Odorant Receptors and Odorant-Binding Proteins as Insect Pest Control Targets: A Comparative Analysis
Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely odorant-binding proteins (OBPs) and odorant receptors (ORs). Located in insect antennae, OBPs are thought to be involved in the transport of...
Saved in:
Published in | Frontiers in physiology Vol. 9; p. 1163 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
24.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely odorant-binding proteins (OBPs) and odorant receptors (ORs). Located in insect antennae, OBPs are thought to be involved in the transport of odorants to ORs for the specific signal transduction of behaviorally active odorants. There is rich information on OBP binding affinity and molecular docking to bioactive compounds as well as ample 3D crystal structures due to feasible production of recombinant proteins. Although these provide excellent opportunities for them to be considered as pest control targets and a tool to design pest control agents, the debates on their binding specificity represent an obstacle. On the other hand, ORs have recently been functionally characterized with increasing evidence for their specificity, sensitivity and functional roles in pest behaviors. However, a major barrier to use ORs for semiochemical discovery is the lack of 3D crystal structures. Thus, OBPs and ORs have not been analyzed comparatively together so far for their feasibility as pest control targets. Here, we summarize the state of OBPs and ORs research in terms of its application in insect pest management. We discuss the suitability of both proteins as pest control targets and their selection toward the discovery of new potent semiochemicals. We argue that both proteins represent promising targets for pest control and can be used to identify new super-ligands likely present in nature and with reduced risk of resistance development than insect pesticides currently used in agriculture. We discuss that with the massive identification of OBPs through RNA-seq and improved binding affinity measurements, these proteins could be reconsidered as suitable targets for semiochemical discovery. |
---|---|
AbstractList | Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely odorant-binding proteins (OBPs) and odorant receptors (ORs). Located in insect antennae, OBPs are thought to be involved in the transport of odorants to ORs for the specific signal transduction of behaviorally active odorants. There is rich information on OBP binding affinity and molecular docking to bioactive compounds as well as ample 3D crystal structures due to feasible production of recombinant proteins. Although these provide excellent opportunities for them to be considered as pest control targets and a tool to design pest control agents, the debates on their binding specificity represent an obstacle. On the other hand, ORs have recently been functionally characterized with increasing evidence for their specificity, sensitivity and functional roles in pest behaviors. However, a major barrier to use ORs for semiochemical discovery is the lack of 3D crystal structures. Thus, OBPs and ORs have not been analyzed comparatively together so far for their feasibility as pest control targets. Here, we summarize the state of OBPs and ORs research in terms of its application in insect pest management. We discuss the suitability of both proteins as pest control targets and their selection toward the discovery of new potent semiochemicals. We argue that both proteins represent promising targets for pest control and can be used to identify new super-ligands likely present in nature and with reduced risk of resistance development than insect pesticides currently used in agriculture. We discuss that with the massive identification of OBPs through RNA-seq and improved binding affinity measurements, these proteins could be reconsidered as suitable targets for semiochemical discovery. Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely odorant-binding proteins (OBPs) and odorant receptors (ORs). Located in insect antennae, OBPs are thought to be involved in the transport of odorants to ORs for the specific signal transduction of behaviorally active odorants. There is rich information on OBP binding affinity and molecular docking to bioactive compounds as well as ample 3D crystal structures due to feasible production of recombinant proteins. Although these provide excellent opportunities for them to be considered as pest control targets and a tool to design pest control agents, the debates on their binding specificity represent an obstacle. On the other hand, ORs have recently been functionally characterized with increasing evidence for their specificity, sensitivity and functional roles in pest behaviors. However, a major barrier to use ORs for semiochemical discovery is the lack of 3D crystal structures. Thus, OBPs and ORs have not been analyzed comparatively together so far for their feasibility as pest control targets. Here, we summarize the state of OBPs and ORs research in terms of its application in insect pest management. We discuss the suitability of both proteins as pest control targets and their selection toward the discovery of new potent semiochemicals. We argue that both proteins represent promising targets for pest control and can be used to identify new super-ligands likely present in nature and with reduced risk of resistance development than insect pesticides currently used in agriculture. We discuss that with the massive identification of OBPs through RNA-seq and improved binding affinity measurements, these proteins could be reconsidered as suitable targets for semiochemical discovery.Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely odorant-binding proteins (OBPs) and odorant receptors (ORs). Located in insect antennae, OBPs are thought to be involved in the transport of odorants to ORs for the specific signal transduction of behaviorally active odorants. There is rich information on OBP binding affinity and molecular docking to bioactive compounds as well as ample 3D crystal structures due to feasible production of recombinant proteins. Although these provide excellent opportunities for them to be considered as pest control targets and a tool to design pest control agents, the debates on their binding specificity represent an obstacle. On the other hand, ORs have recently been functionally characterized with increasing evidence for their specificity, sensitivity and functional roles in pest behaviors. However, a major barrier to use ORs for semiochemical discovery is the lack of 3D crystal structures. Thus, OBPs and ORs have not been analyzed comparatively together so far for their feasibility as pest control targets. Here, we summarize the state of OBPs and ORs research in terms of its application in insect pest management. We discuss the suitability of both proteins as pest control targets and their selection toward the discovery of new potent semiochemicals. We argue that both proteins represent promising targets for pest control and can be used to identify new super-ligands likely present in nature and with reduced risk of resistance development than insect pesticides currently used in agriculture. We discuss that with the massive identification of OBPs through RNA-seq and improved binding affinity measurements, these proteins could be reconsidered as suitable targets for semiochemical discovery. |
Author | Zhou, Jing-Jiang Venthur, Herbert |
AuthorAffiliation | 2 Center of Excellence in Biotechnology Research Applied to the Environment (CIBAMA), Universidad de La Frontera , Temuco , Chile 3 Department of Biological Chemistry and Crop Protection, Rothamsted Research , Harpenden , United Kingdom 4 Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun , China 1 Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera , Temuco , Chile |
AuthorAffiliation_xml | – name: 2 Center of Excellence in Biotechnology Research Applied to the Environment (CIBAMA), Universidad de La Frontera , Temuco , Chile – name: 3 Department of Biological Chemistry and Crop Protection, Rothamsted Research , Harpenden , United Kingdom – name: 4 Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun , China – name: 1 Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera , Temuco , Chile |
Author_xml | – sequence: 1 givenname: Herbert surname: Venthur fullname: Venthur, Herbert – sequence: 2 givenname: Jing-Jiang surname: Zhou fullname: Zhou, Jing-Jiang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30197600$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1r3DAQhk1JaT6ae0_Fx168lWRZsnsobJc2XQgklBR6E2NpvFHwSq6kDey_r_YjJSlUF4l3Zp5BM-95ceK8w6J4R8msrtvu4zDdb-OMEdrOCKWiflWcUSF4RTj7dfLsfVpcxvhA8uGEEULfFKc1oZ0UhJwVeGN8AJfKH6hxSj7EEpwpj2r1xTpj3aq8DT6hdTkYy6WLqFN5izGVC-9S8GN5B2GFKX4q51laTxAg2Ucs5w7GbbTxbfF6gDHi5fG-KH5--3q3-F5d31wtF_PrSnPBUtVpSmvsKJBaaoamEQwYsgG6rm4FbWoqsO97ImVLoR94y5sWZaPBSG6M4PVFsTxwjYcHNQW7hrBVHqzaCz6sFIRk9YgKqTADDESDBC4bAj0bGO96vWvD6ZBZnw-sadOv0WjMP4XxBfRlxNl7tfKPSlAqGZcZ8OEICP73Jk9LrW3UOI7g0G-iYjRvgRFBu5z6_nmvv02e9pQTxCFBBx9jwEFpm_KMd-MHOypK1M4Tau8JtfOE2nsiF5J_Cp_Y_y35A2y3u54 |
