Temporal Changes in Cortical and Hippocampal Expression of Genes Important for Brain Glucose Metabolism Following Controlled Cortical Impact Injury in Mice

Traumatic brain injury (TBI) causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes impo...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in endocrinology (Lausanne) Vol. 8; p. 231
Main Authors Zhou, June, Burns, Mark P., Huynh, Linda, Villapol, Sonia, Taub, Daniel D., Saavedra, Juan M., Blackman, Marc R.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 11.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traumatic brain injury (TBI) causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes important for brain glucose/lactate metabolism and the effect of a known neuroprotective drug telmisartan on the expression of these genes after experimental TBI. Adult male C57BL/6J mice (  = 6/group) underwent sham or unilateral controlled cortical impact (CCI) injury. Their ipsilateral and contralateral cortex and hippocampus were collected 6 h, 1, 3, 7, 14, 21, and 28 days after injury. Expressions of several genes important for brain glucose utilization were determined by qRT-PCR. In results, (1) mRNA levels of three key enzymes in glucose metabolism [hexo kinase (HK) 1, pyruvate kinase, and pyruvate dehydrogenase (PDH)] were all increased 6 h after injury in the contralateral cortex, followed by decreases at subsequent times in the ipsilateral cortex and hippocampus; (2) capillary glucose transporter Glut-1 mRNA increased, while neuronal glucose transporter Glut-3 mRNA decreased, at various times in the ipsilateral cortex and hippocampus; (3) astrocyte lactate transporter MCT-1 mRNA increased, whereas neuronal lactate transporter MCT-2 mRNA decreased in the ipsilateral cortex and hippocampus; (4) HK2 (an isoform of hexokinase) expression increased at all time points in the ipsilateral cortex and hippocampus. GPR81 (lactate receptor) mRNA increased at various time points in the ipsilateral cortex and hippocampus. These temporal alterations in gene expression corresponded closely to the patterns of impaired brain glucose utilization reported in both TBI patients and experimental TBI rodents. The observed changes in hippocampal gene expression were delayed and prolonged, when compared with those in the cortex. The patterns of alterations were specific to different brain regions and exhibited different recovery periods following TBI. Oral administration of telmisartan (1 mg/kg, for 7 days,  = 10 per group) ameliorated cortical or hippocampal mRNA for Glut-1/3, MCT-1/2 and PDH in CCI mice. These data provide molecular evidence for dynamic alteration of multiple critical factors in brain glucose metabolism post-TBI and can inform further research for treating brain metabolic disorders post-TBI.
AbstractList Traumatic brain injury (TBI) causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes important for brain glucose/lactate metabolism and the effect of a known neuroprotective drug telmisartan on the expression of these genes after experimental TBI. Adult male C57BL/6J mice (n = 6/group) underwent sham or unilateral controlled cortical impact (CCI) injury. Their ipsilateral and contralateral cortex and hippocampus were collected 6 h, 1, 3, 7, 14, 21, and 28 days after injury. Expressions of several genes important for brain glucose utilization were determined by qRT-PCR. In results, (1) mRNA levels of three key enzymes in glucose metabolism [hexo kinase (HK) 1, pyruvate kinase, and pyruvate dehydrogenase (PDH)] were all increased 6 h after injury in the contralateral cortex, followed by decreases at subsequent times in the ipsilateral cortex and hippocampus; (2) capillary glucose transporter Glut-1 mRNA increased, while neuronal glucose transporter Glut-3 mRNA decreased, at various times in the ipsilateral cortex and hippocampus; (3) astrocyte lactate transporter MCT-1 mRNA increased, whereas neuronal lactate transporter MCT-2 mRNA decreased in the ipsilateral cortex and hippocampus; (4) HK2 (an isoform of hexokinase) expression increased at all time points in the ipsilateral cortex and hippocampus. GPR81 (lactate receptor) mRNA increased at various time points in the ipsilateral cortex and hippocampus. These temporal alterations in gene expression corresponded closely to the patterns of impaired brain glucose utilization reported in both TBI patients and experimental TBI rodents. The observed changes in hippocampal gene expression were delayed and prolonged, when compared with those in the cortex. The patterns of alterations were specific to different brain regions and exhibited different recovery periods following TBI. Oral administration of telmisartan (1 mg/kg, for 7 days, n = 10 per group) ameliorated cortical or hippocampal mRNA for Glut-1/3, MCT-1/2 and PDH in CCI mice. These data provide molecular evidence for dynamic alteration of multiple critical factors in brain glucose metabolism post-TBI and can inform further research for treating brain metabolic disorders post-TBI.Traumatic brain injury (TBI) causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes important for brain glucose/lactate metabolism and the effect of a known neuroprotective drug telmisartan on the expression of these genes after experimental TBI. Adult male C57BL/6J mice (n = 6/group) underwent sham or unilateral controlled cortical impact (CCI) injury. Their ipsilateral and contralateral cortex and hippocampus were collected 6 h, 1, 3, 7, 14, 21, and 28 days after injury. Expressions of several genes important for brain glucose utilization were determined by qRT-PCR. In results, (1) mRNA levels of three key enzymes in glucose metabolism [hexo kinase (HK) 1, pyruvate kinase, and pyruvate dehydrogenase (PDH)] were all increased 6 h after injury in the contralateral cortex, followed by decreases at subsequent times in the ipsilateral cortex and hippocampus; (2) capillary glucose transporter Glut-1 mRNA increased, while neuronal glucose transporter Glut-3 mRNA decreased, at various times in the ipsilateral cortex and hippocampus; (3) astrocyte lactate transporter MCT-1 mRNA increased, whereas neuronal lactate transporter MCT-2 mRNA decreased in the ipsilateral cortex and hippocampus; (4) HK2 (an isoform of hexokinase) expression increased at all time points in the ipsilateral cortex and hippocampus. GPR81 (lactate receptor) mRNA increased at various time points in the ipsilateral cortex and hippocampus. These temporal alterations in gene expression corresponded closely to the patterns of impaired brain glucose utilization reported in both TBI patients and experimental TBI rodents. The observed changes in hippocampal gene expression were delayed and prolonged, when compared with those in the cortex. The patterns of alterations were specific to different brain regions and exhibited different recovery periods following TBI. Oral administration of telmisartan (1 mg/kg, for 7 days, n = 10 per group) ameliorated cortical or hippocampal mRNA for Glut-1/3, MCT-1/2 and PDH in CCI mice. These data provide molecular evidence for dynamic alteration of multiple critical factors in brain glucose metabolism post-TBI and can inform further research for treating brain metabolic disorders post-TBI.
