article-title: Current and potential utility of transcranial magnetic stimulation in the diagnostics before brain tumor surgery publication-title: CNS Oncol. doi: 10.2217/cns.14.25 – volume: 1 start-page: 1 year: 2019 ident: ref_41 article-title: Intracranial pressure before and after cranioplasty: Insights into intracranial physiology publication-title: J. Neurosurg. – volume: 62 start-page: 793 year: 2020 ident: ref_47 article-title: Cortical excitability measured with transcranial magnetic stimulation in children with epilepsy before and after antiepileptic drugs publication-title: Dev. Med. Child Neurol. doi: 10.1111/dmcn.14490 – volume: 39 start-page: 71 year: 2009 ident: ref_16 article-title: Consensus on the use of neurophysiological tests in the intensive care unit (ICU): Electroencephalogram (EEG), evoked potentials (EP), and electroneuromyography (ENMG) publication-title: Neurophysiol. Clin./Clin. Neurophysiol. doi: 10.1016/j.neucli.2009.03.002 – ident: ref_4 doi: 10.1007/978-1-4939-0879-0_3 – volume: 115 start-page: 2728 year: 2004 ident: ref_28 article-title: Seizure incidence during single-and paired-pulse transcranial magnetic stimulation (TMS) in individuals with epilepsy publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2004.06.018 – volume: 126 start-page: 178 year: 2012 ident: ref_43 article-title: Long-lasting TMS motor threshold elevation in mild traumatic brain injury publication-title: Acta Neurol. Scand. doi: 10.1111/j.1600-0404.2011.01623.x – volume: 14 start-page: 1200 year: 2004 ident: ref_51 article-title: The influence of hand posture on corticospinal excitability during motor imagery: A transcranial magnetic stimulation study publication-title: Cereb. Cortex doi: 10.1093/cercor/bhh080 – volume: 174 start-page: 376 year: 2006 ident: ref_50 article-title: Variability of motor potentials evoked by transcranial magnetic stimulation depends on muscle activation publication-title: Exp. Brain Res. doi: 10.1007/s00221-006-0468-9 – volume: 16 start-page: 32 year: 2004 ident: ref_46 article-title: Effects of anesthetic agents and physiologic changes on intraoperative motor evoked potentials publication-title: J. Neurosurg. Anesthesiol. doi: 10.1097/00008506-200401000-00008 – ident: ref_27 doi: 10.1007/978-3-319-54918-7_4 – volume: 29 start-page: 551 year: 1991 ident: ref_32 article-title: Noninvasive intraoperative monitoring of motor evoked potentials under propofol anesthesia: Effects of spinal surgery on the amplitude and latency of motor evoked potentials publication-title: Neurosurgery doi: 10.1227/00006123-199110000-00011 – volume: 91 start-page: 493 year: 2003 ident: ref_33 article-title: Influence of propofol concentrations on multipulse transcranial motor evoked potentials publication-title: Br. J. Anaesth. doi: 10.1093/bja/aeg211 – volume: 40 start-page: 367 year: 1996 ident: ref_42 article-title: Effects of antiepileptic drugs on motor cortex excitability in humans: A transcranial magnetic stimulation study publication-title: Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. – volume: 59 start-page: 203 year: 2013 ident: ref_12 article-title: Effects of coil orientation on the electric field induced by TMS over the hand motor area publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/59/1/203 – volume: 6 start-page: 104 year: 2007 ident: ref_38 article-title: Role of intracranial pressure values and patterns in predicting outcome in traumatic brain injury: A systematic review publication-title: Neurocritical Care doi: 10.1007/s12028-007-0012-1 – volume: 10 start-page: 1 year: 2020 ident: ref_37 article-title: consciousness & Brain functional complexity in propofol Anaesthesia publication-title: Sci. Rep. doi: 10.1038/s41598-020-57695-3 – volume: 125 start-page: 2150 year: 2014 ident: ref_6 article-title: Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2014.05.021 – volume: 21 start-page: 1 year: 2014 ident: ref_22 article-title: Consensus summary statement of the international multidisciplinary consensus conference on multimodality monitoring in neurocritical care publication-title: Neurocritical Care doi: 10.1007/s12028-014-0041-5 – volume: 120 start-page: 2008 year: 2009 ident: ref_21 article-title: Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2009.08.016 – volume: 131 start-page: 2887 year: 2020 ident: ref_36 article-title: Paired-pulse navigated TMS is more effective than single-pulse navigated TMS for mapping upper extremity muscles in brain tumor patients publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2020.09.025 – volume: 16 start-page: 1274 year: 2014 ident: ref_15 article-title: Preoperative motor mapping by navigated transcranial magnetic brain stimulation improves outcome for motor eloquent lesions publication-title: Neuro-Oncology doi: 10.1093/neuonc/nou007 – volume: 38 start-page: 715 year: 2017 ident: ref_19 article-title: Neurophysiological assessment of brain dysfunction in critically ill patients: An update publication-title: Neurol. Sci. doi: 10.1007/s10072-017-2824-x |
SSID | ssj0000800350 |
Score | 2.1589243 |
Snippet | Navigated transcranial magnetic stimulation (nTMS) is a modality for noninvasive cortical mapping. Specifically, nTMS motor mapping is an objective measure of... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1005 |
SubjectTerms | brain stimulation ICU intensive care motor mapping neurocritical care nTMS |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEBUlp1xKm6Stmw8UCIUeFq8-VpJzS0KCHXAoJAbfFkkrtS7JOiR2IP8-M9q1sUNJL7nuSqyYGTHzVqP3CDkysfBWKJUFrXwmixgzp2WRRYuiaZFH5VOX75Xqj-TluBivSH1hT1hDD9wYrss95EwTXa8yTvJgrBDM6RhkpVxQRbpHDjlvBUz9besgUeTNuaQAXN91qLgAWQX5rFiOanUreSjR9f-rxnzdKrmSey4-kY9t0UhPmsV-Jh9CvUW2T2oAzHfP9AdNbZzp__g2-XVln5A2I1T0ZnhNJzWFEo8OzkbHdIBd6dXcQ7aiwymAbTq0SM_wm86madRC94DirSR6HVJP9A4ZXZzfnPWzVjYh81LxWWalZ8GAawBKeSUUM44j7ZzhVcFs5ME6nkdnpctNxTTkZ3jgtdUVgw1stfhCNuppHb4RmnPXC8EGw4SWtqedyW1kRrnCKFEJ3iHdhRFL33KKo7TFbQnYAs1evjZ7h_xczrhv-DTeGHuKflmOQybs9ADio2zjo_xffHTI4cKrJewcPA6xdZjOH0sutUDt7TzvkK-Nl5efEngVzeBsveb_tbWsv6knfxI7t9Z4Ut37_h6L3yWbHPE94xkze2Rj9jAP-1AEzdxBivcX92wGsA priority: 102 providerName: Directory of Open Access Journals |
Title | Navigated TMS in the ICU: Introducing Motor Mapping to the Critical Care Setting |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33352857 https://www.proquest.com/docview/2473412400 https://pubmed.ncbi.nlm.nih.gov/PMC7765929 https://doaj.org/article/2c6438fb9d8b42e8a331b7fe4d6be657 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEA7SgvRFqvXHVj0iiODD2s2PTXKCSFtaWuGOYnvQtyXJJm2l7ur1Tux_70xu7-yV09dsNrtkJsx8yeT7CHlrYumtUCoPWvlcljHmTssyjxZF0yKPyqcq36E6Gskv5-X53-vR3QTerIR2qCc1Gl9_-P3z9jMs-E-IOAGy7zgUU4CAgVRVLBGarkNc0ijkMOiS_W9dbiSSZCsH8J4L8NbZueXKQTbIQ4H3kQwGrjshKzH7r0pH71dV3glTh5vkUZdf0t2ZQzwmD0LzhGztNoCtv9_SdzRVfKat9C1yMrS_kGEj1PRscEqvGgrZID3eH32kx1jAXk89BDY6aAGX04FFJocLOmlTr7lEAsULTPQ0pPLpp2R0eHC2f5R3Cgu5l4pPcis9CwasCKjLK6GYcRwZ6gyvS2YjD9bxIjorXWFqpiGUQ4PXVtcMZs9q8YysNW0TXhBacNcPwQbDhJa2r50pbGRGudIoUQuekZ35JFa-ox9HFYzrCmAIWqC6b4GMvF-88WNGvfGfvntol0U_JM1ODe34ourWYMU9pF8mun5tnOTBWCGY0zHIWrmgSp2RN3OrVrDI8OTENqGd3lRcaoEy3UWRkeczKy8-NfeSjOgl-y_9y_KT5uoyEXlrjYfa_e1_jvmSbHDE94znzLwia5PxNLyGJGjiemR972B48rWXNhF6ydP_AHdmBhU |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Navigated+TMS+in+the+ICU%3A+Introducing+Motor+Mapping+to+the+Critical+Care+Setting&rft.jtitle=Brain+sciences&rft.au=Schramm%2C+Severin&rft.au=Haddad%2C+Alexander+F&rft.au=Chyall%2C+Lawrence&rft.au=Krieg%2C+Sandro+M&rft.date=2020-12-18&rft.issn=2076-3425&rft.eissn=2076-3425&rft.volume=10&rft.issue=12&rft_id=info:doi/10.3390%2Fbrainsci10121005&rft_id=info%3Apmid%2F33352857&rft.externalDocID=33352857 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3425&client=summon |