CitedBy_id | crossref_primary_10_1016_j_cbd_2024_101222 crossref_primary_10_1098_rspb_2022_2054 crossref_primary_10_1002_cbdv_202402475 crossref_primary_10_3390_insects11110816 crossref_primary_10_1515_flaent_2024_0013 crossref_primary_10_1074_jbc_RA120_016557 crossref_primary_10_1111_eea_13300 crossref_primary_10_1111_mec_15874 crossref_primary_10_1038_s41598_020_73294_8 crossref_primary_10_1093_jee_toab095 crossref_primary_10_1093_jee_toac063 crossref_primary_10_3390_insects13080662 crossref_primary_10_1002_arch_22064 crossref_primary_10_1002_ps_5915 crossref_primary_10_1007_s42690_024_01229_1 crossref_primary_10_1080_00218839_2019_1702325 crossref_primary_10_1002_ps_7415 crossref_primary_10_3390_genes13081372 crossref_primary_10_1002_ps_7654 crossref_primary_10_1016_j_cbd_2020_100654 crossref_primary_10_3390_insects12090814 crossref_primary_10_1021_acs_jafc_4c12251 crossref_primary_10_3390_ijms21134582 crossref_primary_10_1111_eva_13542 crossref_primary_10_1111_imb_12960 crossref_primary_10_1016_j_ibmb_2023_104031 crossref_primary_10_3390_insects15090660 crossref_primary_10_3390_molecules26092762 crossref_primary_10_1021_acs_jafc_4c12301 crossref_primary_10_1016_j_ijbiomac_2023_127505 crossref_primary_10_1093_jisesa_ieaa087 crossref_primary_10_1111_eea_12982 crossref_primary_10_3389_fphys_2020_00212 crossref_primary_10_1002_arch_21542 crossref_primary_10_1093_jisesa_ieaa003 crossref_primary_10_3390_molecules27082519 crossref_primary_10_1080_08927022_2022_2159054 crossref_primary_10_3390_insects12050408 crossref_primary_10_1093_jee_toz286 crossref_primary_10_3389_fphys_2021_663040 crossref_primary_10_1242_jeb_247888 crossref_primary_10_7717_peerj_8902 crossref_primary_10_3390_insects12090787 crossref_primary_10_3390_ijms25179436 crossref_primary_10_1016_j_ijbiomac_2024_129339 crossref_primary_10_3389_fevo_2022_823119 crossref_primary_10_1002_prot_26239 crossref_primary_10_1186_s12864_024_10572_z crossref_primary_10_1371_journal_pone_0252765 crossref_primary_10_3389_fphys_2022_978534 crossref_primary_10_1016_j_cbd_2024_101283 crossref_primary_10_1021_acsomega_9b03157 crossref_primary_10_3389_fphys_2024_1475489 crossref_primary_10_3390_plants11020167 crossref_primary_10_3390_insects12040335 crossref_primary_10_1016_j_jinsphys_2025_104793 crossref_primary_10_3389_fphys_2023_1326099 crossref_primary_10_1016_j_cbd_2019_04_002 crossref_primary_10_1038_s41598_021_90649_x crossref_primary_10_1002_ps_6352 crossref_primary_10_1093_jxb_erab413 crossref_primary_10_3390_life14020192 crossref_primary_10_1007_s11829_020_09791_4 crossref_primary_10_1038_s41598_024_72014_w crossref_primary_10_1016_j_ibmb_2023_103961 crossref_primary_10_3389_fevo_2023_1159142 crossref_primary_10_3389_fphys_2022_907667 crossref_primary_10_1007_s10340_023_01690_w crossref_primary_10_7717_peerj_10035 crossref_primary_10_1016_j_aspen_2022_101919 crossref_primary_10_1016_j_ibmb_2020_103514 crossref_primary_10_1071_AN23238 crossref_primary_10_1021_acsomega_0c04089 crossref_primary_10_3390_ijms26052302 crossref_primary_10_3389_fphys_2023_1287353 crossref_primary_10_3390_insects16020152 crossref_primary_10_3390_insects12050422 crossref_primary_10_1186_s12864_023_09871_8 crossref_primary_10_1016_j_aspen_2023_102066 crossref_primary_10_1016_j_ygeno_2020_06_042 crossref_primary_10_1002_arch_21737 crossref_primary_10_1016_j_bios_2023_115237 crossref_primary_10_1111_1744_7917_12919 crossref_primary_10_1002_arch_21738 crossref_primary_10_1111_imb_12757 crossref_primary_10_3389_fevo_2020_00008 crossref_primary_10_1039_D3ME00036B crossref_primary_10_3390_molecules29143390 crossref_primary_10_3389_fphys_2022_900752 crossref_primary_10_1111_mec_17693 crossref_primary_10_3390_insects12050430 crossref_primary_10_1002_ps_5799 crossref_primary_10_1111_imb_12638 crossref_primary_10_1016_j_ibmb_2019_103244 crossref_primary_10_1016_j_bios_2025_117382 crossref_primary_10_1038_s41598_020_74803_5 crossref_primary_10_1093_chemse_bjab021 crossref_primary_10_3390_insects12100879 crossref_primary_10_3390_insects12080661 crossref_primary_10_1007_s12600_021_00917_9 crossref_primary_10_3389_fphys_2023_1241324 crossref_primary_10_1038_s41598_021_96778_7 crossref_primary_10_1038_s41598_019_46532_x crossref_primary_10_3390_ijms24043406 crossref_primary_10_1111_1744_7917_13178 crossref_primary_10_1016_j_snb_2020_129243 crossref_primary_10_1016_j_ijbiomac_2022_11_186 crossref_primary_10_1186_s12864_025_11231_7 crossref_primary_10_3390_plants14030407 crossref_primary_10_1016_j_pestbp_2020_01_012 crossref_primary_10_1038_s41598_021_87348_y crossref_primary_10_1017_S0007485321001127 crossref_primary_10_3390_ijms21114073 crossref_primary_10_3390_ijms25179513 crossref_primary_10_1021_acs_jafc_3c09095 crossref_primary_10_1007_s12033_022_00560_7 crossref_primary_10_3390_plants13020185 crossref_primary_10_3389_fevo_2022_1065947 crossref_primary_10_1007_s00049_024_00416_3 crossref_primary_10_3389_fcimb_2024_1360680 crossref_primary_10_1111_jen_12922 crossref_primary_10_1111_mec_16740 crossref_primary_10_1007_s13353_020_00566_4 crossref_primary_10_1038_s41598_022_07840_x crossref_primary_10_3390_plants11233298 crossref_primary_10_1007_s11240_021_02174_4 crossref_primary_10_7717_peerj_9584 crossref_primary_10_1016_j_pestbp_2024_106183 crossref_primary_10_3390_chemosensors9070174 crossref_primary_10_3390_insects15020111 crossref_primary_10_1016_j_ijbiomac_2023_125422 crossref_primary_10_1038_s41598_024_80094_x crossref_primary_10_1016_j_cbd_2023_101174 crossref_primary_10_1111_mec_16739 crossref_primary_10_1016_j_cris_2023_100062 crossref_primary_10_16970_entoted_1337346 crossref_primary_10_1128_mBio_02531_21 crossref_primary_10_1080_00218839_2023_2246233 crossref_primary_10_3389_fphys_2021_668236 crossref_primary_10_3389_fphys_2019_01223 crossref_primary_10_1016_j_pestbp_2019_04_011 crossref_primary_10_1007_s00253_020_10860_0 crossref_primary_10_3390_insects12100939 crossref_primary_10_7717_peerj_12132 crossref_primary_10_1002_ps_6319 crossref_primary_10_3390_biom12020282 crossref_primary_10_3390_ijms25053055 crossref_primary_10_1016_j_pestbp_2023_105523 crossref_primary_10_1080_07391102_2023_2262583 crossref_primary_10_1002_ece3_10717 crossref_primary_10_1016_j_ijbiomac_2023_124744 crossref_primary_10_1002_ps_6674 crossref_primary_10_1016_j_jinsphys_2022_104383 crossref_primary_10_3389_fphys_2024_1537476 |
Cites_doi | 10.1371/journal.pone.0189889 10.1007/s00359-013-0837-3 10.1111/jen.12396 10.1126/science.1138878 10.1038/s41598-017-11098-z 10.1186/1810-522X-52-42 10.3389/fphys.2018.00447 10.1126/science.1258522 10.1111/1744-7917.12576 10.1038/293161a0 10.1038/srep13093 10.1016/S0097-8485(96)00029-0 10.1007/s13355-017-0533-9 10.1007/s10886-012-0164-0 10.3389/fncel.2012.00029 10.1111/imb.12033 10.1371/journal.pone.0148159 10.1007/s10886-014-0418-0 10.1371/journal.pone.0125159 10.1371/journal.pone.0103420 10.1038/srep32806 10.1073/pnas.1102425108 10.1038/srep22336 10.1126/science.1192428 10.1371/journal.pone.0161839 10.1016/j.ijbiomac.2017.10.149 10.1007/s10886-015-0576-8 10.1016/0020-1790(87)90093-X 10.1111/j.1460-9568.2008.06429.x 10.1073/pnas.1717375114 10.1073/pnas.1008617108 10.1007/s10886-010-9861-8 10.1371/journal.pone.0064547 10.1371/journal.pone.0128550 10.1186/s12864-016-2362-6 10.1038/srep41105 10.1093/chemse/bju048 10.1093/chemse/bjt012 10.1007/s10886-017-0897-x 10.1038/srep33981 10.1186/1471-2164-15-209 10.1038/ncomms15709 10.7554/eLife.02115 10.1146/annurev-ento-120811-153635 10.1016/j.ibmb.2014.06.006 10.1073/pnas.1009690108 10.1146/annurev-pharmtox-032112-135923.Structure-Function 10.1371/journal.pone.0142193 10.1016/j.neuron.2004.08.019 10.1016/j.jinsphys.2012.12.004 10.1371/journal.pone.0031620 10.1007/s000180300032 10.1007/s10886-010-9863-6 10.1038/nature06536 10.1371/journal.pbio.0050118 10.1038/nature06341 10.1186/s12915-016-0306-x 10.1371/journal.pone.0062098 10.1016/j.cbd.2017.11.003 10.1111/1744-7917.12294 10.1016/j.jinsphys.2013.10.006 10.1038/nature06850 10.1371/journal.pone.0053840 10.1016/j.cbpb.2015.11.014 10.3389/fevo.2015.00039 10.1371/journal.pone.0084575 10.1016/j.ibmb.2015.03.003 10.1186/s13071-016-1644-9 10.1111/jen.12417 10.1016/j.jinsphys.2012.10.020 10.1101/gr.239402 10.1111/imb.12261 10.1371/journal.pbio.1000313 10.1111/j.1365-2583.2010.01045.x 10.1038/s41598-018-26137-6 10.1073/pnas.151103998 10.1038/nature06861 10.1016/j.bbrc.2005.07.176 10.1007/s00018-013-1308-2 10.1371/journal.pone.0180775 10.1038/ng.2524 10.1038/nature06784 10.1016/j.jmb.2009.04.015 10.1371/journal.pone.0147768 10.1098/rspb.2014.0558 10.1073/pnas.1718284115 10.1371/journal.pone.0165374 10.1016/j.bbrc.2014.03.054 10.1016/j.ibmb.2014.05.003 10.3389/fphys.2018.00107 10.1038/srep17320 10.1093/chemse/bjr022 10.1073/pnas.1017963108 10.1007/s00359-013-0812-z 10.1074/jbc.M100713200 10.1371/journal.pone.0084795 10.1242/jeb.154260 10.1016/j.jinsphys.2018.02.005 10.1073/pnas.1204661109 10.7150/ijbs.9297 10.1073/pnas.0607874103 10.1111/imb.12243 10.7150/ijbs.18402 10.1371/journal.pone.0164729 10.1016/S0014-5793(03)01521-7 10.3389/fphys.2014.00320 10.1016/j.cbpa.2014.11.005 10.1002/arch.21456 10.1111/ens.12180 10.1002/jez.b.22797 10.1371/journal.pone.0179433 10.7150/ijbs.12528 10.1046/j.1365-2583.2003.00440.x 10.1016/j.bbrc.2010.11.119 10.1038/srep26652 10.1074/jbc.M114.632299 10.1016/j.ibmb.2015.02.012 10.3389/fncel.2016.00275 10.1016/j.ibmb.2015.09.010 10.1016/j.pestbp.2014.11.004 