Traumatic brain injury (TBI) causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes important for brain glucose/lactate metabolism and the effect of a known neuroprotective drug telmisartan on the expression of these genes after experimental TBI. Adult male C57BL/6J mice (  = 6/group) underwent sham or unilateral controlled cortical impact (CCI) injury. Their ipsilateral and contralateral cortex and hippocampus were collected 6 h, 1, 3, 7, 14, 21, and 28 days after injury. Expressions of several genes important for brain glucose utilization were determined by qRT-PCR. In results, (1) mRNA levels of three key enzymes in glucose metabolism [hexo kinase (HK) 1, pyruvate kinase, and pyruvate dehydrogenase (PDH)] were all increased 6 h after injury in the contralateral cortex, followed by decreases at subsequent times in the ipsilateral cortex and hippocampus; (2) capillary glucose transporter Glut-1 mRNA increased, while neuronal glucose transporter Glut-3 mRNA decreased, at various times in the ipsilateral cortex and hippocampus; (3) astrocyte lactate transporter MCT-1 mRNA increased, whereas neuronal lactate transporter MCT-2 mRNA decreased in the ipsilateral cortex and hippocampus; (4) HK2 (an isoform of hexokinase) expression increased at all time points in the ipsilateral cortex and hippocampus. GPR81 (lactate receptor) mRNA increased at various time points in the ipsilateral cortex and hippocampus. These temporal alterations in gene expression corresponded closely to the patterns of impaired brain glucose utilization reported in both TBI patients and experimental TBI rodents. The observed changes in hippocampal gene expression were delayed and prolonged, when compared with those in the cortex. The patterns of alterations were specific to different brain regions and exhibited different recovery periods following TBI. Oral administration of telmisartan (1 mg/kg, for 7 days,  = 10 per group) ameliorated cortical or hippocampal mRNA for Glut-1/3, MCT-1/2 and PDH in CCI mice. These data provide molecular evidence for dynamic alteration of multiple critical factors in brain glucose metabolism post-TBI and can inform further research for treating brain metabolic disorders post-TBI.
Traumatic brain injury (TBI) causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes important for brain glucose/lactate metabolism and the effect of a known neuroprotective drug telmisartan on the expression of these genes after experimental TBI. Adult male C57BL/6J mice (n = 6/group) underwent sham or unilateral controlled cortical impact (CCI) injury. Their ipsilateral and contralateral cortex and hippocampus were collected 6 h, 1, 3, 7, 14, 21, and 28 days after injury. Expressions of several genes important for brain glucose utilization were determined by qRT-PCR. In results, (1) mRNA levels of three key enzymes in glucose metabolism [hexo kinase (HK) 1, pyruvate kinase, and pyruvate dehydrogenase (PDH)] were all increased 6 h after injury in the contralateral cortex, followed by decreases at subsequent times in the ipsilateral cortex and hippocampus; (2) capillary glucose transporter Glut-1 mRNA increased, while neuronal glucose transporter Glut-3 mRNA decreased, at various times in the ipsilateral cortex and hippocampus; (3) astrocyte lactate transporter MCT-1 mRNA increased, whereas neuronal lactate transporter MCT-2 mRNA decreased in the ipsilateral cortex and hippocampus; (4) HK2 (an isoform of hexokinase) expression increased at all time points in the ipsilateral cortex and hippocampus. GPR81 (lactate receptor) mRNA increased at various time points in the ipsilateral cortex and hippocampus. These temporal alterations in gene expression corresponded closely to the patterns of impaired brain glucose utilization reported in both TBI patients and experimental TBI rodents. The observed changes in hippocampal gene expression were delayed and prolonged, when compared with those in the cortex. The patterns of alterations were specific to different brain regions and exhibited different recovery periods following TBI. Oral administration of telmisartan (1 mg/kg, for 7 days, n = 10 per group) ameliorated cortical or hippocampal mRNA for Glut-1/3, MCT-1/2 and PDH in CCI mice. These data provide molecular evidence for dynamic alteration of multiple critical factors in brain glucose metabolism post-TBI and can inform further research for treating brain metabolic disorders post-TBI.
Traumatic brain injury (TBI) causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes important for brain glucose/lactate metabolism and the effect of a known neuroprotective drug telmisartan on the expression of these genes after experimental TBI. Adult male C57BL/6J mice ( n  = 6/group) underwent sham or unilateral controlled cortical impact (CCI) injury. Their ipsilateral and contralateral cortex and hippocampus were collected 6 h, 1, 3, 7, 14, 21, and 28 days after injury. Expressions of several genes important for brain glucose utilization were determined by qRT-PCR. In results, (1) mRNA levels of three key enzymes in glucose metabolism [hexo kinase (HK) 1, pyruvate kinase, and pyruvate dehydrogenase (PDH)] were all increased 6 h after injury in the contralateral cortex, followed by decreases at subsequent times in the ipsilateral cortex and hippocampus; (2) capillary glucose transporter Glut-1 mRNA increased, while neuronal glucose transporter Glut-3 mRNA decreased, at various times in the ipsilateral cortex and hippocampus; (3) astrocyte lactate transporter MCT-1 mRNA increased, whereas neuronal lactate transporter MCT-2 mRNA decreased in the ipsilateral cortex and hippocampus; (4) HK2 (an isoform of hexokinase) expression increased at all time points in the ipsilateral cortex and hippocampus. GPR81 (lactate receptor) mRNA increased at various time points in the ipsilateral cortex and hippocampus. These temporal alterations in gene expression corresponded closely to the patterns of impaired brain glucose utilization reported in both TBI patients and experimental TBI rodents. The observed changes in hippocampal gene expression were delayed and prolonged, when compared with those in the cortex. The patterns of alterations were specific to different brain regions and exhibited different recovery periods following TBI. Oral administration of telmisartan (1 mg/kg, for 7 days, n  = 10 per group) ameliorated cortical or hippocampal mRNA for Glut-1/3, MCT-1/2 and PDH in CCI mice. These data provide molecular evidence for dynamic alteration of multiple critical factors in brain glucose metabolism post-TBI and can inform further research for treating brain metabolic disorders post-TBI.
Author Blackman, Marc R.
Huynh, Linda
Villapol, Sonia
Saavedra, Juan M.
Burns, Mark P.
Taub, Daniel D.
Zhou, June
AuthorAffiliation 1 Research Service, Washington DC VA Medical Center , Washington, DC , United States
6 Department of Pharmacology and Physiology, Georgetown University School of Medicine , Washington, DC , United States
3 Department of Neuroscience, Georgetown University School of Medicine , Washington, DC , United States
4 Translational Medicine Section, Washington DC VA Medical Center , Washington, DC , United States
7 Department of Medicine George Washington University School of Medicine , Washington, DC , United States
2 Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine , Washington, DC , United States
8 Department of Medicine, Georgetown University School of Medicine , Washington, DC , United States
5 Department of Biochemistry and Molecular and Cell Biology, Georgetown University School of Medicine , Washington, DC , United States
AuthorAffiliation_xml – name: 4 Translational Medicine Section, Washington DC VA Medical Center , Washington, DC , United States
– name: 2 Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine , Washington, DC , United States
– name: 5 Department of Biochemistry and Molecular and Cell Biology, Georgetown University School of Medicine , Washington, DC , United States
– name: 8 Department of Medicine, Georgetown University School of Medicine , Washington, DC , United States
– name: 1 Research Service, Washington DC VA Medical Center , Washington, DC , United States
– name: 7 Department of Medicine George Washington University School of Medicine , Washington, DC , United States
– name: 3 Department of Neuroscience, Georgetown University School of Medicine , Washington, DC , United States
– name: 6 Department of Pharmacology and Physiology, Georgetown University School of Medicine , Washington, DC , United States
Author_xml – sequence: 1
  givenname: June
  surname: Zhou
  fullname: Zhou, June
– sequence: 2
  givenname: Mark P.
  surname: Burns
  fullname: Burns, Mark P.
