Temporal Changes in Cortical and Hippocampal Expression of Genes Important for Brain Glucose Metabolism Following Controlled Cortical Impact Injury in Mice
Traumatic brain injury (TBI) causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes impo...
Saved in:
Published in | Frontiers in endocrinology (Lausanne) Vol. 8; p. 231 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
11.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traumatic brain injury (TBI) causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes important for brain glucose/lactate metabolism and the effect of a known neuroprotective drug telmisartan on the expression of these genes after experimental TBI. Adult male C57BL/6J mice (
= 6/group) underwent sham or unilateral controlled cortical impact (CCI) injury. Their ipsilateral and contralateral cortex and hippocampus were collected 6 h, 1, 3, 7, 14, 21, and 28 days after injury. Expressions of several genes important for brain glucose utilization were determined by qRT-PCR. In results, (1) mRNA levels of three key enzymes in glucose metabolism [hexo kinase (HK) 1, pyruvate kinase, and pyruvate dehydrogenase (PDH)] were all increased 6 h after injury in the contralateral cortex, followed by decreases at subsequent times in the ipsilateral cortex and hippocampus; (2) capillary glucose transporter Glut-1 mRNA increased, while neuronal glucose transporter Glut-3 mRNA decreased, at various times in the ipsilateral cortex and hippocampus; (3) astrocyte lactate transporter MCT-1 mRNA increased, whereas neuronal lactate transporter MCT-2 mRNA decreased in the ipsilateral cortex and hippocampus; (4) HK2 (an isoform of hexokinase) expression increased at all time points in the ipsilateral cortex and hippocampus. GPR81 (lactate receptor) mRNA increased at various time points in the ipsilateral cortex and hippocampus. These temporal alterations in gene expression corresponded closely to the patterns of impaired brain glucose utilization reported in both TBI patients and experimental TBI rodents. The observed changes in hippocampal gene expression were delayed and prolonged, when compared with those in the cortex. The patterns of alterations were specific to different brain regions and exhibited different recovery periods following TBI. Oral administration of telmisartan (1 mg/kg, for 7 days,
= 10 per group) ameliorated cortical or hippocampal mRNA for Glut-1/3, MCT-1/2 and PDH in CCI mice. These data provide molecular evidence for dynamic alteration of multiple critical factors in brain glucose metabolism post-TBI and can inform further research for treating brain metabolic disorders post-TBI. |
---|---|
AbstractList | Traumatic brain injury (TBI) causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes important for brain glucose/lactate metabolism and the effect of a known neuroprotective drug telmisartan on the expression of these genes after experimental TBI. Adult male C57BL/6J mice (n = 6/group) underwent sham or unilateral controlled cortical impact (CCI) injury. Their ipsilateral and contralateral cortex and hippocampus were collected 6 h, 1, 3, 7, 14, 21, and 28 days after injury. Expressions of several genes important for brain glucose utilization were determined by qRT-PCR. In results, (1) mRNA levels of three key enzymes in glucose metabolism [hexo kinase (HK) 1, pyruvate kinase, and pyruvate dehydrogenase (PDH)] were all increased 6 h after injury in the contralateral cortex, followed by decreases at subsequent times in the ipsilateral cortex and hippocampus; (2) capillary glucose transporter Glut-1 mRNA increased, while neuronal glucose transporter Glut-3 mRNA decreased, at various times in the ipsilateral cortex and hippocampus; (3) astrocyte lactate transporter MCT-1 mRNA increased, whereas neuronal lactate transporter MCT-2 mRNA decreased in the ipsilateral cortex and hippocampus; (4) HK2 (an isoform of hexokinase) expression increased at all time points in the ipsilateral cortex and hippocampus. GPR81 (lactate receptor) mRNA increased at various time points in the ipsilateral cortex and hippocampus. These temporal alterations in gene expression corresponded closely to the patterns of impaired brain glucose utilization reported in both TBI patients and experimental TBI rodents. The observed changes in hippocampal gene expression were delayed and prolonged, when compared with those in the cortex. The patterns of alterations were specific to different brain regions and exhibited different recovery periods following TBI. Oral administration of telmisartan (1 mg/kg, for 7 days, n = 10 per group) ameliorated cortical or hippocampal mRNA for Glut-1/3, MCT-1/2 and PDH in CCI mice. These data provide molecular evidence for dynamic alteration of multiple critical factors in brain glucose metabolism post-TBI and can inform further research for treating brain metabolic disorders post-TBI.Traumatic brain injury (TBI) causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes important for brain glucose/lactate metabolism and the effect of a known neuroprotective drug telmisartan on the expression of these genes after experimental TBI. Adult male C57BL/6J mice (n = 6/group) underwent sham or unilateral controlled cortical impact (CCI) injury. Their ipsilateral and contralateral cortex and hippocampus were collected 6 h, 1, 3, 7, 14, 21, and 28 days after injury. Expressions of several genes important for brain glucose utilization were determined by qRT-PCR. In results, (1) mRNA levels of three key enzymes in glucose metabolism [hexo kinase (HK) 1, pyruvate kinase, and pyruvate dehydrogenase (PDH)] were all increased 6 h after injury in the contralateral cortex, followed by decreases at subsequent times in the ipsilateral cortex and hippocampus; (2) capillary glucose transporter Glut-1 mRNA increased, while neuronal glucose transporter Glut-3 mRNA decreased, at various times in the ipsilateral cortex and hippocampus; (3) astrocyte lactate transporter MCT-1 mRNA increased, whereas neuronal lactate transporter MCT-2 mRNA decreased in the ipsilateral cortex and hippocampus; (4) HK2 (an isoform of hexokinase) expression increased at all time points in the ipsilateral cortex and hippocampus. GPR81 (lactate receptor) mRNA increased at various time points in the ipsilateral cortex and hippocampus. These temporal alterations in gene expression corresponded closely to the patterns of