10.1016/0965-1748(93)90005-D 10.1111/j.1460-9568.2012.08183.x 10.1371/journal.pone.0171739 10.1371/journal.pone.0003045 10.1073/pnas.0407596101 10.1016/j.ibmb.2013.05.009 10.1038/nn1371 10.1016/j.bbrc.2014.12.048 10.1111/1744-7917.12510 10.1371/journal.pone.0030304 10.1073/pnas.1317706110 10.1038/nature05260 10.1016/S1074-5521(00)00078-8 10.1016/j.cub.2014.01.018 10.1186/s12864-017-3939-4 10.1016/j.drudis.2013.10.027 10.1371/journal.pone.0036784 10.1016/j.ibmb.2014.08.005 10.1016/j.cbd.2013.12.002 10.1126/science.1178028 10.1186/s12864-015-1466-8 10.1186/s12864-015-2236-3 10.1073/pnas.1524968113 10.1186/s12864-015-1375-x 10.1101/gr.5057506 10.1016/j.ibmb.2009.03.004 10.1186/1471-2164-14-749 10.1073/pnas.1600205113 10.1007/s10886-010-9828-9 10.1021/cb300331z 10.1038/ncomms10165 10.1002/arch.21309 10.1016/j.ibmb.2008.11.004 10.1016/S0965-1748(01)00171-0 10.1371/journal.pone.0117054 10.1039/b914294k 10.1126/science.1249656.Genome 10.1093/chemse/bji049 10.1016/j.cbd.2018.05.001 10.1016/j.cell.2011.09.052 10.1016/j.cbd.2018.04.003 10.3389/fevo.2015.00060 10.1007/s00018-005-5607-0 10.1371/journal.pone.0015428 10.1016/j.cbd.2017.03.001 10.3389/fphys.2018.00090 10.7150/ijbs.11898 10.1111/imb.12322 10.1016/j.jinsphys.2016.09.008 10.1111/phen.12066 10.12688/f1000research.3825.1 10.1007/s10886-014-0458-5 10.1126/science.1191864 10.1093/chemse/bjj059 10.1016/j.cub.2016.10.013 10.1111/imb.12372 10.1007/s12038-014-9447-7 10.1016/j.cub.2005.02.007 10.1016/j.jspr.2017.08.006 10.1016/j.cbd.2016.03.002 10.1038/srep41829 10.1126/science.1076196 10.1038/s41598-018-20719-0 10.1074/jbc.M117.810374 10.3233/ISB-00271 10.1038/srep29067 10.1371/journal.pone.0114238 10.1146/annurev-pharmtox-010611-134548 10.1038/s41598-017-11456-x 10.1016/j.cbd.2016.03.001 10.1186/s12864-016-3008-4 10.1016/j.cbd.2015.01.004 10.1038/ncomms7077 10.1016/j.cub.2017.04.035 |
ContentType | Journal Article |
Copyright | Copyright © 2018 Venthur and Zhou. 2018 Venthur and Zhou |
Copyright_xml | – notice: Copyright © 2018 Venthur and Zhou. 2018 Venthur and Zhou |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fphys.2018.01163 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1664-042X |
ExternalDocumentID | oai_doaj_org_article_e16dfaf0ca7a4750ab2f249bc153141f PMC6117247 30197600 10_3389_fphys_2018_01163 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Fondo Nacional de Desarrollo Científico y Tecnológico grantid: 3170433 – fundername: Northeastern University – fundername: Jilin University – fundername: Biotechnology and Biological Sciences Research Council |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION DIK EMOBN F5P GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c462t-9c113e91a037c2ed562a2e2fa9938615316ebbb07781abf48458e75cad74dd643 |
IEDL.DBID | M48 |
ISSN | 1664-042X |
IngestDate | Wed Aug 27 01:31:57 EDT 2025 Thu Aug 21 14:08:13 EDT 2025 Fri Jul 11 02:11:35 EDT 2025 Thu Apr 03 07:05:06 EDT 2025 Thu Apr 24 22:58:40 EDT 2025 Thu Jul 10 08:19:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | antagonists insect olfaction agonists odorant binding pest management modulators chemosensory receptors |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-9c113e91a037c2ed562a2e2fa9938615316ebbb07781abf48458e75cad74dd643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 This article was submitted to Invertebrate Physiology, a section of the journal Frontiers in Physiology Edited by: Shuang-Lin Dong, Nanjing Agricultural University, China Reviewed by: Man-Qun Wang, Huazhong Agricultural University, China; Jalal Jalali Sendi, University of Gilan, Iran; Claudio C. Ramirez, University of Talca, Chile |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2018.01163 |
PMID | 30197600 |
PQID | 2101920619 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e16dfaf0ca7a4750ab2f249bc153141f pubmedcentral_primary_oai_pubmedcentral_nih_gov_6117247 proquest_miscellaneous_2101920619 pubmed_primary_30197600 crossref_citationtrail_10_3389_fphys_2018_01163 crossref_primary_10_3389_fphys_2018_01163 |
PublicationCentury | 2000 |
PublicationDate | 2018-08-24 |
PublicationDateYYYYMMDD | 2018-08-24 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in physiology |
PublicationTitleAlternate | Front Physiol |
PublicationYear | 2018 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Liu (B87) 2013; 43 Soques (B132) 2010; 36 Richards (B117) 2008; 452 Hu (B52); 17 Sato (B124) 2008; 452 Li (B85) 2013; 59 Jia (B59) 2016; 6 Montagné (B99) 2012; 36 Leal (B73) 2008; 3 Venthur (B147) 2016; 19 Bin (B10) 2017; 7 Franco (B40) 2016; 69 Chen (B22) 2014; 9 Sandler (B123) 2000; 7 Hill (B48) 2002; 298 Wicher (B161) 2017; 220 Bohbot (B11) 2012; 6 Nie (B102) 2018; 142 Wan (B151) 2015; 5 Arensburger (B2) 2010; 330 Civelli (B28) 2013; 53 Zheng (B189) 2015; 456 Neuhaus (B101) 2005; 8 Xue (B168) 2016; 11 Bohbot (B12) 2015; 3 Tian (B141) 2016; 25 Chang (B21) 2017; 22 Choo (B27) 2018; 115 Chen (B23) 2012; 7 Neafsey (B100) 2015; 347 Wicher (B162) 2008; 452 Smith (B130) 2011; 108 Yin (B172) 2013; 70 Bonasio (B13) 2010; 329 Jayanthi (B57) 2014; 15 Klein (B67) 1987; 17 Robertson (B119) 2018 Tsitoura (B143) 2016; 10 Li (B80) 2016 Zhao (B187) 2018; 9 Li (B81) 2014; 40 Mesquita (B96) 2016; 113 Grosse-Wilde (B44) 2006; 31 Rinker (B118) 2013; 14 Jones (B63) 2005; 15 Qiao (B113) 2009; 39 Schwaighofer (B126) 2014; 446 Peng (B110) 2017; 12 Clark (B29) 2007; 450 Sellanes (B127) 2010; 36 Li (B77) 2015; 11 Li (B82) 2017; 141 Zhang (B183) 2014; 52 Wang (B152) 2013; 8 Jones (B62) 2012; 7 Bengtsson (B6) 2012; 7 Zhao (B188) 2016; 11 Jia (B58) 2018; 13 Tsitoura (B144) 2015; 290 Chang (B20) 2015; 5 Zheng (B190) 2016; 6 Ray (B115) 2014; 39 Sinkins (B129) 2007; 316 Gu (B46) 2015; 10 Iovinella (B56) 2013; 38 Xu (B166) 2003; 12 Vogt (B148) 2015; 62 Zhou (B193) 2009 Brito (B14) 2016; 95 Xia (B164) 2008; 38 Wang (B153) 2016; 6 Zhang (B179) 2016; 11 Matsuo (B95) 2007; 5 Li (B79) 2016; 91 Godfray (B41) 2014; 281 Hopf (B50) 2015; 6 Lautenschlager (B69) 2005; 335 Xu (B167) 2011; 404 Vogt (B149) 1981 Zhang (B177) 2013; 22 Zhou (B191) 2004; 558 Niu (B103) 2016; 18 Zhan (B175) 2011; 147 Carraher (B17) 2015; 66 Lee (B75) 2015; 120 Daimon (B32) 2012; 38 Yan (B169) 2015; 41 Katritch (B66) 2013; 53 Campanacci (B15) 2001; 276 Larsson (B68) 2004; 43 Li (B78) 2015; 10 Sun (B136); 8 Jones (B60) 2008; 451 Wetzel (B160) 2001; 98 Leitch (B76) 2015; 16 Syed (B138) 2006; 103 Zhou (B192) 2010 Gu (B45) 2014; 9 Wang (B155) 2011; 20 Chen (B26) 2018; 98 Feng (B38) 2017; 12 Tsuchihara (B145) 2005; 30 Leal (B71) 2013; 58 Rahman (B114) 2017; 292 Leary (B74) 2012; 109 Vosshall (B150) 2011; 36 Zhou (B195) 2014; 60 Liu (B91) 2015; 13 Grosse-Wilde (B43) 2011; 108 Stengl (B133) 2013; 199 Hu (B51) 2018; 9 Leach (B70) 2001; 21 Bahk (B3) 2016; 14 Cao (B16) 2014; 10 Hekmat-Scafe (B47) 2002; 12 Hughes (B55) 2014; 39 Weinstock (B158) 2006; 443 Tian (B140) 2016; 6 Bass (B5) 2014; 51 Hooper (B49) 2009; 14 Wang (B154) 2017; 18 Li (B83) 2018; 27 Gonzalez (B42) 2017; 7 Sun (B135) 2018; 9 Pelosi (B109) 2006; 63 Mitsuno (B98) 2008; 28 Zhang (B181) 2017; 27 Hughes (B54) 2010; 36 Sakurai (B122) 2004; 101 Bette (B8) 2002; 32 Liu (B93) 2015; 3 Rojas (B121) 2018; 27 Yang (B170) 2017; 43 Zhang (B185) 2017; 74 Chang (B19) 2017; 27 Zhou (B194) 2014; 9 Richards (B116) 2010; 8 Zhang (B180) 2017; 24 Zhang (B178) 2015; 10 Antony (B1) 2016; 17 Feng (B39) 2015; 16 Bian (B9) 2018; 53 Werren (B159) 2010; 327 Shiao (B128) 2013; 52 Cui (B31) 2017; 24 Venthur (B146) 2014; 39 Tsitoura (B142) 2010; 5 Pelosi (B108) 2014; 5 Chen (B25) 2014; 3 Schmidt (B125) 2014; 19 Dong (B36) 2016; 11 You (B173) 2013; 45 Ban (B4) 2003; 60 Li (B84) 2015; 16 Wurm (B163) 2011; 108 De Fouchier (B34) 2017; 8 di Luccio (B35) 2013; 8 Pickett (B111) 2014; 40 Xu (B165) 2016; 113 Kaissling (B64) 2013; 199 Watanabe (B157) 2014; 344 Sun (B137); 59 Paramasivan (B106) 2007; 7 Liu (B92) 2018; 107 Leal (B72) 2017; 114 Missbach (B97) 2014; 2014 Karpe (B65) 2017; 7 Liu (B88) 2016; 9 Liu (B90) 2015; 180 Taylor (B139) 2012; 7 Cattaneo (B18) 2017; 7 Wang (B156) 2017; 12 Zhao (B186) 2016; 11 Robertson (B120) 2006; 16 Liu (B89) 2018; 25 Benoit (B7) 2016; 7 Zhang (B184) 2015; 10 Pregitzer (B112) 2017; 13 Hu (B53); 6 Zhang (B182) 2017 Zeng (B174) 2018 Zhang (B176) 2018; 8 Du (B37) 2018; 27 Damberger (B33) 2013; 110 Maida (B94) 1993; 23 Yi (B171) 2018; 107 Jones (B61) 2011; 108 Chen (B24) 2013; 8 Sun (B134) 2017; 26 Oxley (B105) 2014; 24 Corcoran (B30) 2014; 54 Lin (B86) 2015; 11 Oliferenko (B104) 2013; 8 Song (B131) 2018; 8 Paula (B107) 2016; 25 |