– sequence: 3
  givenname: Linda
  surname: Huynh
  fullname: Huynh, Linda
– sequence: 4
  givenname: Sonia
  surname: Villapol
  fullname: Villapol, Sonia
– sequence: 5
  givenname: Daniel D.
  surname: Taub
  fullname: Taub, Daniel D.
– sequence: 6
  givenname: Juan M.
  surname: Saavedra
  fullname: Saavedra, Juan M.
– sequence: 7
  givenname: Marc R.
  surname: Blackman
  fullname: Blackman, Marc R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28955302$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1vFDEMhiNUREvpnRPKkctuk8z3BQlW7XalVlzKOfIknm1WmWRIZoD-Fv4smd22tEjkktjx-9iW_ZYcOe-QkPecLbOsbs47dNovBePVkjGR8VfkhJdlvhBZI46evY_JWYw7lk7OeNPUb8ixqJuiyJg4Ib9vsR98AEtXd-C2GKlxdOXDaFTygdP0ygyDV9APyb74NQSM0XhHfUfX6FL8ZtaP4Eba-UC_BEiAtZ2Uj0hvcITWWxN7eumt9T-N2ya6G0OyUP9NlCCgRrpxuynczyXcGIXvyOsObMSzh_uUfLu8uF1dLa6_rjerz9cLlZdiXEDelG2WsRI0Qmqy0lledIK1qJRohQDRFaB0VeS8qotKc6FUBUzzTiPXgNkp2Ry42sNODsH0EO6lByP3Dh-2EuY6LcpMldiqGkXBRF4raHWjaoXYaFaJEovE-nRgDVPbo1aYegX7Avryx5k7ufU_ZFGm4RR1Anx8AAT_fcI4yt5EhdaCQz9FyZs8HV7meQr98DzXU5LH6aaA8hCggo8xYCeVGWE08wDAWMmZnDdJ7jdJzpsk95uUhOwf4SP7v5I_863QnQ
CitedBy_id crossref_primary_10_1016_j_brainres_2020_146945
crossref_primary_10_3390_metabo12080710
crossref_primary_10_3390_brainsci15030294
crossref_primary_10_1016_j_nbd_2019_104611
crossref_primary_10_1007_s12015_019_09927_x
crossref_primary_10_1007_s10143_019_01228_8
crossref_primary_10_3390_ijms25052513
crossref_primary_10_1186_s12868_019_0531_7
crossref_primary_10_1124_jpet_122_001428
crossref_primary_10_1016_j_lfs_2020_118631
crossref_primary_10_1172_jci_insight_126506
crossref_primary_10_3389_fcell_2021_703084
crossref_primary_10_1016_j_neubiorev_2019_05_012
crossref_primary_10_3389_fendo_2020_556380
crossref_primary_10_3390_ijms20225774
crossref_primary_10_1016_j_neuint_2023_105605
crossref_primary_10_3389_fncel_2018_00350
crossref_primary_10_1038_s41380_023_02060_9
crossref_primary_10_1002_jcp_29739
crossref_primary_10_1097_ANA_0000000000000710
crossref_primary_10_3389_fnut_2022_800901
crossref_primary_10_1007_s13311_023_01435_8
Cites_doi 10.1016/j.brainres.2015.11.038
10.1042/bj3430281
10.1089/neu.2007.0497
10.3389/fnins.2015.00112
10.1074/jbc.M806409200
10.1016/j.jss.2009.04.020
10.1186/1742-2094-9-38
10.1089/neu.2011.2067
10.1097/HJH.0b013e32833a551a
10.1007/s12028-010-9342-5
10.1093/brain/awv172
10.1038/jcbfm.2015.77
10.1111/j.1582-4934.2010.01164.x
10.1016/j.neuropharm.2013.11.022
10.1111/j.1471-4159.2005.03623.x
10.1089/08977150152693700
10.1074/mcp.M600157-MCP200
10.3171/jns.1997.86.2.0241
10.3109/02699059409150981
10.1016/j.bbrc.2008.10.088
10.1038/sj.jcbfm.9600281
10.1093/ajh/hpu197
10.1242/jeb.02208
10.1016/j.neulet.2012.06.065
10.1161/01.STR.0000129788.26346.18
10.1111/j.1471-4159.1977.tb03919.x
10.1291/hypres.31.921
10.1089/neu.2006.0229
10.1007/3-211-32318-X_35
10.1097/00004647-200010000-00011
10.1016/j.regpep.2004.12.015
10.1038/npp.2010.225
10.1007/s00134-013-3203-6
10.1161/HYPERTENSIONAHA.112.192401
10.1002/jnr.23593
10.1002/nbm.838
10.1007/s10571-015-0327-y
10.1093/cercor/bht136
10.1002/(SICI)1098-1136(199709)21:1<2::AID-GLIA2>3.0.CO;2-C
10.1016/j.neulet.2009.01.047
10.1186/s13195-015-0167-5
10.1023/B:NERE.0000023614.30084.eb
10.1007/s10571-011-9754-6
10.1016/j.nbd.2011.06.007
10.1084/jem.20101470
10.1186/1742-2094-9-102
10.1089/neu.2010.1374
10.1172/JCI28003
10.1089/neu.2012.2391
10.1111/cns.12362
10.1161/01.STR.31.10.2478
10.1038/npp.2012.152
10.1038/jcbfm.2014.206
10.1503/cmaj.080282
10.1073/pnas.1108225109
10.1007/s10585-008-9193-z
10.1158/1541-7786.MCR-09-0234
10.1042/CS20120078
10.1016/j.psyneuen.2010.10.001
10.1038/sj.jcbfm.9600521
10.1038/sj.npp.1300921
10.2967/jnumed.110.078626
10.1089/08977150260337958
10.1016/j.jneumeth.2016.02.003
10.1089/neu.2012.2456
10.1089/neu.2015.4129
10.1002/brb3.13
10.1097/00006231-198905000-00004
10.1053/j.gastro.2014.04.025
10.1093/bja/aem131
10.3389/fnagi.2013.00029
ContentType Journal Article
Copyright Copyright © 2017 Zhou, Burns, Huynh, Villapol, Taub, Saavedra and Blackman. 2017 Zhou, Burns, Huynh, Villapol, Taub, Saavedra and Blackman
Copyright_xml – notice: Copyright © 2017 Zhou, Burns, Huynh, Villapol, Taub, Saavedra and Blackman. 2017 Zhou, Burns, Huynh, Villapol, Taub, Saavedra and Blackman
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fendo.2017.00231
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1664-2392
ExternalDocumentID oai_doaj_org_article_3c6ebc8e250248cabd9c8cee9d0726e5
PMC5601958
28955302
10_3389_fendo_2017_00231
Genre Journal Article
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR001409
– fundername: National Institutes of Health
  grantid: UL1TR000101
– fundername: Biomedical Laboratory Research and Development, VA Office of Research and Development
  grantid: I01BX007080
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-a496b3306adea0047d345f20becc2b22a2f5acd75417857d12cc7a0d1fde1dae3
IEDL.DBID M48
ISSN 1664-2392
IngestDate Wed Aug 27 01:12:35 EDT 2025
Thu Aug 21 13:10:49 EDT 2025
Thu Jul 10 17:51:37 EDT 2025
Thu Apr 03 06:49:27 EDT 2025
Tue Jul 01 01:25:41 EDT 2025
Thu Apr 24 23:06:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords telmisartan
traumatic brain injury
angiotensin II AT1 receptor
GPR81
lactate
glucose metabolism
gene expression
hexokinase
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-a496b3306adea0047d345f20becc2b22a2f5acd75417857d12cc7a0d1fde1dae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Xavier Xifró, University of Girona, Spain; Patrick J. Ronan, Veterans Administration Research, United States
Specialty section: This article was submitted to Neuroendocrine Science, a section of the journal Frontiers in Endocrinology
Edited by: Ana Belen Lopez-Rodriguez, Trinity College Dublin, Ireland
OpenAccessLink https://doaj.org/article/3c6ebc8e250248cabd9c8cee9d0726e5
PMID 28955302
PQID 1944441644
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_3c6ebc8e250248cabd9c8cee9d0726e5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5601958
proquest_miscellaneous_1944441644
pubmed_primary_28955302
crossref_citationtrail_10_3389_fendo_2017_00231