impaired brain glucose utilization reported in both TBI patients and experimental TBI rodents. The observed changes in hippocampal gene expression were delayed and prolonged, when compared with those in the cortex. The patterns of alterations were specific to different brain regions and exhibited different recovery periods following TBI. Oral administration of telmisartan (1 mg/kg, for 7 days, n = 10 per group) ameliorated cortical or hippocampal mRNA for Glut-1/3, MCT-1/2 and PDH in CCI mice. These data provide molecular evidence for dynamic alteration of multiple critical factors in brain glucose metabolism post-TBI and can inform further research for treating brain metabolic disorders post-TBI. Traumatic brain injury (TBI) causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes important for brain glucose/lactate metabolism and the effect of a known neuroprotective drug telmisartan on the expression of these genes after experimental TBI. Adult male C57BL/6J mice ( = 6/group) underwent sham or unilateral controlled cortical impact (CCI) injury. Their ipsilateral and contralateral cortex and hippocampus were collected 6 h, 1, 3, 7, 14, 21, and 28 days after injury. Expressions of several genes important for brain glucose utilization were determined by qRT-PCR. In results, (1) mRNA levels of three key enzymes in glucose metabolism [hexo kinase (HK) 1, pyruvate kinase, and pyruvate dehydrogenase (PDH)] were all increased 6 h after injury in the contralateral cortex, followed by decreases at subsequent times in the ipsilateral cortex and hippocampus; (2) capillary glucose transporter Glut-1 mRNA increased, while neuronal glucose transporter Glut-3 mRNA decreased, at various times in the ipsilateral cortex and hippocampus; (3) astrocyte lactate transporter MCT-1 mRNA increased, whereas neuronal lactate transporter MCT-2 mRNA decreased in the ipsilateral cortex and hippocampus; (4) HK2 (an isoform of hexokinase) expression increased at all time points in the ipsilateral cortex and hippocampus. GPR81 (lactate receptor) mRNA increased at various time points in the ipsilateral cortex and hippocampus. These temporal alterations in gene expression corresponded closely to the patterns of impaired brain glucose utilization reported in both TBI patients and experimental TBI rodents. The observed changes in hippocampal gene expression were delayed and prolonged, when compared with those in the cortex. The patterns of alterations were specific to different brain regions and exhibited different recovery periods following TBI. Oral administration of telmisartan (1 mg/kg, for 7 days, = 10 per group) ameliorated cortical or hippocampal mRNA for Glut-1/3, MCT-1/2 and PDH in CCI mice. These data provide molecular evidence for dynamic alteration of multiple critical factors in brain glucose metabolism post-TBI and can inform further research for treating brain metabolic disorders post-TBI. Traumatic brain injury (TBI) causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes important for brain glucose/lactate metabolism and the effect of a known neuroprotective drug telmisartan on the expression of these genes after experimental TBI. Adult male C57BL/6J mice (n = 6/group) underwent sham or unilateral controlled cortical impact (CCI) injury. Their ipsilateral and contralateral cortex and hippocampus were collected 6 h, 1, 3, 7, 14, 21, and 28 days after injury. Expressions of several genes important for brain glucose utilization were determined by qRT-PCR. In results, (1) mRNA levels of three key enzymes in glucose metabolism [hexo kinase (HK) 1, pyruvate kinase, and pyruvate dehydrogenase (PDH)] were all increased 6 h after injury in the contralateral cortex, followed by decreases at subsequent times in the ipsilateral cortex and hippocampus; (2) capillary glucose transporter Glut-1 mRNA increased, while neuronal glucose transporter Glut-3 mRNA decreased, at various times in the ipsilateral cortex and hippocampus; (3) astrocyte lactate transporter MCT-1 mRNA increased, whereas neuronal lactate transporter MCT-2 mRNA decreased in the ipsilateral cortex and hippocampus; (4) HK2 (an isoform of hexokinase) expression increased at all time points in the ipsilateral cortex and hippocampus. GPR81 (lactate receptor) mRNA increased at various time points in the ipsilateral cortex and hippocampus. These temporal alterations in gene expression corresponded closely to the patterns of impaired brain glucose utilization reported in both TBI patients and experimental TBI rodents. The observed changes in hippocampal gene expression were delayed and prolonged, when compared with those in the cortex. The patterns of alterations were specific to different brain regions and exhibited different recovery periods following TBI. Oral administration of telmisartan (1 mg/kg, for 7 days, n = 10 per group) ameliorated cortical or hippocampal mRNA for Glut-1/3, MCT-1/2 and PDH in CCI mice. These data provide molecular evidence for dynamic alteration of multiple critical factors in brain glucose metabolism post-TBI and can inform further research for treating brain metabolic disorders post-TBI. Traumatic brain injury (TBI) causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes important for brain glucose/lactate metabolism and the effect of a known neuroprotective drug telmisartan on the expression of these genes after experimental TBI. Adult male C57BL/6J mice ( n = 6/group) underwent sham or unilateral controlled cortical impact (CCI) injury. Their ipsilateral and contralateral cortex and hippocampus were collected 6 h, 1, 3, 7, 14, 21, and 28 days after injury. Expressions of several genes important for brain glucose utilization were determined by qRT-PCR. In results, (1) mRNA levels of three key enzymes in glucose metabolism [hexo kinase (HK) 1, pyruvate kinase, and pyruvate dehydrogenase (PDH)] were all increased 6 h after injury in the contralateral cortex, followed by decreases at subsequent times in the ipsilateral cortex and hippocampus; (2) capillary glucose transporter Glut-1 mRNA increased, while neuronal glucose transporter Glut-3 mRNA decreased, at various times in the ipsilateral cortex and hippocampus; (3) astrocyte lactate transporter MCT-1 mRNA increased, whereas neuronal lactate transporter MCT-2 mRNA decreased in the ipsilateral cortex and hippocampus; (4) HK2 (an isoform of hexokinase) expression increased at all time points in the ipsilateral cortex and hippocampus. GPR81 (lactate receptor) mRNA increased at various time points in the ipsilateral cortex and hippocampus. These temporal alterations in gene expression corresponded closely to the patterns of impaired brain glucose utilization reported in both TBI patients and experimental TBI rodents. The observed changes in hippocampal gene expression were delayed and prolonged, when compared with those in the cortex. The patterns of alterations were specific to different brain regions and exhibited different recovery periods following TBI. Oral administration of telmisartan (1 mg/kg, for 7 days, n = 10 per group) ameliorated cortical or hippocampal mRNA for Glut-1/3, MCT-1/2 and PDH in CCI mice. These data provide molecular evidence for dynamic alteration of multiple critical factors in brain glucose metabolism post-TBI and can inform further research for treating brain metabolic disorders post-TBI. |
Author | Blackman, Marc R. Huynh, Linda Villapol, Sonia Saavedra, Juan M. Burns, Mark P. Taub, Daniel D. Zhou, June |
AuthorAffiliation | 1 Research Service, Washington DC VA Medical Center , Washington, DC , United States 6 Department of Pharmacology and Physiology, Georgetown University School of Medicine , Washington, DC , United States 3 Department of Neuroscience, Georgetown University School of Medicine , Washington, DC , United States 4 Translational Medicine Section, Washington DC VA Medical Center , Washington, DC , United States 7 Department of Medicine George Washington University School of Medicine , Washington, DC , United States 2 Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine , Washington, DC , United States 8 Department of Medicine, Georgetown University School of Medicine , Washington, DC , United States 5 Department of Biochemistry and Molecular and Cell Biology, Georgetown University School of Medicine , Washington, DC , United States |
AuthorAffiliation_xml | – name: 4 Translational Medicine Section, Washington DC VA Medical Center , Washington, DC , United States – name: 2 Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine , Washington, DC , United States – name: 5 Department of Biochemistry and Molecular and Cell Biology, Georgetown University School of Medicine , Washington, DC , United States – name: 8 Department of Medicine, Georgetown University School of Medicine , Washington, DC , United States – name: 1 Research Service, Washington DC VA Medical Center , Washington, DC , United States – name: 7 Department of Medicine George Washington University School of Medicine , Washington, DC , United States – name: 3 Department of Neuroscience, Georgetown University School of Medicine , Washington, DC , United States – name: 6 Department of Pharmacology and Physiology, Georgetown University School of Medicine , Washington, DC , United States |
Author_xml | – sequence: 1 givenname: June surname: Zhou fullname: Zhou, June – sequence: 2 givenname: Mark P. surname: Burns fullname: Burns, Mark P. – sequence: 3 givenname: Linda surname: Huynh fullname: Huynh, Linda – sequence: 4 givenname: Sonia surname: Villapol fullname: Villapol, Sonia – sequence: 5 givenname: Daniel D. surname: Taub fullname: Taub, Daniel D. – sequence: 6 givenname: Juan M. surname: Saavedra fullname: Saavedra, Juan M. – sequence: 7 givenname: Marc R. surname: Blackman fullname: Blackman, Marc R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28955302$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1vFDEMhiNUREvpnRPKkctuk8z3BQlW7XalVlzKOfIknm1WmWRIZoD-Fv4smd22tEjkktjx-9iW_ZYcOe-QkPecLbOsbs47dNovBePVkjGR8VfkhJdlvhBZI46evY_JWYw7lk7OeNPUb8ixqJuiyJg4Ib9vsR98AEtXd-C2GKlxdOXDaFTygdP0ygyDV9APyb74NQSM0XhHfUfX6FL8ZtaP4Eba-UC_BEiAtZ2Uj0hvcITWWxN7eumt9T-N2ya6G0OyUP9NlCCgRrpxuynczyXcGIXvyOsObMSzh_uUfLu8uF1dLa6_rjerz9cLlZdiXEDelG2WsRI0Qmqy0lledIK1qJRohQDRFaB0VeS8qotKc6FUBUzzTiPXgNkp2Ry42sNODsH0EO6lByP3Dh-2EuY6LcpMldiqGkXBRF4raHWjaoXYaFaJEovE-nRgDVPbo1aYegX7Avryx5k7ufU_ZFGm4RR1Anx8AAT_fcI4yt5EhdaCQz9FyZs8HV7meQr98DzXU5LH6aaA8hCggo8xYCeVGWE08wDAWMmZnDdJ7jdJzpsk95uUhOwf4SP7v5I_863QnQ |
CitedBy_id | crossref_primary_10_1016_j_brainres_2020_146945 crossref_primary_10_3390_metabo12080710 crossref_primary_10_3390_brainsci15030294 crossref_primary_10_1016_j_nbd_2019_104611 crossref_primary_10_1007_s12015_019_09927_x crossref_primary_10_1007_s10143_019_01228_8 crossref_primary_10_3390_ijms25052513 crossref_primary_10_1186_s12868_019_0531_7 crossref_primary_10_1124_jpet_122_001428 crossref_primary_10_1016_j_lfs_2020_118631 crossref_primary_10_1172_jci_insight_126506 crossref_primary_10_3389_fcell_2021_703084 crossref_primary_10_1016_j_neubiorev_2019_05_012 crossref_primary_10_3389_fendo_2020_556380 crossref_primary_10_3390_ijms20225774 crossref_primary_10_1016_j_neuint_2023_105605 crossref_primary_10_3389_fncel_2018_00350 crossref_primary_10_1038_s41380_023_02060_9 crossref_primary_10_1002_jcp_29739 crossref_primary_10_1097_ANA_0000000000000710 crossref_primary_10_3389_fnut_2022_800901 crossref_primary_10_1007_s13311_023_01435_8 |
Cites_doi | 10.1016/j.brainres.2015.11.038 10.1042/bj3430281 10.1089/neu.2007.0497 10.3389/fnins.2015.00112 10.1074/jbc.M806409200 10.1016/j.jss.2009.04.020 10.1186/1742-2094-9-38 10.1089/neu.2011.2067 10.1097/HJH.0b013e32833a551a 10.1007/s12028-010-9342-5 10.1093/brain/awv172 10.1038/jcbfm.2015.77 10.1111/j.1582-4934.2010.01164.x 10.1016/j.neuropharm.2013.11.022 10.1111/j.1471-4159.2005.03623.x 10.1089/08977150152693700 10.1074/mcp.M600157-MCP200 10.3171/jns.1997.86.2.0241 10.3109/02699059409150981 10.1016/j.bbrc.2008.10.088 10.1038/sj.jcbfm.9600281 10.1093/ajh/hpu197 10.1242/jeb.02208 10.1016/j.neulet.2012.06.065 10.1161/01.STR.0000129788.26346.18 10.1111/j.1471-4159.1977.tb03919.x 10.1291/hypres.31.921 10.1089/neu.2006.0229 10.1007/3-211-32318-X_35 10.1097/00004647-200010000-00011 10.1016/j.regpep.2004.12.015 10.1038/npp.2010.225 10.1007/s00134-013-3203-6 10.1161/HYPERTENSIONAHA.112.192401 10.1002/jnr.23593 10.1002/nbm.838 10.1007/s10571-015-0327-y 10.1093/cercor/bht136 10.1002/(SICI)1098-1136(199709)21:1<2::AID-GLIA2>3.0.CO;2-C 10.1016/j.neulet.2009.01.047 10.1186/s13195-015-0167-5 10.1023/B:NERE.0000023614.30084.eb 10.1007/s10571-011-9754-6 10.1016/j.nbd.2011.06.007 10.1084/jem.20101470 10.1186/1742-2094-9-102 10.1089/neu.2010.1374 10.1172/JCI28003 10.1089/neu.2012.2391 10.1111/cns.12362 10.1161/01.STR.31.10.2478 10.1038/npp.2012.152 10.1038/jcbfm.2014.206 10.1503/cmaj.080282 10.1073/pnas.1108225109 10.1007/s10585-008-9193-z 10.1158/1541-7786.MCR-09-0234 10.1042/CS20120078 10.1016/j.psyneuen.2010.10.001 10.1038/sj.jcbfm.9600521 10.1038/sj.npp.1300921 10.2967/jnumed.110.078626 10.1089/08977150260337958 10.1016/j.jneumeth.2016.02.003 10.1089/neu.2012.2456 10.1089/neu.2015.4129 10.1002/brb3.13 10.1097/00006231-198905000-00004 10.1053/j.gastro.2014.04.025 10.1093/bja/aem131 10.3389/fnagi.2013.00029 |
ContentType | Journal Article |
Copyright | Copyright © 2017 Zhou, Burns, Huynh, Villapol, Taub, Saavedra and Blackman. 2017 Zhou, Burns, Huynh, Villapol, Taub, Saavedra and Blackman |
Copyright_xml | – notice: Copyright © 2017 Zhou, Burns, Huynh, Villapol, Taub, Saavedra and Blackman. 2017 Zhou, Burns, Huynh, Villapol, Taub, Saavedra and Blackman |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fendo.2017.00231 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1664-2392 |
ExternalDocumentID | oai_doaj_org_article_3c6ebc8e250248cabd9c8cee9d0726e5 PMC5601958 28955302 10_3389_fendo_2017_00231 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: UL1 TR001409 – fundername: National Institutes of Health grantid: UL1TR000101 – fundername: Biomedical Laboratory Research and Development, VA Office of Research and Development grantid: I01BX007080 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c462t-a496b3306adea0047d345f20becc2b22a2f5acd75417857d12cc7a0d1fde1dae3 |
IEDL.DBID | M48 |
ISSN | 1664-2392 |
IngestDate | Wed Aug 27 01:12:35 EDT 2025 Thu Aug 21 13:10:49 EDT 2025 Thu Jul 10 17:51:37 EDT 2025 Thu Apr 03 06:49:27 EDT 2025 Tue Jul 01 01:25:41 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | telmisartan traumatic brain injury angiotensin II AT1 receptor GPR81 lactate glucose metabolism gene expression hexokinase |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-a496b3306adea0047d345f20becc2b22a2f5acd75417857d12cc7a0d1fde1dae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Xavier Xifró, University of Girona, Spain; Patrick J. Ronan, Veterans Administration Research, United States Specialty section: This article was submitted to Neuroendocrine Science, a section of the journal Frontiers in Endocrinology Edited by: Ana Belen Lopez-Rodriguez, Trinity College Dublin, Ireland |
OpenAccessLink | https://doaj.org/article/3c6ebc8e250248cabd9c8cee9d0726e5 |
PMID | 28955302 |
PQID | 1944441644 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3c6ebc8e250248cabd9c8cee9d0726e5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5601958 proquest_miscellaneous_1944441644 pubmed_primary_28955302 crossref_citationtrail_10_3389_fendo_2017_00231 crossref_primary_10_3389_fendo_2017_00231 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-11 |
PublicationDateYYYYMMDD | 2017-09-11 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in endocrinology (Lausanne) |
PublicationTitleAlternate | Front Endocrinol (Lausanne) |
PublicationYear | 2017 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Washington (B37) 2012; 29 Bergsneider (B6) 1997; 86 Pang (B71) 2012; 9 Saavedra (B69) 2006; 31 Liu (B51) 2009; 284 Thal (B38) 2008; 25 Tweedie (B28) 2016; 272 Imabayashi (B73) 2012; 1 Ottens (B44) 2010; 27 Humayun (B8) 1989; 10 Mergenthaler (B20) 2012; 109 Dash (B30) 2004; 29 Bak (B5) 2006; 26 B72 Villapol (B63) 2013; 37 Iwanami (B70) 2010; 28 Orhan (B24) 2015; 1631 Sasaki (B74) 2008; 31 B39 Simpson (B15) 2007; 27 Magistretti (B17) 2006; 209 Fitzgerald (B48) 2008; 25 Benicky (B67) 2011; 36 Walker (B2) 2013; 5 Palmieri (B40) 2009; 7 Saavedra (B58) 2012; 123 Elkahloun (B61) 2016; 8 Lerch (B55) 2014; 146 Lakshmanan (B10) 2010; 12 Lauritzen (B23) 2013; 24 Villapol (B64) 2015; 28 Wang (B34) 2013; 79 Saavedra (B59) 2011; 32 Werner (B1) 2007; 99 Villapol (B35) 2015; 138 Alessandri (B56) 2012; 29 Min (B33) 2012; 59 Kobeissy (B29) 2006; 5 Mosienko (B53) 2015; 35 Selwyn (B11) 2016; 33 Liu (B42) 2010; 51 Sokoloff (B4) 1977; 29 Morland (B22) 2015; 93 Cureton (B52) 2010; 159 Saavedra (B60) 2016; 36 Saavedra (B62) 2011; 36 Vannucci (B14) 1997; 21 Tabernero (B46) 2006; 96 O’Connell (B7) 2005; 95 Saavedra (B68) 2005; 128 Park (B3) 2008; 178 Marklund (B41) 2002; 19 Belousov (B45) 2012; 524 Shen (B54) 2015; 21 Hamlin (B25) 2001; 18 Nishimura (B66) 2000; 31 Wolf (B47) 2011; 208 B13 Semple (B31) 2006; 116 Ruff (B9) 1994; 8 Xing (B26) 2009; 454 Carpenter (B19) 2015; 9 Wu (B43) 2013; 30 Ando (B65) 2004; 35 Bergersen (B21) 2015; 35 Andriessen (B36) 2010; 14 Moore (B12) 2000; 20 Serres (B16) 2003; 16 Wolf (B49) 2011; 44 Bouzat (B57) 2014; 40 Halestrap (B18) 1999; 343 Opii (B27) 2007; 24 Garrido-Gil (B32) 2012; 9 Cai (B50) 2008; 377 18627256 - J Neurotrauma. 2008 Jul;25(7):785-94 20738443 - J Cell Mol Med. 2010 Oct;14(10):2381-92 22233811 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1518-23 22454480 - Hypertension. 2012 May;59(5):1079-88 16412096 - J Neurochem. 2006 Feb;96(4):973-82 26822027 - Alzheimers Res Ther. 2016 Jan 28;8:5 11686488 - J Neurotrauma. 2001 Oct;18(10):1011-8 18649117 - Clin Exp Metastasis. 2008;25(7):799-810 23696276 - Cereb Cortex. 2014 Oct;24(10):2784-95 18952058 - Biochem Biophys Res Commun. 2008 Dec 19;377(3):987-91 22781494 - Neurosci Lett. 2012 Aug 22;524(1):16-9 20698760 - J Neurotrauma. 2010 Oct;27(10):1837-52 25362113 - Am J Hypertens. 2015 Mar;28(3):289-99 20498620 - J Hypertens. 2010 Aug;28(8):1730-7 15837532 - Regul Pept. 2005 Jun 30;128(3):227-38 24477453 - Intensive Care Med. 2014 Mar;40(3):412-21 16801361 - Mol Cell Proteomics. 2006 Oct;5(10):1887-98 11043912 - J Cereb Blood Flow Metab. 2000 Oct;20(10 ):1492-501 12427324 - J Neurotrauma. 2002 Oct;19(10 ):1139-53 22888957 - J Neurotrauma. 2012 Aug 10;29(12):2181-91 9010426 - J Neurosurg. 1997 Feb;86(2):241-51 25881750 - J Neurosci Res. 2015 Jul;93(7):1045-55 26650903 - J Neurotrauma. 2016 Aug 15;33(16):1479-91 25425080 - J Cereb Blood Flow Metab. 2015 Feb;35(2):176-85 17518533 - J Neurotrauma. 2007 May;24(5):772-89 21035950 - Psychoneuroendocrinology. 2011 Jan;36(1):1-18 22892395 - Neuropsychopharmacology. 2012 Dec;37(13):2817-29 26656066 - Brain Res. 2016 Jan 15;1631:113-26 18427091 - CMAJ. 2008 Apr 22;178(9):1163-70 23847533 - Front Aging Neurosci. 2013 Jul 09;5:29 2787008 - Nucl Med Commun. 1989 May;10(5):335-44 26115674 - Brain. 2015 Nov;138(Pt 11):3299-315 16467783 - J Cereb Blood Flow Metab. 2006 Oct;26(10):1285-97 22757692 - J Neurotrauma. 2013 May 1;30(9):775-88 22356806 - J Neuroinflammation. 2012 Feb 22;9:38 26868732 - J Neurosci Methods. 2016 Oct 15;272:4-18 9298843 - Glia. 1997 Sep;21(1):2-21 19726055 - J Surg Res. 2010 Mar;159(1):468-73 19429050 - Neurosci Lett. 2009 Apr 17;454(1):38-42 22399085 - Brain Behav. 2011 Nov;1(2):63-9 26993513 - Cell Mol Neurobiol. 2016 Mar;36(2):259-79 25920953 - J Cereb Blood Flow Metab. 2015 Jul;35(7):1069-75 21726646 - Neurobiol Dis. 2011 Oct;44(1):84-91 16511590 - J Clin Invest. 2006 Mar;116(3):581-9 14679505 - NMR Biomed. 2003 Oct-Nov;16(6-7):430-9 16731806 - J Exp Biol. 2006 Jun;209(Pt 12):2304-11 8081345 - Brain Inj. 1994 May-Jun;8(4):297-308 22642287 - J Neurotrauma. 2012 Sep;29(13):2283-96 22827472 - Clin Sci (Lond). 2012 Nov;123(10):567-90 16205776 - Neuropsychopharmacology. 2006 Jun;31(6):1123-34 25495836 - CNS Neurosci Ther. 2015 Mar;21(3):271-9 22642771 - J Neuroinflammation. 2012 May 29;9:102 19723875 - Mol Cancer Res. 2009 Sep;7(9):1438-45 24780214 - Gastroenterology. 2014 Jun;146(7):1602-5 19047060 - J Biol Chem. 2009 Jan 30;284(5):2811-22 21051651 - J Nucl Med. 2010 Nov;51(11):1788-95 17573392 - Br J Anaesth. 2007 Jul;99(1):4-9 20225002 - Neurocrit Care. 2010 Jun;12(3):324-36 21242296 - J Exp Med. 2011 Feb 14;208(2):313-26 10510291 - Biochem J. 1999 Oct 15;343 Pt 2:281-99 407330 - J Neurochem. 1977 Jul;29(1):13-26 21150913 - Neuropsychopharmacology. 2011 Mar;36(4):857-70 11022082 - Stroke. 2000 Oct;31(10):2478-86 16463843 - Acta Neurochir Suppl. 2005;95:165-8 25904838 - Front Neurosci. 2015 Apr 08;9:112 24316465 - Neuropharmacology. 2014 Apr;79:249-61 15176484 - Neurochem Res. 2004 Jun;29(6):1275-86 15143297 - Stroke. 2004 Jul;35(7):1726-31 21938488 - Cell Mol Neurobiol. 2012 Jul;32(5):667-81 18712048 - Hypertens Res. 2008 May;31(5):921-9 17579656 - J Cereb Blood Flow Metab. 2007 Nov;27(11):1766-91 |
References_xml | – volume: 1631 start-page: 113 year: 2015 ident: B24 article-title: Effects of beta-hydroxybutyrate on brain vascular permeability in rats with traumatic brain injury publication-title: Brain Res doi: 10.1016/j.brainres.2015.11.038 – volume: 343 start-page: 281 year: 1999 ident: B18 article-title: The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation publication-title: Biochem J doi: 10.1042/bj3430281 – volume: 25 start-page: 785 year: 2008 ident: B38 article-title: Selection of endogenous control genes for normalization of gene expression analysis after experimental brain trauma in mice publication-title: J Neurotrauma doi: 10.1089/neu.2007.0497 – volume: 9 start-page: 112 year: 2015 ident: B19 article-title: Glycolysis and the significance of lactate in traumatic brain injury publication-title: Front Neurosci doi: 10.3389/fnins.2015.00112 – volume: 284 start-page: 2811 year: 2009 ident: B51 article-title: Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81 publication-title: J Biol Chem doi: 10.1074/jbc.M806409200 – volume: 159 start-page: 468 year: 2010 ident: B52 article-title: A different view of lactate in trauma patients: protecting the injured brain publication-title: J Surg Res doi: 10.1016/j.jss.2009.04.020 – volume: 9 start-page: 38 year: 2012 ident: B32 article-title: Involvement of PPAR-gamma in the neuroprotective and anti-inflammatory effects of angiotensin type 1 receptor inhibition: effects of the receptor antagonist telmisartan and receptor deletion in a mouse MPTP model of Parkinson’s disease publication-title: J Neuroinflammation doi: 10.1186/1742-2094-9-38 – volume: 29 start-page: 2181 year: 2012 ident: B56 article-title: The neuroprotective effect of lactate is not due to improved glutamate uptake after controlled cortical impact in rats publication-title: J Neurotrauma doi: 10.1089/neu.2011.2067 – volume: 28 start-page: 1730 year: 2010 ident: B70 article-title: Low dose of telmisartan prevents ischemic brain damage with peroxisome proliferator-activated receptor-gamma activation in diabetic mice publication-title: J Hypertens doi: 10.1097/HJH.0b013e32833a551a – volume: 12 start-page: 324 year: 2010 ident: B10 article-title: Metabolic crisis after traumatic brain injury is associated with a novel microdialysis proteome publication-title: Neurocrit Care doi: 10.1007/s12028-010-9342-5 – volume: 138 start-page: 3299 year: 2015 ident: B35 article-title: Neurorestoration after traumatic brain injury through angiotensin II receptor blockage publication-title: Brain doi: 10.1093/brain/awv172 – volume: 35 start-page: 1069 year: 2015 ident: B53 article-title: Is l-lactate a novel signaling molecule in the brain? publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2015.77 – volume: 14 start-page: 2381 year: 2010 ident: B36 article-title: Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury publication-title: J Cell Mol Med doi: 10.1111/j.1582-4934.2010.01164.x – volume: 79 start-page: 249 year: 2013 ident: B34 article-title: Telmisartan ameliorates glutamate-induced neurotoxicity: roles of AT(1) receptor blockade and PPARgamma activation publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2013.11.022 – volume: 96 start-page: 973 year: 2006 ident: B46 article-title: Increased levels of cyclins D1 and D3 after inhibition of gap junctional communication in astrocytes publication-title: J Neurochem doi: 10.1111/j.1471-4159.2005.03623.x – volume: 18 start-page: 1011 year: 2001 ident: B25 article-title: Increased expression of neuronal glucose transporter 3 but not glial glucose transporter 1 following severe diffuse traumatic brain injury in rats publication-title: J Neurotrauma doi: 10.1089/08977150152693700 – ident: B39 – volume: 5 start-page: 1887 year: 2006 ident: B29 article-title: Novel differential neuroproteomics analysis of traumatic brain injury in rats publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M600157-MCP200 – volume: 86 start-page: 241 year: 1997 ident: B6 article-title: Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study publication-title: J Neurosurg doi: 10.3171/jns.1997.86.2.0241 – volume: 8 start-page: 297 year: 1994 ident: B9 article-title: Selected cases of poor outcome following a minor brain trauma: comparing neuropsychological and positron emission tomography assessment publication-title: Brain Inj doi: 10.3109/02699059409150981 – volume: 377 start-page: 987 year: 2008 ident: B50 article-title: Role of GPR81 in lactate-mediated reduction of adipose lipolysis publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2008.10.088 – volume: 26 start-page: 1285 year: 2006 ident: B5 article-title: Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons publication-title: J Cereb Blood Flow Metab doi: 10.1038/sj.jcbfm.9600281 – ident: B13 – volume: 28 start-page: 289 year: 2015 ident: B64 article-title: Neuroprotective effects of angiotensin receptor blockers publication-title: Am J Hypertens doi: 10.1093/ajh/hpu197 – volume: 209 start-page: 2304 year: 2006 ident: B17 article-title: Neuron-glia metabolic coupling and plasticity publication-title: J Exp Biol doi: 10.1242/jeb.02208 – volume: 524 start-page: 16 year: 2012 ident: B45 article-title: Neuronal gap junctions play a role in the secondary neuronal death following controlled cortical impact publication-title: Neurosci Lett doi: 10.1016/j.neulet.2012.06.065 – volume: 35 start-page: 1726 year: 2004 ident: B65 article-title: Angiotensin II AT1 receptor blockade reverses pathological hypertrophy and inflammation in brain microvessels of spontaneously hypertensive rats publication-title: Stroke doi: 10.1161/01.STR.0000129788.26346.18 – volume: 29 start-page: 13 year: 1977 ident: B4 article-title: Relation between physiological function and energy metabolism in the central nervous system publication-title: J Neurochem doi: 10.1111/j.1471-4159.1977.tb03919.x – volume: 31 start-page: 921 year: 2008 ident: B74 article-title: Comparison of the effects of telmisartan and olmesartan on home blood pressure, glucose, and lipid profiles in patients with hypertension, chronic heart failure, and metabolic syndrome publication-title: Hypertens Res doi: 10.1291/hypres.31.921 – volume: 24 start-page: 772 year: 2007 ident: B27 article-title: Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury publication-title: J Neurotrauma doi: 10.1089/neu.2006.0229 – volume: 95 start-page: 165 year: 2005 ident: B7 article-title: Glucose metabolism in traumatic brain injury: a combined microdialysis and [18F]-2-fluoro-2-deoxy-d-glucose-positron emission tomography (FDG-PET) study publication-title: Acta Neurochir Suppl doi: 10.1007/3-211-32318-X_35 – volume: 20 start-page: 1492 year: 2000 ident: B12 article-title: Quantitative assessment of longitudinal metabolic changes in vivo after traumatic brain injury in the adult rat using FDG-microPET publication-title: J Cereb Blood Flow Metab doi: 10.1097/00004647-200010000-00011 – volume: 128 start-page: 227 year: 2005 ident: B68 article-title: Anti-stress and anti-anxiety effects of centrally acting angiotensin II AT1 receptor antagonists publication-title: Regul Pept doi: 10.1016/j.regpep.2004.12.015 – volume: 36 start-page: 857 year: 2011 ident: B67 article-title: Angiotensin II AT1 receptor blockade ameliorates brain inflammation publication-title: Neuropsychopharmacology doi: 10.1038/npp.2010.225 – volume: 40 start-page: 412 year: 2014 ident: B57 article-title: Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain publication-title: Intensive Care Med doi: 10.1007/s00134-013-3203-6 – volume: 59 start-page: 1079 year: 2012 ident: B33 article-title: Peroxisome proliferator-activated receptor-gamma activation with angiotensin II type 1 receptor blockade is pivotal for the prevention of blood-brain barrier impairment and cognitive decline in type 2 diabetic mice publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.112.192401 – volume: 93 start-page: 1045 year: 2015 ident: B22 article-title: The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: expression and action in brain publication-title: J Neurosci Res doi: 10.1002/jnr.23593 – volume: 16 start-page: 430 year: 2003 ident: B16 article-title: Involvement of brain lactate in neuronal metabolism publication-title: NMR Biomed doi: 10.1002/nbm.838 – volume: 36 start-page: 259 year: 2016 ident: B60 article-title: Evidence to consider angiotensin II receptor blockers for the treatment of early Alzheimer’s disease publication-title: Cell Mol Neurobiol doi: 10.1007/s10571-015-0327-y – ident: B72 – volume: 24 start-page: 2784 year: 2013 ident: B23 article-title: Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism publication-title: Cereb Cortex doi: 10.1093/cercor/bht136 – volume: 21 start-page: 2 year: 1997 ident: B14 article-title: Glucose transporter proteins in brain: delivery of glucose to neurons and glia publication-title: Glia doi: 10.1002/(SICI)1098-1136(199709)21:1<2::AID-GLIA2>3.0.CO;2-C – volume: 454 start-page: 38 year: 2009 ident: B26 article-title: Traumatic brain injury-induced expression and phosphorylation of pyruvate dehydrogenase: a mechanism of dysregulated glucose metabolism publication-title: Neurosci Lett doi: 10.1016/j.neulet.2009.01.047 – volume: 8 start-page: 5 year: 2016 ident: B61 article-title: An integrative genome-wide transcriptome reveals that candesartan is neuroprotective and a candidate therapeutic for Alzheimer’s disease publication-title: Alzheimers Res Ther doi: 10.1186/s13195-015-0167-5 – volume: 29 start-page: 1275 year: 2004 ident: B30 article-title: A molecular description of brain trauma pathophysiology using microarray technology: an overview publication-title: Neurochem Res doi: 10.1023/B:NERE.0000023614.30084.eb – volume: 32 start-page: 667 year: 2011 ident: B59 article-title: Angiotensin II AT(1) receptor blockers ameliorate inflammatory stress: a beneficial effect for the treatment of brain disorders publication-title: Cell Mol Neurobiol doi: 10.1007/s10571-011-9754-6 – volume: 44 start-page: 84 year: 2011 ident: B49 article-title: Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2011.06.007 – volume: 208 start-page: 313 year: 2011 ident: B47 article-title: Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme publication-title: J Exp Med doi: 10.1084/jem.20101470 – volume: 9 start-page: 102 year: 2012 ident: B71 article-title: Telmisartan directly ameliorates the neuronal inflammatory response to IL-1beta partly through the JNK/c-Jun and NADPH oxidase pathways publication-title: J Neuroinflammation doi: 10.1186/1742-2094-9-102 – volume: 27 start-page: 1837 year: 2010 ident: B44 article-title: Neuroproteomics: a biochemical means to discriminate the extent and modality of brain injury publication-title: J Neurotrauma doi: 10.1089/neu.2010.1374 – volume: 116 start-page: 581 year: 2006 ident: B31 article-title: PPAR gamma and human metabolic disease publication-title: J Clin Invest doi: 10.1172/JCI28003 – volume: 30 start-page: 775 year: 2013 ident: B43 article-title: Detection of structural and metabolic changes in traumatically injured hippocampus by quantitative differential proteomics publication-title: J Neurotrauma doi: 10.1089/neu.2012.2391 – volume: 21 start-page: 271 year: 2015 ident: B54 article-title: Inhibition of G protein-coupled receptor 81 (GPR81) protects against ischemic brain injury publication-title: CNS Neurosci Ther doi: 10.1111/cns.12362 – volume: 31 start-page: 2478 year: 2000 ident: B66 article-title: Angiotensin II AT(1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats publication-title: Stroke doi: 10.1161/01.STR.31.10.2478 – volume: 37 start-page: 2817 year: 2013 ident: B63 article-title: Candesartan, an angiotensin II AT(1)-receptor blocker and PPAR-gamma agonist, reduces lesion volume and improves motor and memory function after traumatic brain injury in mice publication-title: Neuropsychopharmacology doi: 10.1038/npp.2012.152 – volume: 35 start-page: 176 year: 2015 ident: B21 article-title: Lactate transport and signaling in the brain: potential therapeutic targets and roles in body-brain interaction publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2014.206 – volume: 178 start-page: 1163 year: 2008 ident: B3 article-title: Traumatic brain injury: can the consequences be stopped? publication-title: CMAJ doi: 10.1503/cmaj.080282 – volume: 109 start-page: 1518 year: 2012 ident: B20 article-title: Mitochondrial hexokinase II (HKII) and phosphoprotein enriched in astrocytes (PEA15) form a molecular switch governing cellular fate depending on the metabolic state publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1108225109 – volume: 25 start-page: 799 year: 2008 ident: B48 article-title: Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization publication-title: Clin Exp Metastasis doi: 10.1007/s10585-008-9193-z – volume: 7 start-page: 1438 year: 2009 ident: B40 article-title: Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis publication-title: Mol Cancer Res doi: 10.1158/1541-7786.MCR-09-0234 – volume: 123 start-page: 567 year: 2012 ident: B58 article-title: Angiotensin II AT(1) receptor blockers as treatments for inflammatory brain disorders publication-title: Clin Sci (Lond) doi: 10.1042/CS20120078 – volume: 36 start-page: 1 year: 2011 ident: B62 article-title: Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: therapeutic implications publication-title: Psychoneuroendocrinology doi: 10.1016/j.psyneuen.2010.10.001 – volume: 27 start-page: 1766 year: 2007 ident: B15 article-title: Supply and demand in cerebral energy metabolism: the role of nutrient transporters publication-title: J Cereb Blood Flow Metab doi: 10.1038/sj.jcbfm.9600521 – volume: 31 start-page: 1123 year: 2006 ident: B69 article-title: A centrally acting, anxiolytic angiotensin II AT1 receptor antagonist prevents the isolation stress-induced decrease in cortical CRF1 receptor and benzodiazepine binding publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1300921 – volume: 51 start-page: 1788 year: 2010 ident: B42 article-title: Progressive metabolic and structural cerebral perturbations after traumatic brain injury: an in vivo imaging study in the rat publication-title: J Nucl Med doi: 10.2967/jnumed.110.078626 – volume: 19 start-page: 1139 year: 2002 ident: B41 article-title: Effect of traumatic brain injury and nitrone radical scavengers on relative changes in regional cerebral blood flow and glucose uptake in rats publication-title: J Neurotrauma doi: 10.1089/08977150260337958 – volume: 272 start-page: 4 year: 2016 ident: B28 article-title: Mild traumatic brain injury-induced hippocampal gene expressions: the identification of target cellular processes for drug development publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2016.02.003 – volume: 29 start-page: 2283 year: 2012 ident: B37 article-title: The effect of injury severity on behavior: a phenotypic study of cognitive and emotional deficits after mild, moderate, and severe controlled cortical impact injury in mice publication-title: J Neurotrauma doi: 10.1089/neu.2012.2456 – volume: 33 start-page: 1479 year: 2016 ident: B11 article-title: Outcome after repetitive mild traumatic brain injury is temporally related to glucose uptake profile at time of second injury publication-title: J Neurotrauma doi: 10.1089/neu.2015.4129 – volume: 1 start-page: 63 year: 2012 ident: B73 article-title: Pilot data on telmisartan short-term effects on glucose metabolism in the olfactory tract in Alzheimer’s disease publication-title: Brain Behav doi: 10.1002/brb3.13 – volume: 10 start-page: 335 year: 1989 ident: B8 article-title: Local cerebral glucose abnormalities in mild closed head injured patients with cognitive impairments publication-title: Nucl Med Commun doi: 10.1097/00006231-198905000-00004 – volume: 146 start-page: 1602 year: 2014 ident: B55 article-title: The anti-inflammasome effect of lactate and the lactate GPR81-receptor in pancreatic and liver inflammation publication-title: Gastroenterology doi: 10.1053/j.gastro.2014.04.025 – volume: 99 start-page: 4 year: 2007 ident: B1 article-title: Pathophysiology of traumatic brain injury publication-title: Br J Anaesth doi: 10.1093/bja/aem131 – volume: 5 start-page: 29 year: 2013 ident: B2 article-title: Molecular mechanisms of cognitive dysfunction following traumatic brain injury publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2013.00029 – reference: 25920953 - J Cereb Blood Flow Metab. 2015 Jul;35(7):1069-75 – reference: 22781494 - Neurosci Lett. 2012 Aug 22;524(1):16-9 – reference: 8081345 - Brain Inj. 1994 May-Jun;8(4):297-308 – reference: 15837532 - Regul Pept. 2005 Jun 30;128(3):227-38 – reference: 24780214 - Gastroenterology. 2014 Jun;146(7):1602-5 – reference: 20498620 - J Hypertens. 2010 Aug;28(8):1730-7 – reference: 25904838 - Front Neurosci. 2015 Apr 08;9:112 – reference: 19726055 - J Surg Res. 2010 Mar;159(1):468-73 – reference: 16801361 - Mol Cell Proteomics. 2006 Oct;5(10):1887-98 – reference: 12427324 - J Neurotrauma. 2002 Oct;19(10 ):1139-53 – reference: 26868732 - J Neurosci Methods. 2016 Oct 15;272:4-18 – reference: 26115674 - Brain. 2015 Nov;138(Pt 11):3299-315 – reference: 25495836 - CNS Neurosci Ther. 2015 Mar;21(3):271-9 – reference: 22892395 - Neuropsychopharmacology. 2012 Dec;37(13):2817-29 – reference: 16511590 - J Clin Invest. 2006 Mar;116(3):581-9 – reference: 22399085 - Brain Behav. 2011 Nov;1(2):63-9 – reference: 19047060 - J Biol Chem. 2009 Jan 30;284(5):2811-22 – reference: 25881750 - J Neurosci Res. 2015 Jul;93(7):1045-55 – reference: 20738443 - J Cell Mol Med. 2010 Oct;14(10):2381-92 – reference: 17573392 - Br J Anaesth. 2007 Jul;99(1):4-9 – reference: 21726646 - Neurobiol Dis. 2011 Oct;44(1):84-91 – reference: 19723875 - Mol Cancer Res. 2009 Sep;7(9):1438-45 – reference: 25425080 - J Cereb Blood Flow Metab. 2015 Feb;35(2):176-85 – reference: 17579656 - J Cereb Blood Flow Metab. 2007 Nov;27(11):1766-91 – reference: 24477453 - Intensive Care Med. 2014 Mar;40(3):412-21 – reference: 21035950 - Psychoneuroendocrinology. 2011 Jan;36(1):1-18 – reference: 14679505 - NMR Biomed. 2003 Oct-Nov;16(6-7):430-9 – reference: 16467783 - J Cereb Blood Flow Metab. 2006 Oct;26(10):1285-97 – reference: 2787008 - Nucl Med Commun. 1989 May;10(5):335-44 – reference: 18649117 - Clin Exp Metastasis. 2008;25(7):799-810 – reference: 22827472 - Clin Sci (Lond). 2012 Nov;123(10):567-90 – reference: 16463843 - Acta Neurochir Suppl. 2005;95:165-8 – reference: 22757692 - J Neurotrauma. 2013 May 1;30(9):775-88 – reference: 25362113 - Am J Hypertens. 2015 Mar;28(3):289-99 – reference: 22642771 - J Neuroinflammation. 2012 May 29;9:102 – reference: 23847533 - Front Aging Neurosci. 2013 Jul 09;5:29 – reference: 10510291 - Biochem J. 1999 Oct 15;343 Pt 2:281-99 – reference: 11043912 - J Cereb Blood Flow Metab. 2000 Oct;20(10 ):1492-501 – reference: 23696276 - Cereb Cortex. 2014 Oct;24(10):2784-95 – reference: 16731806 - J Exp Biol. 2006 Jun;209(Pt 12):2304-11 – reference: 26656066 - Brain Res. 2016 Jan 15;1631:113-26 – reference: 22233811 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1518-23 – reference: 22888957 - J Neurotrauma. 2012 Aug 10;29(12):2181-91 – reference: 21150913 - Neuropsychopharmacology. 2011 Mar;36(4):857-70 – reference: 26993513 - Cell Mol Neurobiol. 2016 Mar;36(2):259-79 – reference: 20698760 - J Neurotrauma. 2010 Oct;27(10):1837-52 – reference: 407330 - J Neurochem. 1977 Jul;29(1):13-26 – reference: 22454480 - Hypertension. 2012 May;59(5):1079-88 – reference: 17518533 - J Neurotrauma. 2007 May;24(5):772-89 – reference: 18627256 - J Neurotrauma. 2008 Jul;25(7):785-94 – reference: 18427091 - CMAJ. 2008 Apr 22;178(9):1163-70 – reference: 21051651 - J Nucl Med. 2010 Nov;51(11):1788-95 – reference: 26822027 - Alzheimers Res Ther. 2016 Jan 28;8:5 – reference: 24316465 - Neuropharmacology. 2014 Apr;79:249-61 – reference: 20225002 - Neurocrit Care. 2010 Jun;12(3):324-36 – reference: 16412096 - J Neurochem. 2006 Feb;96(4):973-82 – reference: 11022082 - Stroke. 2000 Oct;31(10):2478-86 – reference: 15176484 - Neurochem Res. 2004 Jun;29(6):1275-86 – reference: 22356806 - J Neuroinflammation. 2012 Feb 22;9:38 – reference: 22642287 - J Neurotrauma. 2012 Sep;29(13):2283-96 – reference: 21938488 - Cell Mol Neurobiol. 2012 Jul;32(5):667-81 – reference: 16205776 - Neuropsychopharmacology. 2006 Jun;31(6):1123-34 – reference: 11686488 - J Neurotrauma. 2001 Oct;18(10):1011-8 – reference: 19429050 - Neurosci Lett. 2009 Apr 17;454(1):38-42 – reference: 18952058 - Biochem Biophys Res Commun. 2008 Dec 19;377(3):987-91 – reference: 26650903 - J Neurotrauma. 2016 Aug 15;33(16):1479-91 – reference: 15143297 - Stroke. 2004 Jul;35(7):1726-31 – reference: 18712048 - Hypertens Res. 2008 May;31(5):921-9 – reference: 9298843 - Glia. 1997 Sep;21(1):2-21 – reference: 21242296 - J Exp Med. 2011 Feb 14;208(2):313-26 – reference: 9010426 - J Neurosurg. 1997 Feb;86(2):241-51 |
SSID | ssj0000401998 |
Score | 2.2418625 |
Snippet | Traumatic brain injury (TBI) causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 231 |
SubjectTerms | angiotensin II AT1 receptor Endocrinology gene expression glucose metabolism GPR81 hexokinase lactate |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQHhAXxDfhS4PEhUPU2HES58hWW1qkctqV9hY5HkcUZZ1qmxX8F_4sYztbWoTgQo9tqlh5z5558fgNY-9yJKogTSSlcpvKNqvTVhqRdlzXHVpZdsFndv25XF7IT5fF5UGrL18TFu2B44Ob5aa0rVGWQrWQyugWa6NoZa8xq0Rpg3spxbwDMRXWYJINJCTiviSpsHrWWYf-sB_3loUi50dxKNj1_ynH_L1U8iD2LB6w-1PSCB_iYB-yO9Y9YnfX07b4Y_bjPBpM9RAPC-xg42A-XIf31KAdwnKz3VLUornfw9n3qfjVwdCB953eweoq5OFuBEpi4dT3jYCPsZod1nYkpvSb3RUsiDXDN4p2MI8l7r3FXzdahROXsHJfCSg_hDWtQk_YxeLsfL5Mp64LqZGlGFMt67LNSUlotNqbSWIui05kHmzRCqFFV2iDVSF5pYoKuTCm0hlygpajtvlTduIGZ58zwIwbLCu0SipKu0SrQ75IGQnBmKNK2OwWg8ZMluS-M0bfkDTxqDUBtcaj1gTUEvZ-_49ttOP4y7WnHtb9dd5IO3xB9GomejX_olfC3t6SoqGJ53dTtLPDza7htaQPqU2ZsGeRJPtbkYoN7ZgSVh3R52gsx7-4zZdg7u0Vcl2oF_9j8C_ZPf84fHkL56_YyXh9Y19TDjW2b8J0-QntGx-9 priority: 102 providerName: Directory of Open Access Journals |
Title | Temporal Changes in Cortical and Hippocampal Expression of Genes Important for Brain Glucose Metabolism Following Controlled Cortical Impact Injury in Mice |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28955302 https://www.proquest.com/docview/1944441644 https://pubmed.ncbi.nlm.nih.gov/PMC5601958 https://doaj.org/article/3c6ebc8e250248cabd9c8cee9d0726e5 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbQkBAviN-EwWQkXngIix0ncR4QYtW6Fik8rVLfIsd2oChzSpNp42_hn-XOyTqKKiTyUClpmri5O9938d13hLyNDaiKAUOSMrahqKI8rITmYc1UXhsr0trzzBZf0tlCfF4my9vy6PEBdntDO-wntdg0769__PwIBv8BI07wt8e1dQbr-BiyEXIsqr4LfilDMy1GsO_nZQglct8cl6WpCDkgg2Hdcu9FdvyUp_Pfh0H_TqX8wzdNH5IHI6iknwYteETuWPeY3CvGZfMn5Nf5QEDV0KGYoKMrRyftxr_HpsoZOlut1-DVYG5o6On1mBzraFtT5KXu6PzCPyLXUwC59AT7StCzIdudFrYHTWpW3QWdgla1V-AN6WRIgW-sub3R3Fdk0rn7DoLEIRQwSz0li-np-WQWjl0ZQi1S3odK5GkVQ6ShjFVINmlikdQ8QmXgFeeK14nSJktABDLJDONaZyoyDETPjLLxM3LgWmdfEGoipk2aGSuFBFjGK-XxJCAWVZnYyIAc38ig1CNlOXbOaEoIXVBqpZdaiVIrvdQC8m77i_VA1_GPc09QrNvzkGjbH2g3X8vRbstYp7bS0gJS5EJqGFeuJQCL3EQZT20SkDc3SlGCYeJqi3K2vexKlgvYIBoVAXk-KMn2VhDl-nZNAcl21GdnLLvfuNU3T_6NEXSeyJf_8UcPyX3cwSwXxl6Rg35zaV8DlOqrI_8KAj7PluzIW8tvgQ4hRw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+Changes+in+Cortical+and+Hippocampal+Expression+of+Genes+Important+for+Brain+Glucose+Metabolism+Following+Controlled+Cortical+Impact+Injury+in+Mice&rft.jtitle=Frontiers+in+endocrinology+%28Lausanne%29&rft.au=Zhou%2C+June&rft.au=Burns%2C+Mark+P.&rft.au=Huynh%2C+Linda&rft.au=Villapol%2C+Sonia&rft.date=2017-09-11&rft.issn=1664-2392&rft.eissn=1664-2392&rft.volume=8&rft_id=info:doi/10.3389%2Ffendo.2017.00231&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fendo_2017_00231 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2392&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2392&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2392&client=summon |