References_xml | – volume: 13 start-page: e0189889 year: 2018 ident: B58 article-title: Identification of chemosensory genes from the antennal transcriptome of Indian meal moth Plodia interpunctella publication-title: PLoS ONE doi: 10.1371/journal.pone.0189889 – volume: 199 start-page: 897 year: 2013 ident: B133 article-title: The role of the coreceptor Orco in insect olfactory transduction publication-title: J. Comp. Physiol. Neuroethol. Sensory Neural Behav. Physiol. doi: 10.1007/s00359-013-0837-3 – volume: 141 start-page: 751 year: 2017 ident: B82 article-title: Expression pattern and ligand-binding properties of odorant-binding protein 13 from Monochamus alternatus hope publication-title: J. Appl. Entomol. doi: 10.1111/jen.12396 – volume: 316 start-page: 1718 year: 2007 ident: B129 article-title: Genome sequence of Aedes aegypti, a major arbovirus vector publication-title: Science doi: 10.1126/science.1138878 – volume: 7 start-page: 10823 year: 2017 ident: B65 article-title: Computational genome-wide survey of odorant receptors from two solitary bees Dufourea novaeangliae (Hymenoptera: Halictidae) and Habropoda laboriosa (Hymenoptera: Apidae) publication-title: Sci. Rep. doi: 10.1038/s41598-017-11098-z – volume: 52 start-page: 1 year: 2013 ident: B128 article-title: Transcriptional profiling of adult drosophila antennae by high-throughput sequencing publication-title: Zool. Stud. doi: 10.1186/1810-522X-52-42 – volume: 9 start-page: 447 year: 2018 ident: B51 article-title: Pheromone binding protein EhipPBP1 is highly enriched in the male antennae of the seabuckthorn carpenterworm and is binding to sex pheromone components publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00447 – volume-title: Odorant-Binding Proteins in Insects, 1st Edn. year: 2010 ident: B192 – volume: 347 start-page: 1 year: 2015 ident: B100 article-title: Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes publication-title: Science doi: 10.1126/science.1258522 – year: 2018 ident: B174 article-title: Genome-wide analysis of odorant-binding proteins and chemosensory proteins in the sweet potato whitefly, publication-title: Bemisia tabaci. Insect Sci doi: 10.1111/1744-7917.12576 – year: 1981 ident: B149 article-title: Pheromone binding and inactivation by moth antennae publication-title: Nature doi: 10.1038/293161a0 – volume: 5 start-page: 13093 year: 2015 ident: B20 article-title: Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppressalis publication-title: Sci. Rep. doi: 10.1038/srep13093 – volume: 21 start-page: 784 year: 2001 ident: B70 article-title: Molecular modelling : principles and applications publication-title: Computers doi: 10.1016/S0097-8485(96)00029-0 – volume: 53 start-page: 93 year: 2018 ident: B9 article-title: Identification of the genes in tea leafhopper, Empoasca onukii (Hemiptera: Cicadellidae), that encode odorant-binding proteins and chemosensory proteins using transcriptome analyses of insect heads publication-title: Appl. Entomol. Zool. doi: 10.1007/s13355-017-0533-9 – volume: 38 start-page: 1031 year: 2012 ident: B32 article-title: Reinvestigation of the sex pheromone of the wild silkmoth Bombyx mandarina: the effects of bombykal and bombykyl acetate publication-title: J. Chem. Ecol. doi: 10.1007/s10886-012-0164-0 – volume: 6 start-page: 29 year: 2012 ident: B11 article-title: Selectivity of odorant receptors in insects publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2012.00029 – volume: 22 start-page: 424 year: 2013 ident: B177 article-title: An odorant receptor from the common cutworm (Spodoptera litura) exclusively tuned to the important plant volatile cis-3-Hexenyl acetate publication-title: Insect Mol. Biol. doi: 10.1111/imb.12033 – volume: 11 start-page: e0148159 year: 2016 ident: B188 article-title: Transcriptome and expression patterns of chemosensory genes in antennae of the parasitoid wasp Chouioia cunea publication-title: PLoS ONE doi: 10.1371/journal.pone.0148159 – volume: 40 start-page: 319 year: 2014 ident: B111 article-title: Chemical ecology in the post genomics era publication-title: J. Chem. Ecol. doi: 10.1007/s10886-014-0418-0 – volume: 10 start-page: e0125159 year: 2015 ident: B46 article-title: Antennal transcriptome analysis of odorant reception genes in the red turpentine beetle (RTB), Dendroctonus valens publication-title: PLoS ONE doi: 10.1371/journal.pone.0125159 – volume: 9 start-page: e103420 year: 2014 ident: B45 article-title: Molecular characterization and differential expression of olfactory genes in the antennae of the black cutworm moth Agrotis ipsilon publication-title: PLoS ONE doi: 10.1371/journal.pone.0103420 – volume: 6 start-page: 1 year: 2016 ident: B153 article-title: Comparison of research methods for functional characterization of insect olfactory receptors publication-title: Sci. Rep. doi: 10.1038/srep32806 – volume: 108 start-page: 8821 year: 2011 ident: B61 article-title: Functional agonism of insect odorant receptor ion channels publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1102425108 – volume: 6 start-page: 22336 year: 2016 ident: B140 article-title: Structural insights into Cydia pomonella pheromone binding protein 2 mediated prediction of potentially active semiochemicals publication-title: Sci. Rep. doi: 10.1038/srep22336 – volume: 329 start-page: 1068 year: 2010 ident: B13 article-title: Genomic Comparison of the Ants Camponotus floridanus and Harpegnathos saltator publication-title: Science doi: 10.1126/science.1192428 – volume: 11 start-page: e0161839 year: 2016 ident: B168 article-title: Identification and expression analysis of candidate odorant-binding protein and chemosensory protein genes by antennal transcriptome of Sitobion avenae publication-title: PLoS ONE doi: 10.1371/journal.pone.0161839 – volume: 107 start-page: 2667 year: 2018 ident: B171 article-title: Screening behaviorally active compounds based on fluorescence quenching in combination with binding mechanism analyses of SspOBP7, an odorant binding protein from Sclerodermus sp publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.10.149 – volume: 41 start-page: 441 year: 2015 ident: B169 article-title: (Z)-13-hexadecenyl acetate: a novel moth sex pheromone component from Herpetogramma submarginale (Lepidoptera: Crambidae) publication-title: J. Chem. Ecol. doi: 10.1007/s10886-015-0576-8 – volume: 17 start-page: 1193 year: 1987 ident: B67 article-title: Sensillum-lymph proteins from antennal olfactory hairs of the moth Antheraea polyphemus (Saturniidae) publication-title: Insect Biochem. doi: 10.1016/0020-1790(87)90093-X – volume: 28 start-page: 893 year: 2008 ident: B98 article-title: Identification of receptors of main sex-pheromone components of three Lepidopteran species publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2008.06429.x – volume: 114 start-page: 12094 year: 2017 ident: B72 article-title: Reverse chemical ecology at the service of conservation biology publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1717375114 – volume: 108 start-page: 5673 year: 2011 ident: B130 article-title: Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile) publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1008617108 – volume: 36 start-page: 1234 year: 2010 ident: B127 article-title: Formate analogs as antagonists of the sex pheromone of the honeydew moth, Cryptoblabes gnidiella: electrophysiological, behavioral and field evidence publication-title: J. Chem. Ecol. doi: 10.1007/s10886-010-9861-8 – volume: 8 start-page: e64547 year: 2013 ident: B104 article-title: Promising Aedes aegypti repellent chemotypes identified through integrated QSAR, virtual screening, synthesis, and bioassay publication-title: PLoS ONE doi: 10.1371/journal.pone.0064547 – volume: 10 start-page: e0128550 year: 2015 ident: B184 article-title: Male- and female-biased gene expression of olfactory-related genes in the antennae of Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae) publication-title: PLoS ONE doi: 10.1371/journal.pone.0128550 – volume: 17 start-page: 69 year: 2016 ident: B1 article-title: Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis publication-title: BMC Genomics doi: 10.1186/s12864-016-2362-6 – volume: 7 start-page: 41105 year: 2017 ident: B18 article-title: Candidate pheromone receptors of codling moth Cydia pomonella respond to pheromones and kairomones publication-title: Sci. Rep. doi: 10.1038/srep41105 – volume: 39 start-page: 761 year: 2014 ident: B55 article-title: A determinant of odorant specificity is located at the extracellular loop 2-transmembrane domain 4 interface of an Anopheles gambiae odorant receptor subunit publication-title: Chem. Senses doi: 10.1093/chemse/bju048 – volume: 38 start-page: 409 year: 2013 ident: B56 article-title: Ligand-binding study of Anopheles gambiae chemosensory proteins publication-title: Chem. Senses doi: 10.1093/chemse/bjt012 – volume: 43 start-page: 1033 year: 2017 ident: B170 article-title: Structural transformation detection contributes to screening of behaviorally active compounds : dynamic binding process analysis of DhelOBP21 from Dastarcus helophoroides publication-title: J. Chem. Ecol. doi: 10.1007/s10886-017-0897-x – volume: 6 start-page: 1 year: 2016 ident: B190 article-title: Predicted structure of a Minus-C OBP from Batocera horsfieldi (Hope) suggests an intermediate structure in evolution of OBPs publication-title: Sci. Rep. doi: 10.1038/srep33981 – volume: 15 start-page: 209 year: 2014 ident: B57 article-title: Computational reverse chemical ecology : virtual screening and predicting behaviorally active semiochemicals for Bactrocera dorsalis publication-title: BMC Genomics doi: 10.1186/1471-2164-15-209 – volume: 8 start-page: 15709 year: 2017 ident: B34 article-title: Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire publication-title: Nat. Commun. doi: 10.1038/ncomms15709 – volume: 2014 start-page: 1 year: 2014 ident: B97 article-title: Evolution of insect olfactory receptors publication-title: Elife doi: 10.7554/eLife.02115 – volume: 58 start-page: 373 year: 2013 ident: B71 article-title: Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes publication-title: Annu. Rev. Entomol. doi: 10.1146/annurev-ento-120811-153635 – volume: 52 start-page: 69 year: 2014 ident: B183 article-title: Antennal transcriptome analysis and comparison of olfactory genes in two sympatric defoliators, Dendrolimus houi and Dendrolimus kikuchii (lepidoptera: Lasiocampidae) publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2014.06.006 – volume: 108 start-page: 5679 year: 2011 ident: B163 article-title: The genome of the fire ant Solenopsis invicta publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1009690108 – volume: 53 start-page: 531 year: 2013 ident: B66 article-title: Structure-function of the G protein-coupled receptor superfamily publication-title: Annu. Rev. doi: 10.1146/annurev-pharmtox-032112-135923.Structure-Function – volume: 10 start-page: e0142193 year: 2015 ident: B78 article-title: Identification of putative olfactory genes from the oriental fruit moth Grapholita molesta via an antennal transcriptome analysis publication-title: PLoS ONE doi: 10.1371/journal.pone.0142193 – volume: 43 start-page: 703 year: 2004 ident: B68 article-title: Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction publication-title: Neuron doi: 10.1016/j.neuron.2004.08.019 – volume: 59 start-page: 263 year: 2013 ident: B85 article-title: Two Minus-C odorant binding proteins from Helicoverpa armigera display higher ligand binding affinity at acidic pH than neutral pH publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2012.12.004 – volume: 7 start-page: e31620 year: 2012 ident: B6 article-title: Putative chemosensory receptors of the codling moth, Cydia pomonella, identified by antennal transcriptome analysis publication-title: PLoS ONE doi: 10.1371/journal.pone.0031620 – volume: 60 start-page: 390 year: 2003 ident: B4 article-title: Biochemical characterization and bacterial expression of an odorant-binding protein from Locusta migratoria publication-title: Cell. Mol. Life Sci. doi: 10.1007/s000180300032 – volume: 36 start-page: 1226 year: 2010 ident: B132 article-title: Age and mating status do not affect transcript levels of odorant receptor genes in male antennae of Heliothis virescens and Heliothis subflexa publication-title: J. Chem. Ecol. doi: 10.1007/s10886-010-9863-6 – volume: 451 start-page: 990 year: 2008 ident: B60 article-title: Global trends in emerging infectious diseases publication-title: Nature doi: 10.1038/nature06536 – volume: 5 start-page: e118 year: 2007 ident: B95 article-title: Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050118 – volume: 450 start-page: 203 year: 2007 ident: B29 article-title: Evolution of genes and genomes on the Drosophila phylogeny publication-title: Nature doi: 10.1038/nature06341 – volume: 14 start-page: 83 year: 2016 ident: B3 article-title: Insect odorant receptor trafficking requires calmodulin publication-title: BMC Biol. doi: 10.1186/s12915-016-0306-x – volume: 8 start-page: e62098 ident: B136 article-title: Identification and characterization of pheromone receptors and interplay between receptors and pheromone binding proteins in the diamondback moth, Plutella xylostella publication-title: PLoS ONE doi: 10.1371/journal.pone.0062098 – volume: 25 start-page: 73 year: 2018 ident: B89 article-title: Identification and characterization of chemosensory gene families in the bark beetle, Tomicus yunnanensis publication-title: Comp. Biochem. Physiol. D Genomics Proteomics doi: 10.1016/j.cbd.2017.11.003 – volume: 24 start-page: 543 year: 2017 ident: B180 article-title: Molecular and functional characterization of a candidate sex pheromone receptor OR1 in Spodoptera litura publication-title: Insect Sci. doi: 10.1111/1744-7917.12294 – volume: 60 start-page: 31 year: 2014 ident: B195 article-title: Silencing in Apolygus lucorum of the olfactory coreceptor Orco gene by RNA interference induces EAG response declining to two putative semiochemicals publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2013.10.006 – volume: 452 start-page: 1002 year: 2008 ident: B124 article-title: Insect olfactory receptors are heteromeric ligand-gated ion channels publication-title: Nature doi: 10.1038/nature06850 – volume: 8 start-page: e53840 year: 2013 ident: B35 article-title: Crystallographic observation of pH-induced conformational changes in the Amyelois transitella pheromone-binding protein AtraPBP1 publication-title: PLoS ONE doi: 10.1371/journal.pone.0053840 – start-page: 11 year: 2016 ident: B80 article-title: Chemosensory proteins of the eastern honeybee, Apis cerana: Identification, tissue distribution and olfactory related functional characterization publication-title: Comp. Biochem. Physiol. B Biochem. Mol. Biol doi: 10.1016/j.cbpb.2015.11.014 – volume: 3 start-page: 39 year: 2015 ident: B12 article-title: The narrowing olfactory landscape of insect odorant receptors publication-title: Front. Ecol. Evol. doi: 10.3389/fevo.2015.00039 – volume: 8 start-page: e84575 year: 2013 ident: B24 article-title: Phenylthiophenecarboxamide antagonists of the olfactory receptor co-receptor subunit from a mosquito publication-title: PLoS ONE doi: 10.1371/journal.pone.0084575 – volume: 62 start-page: 142 year: 2015 ident: B148 article-title: The lepidoptera odorant binding protein gene family: gene gain and loss within the GOBP/PBP complex of moths and butterflies publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2015.03.003 – volume: 9 start-page: 1 year: 2016 ident: B88 article-title: Functional analysis of Orco and odorant receptors in odor recognition in Aedes albopictus publication-title: Parasites Vectors doi: 10.1186/s13071-016-1644-9 – volume: 142 start-page: 149 year: 2018 ident: B102 article-title: Antennal transcriptome and odorant binding protein expression profiles of an invasive mealybug and its parasitoid publication-title: J. Appl. Entomol. doi: 10.1111/jen.12417 – volume: 59 start-page: 46 ident: B137 article-title: Expression patterns and binding properties of three pheromone binding proteins in the diamondback moth, Plutella xylostella publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2012.10.020 – volume: 12 start-page: 1357 year: 2002 ident: B47 article-title: Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster publication-title: Genome Res doi: 10.1101/gr.239402 – volume: 25 start-page: 769 year: 2016 ident: B141 article-title: Molecular characterization and functional analysis of pheromone binding protein 1 from Cydia pomonella (L.) publication-title: Insect Mol. Biol. doi: 10.1111/imb.12261 – volume: 8 start-page: e1000313 year: 2010 ident: B116 article-title: Genome sequence of the pea aphid Acyrthosiphon pisum publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000313 – volume: 20 start-page: 125 year: 2011 ident: B155 article-title: Functional characterization of pheromone receptors in the tobacco budworm Heliothis virescens publication-title: Insect Mol. Biol. doi: 10.1111/j.1365-2583.2010.01045.x – volume: 8 start-page: 7803 year: 2018 ident: B131 article-title: Identification and tissue distribution of chemosensory protein and odorant binding protein genes in Tropidothorax elegans Distant (Hemiptera : Lygaeidae) publication-title: Sci. Rep. doi: 10.1038/s41598-018-26137-6 – volume: 98 start-page: 9377 year: 2001 ident: B160 article-title: Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.151103998 – volume: 452 start-page: 1007 year: 2008 ident: B162 article-title: Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels publication-title: Nature doi: 10.1038/nature06861 – volume: 335 start-page: 1044 year: 2005 ident: B69 article-title: Coil-to-helix transition and ligand release of Bombyx mori pheromone-binding protein publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2005.07.176 – volume: 70 start-page: 3029 year: 2013 ident: B172 article-title: Odorant-binding proteins and olfactory coding in the solitary bee Osmia cornuta publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-013-1308-2 – volume: 12 start-page: e0180775 year: 2017 ident: B110 article-title: Identification of odorant binding proteins and chemosensory proteins in Microplitis mediator as well as functional characterization of chemosensory protein 3 publication-title: PLoS ONE doi: 10.1371/journal.pone.0180775 – volume: 45 start-page: 220 year: 2013 ident: B173 article-title: A heterozygous moth genome provides insights into herbivory and detoxification publication-title: Nat. Genet. doi: 10.1038/ng.2524 – volume: 452 start-page: 949 year: 2008 ident: B117 article-title: The genome of the model beetle and pest Tribolium castaneum publication-title: Nature doi: 10.1038/nature06784 – year: 2009 ident: B193 article-title: Characterisation of Bombyx mori odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.04.015 – volume: 11 start-page: e0147768 year: 2016 ident: B36 article-title: Identification of putative chemosensory receptor genes from the Athetis dissimilis antennal transcriptome publication-title: PLoS ONE doi: 10.1371/journal.pone.0147768 – volume: 281 start-page: 20140558 year: 2014 ident: B41 article-title: A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators publication-title: Proc. R. Soc. B Biol. Sci. doi: 10.1098/rspb.2014.0558 – volume: 115 start-page: 714 year: 2018 ident: B27 article-title: Reverse chemical ecology approach for the identification of an oviposition attractant for Culex quinquefasciatus publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1718284115 – volume: 11 start-page: e0165374 year: 2016 ident: B186 article-title: Antennal transcriptome and differential expression analysis of five chemosensory gene families from the Asian honeybee Apis cerana cerana publication-title: PLoS ONE doi: 10.1371/journal.pone.0165374 – volume: 446 start-page: 1042 year: 2014 ident: B126 article-title: Insights into structural features determining odorant affinities to honey bee odorant binding protein 14 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2014.03.054 – volume: 51 start-page: 41 year: 2014 ident: B5 article-title: The evolution of insecticide resistance in the peach potato aphid, Myzus persicae publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2014.05.003 – volume: 9 start-page: 107 year: 2018 ident: B187 article-title: Sex- and tissue-specific expression profiles of odorant binding protein and chemosensory protein genes in Bradysia odoriphaga (Diptera: Sciaridae) publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00107 – volume: 5 start-page: 17320 year: 2015 ident: B151 article-title: Synthetic pheromones and plant volatiles alter the expression of chemosensory genes in Spodoptera exigua publication-title: Sci. Rep. doi: 10.1038/srep17320 – volume: 36 start-page: 497 year: 2011 ident: B150 article-title: A unified nomenclature system for the insect olfactory coreceptor publication-title: Chem. Senses doi: 10.1093/chemse/bjr022 – volume: 108 start-page: 7449 year: 2011 ident: B43 article-title: Antennal transcriptome of Manduca sexta publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1017963108 – volume: 199 start-page: 879 year: 2013 ident: B64 article-title: Kinetics of olfactory responses might largely depend on the odorant-receptor interaction and the odorant deactivation postulated for flux detectors publication-title: J. Comp. Physiol. Neuroethol. Sensory Neural Behav. Physiol. doi: 10.1007/s00359-013-0812-z – volume: 276 start-page: 20078 year: 2001 ident: B15 article-title: Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence binding assay publication-title: J. Biol. Chem. doi: 10.1074/jbc.M100713200 – volume: 8 start-page: e84795 year: 2013 ident: B152 article-title: Potential cooperations between odorant-binding proteins of the scarab beetle Holotrichia oblita Faldermann (Coleoptera: Scarabaeidae) publication-title: PLoS ONE doi: 10.1371/journal.pone.0084795 – volume: 220 start-page: 1781 year: 2017 ident: B161 article-title: Identification and characterization of the bombykal receptor in the hawkmoth Manduca sexta publication-title: J. Exp. Biol. doi: 10.1242/jeb.154260 – volume: 107 start-page: 14 year: 2018 ident: B92 article-title: Cloning and functional characterization of three new pheromone receptors from the diamondback moth, Plutella xylostella publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2018.02.005 – volume: 109 start-page: 14081 year: 2012 ident: B74 article-title: Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1204661109 – volume: 10 start-page: 846 year: 2014 ident: B16 article-title: Identification of candidate olfactory genes in Chilo suppressalis by antennal transcriptome analysis publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.9297 – volume: 103 start-page: 16538 year: 2006 ident: B138 article-title: Pheromone reception in fruit flies expressing a moth's odorant receptor publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0607874103 – volume: 25 start-page: 580 year: 2016 ident: B107 article-title: Identification and expression profile of odorant-binding proteins in Halyomorpha halys (Hemiptera: Pentatomidae) publication-title: Insect Mol. Biol. doi: 10.1111/imb.12243 – volume: 13 start-page: 911 year: 2017 ident: B112 article-title: In search for pheromone receptors: certain members of the odorant receptor family in the desert locust Schistocerca gregaria (orthoptera: Acrididae) are co-expressed with SNMP1 publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.18402 – volume: 11 start-page: e0164729 year: 2016 ident: B179 article-title: Analysis of the antennal transcriptome and insights into olfactory genes in Hyphantria cunea (Drury) publication-title: PLoS ONE doi: 10.1371/journal.pone.0164729 – volume: 558 start-page: 23 year: 2004 ident: B191 article-title: Revisiting the odorant-binding protein LUSH of Drosophila melanogaster: evidence for odour recognition and discrimination doi: 10.1016/S0014-5793(03)01521-7 – volume: 5 start-page: 320 year: 2014 ident: B108 article-title: Soluble proteins of chemical communication: an overview across arthropods publication-title: Front. Physiol. doi: 10.3389/fphys.2014.00320 – volume: 180 start-page: 23 year: 2015 ident: B90 article-title: Two general-odorant binding proteins in Spodoptera litura are differentially tuned to sex pheromones and plant odorants publication-title: Comp. Biochem. Physiol. A Mol. Integr. Physiol. doi: 10.1016/j.cbpa.2014.11.005 – volume: 98 start-page: e21456 year: 2018 ident: B26 article-title: Molecular and functional characterization of three odorant binding proteins from the oriental fruit moth Grapholita molesta (Busck) (Lepidoptera: Tortricide) publication-title: Arch. Insect Biochem. Physiol doi: 10.1002/arch.21456 – volume: 19 start-page: 188 year: 2016 ident: B147 article-title: β-Ionone as putative semiochemical suggested by ligand binding on an odorant-binding protein of Hylamorpha elegans and electroantennographic recordings publication-title: Entomol. Sci. doi: 10.1111/ens.12180 – year: 2018 ident: B119 article-title: Enormous expansion of the chemosensory gene repertoire in the omnivorous German cockroach publication-title: Blattella germanica doi: 10.1002/jez.b.22797 – volume: 12 start-page: e0179433 year: 2017 ident: B38 article-title: Antennal transcriptome analysis of the piercing moth Oraesia emarginata (Lepidoptera: Noctuidae) publication-title: PLoS ONE doi: 10.1371/journal.pone.0179433 – volume: 11 start-page: 1281 year: 2015 ident: B77 article-title: Structure-based analysis of the ligand-binding mechanism for DhelOBP21, a C-minus odorant binding protein, from Dastarcus Helophoroides (Fairmaire; Coleoptera: Bothrideridae) publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.12528 – volume: 12 start-page: 549 year: 2003 ident: B166 article-title: Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae publication-title: Insect Mol. Biol. doi: 10.1046/j.1365-2583.2003.00440.x – volume: 404 start-page: 335 year: 2011 ident: B167 article-title: Extrusion of the C-terminal helix in navel orangeworm moth pheromone-binding protein (AtraPBP1) controls pheromone binding publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.11.119 – volume: 6 start-page: 26652 ident: B53 article-title: Antennal transcriptome analysis of the Asian longhorned beetle Anoplophora glabripennis publication-title: Sci. Rep. doi: 10.1038/srep26652 – volume: 290 start-page: 7961 year: 2015 ident: B144 article-title: Inhibition of Anopheles gambiae odorant receptor function by mosquito repellents publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.632299 – volume: 69 start-page: 82 year: 2016 ident: B40 article-title: Silencing the odorant receptor co-receptor RproOrco affects the physiology and behavior of the Chagas disease vector Rhodnius prolixus publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2015.02.012 – volume: 10 start-page: 275 year: 2016 ident: B143 article-title: Positive allosteric modulation of insect olfactory receptor function by ORco agonists publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2016.00275 – volume: 66 start-page: 31 year: 2015 ident: B17 article-title: Towards an understanding of the structural basis for insect olfaction by odorant receptors publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2015.09.010 – volume: 120 start-page: 118 year: 2015 ident: B75 article-title: Mutation and duplication of arthropod acetylcholinesterase: implications for pesticide resistance and tolerance publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2014.11.004 – volume: 23 start-page: 243 year: 1993 ident: B94 article-title: The pheromone binding protein of Bombyx mori: purification, characterization and immunocytochemical localization publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/0965-1748(93)90005-D – volume: 36 start-page: 2588 year: 2012 ident: B99 article-title: Functional characterization of a sex pheromone receptor in the pest moth Spodoptera littoralis by heterologous expression in Drosophila publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2012.08183.x – volume: 12 start-page: e0171739 year: 2017 ident: B156 article-title: Identification and expression profile analysis of odorant binding protein and chemosensory protein genes in Bemisia tabaci MED by head transcriptome publication-title: PLoS ONE doi: 10.1371/journal.pone.0171739 – volume: 3 start-page: e3045 year: 2008 ident: B73 article-title: Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes publication-title: PLoS ONE doi: 10.1371/journal.pone.0003045 – volume: 101 start-page: 16653 year: 2004 ident: B122 article-title: Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0407596101 – volume: 43 start-page: 747 year: 2013 ident: B87 article-title: Identification and functional characterization of sex pheromone receptors in beet armyworm Spodoptera exigua (Hübner) publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2013.05.009 – volume: 8 start-page: 15 year: 2005 ident: B101 article-title: Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster publication-title: Nat. Neurosci. doi: 10.1038/nn1371 – volume: 456 start-page: 737 year: 2015 ident: B189 article-title: Crystal structure of the Locusta migratoria odorant binding protein publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2014.12.048 – year: 2017 ident: B182 article-title: Identification and functional characterization of an odorant receptor in pea aphid publication-title: Acyrthosiphon pisum. Insect Sci. doi: 10.1111/1744-7917.12510 – volume: 7 start-page: e30304 year: 2012 ident: B62 article-title: Allosteric antagonism of insect odorant receptor ion channels publication-title: PLoS ONE doi: 10.1371/journal.pone.0030304 – volume: 110 start-page: 18680 year: 2013 ident: B33 article-title: Pheromone discrimination by a pH-tuned polymorphism of the Bombyx mori pheromone-binding protein publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1317706110 – volume: 443 start-page: 931 year: 2006 ident: B158 article-title: Insights into social insects from the genome of the honeybee Apis mellifera publication-title: Nature doi: 10.1038/nature05260 – volume: 7 start-page: 143 year: 2000 ident: B123 article-title: Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex publication-title: Chem. Biol. doi: 10.1016/S1074-5521(00)00078-8 – volume: 24 start-page: 451 year: 2014 ident: B105 article-title: The genome of the Clonal raider ant Cerapachys biroi publication-title: Curr. Biol. doi: 10.1016/j.cub.2014.01.018 – volume: 18 start-page: 586 year: 2017 ident: B154 article-title: Chemosensory genes in the antennal transcriptome of two syrphid species, Episyrphus balteatus and Eupeodes corollae (Diptera: Syrphidae) doi: 10.1186/s12864-017-3939-4 – volume: 19 start-page: 890 year: 2014 ident: B125 article-title: Modelling three-dimensional protein structures for applications in drug design publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2013.10.027 – volume: 7 start-page: e36784 year: 2012 ident: B23 article-title: Identification of new agonists and antagonists of the insect odorant receptor co-receptor subunit publication-title: PLoS ONE doi: 10.1371/journal.pone.0036784 – volume: 54 start-page: 22 year: 2014 ident: B30 article-title: A novel method to study insect olfactory receptor function using HEK293 cells publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2014.08.005 – volume: 9 start-page: 31 year: 2014 ident: B194 article-title: De novo analysis of the Nilaparvata lugens (Stål) antenna transcriptome and expression patterns of olfactory genes publication-title: Comp. Biochem. Physiol. D Genomics Proteomics doi: 10.1016/j.cbd.2013.12.002 – volume: 327 start-page: 343 year: 2010 ident: B159 article-title: Functional and evolutionary insights from the genomes of three parasitoid Nasonia species publication-title: Science doi: 10.1126/science.1178028 – volume: 16 start-page: 255 year: 2015 ident: B76 article-title: Chemosensory genes identified in the antennal transcriptome of the blowfly Calliphora stygia publication-title: BMC Genomics doi: 10.1186/s12864-015-1466-8 – volume: 16 start-page: 1028 year: 2015 ident: B84 article-title: Candidate chemosensory genes identified in Colaphellus bowringi by antennal transcriptome analysis publication-title: BMC Genomics doi: 10.1186/s12864-015-2236-3 – volume: 113 start-page: E489 year: 2016 ident: B165 article-title: Correction for Chen et al., Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1524968113 – volume: 16 start-page: 269 year: 2015 ident: B39 article-title: Transcriptome and expression profiling analysis link patterns of gene expression to antennal responses in Spodoptera litura publication-title: BMC Genomics doi: 10.1186/s12864-015-1375-x – volume: 16 start-page: 1395 year: 2006 ident: B120 article-title: The chemoreceptor superfamily in the honey bee publication-title: Genome Res. doi: 10.1101/gr.5057506 – volume: 39 start-page: 414 year: 2009 ident: B113 article-title: Discrimination of alarm pheromone (E)-β-farnesene by aphid odorant-binding proteins publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2009.03.004 – volume: 14 start-page: 749 year: 2013 ident: B118 article-title: Antennal transcriptome profiles of anopheline mosquitoes reveal human host olfactory specialization in Anopheles gambiae publication-title: BMC Genomics doi: 10.1186/1471-2164-14-749 – volume: 113 start-page: E1415 year: 2016 ident: B96 article-title: Correction for Mesquita et al., genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1600205113 – volume: 36 start-page: 797 year: 2010 ident: B54 article-title: Odorant receptor from the Southern House mosquito narrowly tuned to the oviposition attractant skatole publication-title: J. Chem. Ecol. doi: 10.1007/s10886-010-9828-9 – volume: 7 start-page: 1647 year: 2012 ident: B139 article-title: Structure-activity relationship of a broad-spectrum insect odorant receptor agonist publication-title: ACS Chem. Biol. doi: 10.1021/cb300331z – volume: 7 start-page: 10165 year: 2016 ident: B7 article-title: Unique features of a global human ectoparasite identified through sequencing of the bed bug genome publication-title: Nat. Commun. doi: 10.1038/ncomms10165 – volume: 91 start-page: 67 year: 2016 ident: B79 article-title: Cloning, expression, and functional analysis of three odorant-binding proteins of the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae) publication-title: Arch. Insect Biochem. Physiol. doi: 10.1002/arch.21309 – volume: 38 start-page: 1036 year: 2008 ident: B164 article-title: The genome of a lepidopteran model insect, the silkworm Bombyx mori publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2008.11.004 – volume: 32 start-page: 241 year: 2002 ident: B8 article-title: Probing a pheromone binding protein of the silkmoth Antheraea polyphemus by endogenous tryptophan fluorescence publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/S0965-1748(01)00171-0 – volume: 10 start-page: e0117054 year: 2015 ident: B178 article-title: Antennal transcriptome analysis and comparison of chemosensory gene families in two closely related noctuidae moths, Helicoverpa armigera publication-title: H. assulta. PLoS ONE doi: 10.1371/journal.pone.0117054 – volume: 14 start-page: 5725 year: 2009 ident: B49 article-title: High-throughput ESI-MS analysis of binding between the Bombyx mori pheromone-binding protein BmorPBP1, its pheromone components and some analogues publication-title: Chem. Commun. doi: 10.1039/b914294k – volume: 344 start-page: 380 year: 2014 ident: B157 article-title: Genome sequence of the tsetse fly (Glossina morsitans): vector of African Trypanosomiasis publication-title: Science doi: 10.1126/science.1249656.Genome – volume: 30 start-page: 559 year: 2005 ident: B145 article-title: An odorant-binding protein facilitates odorant transfer from air to hydrophilic surroundings in the blowfly publication-title: Chem. Senses doi: 10.1093/chemse/bji049 – volume: 27 start-page: 54 year: 2018 ident: B37 article-title: Identification and characterization of chemosensory genes in the antennal transcriptome of Spodoptera exigua publication-title: Comp. Biochem. Physiol. D Genomics Proteomics doi: 10.1016/j.cbd.2018.05.001 – volume: 147 start-page: 1171 year: 2011 ident: B175 article-title: The monarch butterfly genome yields insights into long-distance migration publication-title: Cell doi: 10.1016/j.cell.2011.09.052 – volume: 27 start-page: 1 year: 2018 ident: B121 article-title: Analysis of the grapevine moth Lobesia botrana antennal transcriptome and expression of odorant-binding and chemosensory proteins publication-title: Comp. Biochem. Physiol. D Genomics Proteomics doi: 10.1016/j.cbd.2018.04.003 – volume: 3 start-page: 60 year: 2015 ident: B93 article-title: Identification of candidate olfactory genes in Leptinotarsa decemlineata by antennal transcriptome analysis publication-title: Front. Ecol. Evol. doi: 10.3389/fevo.2015.00060 – volume: 63 start-page: 1658 year: 2006 ident: B109 article-title: Soluble proteins in insect chemical communication publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-005-5607-0 – volume: 5 start-page: e15428 year: 2010 ident: B142 article-title: Expression and membrane topology of Anopheles gambiae odorant receptors in lepidopteran insect cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0015428 – volume: 22 start-page: 120 year: 2017 ident: B21 article-title: De novo analysis of the oriental armyworm Mythimna separata antennal transcriptome and expression patterns of odorant-binding proteins publication-title: Comp. Biochem. Physiol. D Genomics Proteomics doi: 10.1016/j.cbd.2017.03.001 – volume: 9 start-page: 90 year: 2018 ident: B135 