crossref_primary_10_3389_fendo_2017_00231
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-11
PublicationDateYYYYMMDD 2017-09-11
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-11
  day: 11
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in endocrinology (Lausanne)
PublicationTitleAlternate Front Endocrinol (Lausanne)
PublicationYear 2017
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Washington (B37) 2012; 29
Bergsneider (B6) 1997; 86
Pang (B71) 2012; 9
Saavedra (B69) 2006; 31
Liu (B51) 2009; 284
Thal (B38) 2008; 25
Tweedie (B28) 2016; 272
Imabayashi (B73) 2012; 1
Ottens (B44) 2010; 27
Humayun (B8) 1989; 10
Mergenthaler (B20) 2012; 109
Dash (B30) 2004; 29
Bak (B5) 2006; 26
B72
Villapol (B63) 2013; 37
Iwanami (B70) 2010; 28
Orhan (B24) 2015; 1631
Sasaki (B74) 2008; 31
B39
Simpson (B15) 2007; 27
Magistretti (B17) 2006; 209
Fitzgerald (B48) 2008; 25
Benicky (B67) 2011; 36
Walker (B2) 2013; 5
Palmieri (B40) 2009; 7
Saavedra (B58) 2012; 123
Elkahloun (B61) 2016; 8
Lerch (B55) 2014; 146
Lakshmanan (B10) 2010; 12
Lauritzen (B23) 2013; 24
Villapol (B64) 2015; 28
Wang (B34) 2013; 79
Saavedra (B59) 2011; 32
Werner (B1) 2007; 99
Villapol (B35) 2015; 138
Alessandri (B56) 2012; 29
Min (B33) 2012; 59
Kobeissy (B29) 2006; 5
Mosienko (B53) 2015; 35
Selwyn (B11) 2016; 33
Liu (B42) 2010; 51
Sokoloff (B4) 1977; 29
Morland (B22) 2015; 93
Cureton (B52) 2010; 159
Saavedra (B60) 2016; 36
Saavedra (B62) 2011; 36
Vannucci (B14) 1997; 21
Tabernero (B46) 2006; 96
O’Connell (B7) 2005; 95
Saavedra (B68) 2005; 128
Park (B3) 2008; 178
Marklund (B41) 2002; 19
Belousov (B45) 2012; 524
Shen (B54) 2015; 21
Hamlin (B25) 2001; 18
Nishimura (B66) 2000; 31
Wolf (B47) 2011; 208
B13
Semple (B31) 2006; 116
Ruff (B9) 1994; 8
Xing (B26) 2009; 454
Carpenter (B19) 2015; 9
Wu (B43) 2013; 30
Ando (B65) 2004; 35
Bergersen (B21) 2015; 35
Andriessen (B36) 2010; 14
Moore (B12) 2000; 20
Serres (B16) 2003; 16
Wolf (B49) 2011; 44
Bouzat (B57) 2014; 40
Halestrap (B18) 1999; 343
Opii (B27) 2007; 24
Garrido-Gil (B32) 2012; 9
Cai (B50) 2008; 377
18627256 - J Neurotrauma. 2008 Jul;25(7):785-94
20738443 - J Cell Mol Med. 2010 Oct;14(10):2381-92
22233811 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1518-23
22454480 - Hypertension. 2012 May;59(5):1079-88
16412096 - J Neurochem. 2006 Feb;96(4):973-82
26822027 - Alzheimers Res Ther. 2016 Jan 28;8:5
11686488 - J Neurotrauma. 2001 Oct;18(10):1011-8
18649117 - Clin Exp Metastasis. 2008;25(7):799-810
23696276 - Cereb Cortex. 2014 Oct;24(10):2784-95
18952058 - Biochem Biophys Res Commun. 2008 Dec 19;377(3):987-91
22781494 - Neurosci Lett. 2012 Aug 22;524(1):16-9
20698760 - J Neurotrauma. 2010 Oct;27(10):1837-52
25362113 - Am J Hypertens. 2015 Mar;28(3):289-99
20498620 - J Hypertens. 2010 Aug;28(8):1730-7
15837532 - Regul Pept. 2005 Jun 30;128(3):227-38
24477453 - Intensive Care Med. 2014 Mar;40(3):412-21
16801361 - Mol Cell Proteomics. 2006 Oct;5(10):1887-98
11043912 - J Cereb Blood Flow Metab. 2000 Oct;20(10 ):1492-501
12427324 - J Neurotrauma. 2002 Oct;19(10 ):1139-53
22888957 - J Neurotrauma. 2012 Aug 10;29(12):2181-91
9010426 - J Neurosurg. 1997 Feb;86(2):241-51
25881750 - J Neurosci Res. 2015 Jul;93(7):1045-55
26650903 - J Neurotrauma. 2016 Aug 15;33(16):1479-91
25425080 - J Cereb Blood Flow Metab. 2015 Feb;35(2):176-85
17518533 - J Neurotrauma. 2007 May;24(5):772-89
21035950 - Psychoneuroendocrinology. 2011 Jan;36(1):1-18
22892395 - Neuropsychopharmacology. 2012 Dec;37(13):2817-29
26656066 - Brain Res. 2016 Jan 15;1631:113-26
18427091 - CMAJ. 2008 Apr 22;178(9):1163-70
23847533 - Front Aging Neurosci. 2013 Jul 09;5:29
2787008 - Nucl Med Commun. 1989 May;10(5):335-44
26115674 - Brain. 2015 Nov;138(Pt 11):3299-315
16467783 - J Cereb Blood Flow Metab. 2006 Oct;26(10):1285-97
22757692 - J Neurotrauma. 2013 May 1;30(9):775-88
22356806 - J Neuroinflammation. 2012 Feb 22;9:38
26868732 - J Neurosci Methods. 2016 Oct 15;272:4-18
9298843 - Glia. 1997 Sep;21(1):2-21
19726055 - J Surg Res. 2010 Mar;159(1):468-73
19429050 - Neurosci Lett. 2009 Apr 17;454(1):38-42
22399085 - Brain Behav. 2011 Nov;1(2):63-9
26993513 - Cell Mol Neurobiol. 2016 Mar;36(2):259-79
25920953 - J Cereb Blood Flow Metab. 2015 Jul;35(7):1069-75
21726646 - Neurobiol Dis. 2011 Oct;44(1):84-91
16511590 - J Clin Invest. 2006 Mar;116(3):581-9
14679505 - NMR Biomed. 2003 Oct-Nov;16(6-7):430-9
16731806 - J Exp Biol. 2006 Jun;209(Pt 12):2304-11
8081345 - Brain Inj. 1994 May-Jun;8(4):297-308
22642287 - J Neurotrauma. 2012 Sep;29(13):2283-96
22827472 - Clin Sci (Lond). 2012 Nov;123(10):567-90
16205776 - Neuropsychopharmacology. 2006 Jun;31(6):1123-34
25495836 - CNS Neurosci Ther. 2015 Mar;21(3):271-9
22642771 - J Neuroinflammation. 2012 May 29;9:102
19723875 - Mol Cancer Res. 2009 Sep;7(9):1438-45
24780214 - Gastroenterology. 2014 Jun;146(7):1602-5
19047060 - J Biol Chem. 2009 Jan 30;284(5):2811-22
21051651 - J Nucl Med. 2010 Nov;51(11):1788-95
17573392 - Br J Anaesth. 2007 Jul;99(1):4-9
20225002 - Neurocrit Care. 2010 Jun;12(3):324-36
21242296 - J Exp Med. 2011 Feb 14;208(2):313-26
10510291 - Biochem J. 1999 Oct 15;343 Pt 2:281-99
407330 - J Neurochem. 1977 Jul;29(1):13-26
21150913 - Neuropsychopharmacology. 2011 Mar;36(4):857-70
11022082 - Stroke. 2000 Oct;31(10):2478-86
16463843 - Acta Neurochir Suppl. 2005;95:165-8
25904838 - Front Neurosci. 2015 Apr 08;9:112
24316465 - Neuropharmacology. 2014 Apr;79:249-61
15176484 - Neurochem Res. 2004 Jun;29(6):1275-86
15143297 - Stroke. 2004 Jul;35(7):1726-31
21938488 - Cell Mol Neurobiol. 2012 Jul;32(5):667-81
18712048 - Hypertens Res. 2008 May;31(5):921-9
17579656 - J Cereb Blood Flow Metab. 2007 Nov;27(11):1766-91
References_xml – volume: 1631
  start-page: 113
  year: 2015
  ident: B24
  article-title: Effects of beta-hydroxybutyrate on brain vascular permeability in rats with traumatic brain injury
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2015.11.038
– volume: 343
  start-page: 281
  year: 1999
  ident: B18
  article-title: The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation
  publication-title: Biochem J
  doi: 10.1042/bj3430281
– volume: 25
  start-page: 785
  year: 2008
  ident: B38
  article-title: Selection of endogenous control genes for normalization of gene expression analysis after experimental brain trauma in mice
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2007.0497
– volume: 9
  start-page: 112
  year: 2015
  ident: B19
  article-title: Glycolysis and the significance of lactate in traumatic brain injury
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2015.00112
– volume: 284
  start-page: 2811
  year: 2009
  ident: B51
  article-title: Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M806409200
– volume: 159
  start-page: 468
  year: 2010
  ident: B52
  article-title: A different view of lactate in trauma patients: protecting the injured brain
  publication-title: J Surg Res
  doi: 10.1016/j.jss.2009.04.020
– volume: 9
  start-page: 38
  year: 2012
  ident: B32
  article-title: Involvement of PPAR-gamma in the neuroprotective and anti-inflammatory effects of angiotensin type 1 receptor inhibition: effects of the receptor antagonist telmisartan and receptor deletion in a mouse MPTP model of Parkinson’s disease
  publication-title: J Neuroinflammation
  doi: 10.1186/1742-2094-9-38
– volume: 29
  start-page: 2181
  year: 2012
  ident: B56
  article-title: The neuroprotective effect of lactate is not due to improved glutamate uptake after controlled cortical impact in rats
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2011.2067
– volume: 28
  start-page: 1730
  year: 2010
  ident: B70
  article-title: Low dose of telmisartan prevents ischemic brain damage with peroxisome proliferator-activated receptor-gamma activation in diabetic mice
  publication-title: J Hypertens
  doi: 10.1097/HJH.0b013e32833a551a
– volume: 12
  start-page: 324
  year: 2010
  ident: B10
  article-title: Metabolic crisis after traumatic brain injury is associated with a novel microdialysis proteome
  publication-title: Neurocrit Care
  doi: 10.1007/s12028-010-9342-5
– volume: 138
  start-page: 3299
  year: 2015
  ident: B35
  article-title: Neurorestoration after traumatic brain injury through angiotensin II receptor blockage
  publication-title: Brain
  doi: 10.1093/brain/awv172
– volume: 35
  start-page: 1069
  year: 2015
  ident: B53
  article-title: Is l-lactate a novel signaling molecule in the brain?
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2015.77
– volume: 14
  start-page: 2381
  year: 2010
  ident: B36
  article-title: Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury
  publication-title: J Cell Mol Med
  doi: 10.1111/j.1582-4934.2010.01164.x
– volume: 79
  start-page: 249
  year: 2013
  ident: B34
  article-title: Telmisartan ameliorates glutamate-induced neurotoxicity: roles of AT(1) receptor blockade and PPARgamma activation
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2013.11.022
– volume: 96
  start-page: 973
  year: 2006
  ident: B46
  article-title: Increased levels of cyclins D1 and D3 after inhibition of gap junctional communication in astrocytes
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.2005.03623.x
– volume: 18
  start-page: 1011
  year: 2001
  ident: B25
  article-title: Increased expression of neuronal glucose transporter 3 but not glial glucose transporter 1 following severe diffuse traumatic brain injury in rats
  publication-title: J Neurotrauma
  doi: 10.1089/08977150152693700
– ident: B39
– volume: 5
  start-page: 1887
  year: 2006
  ident: B29
  article-title: Novel differential neuroproteomics analysis of traumatic brain injury in rats
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M600157-MCP200
– volume: 86
  start-page: 241
  year: 1997
  ident: B6
  article-title: Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study
  publication-title: J Neurosurg
  doi: 10.3171/jns.1997.86.2.0241
– volume: 8
  start-page: 297
  year: 1994
  ident: B9
  article-title: Selected cases of poor outcome following a minor brain trauma: comparing neuropsychological and positron emission tomography assessment
  publication-title: Brain Inj
  doi: 10.3109/02699059409150981
– volume: 377
  start-page: 987
  year: 2008
  ident: B50
  article-title: Role of GPR81 in lactate-mediated reduction of adipose lipolysis
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2008.10.088
– volume: 26
  start-page: 1285
  year: 2006
  ident: B5
  article-title: Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/sj.jcbfm.9600281
– ident: B13
– volume: 28
  start-page: 289
  year: 2015
  ident: B64
  article-title: Neuroprotective effects of angiotensin receptor blockers
  publication-title: Am J Hypertens
  doi: 10.1093/ajh/hpu197
– volume: 209
  start-page: 2304
  year: 2006
  ident: B17
  article-title: Neuron-glia metabolic coupling and plasticity
  publication-title: J Exp Biol
  doi: 10.1242/jeb.02208
– volume: 524
  start-page: 16
  year: 2012
  ident: B45
  article-title: Neuronal gap junctions play a role in the secondary neuronal death following controlled cortical impact
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2012.06.065
– volume: 35
  start-page: 1726
  year: 2004
  ident: B65
  article-title: Angiotensin II AT1 receptor blockade reverses pathological hypertrophy and inflammation in brain microvessels of spontaneously hypertensive rats
  publication-title: Stroke
  doi: 10.1161/01.STR.0000129788.26346.18
– volume: 29
  start-page: 13
  year: 1977
  ident: B4
  article-title: Relation between physiological function and energy metabolism in the central nervous system
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.1977.tb03919.x
– volume: 31
  start-page: 921
  year: 2008
  ident: B74
  article-title: Comparison of the effects of telmisartan and olmesartan on home blood pressure, glucose, and lipid profiles in patients with hypertension, chronic heart failure, and metabolic syndrome
  publication-title: Hypertens Res
  doi: 10.1291/hypres.31.921
– volume: 24
  start-page: 772
  year: 2007
  ident: B27
  article-title: Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2006.0229
– volume: 95
  start-page: 165
  year: 2005
  ident: B7
  article-title: Glucose metabolism in traumatic brain injury: a combined microdialysis and [18F]-2-fluoro-2-deoxy-d-glucose-positron emission tomography (FDG-PET) study
  publication-title: Acta Neurochir Suppl
  doi: 10.1007/3-211-32318-X_35
– volume: 20
  start-page: 1492
  year: 2000
  ident: B12
  article-title: Quantitative assessment of longitudinal metabolic changes in vivo after traumatic brain injury in the adult rat using FDG-microPET
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1097/00004647-200010000-00011
– volume: 128
  start-page: 227
  year: 2005
  ident: B68
  article-title: Anti-stress and anti-anxiety effects of centrally acting angiotensin II AT1 receptor antagonists
  publication-title: Regul Pept
  doi: 10.1016/j.regpep.2004.12.015
– volume: 36
  start-page: 857
  year: 2011
  ident: B67
  article-title: Angiotensin II AT1 receptor blockade ameliorates brain inflammation
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2010.225
– volume: 40
  start-page: 412
  year: 2014
  ident: B57
  article-title: Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-013-3203-6
– volume: 59
  start-page: 1079
  year: 2012
  ident: B33
  article-title: Peroxisome proliferator-activated receptor-gamma activation with angiotensin II type 1 receptor blockade is pivotal for the prevention of blood-brain barrier impairment and cognitive decline in type 2 diabetic mice
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.112.192401
– volume: 93
  start-page: 1045
  year: 2015
  ident: B22
  article-title: The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: expression and action in brain
  publication-title: J Neurosci Res
  doi: 10.1002/jnr.23593
– volume: 16
  start-page: 430
  year: 2003
  ident: B16
  article-title: Involvement of brain lactate in neuronal metabolism
  publication-title: NMR Biomed
  doi: 10.1002/nbm.838
– volume: 36
  start-page: 259
  year: 2016
  ident: B60
  article-title: Evidence to consider angiotensin II receptor blockers for the treatment of early Alzheimer’s disease
  publication-title: Cell Mol Neurobiol
  doi: 10.1007/s10571-015-0327-y
– ident: B72
– volume: 24
  start-page: 2784
  year: 2013
  ident: B23
  article-title: Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bht136
– volume: 21
  start-page: 2
  year: 1997
  ident: B14
  article-title: Glucose transporter proteins in brain: delivery of glucose to neurons and glia
  publication-title: Glia
  doi: 10.1002/(SICI)1098-1136(199709)21:1<2::AID-GLIA2>3.0.CO;2-C
– volume: 454
  start-page: 38
  year: 2009
  ident: B26
  article-title: Traumatic brain injury-induced expression and phosphorylation of pyruvate dehydrogenase: a mechanism of dysregulated glucose metabolism
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2009.01.047
– volume: 8
  start-page: 5
  year: 2016
  ident: B61
  article-title: An integrative genome-wide transcriptome reveals that candesartan is neuroprotective and a candidate therapeutic for Alzheimer’s disease
  publication-title: Alzheimers Res Ther
  doi: 10.1186/s13195-015-0167-5
– volume: 29
  start-page: 1275
  year: 2004
  ident: B30
  article-title: A molecular description of brain trauma pathophysiology using microarray technology: an overview
  publication-title: Neurochem Res
  doi: 10.1023/B:NERE.0000023614.30084.eb
– volume: 32
  start-page: 667
  year: 2011
  ident: B59
  article-title: Angiotensin II AT(1) receptor blockers ameliorate inflammatory stress: a beneficial effect for the treatment of brain disorders
  publication-title: Cell Mol Neurobiol
  doi: 10.1007/s10571-011-9754-6
– volume: 44
  start-page: 84
  year: 2011
  ident: B49
  article-title: Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2011.06.007
– volume: 208
  start-page: 313
  year: 2011
  ident: B47
  article-title: Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme
  publication-title: J Exp Med
  doi: 10.1084/jem.20101470
– volume: 9
  start-page: 102
  year: 2012
  ident: B71
  article-title: Telmisartan directly ameliorates the neuronal inflammatory response to IL-1beta partly through the JNK/c-Jun and NADPH oxidase pathways
  publication-title: J Neuroinflammation
  doi: 10.1186/1742-2094-9-102
– volume: 27
  start-page: 1837
  year: 2010
  ident: B44
  article-title: Neuroproteomics: a biochemical means to discriminate the extent and modality of brain injury
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2010.1374
– volume: 116
  start-page: 581
  year: 2006
  ident: B31
  article-title: PPAR gamma and human metabolic disease
  publication-title: J Clin Invest
  doi: 10.1172/JCI28003
– volume: 30
  start-page: 775
  year: 2013
  ident: B43
  article-title: Detection of structural and metabolic changes in traumatically injured hippocampus by quantitative differential proteomics
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2012.2391
– volume: 21
  start-page: 271
  year: 2015
  ident: B54
  article-title: Inhibition of G protein-coupled receptor 81 (GPR81) protects against ischemic brain injury
  publication-title: CNS Neurosci Ther
  doi: 10.1111/cns.12362
– volume: 31
  start-page: 2478
  year: 2000
  ident: B66
  article-title: Angiotensin II AT(1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats
  publication-title: Stroke
  doi: 10.1161/01.STR.31.10.2478
– volume: 37
  start-page: 2817
  year: 2013
  ident: B63
  article-title: Candesartan, an angiotensin II AT(1)-receptor blocker and PPAR-gamma agonist, reduces lesion volume and improves motor and memory function after traumatic brain injury in mice
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2012.152
– volume: 35
  start-page: 176
  year: 2015
  ident: B21
  article-title: Lactate transport and signaling in the brain: potential therapeutic targets and roles in body-brain interaction
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2014.206
– volume: 178
  start-page: 1163
  year: 2008
  ident: B3
  article-title: Traumatic brain injury: can the consequences be stopped?
  publication-title: CMAJ
  doi: 10.1503/cmaj.080282
– volume: 109
  start-page: 1518
  year: 2012
  ident: B20
  article-title: Mitochondrial hexokinase II (HKII) and phosphoprotein enriched in astrocytes (PEA15) form a molecular switch governing cellular fate depending on the metabolic state
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1108225109
– volume: 25
  start-page: 799
  year: 2008
  ident: B48
  article-title: Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization
  publication-title: Clin Exp Metastasis
  doi: 10.1007/s10585-008-9193-z
– volume: 7
  start-page: 1438
  year: 2009
  ident: B40
  article-title: Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-09-0234
– volume: 123
  start-page: 567
  year: 2012
  ident: B58
  article-title: Angiotensin II AT(1) receptor blockers as treatments for inflammatory brain disorders
  publication-title: Clin Sci (Lond)
  doi: 10.1042/CS20120078
– volume: 36
  start-page: 1
  year: 2011
  ident: B62
  article-title: Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: therapeutic implications
  publication-title: Psychoneuroendocrinology
  doi: 10.1016/j.psyneuen.2010.10.001
– volume: 27
  start-page: 1766
  year: 2007
  ident: B15
  article-title: Supply and demand in cerebral energy metabolism: the role of nutrient transporters
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/sj.jcbfm.9600521
– volume: 31
  start-page: 1123
  year: 2006
  ident: B69
  article-title: A centrally acting, anxiolytic angiotensin II AT1 receptor antagonist prevents the isolation stress-induced decrease in cortical CRF1 receptor and benzodiazepine binding
  publication-title: Neuropsychopharmacology
  doi: 10.1038/sj.npp.1300921
– volume: 51
  start-page: 1788
  year: 2010
  ident: B42
  article-title: Progressive metabolic and structural cerebral perturbations after traumatic brain injury: an in vivo imaging study in the rat
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.110.078626
– volume: 19
  start-page: 1139
  year: 2002
  ident: B41
  article-title: Effect of traumatic brain injury and nitrone radical scavengers on relative changes in regional cerebral blood flow and glucose uptake in rats
  publication-title: J Neurotrauma
  doi: 10.1089/08977150260337958
– volume: 272
  start-page: 4
  year: 2016
  ident: B28
  article-title: Mild traumatic brain injury-induced hippocampal gene expressions: the identification of target cellular processes for drug development
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2016.02.003
– volume: 29
  start-page: 2283
  year: 2012
  ident: B37
  article-title: The effect of injury severity on behavior: a phenotypic study of cognitive and emotional deficits after mild, moderate, and severe controlled cortical impact injury in mice
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2012.2456
– volume: 33
  start-page: 1479
  year: 2016
  ident: B11
  article-title: Outcome after repetitive mild traumatic brain injury is temporally related to glucose uptake profile at time of second injury
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2015.4129
– volume: 1
  start-page: 63
  year: 2012
  ident: B73
  article-title: Pilot data on telmisartan short-term effects on glucose metabolism in the olfactory tract in Alzheimer’s disease
  publication-title: Brain Behav
  doi: 10.1002/brb3.13
– volume: 10
  start-page: 335
  year: 1989
  ident: B8
  article-title: Local cerebral glucose abnormalities in mild closed head injured patients with cognitive impairments
  publication-title: Nucl Med Commun
  doi: 10.1097/00006231-198905000-00004
– volume: 146
  start-page: 1602
  year: 2014
  ident: B55
  article-title: The anti-inflammasome effect of lactate and the lactate GPR81-receptor in pancreatic and liver inflammation
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2014.04.025
– volume: 99
  start-page: 4
  year: 2007
  ident: B1
  article-title: Pathophysiology of traumatic brain injury
  publication-title: Br J Anaesth
  doi: 10.1093/bja/aem131
– volume: 5
  start-page: 29
  year: 2013
  ident: B2
  article-title: Molecular mechanisms of cognitive dysfunction following traumatic brain injury
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2013.00029
– reference: 25920953 - J Cereb Blood Flow Metab. 2015 Jul;35(7):1069-75
– reference: 22781494 - Neurosci Lett. 2012 Aug 22;524(1):16-9
– reference: 8081345 - Brain Inj. 1994 May-Jun;8(4):297-308
– reference: 15837532 - Regul Pept. 2005 Jun 30;128(3):227-38
– reference: 24780214 - Gastroenterology. 2014 Jun;146(7):1602-5
– reference: 20498620 - J Hypertens. 2010 Aug;28(8):1730-7
– reference: 25904838 - Front Neurosci. 2015 Apr 08;9:112
– reference: 19726055 - J Surg Res. 2010 Mar;159(1):468-73
– reference: 16801361 - Mol Cell Proteomics. 2006 Oct;5(10):1887-98
– reference: 12427324 - J Neurotrauma. 2002 Oct;19(10 ):1139-53
– reference: 26868732 - J Neurosci Methods. 2016 Oct 15;272:4-18
– reference: 26115674 - Brain. 2015 Nov;138(Pt 11):3299-315
– reference: 25495836 - CNS Neurosci Ther. 2015 Mar;21(3):271-9
– reference: 22892395 - Neuropsychopharmacology. 2012 Dec;37(13):2817-29
– reference: 16511590 - J Clin Invest. 2006 Mar;116(3):581-9
– reference: 22399085 - Brain Behav. 2011 Nov;1(2):63-9
– reference: 19047060 - J Biol Chem. 2009 Jan 30;284(5):2811-22
– reference: 25881750 - J Neurosci Res. 2015 Jul;93(7):1045-55
– reference: 20738443 - J Cell Mol Med. 2010 Oct;14(10):2381-92
– reference: 17573392 - Br J Anaesth. 2007 Jul;99(1):4-9
– reference: 21726646 - Neurobiol Dis. 2011 Oct;44(1):84-91
– reference: 19723875 - Mol Cancer Res. 2009 Sep;7(9):1438-45
– reference: 25425080 - J Cereb Blood Flow Metab. 2015 Feb;35(2):176-85
– reference: 17579656 - J Cereb Blood Flow Metab. 2007 Nov;27(11):1766-91
– reference: 24477453 - Intensive Care Med. 2014 Mar;40(3):412-21
– reference: 21035950 - Psychoneuroendocrinology. 2011 Jan;36(1):1-18
– reference: 14679505 - NMR Biomed. 2003 Oct-Nov;16(6-7):430-9
– reference: 16467783 - J Cereb Blood Flow Metab. 2006 Oct;26(10):1285-97
– reference: 2787008 - Nucl Med Commun. 1989 May;10(5):335-44
– reference: 18649117 - Clin Exp Metastasis. 2008;25(7):799-810
– reference: 22827472 - Clin Sci (Lond). 2012 Nov;123(10):567-90
– reference: 16463843 - Acta Neurochir Suppl. 2005;95:165-8
– reference: 22757692 - J Neurotrauma. 2013 May 1;30(9):775-88
– reference: 25362113 - Am J Hypertens. 2015 Mar;28(3):289-99
– reference: 22642771 - J Neuroinflammation. 2012 May 29;9:102
– reference: 23847533 - Front Aging Neurosci. 2013 Jul 09;5:29
– reference: 10510291 - Biochem J. 1999 Oct 15;343 Pt 2:281-99
– reference: 11043912 - J Cereb Blood Flow Metab. 2000 Oct;20(10 ):1492-501
– reference: 23696276 - Cereb Cortex. 2014 Oct;24(10):2784-95
– reference: 16731806 - J Exp Biol. 2006 Jun;209(Pt 12):2304-11
– reference: 26656066 - Brain Res. 2016 Jan 15;1631:113-26
– reference: 22233811 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1518-23
– reference: 22888957 - J Neurotrauma. 2012 Aug 10;29(12):2181-91
– reference: 21150913 - Neuropsychopharmacology. 2011 Mar;36(4):857-70
– reference: 26993513 - Cell Mol Neurobiol. 2016 Mar;36(2):259-79
– reference: 20698760 - J Neurotrauma. 2010 Oct;27(10):1837-52
– reference: 407330 - J Neurochem. 1977 Jul;29(1):13-26
– reference: 22454480 - Hypertension. 2012 May;59(5):1079-88
– reference: 17518533 - J Neurotrauma. 2007 May;24(5):772-89
– reference: 18627256 - J Neurotrauma. 2008 Jul;25(7):785-94
– reference: 18427091 - CMAJ. 2008 Apr 22;178(9):1163-70
– reference: 21051651 - J Nucl Med. 2010 Nov;51(11):1788-95
– reference: 26822027 - Alzheimers Res Ther. 2016 Jan 28;8:5
– reference: 24316465 - Neuropharmacology. 2014 Apr;79:249-61
– reference: 20225002 - Neurocrit Care. 2010 Jun;12(3):324-36
– reference: 16412096 - J Neurochem. 2006 Feb;96(4):973-82
– reference: 11022082 - Stroke. 2000 Oct;31(10):2478-86
– reference: 15176484 - Neurochem Res. 2004 Jun;29(6):1275-86
– reference: 22356806 - J Neuroinflammation. 2012 Feb 22;9:38
– reference: 22642287 - J Neurotrauma. 2012 Sep;29(13):2283-96
– reference: 21938488 - Cell Mol Neurobiol. 2012 Jul;32(5):667-81
– reference: 16205776 - Neuropsychopharmacology. 2006 Jun;31(6):1123-34
– reference: 11686488 - J Neurotrauma. 2001 Oct;18(10):1011-8
– reference: 19429050 - Neurosci Lett. 2009 Apr 17;454(1):38-42
– reference: 18952058 - Biochem Biophys Res Commun. 2008 Dec 19;377(3):987-91
– reference: 26650903 - J Neurotrauma. 2016 Aug 15;33(16):1479-91
– reference: 15143297 - Stroke. 2004 Jul;35(7):1726-31
– reference: 18712048 - Hypertens Res. 2008 May;31(5):921-9
– reference: 9298843 - Glia. 1997 Sep;21(1):2-21
– reference: 21242296 - J Exp Med. 2011 Feb 14;208(2):313-26
– reference: 9010426 - J Neurosurg. 1997 Feb;86(2):241-51
SSID ssj0000401998
Score 2.2418625
Snippet Traumatic brain injury (TBI) causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 231
SubjectTerms angiotensin II AT1 receptor
Endocrinology
gene expression
glucose metabolism
GPR81
hexokinase
lactate
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQHhAXxDfhS4PEhUPU2HES58hWW1qkctqV9hY5HkcUZZ1qmxX8F_4sYztbWoTgQo9tqlh5z5558fgNY-9yJKogTSSlcpvKNqvTVhqRdlzXHVpZdsFndv25XF7IT5fF5UGrL18TFu2B44Ob5aa0rVGWQrWQyugWa6NoZa8xq0Rpg3spxbwDMRXWYJINJCTiviSpsHrWWYf-sB_3loUi50dxKNj1_ynH_L1U8iD2LB6w-1PSCB_iYB-yO9Y9YnfX07b4Y_bjPBpM9RAPC-xg42A-XIf31KAdwnKz3VLUornfw9n3qfjVwdCB953eweoq5OFuBEpi4dT3jYCPsZod1nYkpvSb3RUsiDXDN4p2MI8l7r3FXzdahROXsHJfCSg_hDWtQk_YxeLsfL5Mp64LqZGlGFMt67LNSUlotNqbSWIui05kHmzRCqFFV2iDVSF5pYoKuTCm0hlygpajtvlTduIGZ58zwIwbLCu0SipKu0SrQ75IGQnBmKNK2OwWg8ZMluS-M0bfkDTxqDUBtcaj1gTUEvZ-_49ttOP4y7WnHtb9dd5IO3xB9GomejX_olfC3t6SoqGJ53dTtLPDza7htaQPqU2ZsGeRJPtbkYoN7ZgSVh3R52gsx7-4zZdg7u0Vcl2oF_9j8C_ZPf84fHkL56_YyXh9Y19TDjW2b8J0-QntGx-9
  priority: 102
  providerName: Directory of Open Access Journals
Title Temporal Changes in Cortical and Hippocampal Expression of Genes Important for Brain Glucose Metabolism Following Controlled Cortical Impact Injury in Mice
URI https://www.ncbi.nlm.nih.gov/pubmed/28955302
https://www.proquest.com/docview/1944441644
https://pubmed.ncbi.nlm.nih.gov/PMC5601958
https://doaj.org/article/3c6ebc8e250248cabd9c8cee9d0726e5
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbQkBAviN-EwWQkXngIix0ncR4QYtW6Fik8rVLfIsd2oChzSpNp42_hn-XOyTqKKiTyUClpmri5O9938d13hLyNDaiKAUOSMrahqKI8rITmYc1UXhsr0trzzBZf0tlCfF4my9vy6PEBdntDO-wntdg0769__PwIBv8BI07wt8e1dQbr-BiyEXIsqr4LfilDMy1GsO_nZQglct8cl6WpCDkgg2Hdcu9FdvyUp_Pfh0H_TqX8wzdNH5IHI6iknwYteETuWPeY3CvGZfMn5Nf5QEDV0KGYoKMrRyftxr_HpsoZOlut1-DVYG5o6On1mBzraFtT5KXu6PzCPyLXUwC59AT7StCzIdudFrYHTWpW3QWdgla1V-AN6WRIgW-sub3R3Fdk0rn7DoLEIRQwSz0li-np-WQWjl0ZQi1S3odK5GkVQ6ShjFVINmlikdQ8QmXgFeeK14nSJktABDLJDONaZyoyDETPjLLxM3LgWmdfEGoipk2aGSuFBFjGK-XxJCAWVZnYyIAc38ig1CNlOXbOaEoIXVBqpZdaiVIrvdQC8m77i_VA1_GPc09QrNvzkGjbH2g3X8vRbstYp7bS0gJS5EJqGFeuJQCL3EQZT20SkDc3SlGCYeJqi3K2vexKlgvYIBoVAXk-KMn2VhDl-nZNAcl21GdnLLvfuNU3T_6NEXSeyJf_8UcPyX3cwSwXxl6Rg35zaV8DlOqrI_8KAj7PluzIW8tvgQ4hRw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+Changes+in+Cortical+and+Hippocampal+Expression+of+Genes+Important+for+Brain+Glucose+Metabolism+Following+Controlled+Cortical+Impact+Injury+in+Mice&rft.jtitle=Frontiers+in+endocrinology+%28Lausanne%29&rft.au=Zhou%2C+June&rft.au=Burns%2C+Mark+P.&rft.au=Huynh%2C+Linda&rft.au=Villapol%2C+Sonia&rft.date=2017-09-11&rft.issn=1664-2392&rft.eissn=1664-2392&rft.volume=8&rft_id=info:doi/10.3389%2Ffendo.2017.00231&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fendo_2017_00231
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2392&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2392&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2392&client=summon