article-title: Identification and expression patterns of Anoplophora chinensis (Forster) chemosensory receptor genes from the antennal transcriptome publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00090 – volume: 11 start-page: 772 year: 2015 ident: B86 article-title: Identification and knockdown of the olfactory receptor (OrCo) in gypsy moth, Lymantria dispar publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.11898 – volume: 26 start-page: 601 year: 2017 ident: B134 article-title: Functional analysis of female-biased odorant binding protein 6 for volatile and nonvolatile host compounds in Adelphocoris lineolatus (Goeze) publication-title: Insect Mol. Biol. doi: 10.1111/imb.12322 – volume: 95 start-page: 51 year: 2016 ident: B14 article-title: A look inside odorant-binding proteins in insect chemoreception publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2016.09.008 – volume: 39 start-page: 183 year: 2014 ident: B146 article-title: Ligand binding and homology modelling of insect odorant-binding proteins publication-title: Physiol. Entomol. doi: 10.1111/phen.12066 – volume: 3 start-page: 84 year: 2014 ident: B25 article-title: Trace amines inhibit insect odorant receptor function through antagonism of the co-receptor subunit publication-title: F1000Res doi: 10.12688/f1000research.3825.1 – volume: 40 start-page: 541 year: 2014 ident: B81 article-title: Odorant binding characteristics of three recombinant odorant binding proteins in Microplitis mediator (Hymenoptera: Braconidae) publication-title: J. Chem. Ecol. doi: 10.1007/s10886-014-0458-5 – volume: 330 start-page: 86 year: 2010 ident: B2 article-title: Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics publication-title: Science doi: 10.1126/science.1191864 – volume: 31 start-page: 547 year: 2006 ident: B44 article-title: A Pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro publication-title: Chem. Senses doi: 10.1093/chemse/bjj059 – volume: 27 start-page: 55 year: 2017 ident: B181 article-title: Molecular basis of alarm pheromone detection in aphids publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.10.013 – volume: 27 start-page: 305 year: 2018 ident: B83 article-title: Optimization of reverse chemical ecology method: false positive binding of Aenasius bambawalei odorant binding protein 1 caused by uncertain binding mechanism publication-title: Insect Mol. Biol. doi: 10.1111/imb.12372 – volume: 39 start-page: 555 year: 2014 ident: B115 article-title: Molecular determinants of odorant receptor function in insects publication-title: J. Biosci. doi: 10.1007/s12038-014-9447-7 – volume: 15 start-page: 119 year: 2005 ident: B63 article-title: Functional conservation of an insect odorant receptor gene across 250 million years of evolution publication-title: Curr. Biol. doi: 10.1016/j.cub.2005.02.007 – volume: 74 start-page: 13 year: 2017 ident: B185 article-title: Deep sequencing of antennal transcriptome from Callosobruchus chinensis to characterize odorant binding protein and chemosensory protein genes publication-title: J. Stored Prod. Res. doi: 10.1016/j.jspr.2017.08.006 – volume: 18 start-page: 30 year: 2016 ident: B103 article-title: Transcriptome based identification and tissue expression profiles of chemosensory genes in Blattella germanica (Blattaria: Blattidae) publication-title: Comp. Biochem. Physiol. D Genomics Proteomics doi: 10.1016/j.cbd.2016.03.002 – volume: 7 start-page: 1 year: 2017 ident: B42 article-title: Antennal transcriptomes of three tortricid moths reveal putative conserved chemosensory receptors for social and habitat olfactory cues publication-title: Sci. Rep. doi: 10.1038/srep41829 – volume: 298 start-page: 176 year: 2002 ident: B48 article-title: G protein-coupled receptors in Anopheles gambiae publication-title: Science doi: 10.1126/science.1076196 – volume: 8 start-page: 1 year: 2018 ident: B176 article-title: Molecular and functional characterization of pheromone binding protein 1 from the oriental fruit moth, Grapholita molesta (Busck) publication-title: Sci. Rep. doi: 10.1038/s41598-018-20719-0 – volume: 292 start-page: 18916 year: 2017 ident: B114 article-title: Mutant cycle analysis identifies a ligand interaction site in an odorant receptor of the malaria vector Anopheles gambiae publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.810374 – volume: 7 start-page: 1 year: 2007 ident: B106 article-title: Prediction of 3-dimensional structure of salivary odorant-binding protein-2 of the mosquito Culex quinquefasciatus, the vector of human lymphatic filariasis publication-title: In Silico Biol. doi: 10.3233/ISB-00271 – volume: 6 start-page: 29067 year: 2016 ident: B59 article-title: Antennal transcriptome and differential expression of olfactory genes in the yellow peach moth, Conogethes punctiferalis (Lepidoptera: Crambidae) publication-title: Sci. Rep. doi: 10.1038/srep29067 – volume: 9 start-page: e114238 year: 2014 ident: B22 article-title: De novo sequencing, assembly and characterization of antennal transcriptome of Anomala corpulenta Motschulsky (Coleoptera: Rutelidae) doi: 10.1371/journal.pone.0114238 – volume: 53 start-page: 127 year: 2013 ident: B28 article-title: G protein–coupled receptor deorphanizations publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-010611-134548 – volume: 7 start-page: 1 year: 2017 ident: B10 article-title: Antennal transcriptome and expression analyses of olfactory genes in the sweetpotato weevil Cylas formicarius publication-title: Sci. Rep. doi: 10.1038/s41598-017-11456-x – volume: 24 start-page: 139 year: 2017 ident: B31 article-title: Odorant-binding and chemosensory proteins identified in the antennal transcriptome of Adelphocoris suturalis Jakovlev publication-title: Comp. Biochem. Physiol. D Genomics Proteomics doi: 10.1016/j.cbd.2016.03.001 – volume: 17 start-page: 651 ident: B52 article-title: Antennal transcriptome analysis and expression profiles of odorant binding proteins in Eogystia hippophaecolus (Lepidoptera: Cossidae) publication-title: BMC Genomics doi: 10.1186/s12864-016-3008-4 – volume: 13 start-page: 44 year: 2015 ident: B91 article-title: Identification of candidate chemosensory genes in the antennal transcriptome of Tenebrio molitor (Coleoptera: Tenebrionidae) publication-title: Comp. Biochem. Physiol. D Genomics Proteomics doi: 10.1016/j.cbd.2015.01.004 – volume: 6 start-page: 6077 year: 2015 ident: B50 article-title: Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors publication-title: Nat. Commun. doi: 10.1038/ncomms7077 – volume: 27 start-page: 1610.e3 year: 2017 ident: B19 article-title: A pheromone antagonist regulates optimal mating time in the moth Helicoverpa armigera publication-title: Curr. Biol. doi: 10.1016/j.cub.2017.04.035 |
SSID | ssj0000402001 |
Score | 2.553176 |
SecondaryResourceType | review_article |
Snippet | Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1163 |
SubjectTerms | agonists antagonists insect olfaction modulators odorant binding pest management Physiology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQpVBSHjISQuohbOw4dsJtu6IqSEAPrdRb5MdYXan1Vuz2wL9nxskuuwjBhaudyCOP7fnGM_6GsbeNNWhka12iMWtLBUGW1nsigmykB99o19JD4S9f9dml-nzVXG2V-qKcsIEeeJi4CQgdoo2Vt8YqNG_WyYgug_O4VYUSkU5ftHlbzlQ-g8ktqsQQl0QvrJtEuimgVK72PcUe6h07lOn6_4Qxf0-V3LI9p4_ZoxE08ukg7D57AOkJO5gmdJhvf_B3PKdx5vvxAwbfAmo1rTgCQrijWjrcpsDH1vJknp-x8HPiZ5gn7FzyT2mJxx4_R5H4bEhd5xc5Q3z5gU_57BdBOF9zmDxll6cfL2Zn5VhLofRKy1XZeSFq6IStauMlBIQ9VoKMFvFJS6BPaHDOVca0wrqoWtW0YBpvg1EhIGx5xvbSIsFzxo2EJjhD1jUq26oOjIYqqtoL6TotCzZZz2zvR6Jxqndx06PDQbrosy560kWfdVGw480fdwPJxl--PSFlbb4jeuzcgIumHxdN_69FU7A3a1X3uJ0oRmITLO5xIEGYF0FOV7DDQfWbofAs7CiOWTCzsyh2ZNntSfPrTNmtBQJFZY7-h_Av2EOaDrrYluol21t9v4dXiIxW7nXeBD8BhpgO3g priority: 102 providerName: Directory of Open Access Journals |
Title | Odorant Receptors and Odorant-Binding Proteins as Insect Pest Control Targets: A Comparative Analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30197600 https://www.proquest.com/docview/2101920619 https://pubmed.ncbi.nlm.nih.gov/PMC6117247 https://doaj.org/article/e16dfaf0ca7a4750ab2f249bc153141f |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxsxEBZpcumlpE0f2zZBgVLoYRNLq5V2C6E4JiEppM0hBt8WPVtDKie2A82_74x27dTFlFwl7eoxkuYbafQNIR9KrUDJFjIHZVblwjuea2uRCLLk1ttSmgofCl98k2dD8XVUjh6eR3cDOFtr2mE8qeH0-uD37f0XWPBHaHGCvj0MeAiAXlrVAV4rFE_IFuglhfEMLjqwn_ZlNJVSPGQmJXpf8FF7b7n2Jyt6KtH5r8Og_7pS_qWbTrfJsw5U0n47C56TDR9fkJ1-BIP61z39SJObZzo_3yH-uwOpxzkFwOhvMNYO1dHRLjU_HqdnLvQS-RvGETJn9DzOYFukl9AkOmhd2-lV8iCffaZ9OnggEKcLjpOXZHh6cjU4y7tYC7kVks_z2jJW-JrpXqEs9w5gkeaeBw34pUJQyKQ3xvSUqpg2QVSirLwqrXZKOAew5hXZjJPo3xCquC-dUah9g9CVqL2SvhdEYRk3teQZOVyMbGM7InKMh3HdgEGCsmiSLBqURZNkkZFPyy9uWhKO_5Q9RmEtyyF9dkqYTH803WpsPJMu6NCzWmkBmEkbHsAONRY7KljIyP5C1A0sN7xD0dFP7qAihpgYQFCdkdet6JdVwV5Z4z1nRtTKpFhpy2pOHP9MlN6SwXwV6u0j6n1HnmJv8Vybi_dkcz6987sAjOZmLx0o7KVZ_wcr9g5V |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Odorant+Receptors+and+Odorant-Binding+Proteins+as+Insect+Pest+Control+Targets%3A+A+Comparative+Analysis&rft.jtitle=Frontiers+in+physiology&rft.au=Venthur%2C+Herbert&rft.au=Zhou%2C+Jing-Jiang&rft.date=2018-08-24&rft.issn=1664-042X&rft.eissn=1664-042X&rft.volume=9&rft.spage=1163&rft_id=info:doi/10.3389%2Ffphys.2018.01163&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon |