Odorant Receptors and Odorant-Binding Proteins as Insect Pest Control Targets: A Comparative Analysis

Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely odorant-binding proteins (OBPs) and odorant receptors (ORs). Located in insect antennae, OBPs are thought to be involved in the transport of...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physiology Vol. 9; p. 1163
Main Authors Venthur, Herbert, Zhou, Jing-Jiang
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 24.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely odorant-binding proteins (OBPs) and odorant receptors (ORs). Located in insect antennae, OBPs are thought to be involved in the transport of odorants to ORs for the specific signal transduction of behaviorally active odorants. There is rich information on OBP binding affinity and molecular docking to bioactive compounds as well as ample 3D crystal structures due to feasible production of recombinant proteins. Although these provide excellent opportunities for them to be considered as pest control targets and a tool to design pest control agents, the debates on their binding specificity represent an obstacle. On the other hand, ORs have recently been functionally characterized with increasing evidence for their specificity, sensitivity and functional roles in pest behaviors. However, a major barrier to use ORs for semiochemical discovery is the lack of 3D crystal structures. Thus, OBPs and ORs have not been analyzed comparatively together so far for their feasibility as pest control targets. Here, we summarize the state of OBPs and ORs research in terms of its application in insect pest management. We discuss the suitability of both proteins as pest control targets and their selection toward the discovery of new potent semiochemicals. We argue that both proteins represent promising targets for pest control and can be used to identify new super-ligands likely present in nature and with reduced risk of resistance development than insect pesticides currently used in agriculture. We discuss that with the massive identification of OBPs through RNA-seq and improved binding affinity measurements, these proteins could be reconsidered as suitable targets for semiochemical discovery.
AbstractList Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely odorant-binding proteins (OBPs) and odorant receptors (ORs). Located in insect antennae, OBPs are thought to be involved in the transport of odorants to ORs for the specific signal transduction of behaviorally active odorants. There is rich information on OBP binding affinity and molecular docking to bioactive compounds as well as ample 3D crystal structures due to feasible production of recombinant proteins. Although these provide excellent opportunities for them to be considered as pest control targets and a tool to design pest control agents, the debates on their binding specificity represent an obstacle. On the other hand, ORs have recently been functionally characterized with increasing evidence for their specificity, sensitivity and functional roles in pest behaviors. However, a major barrier to use ORs for semiochemical discovery is the lack of 3D crystal structures. Thus, OBPs and ORs have not been analyzed comparatively together so far for their feasibility as pest control targets. Here, we summarize the state of OBPs and ORs research in terms of its application in insect pest management. We discuss the suitability of both proteins as pest control targets and their selection toward the discovery of new potent semiochemicals. We argue that both proteins represent promising targets for pest control and can be used to identify new super-ligands likely present in nature and with reduced risk of resistance development than insect pesticides currently used in agriculture. We discuss that with the massive identification of OBPs through RNA-seq and improved binding affinity measurements, these proteins could be reconsidered as suitable targets for semiochemical discovery.
Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely odorant-binding proteins (OBPs) and odorant receptors (ORs). Located in insect antennae, OBPs are thought to be involved in the transport of odorants to ORs for the specific signal transduction of behaviorally active odorants. There is rich information on OBP binding affinity and molecular docking to bioactive compounds as well as ample 3D crystal structures due to feasible production of recombinant proteins. Although these provide excellent opportunities for them to be considered as pest control targets and a tool to design pest control agents, the debates on their binding specificity represent an obstacle. On the other hand, ORs have recently been functionally characterized with increasing evidence for their specificity, sensitivity and functional roles in pest behaviors. However, a major barrier to use ORs for semiochemical discovery is the lack of 3D crystal structures. Thus, OBPs and ORs have not been analyzed comparatively together so far for their feasibility as pest control targets. Here, we summarize the state of OBPs and ORs research in terms of its application in insect pest management. We discuss the suitability of both proteins as pest control targets and their selection toward the discovery of new potent semiochemicals. We argue that both proteins represent promising targets for pest control and can be used to identify new super-ligands likely present in nature and with reduced risk of resistance development than insect pesticides currently used in agriculture. We discuss that with the massive identification of OBPs through RNA-seq and improved binding affinity measurements, these proteins could be reconsidered as suitable targets for semiochemical discovery.Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely odorant-binding proteins (OBPs) and odorant receptors (ORs). Located in insect antennae, OBPs are thought to be involved in the transport of odorants to ORs for the specific signal transduction of behaviorally active odorants. There is rich information on OBP binding affinity and molecular docking to bioactive compounds as well as ample 3D crystal structures due to feasible production of recombinant proteins. Although these provide excellent opportunities for them to be considered as pest control targets and a tool to design pest control agents, the debates on their binding specificity represent an obstacle. On the other hand, ORs have recently been functionally characterized with increasing evidence for their specificity, sensitivity and functional roles in pest behaviors. However, a major barrier to use ORs for semiochemical discovery is the lack of 3D crystal structures. Thus, OBPs and ORs have not been analyzed comparatively together so far for their feasibility as pest control targets. Here, we summarize the state of OBPs and ORs research in terms of its application in insect pest management. We discuss the suitability of both proteins as pest control targets and their selection toward the discovery of new potent semiochemicals. We argue that both proteins represent promising targets for pest control and can be used to identify new super-ligands likely present in nature and with reduced risk of resistance development than insect pesticides currently used in agriculture. We discuss that with the massive identification of OBPs through RNA-seq and improved binding affinity measurements, these proteins could be reconsidered as suitable targets for semiochemical discovery.
Author Zhou, Jing-Jiang
Venthur, Herbert
AuthorAffiliation 2 Center of Excellence in Biotechnology Research Applied to the Environment (CIBAMA), Universidad de La Frontera , Temuco , Chile
3 Department of Biological Chemistry and Crop Protection, Rothamsted Research , Harpenden , United Kingdom
4 Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun , China
1 Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera , Temuco , Chile
AuthorAffiliation_xml – name: 2 Center of Excellence in Biotechnology Research Applied to the Environment (CIBAMA), Universidad de La Frontera , Temuco , Chile
– name: 3 Department of Biological Chemistry and Crop Protection, Rothamsted Research , Harpenden , United Kingdom
– name: 4 Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun , China
– name: 1 Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera , Temuco , Chile
Author_xml – sequence: 1
  givenname: Herbert
  surname: Venthur
  fullname: Venthur, Herbert
– sequence: 2
  givenname: Jing-Jiang
  surname: Zhou
  fullname: Zhou, Jing-Jiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30197600$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1r3DAQhk1JaT6ae0_Fx168lWRZsnsobJc2XQgklBR6E2NpvFHwSq6kDey_r_YjJSlUF4l3Zp5BM-95ceK8w6J4R8msrtvu4zDdb-OMEdrOCKWiflWcUSF4RTj7dfLsfVpcxvhA8uGEEULfFKc1oZ0UhJwVeGN8AJfKH6hxSj7EEpwpj2r1xTpj3aq8DT6hdTkYy6WLqFN5izGVC-9S8GN5B2GFKX4q51laTxAg2Ucs5w7GbbTxbfF6gDHi5fG-KH5--3q3-F5d31wtF_PrSnPBUtVpSmvsKJBaaoamEQwYsgG6rm4FbWoqsO97ImVLoR94y5sWZaPBSG6M4PVFsTxwjYcHNQW7hrBVHqzaCz6sFIRk9YgKqTADDESDBC4bAj0bGO96vWvD6ZBZnw-sadOv0WjMP4XxBfRlxNl7tfKPSlAqGZcZ8OEICP73Jk9LrW3UOI7g0G-iYjRvgRFBu5z6_nmvv02e9pQTxCFBBx9jwEFpm_KMd-MHOypK1M4Tau8JtfOE2nsiF5J_Cp_Y_y35A2y3u54
CitedBy_id crossref_primary_10_1016_j_cbd_2024_101222
crossref_primary_10_1098_rspb_2022_2054
crossref_primary_10_1002_cbdv_202402475
crossref_primary_10_3390_insects11110816
crossref_primary_10_1515_flaent_2024_0013
crossref_primary_10_1074_jbc_RA120_016557
crossref_primary_10_1111_eea_13300
crossref_primary_10_1111_mec_15874
crossref_primary_10_1038_s41598_020_73294_8
crossref_primary_10_1093_jee_toab095
crossref_primary_10_1093_jee_toac063
crossref_primary_10_3390_insects13080662
crossref_primary_10_1002_arch_22064
crossref_primary_10_1002_ps_5915
crossref_primary_10_1007_s42690_024_01229_1
crossref_primary_10_1080_00218839_2019_1702325
crossref_primary_10_1002_ps_7415
crossref_primary_10_3390_genes13081372
crossref_primary_10_1002_ps_7654
crossref_primary_10_1016_j_cbd_2020_100654
crossref_primary_10_3390_insects12090814
crossref_primary_10_1021_acs_jafc_4c12251
crossref_primary_10_3390_ijms21134582
crossref_primary_10_1111_eva_13542
crossref_primary_10_1111_imb_12960
crossref_primary_10_1016_j_ibmb_2023_104031
crossref_primary_10_3390_insects15090660
crossref_primary_10_3390_molecules26092762
crossref_primary_10_1021_acs_jafc_4c12301
crossref_primary_10_1016_j_ijbiomac_2023_127505
crossref_primary_10_1093_jisesa_ieaa087
crossref_primary_10_1111_eea_12982
crossref_primary_10_3389_fphys_2020_00212
crossref_primary_10_1002_arch_21542
crossref_primary_10_1093_jisesa_ieaa003
crossref_primary_10_3390_molecules27082519
crossref_primary_10_1080_08927022_2022_2159054
crossref_primary_10_3390_insects12050408
crossref_primary_10_1093_jee_toz286
crossref_primary_10_3389_fphys_2021_663040
crossref_primary_10_1242_jeb_247888
crossref_primary_10_7717_peerj_8902
crossref_primary_10_3390_insects12090787
crossref_primary_10_3390_ijms25179436
crossref_primary_10_1016_j_ijbiomac_2024_129339
crossref_primary_10_3389_fevo_2022_823119
crossref_primary_10_1002_prot_26239
crossref_primary_10_1186_s12864_024_10572_z
crossref_primary_10_1371_journal_pone_0252765
crossref_primary_10_3389_fphys_2022_978534
crossref_primary_10_1016_j_cbd_2024_101283
crossref_primary_10_1021_acsomega_9b03157
crossref_primary_10_3389_fphys_2024_1475489
crossref_primary_10_3390_plants11020167
crossref_primary_10_3390_insects12040335
crossref_primary_10_1016_j_jinsphys_2025_104793
crossref_primary_10_3389_fphys_2023_1326099
crossref_primary_10_1016_j_cbd_2019_04_002
crossref_primary_10_1038_s41598_021_90649_x
crossref_primary_10_1002_ps_6352
crossref_primary_10_1093_jxb_erab413
crossref_primary_10_3390_life14020192
crossref_primary_10_1007_s11829_020_09791_4
crossref_primary_10_1038_s41598_024_72014_w
crossref_primary_10_1016_j_ibmb_2023_103961
crossref_primary_10_3389_fevo_2023_1159142
crossref_primary_10_3389_fphys_2022_907667
crossref_primary_10_1007_s10340_023_01690_w
crossref_primary_10_7717_peerj_10035
crossref_primary_10_1016_j_aspen_2022_101919
crossref_primary_10_1016_j_ibmb_2020_103514
crossref_primary_10_1071_AN23238
crossref_primary_10_1021_acsomega_0c04089
crossref_primary_10_3390_ijms26052302
crossref_primary_10_3389_fphys_2023_1287353
crossref_primary_10_3390_insects16020152
crossref_primary_10_3390_insects12050422
crossref_primary_10_1186_s12864_023_09871_8
crossref_primary_10_1016_j_aspen_2023_102066
crossref_primary_10_1016_j_ygeno_2020_06_042
crossref_primary_10_1002_arch_21737
crossref_primary_10_1016_j_bios_2023_115237
crossref_primary_10_1111_1744_7917_12919
crossref_primary_10_1002_arch_21738
crossref_primary_10_1111_imb_12757
crossref_primary_10_3389_fevo_2020_00008
crossref_primary_10_1039_D3ME00036B
crossref_primary_10_3390_molecules29143390
crossref_primary_10_3389_fphys_2022_900752
crossref_primary_10_1111_mec_17693
crossref_primary_10_3390_insects12050430
crossref_primary_10_1002_ps_5799
crossref_primary_10_1111_imb_12638
crossref_primary_10_1016_j_ibmb_2019_103244
crossref_primary_10_1016_j_bios_2025_117382
crossref_primary_10_1038_s41598_020_74803_5
crossref_primary_10_1093_chemse_bjab021
crossref_primary_10_3390_insects12100879
crossref_primary_10_3390_insects12080661
crossref_primary_10_1007_s12600_021_00917_9
crossref_primary_10_3389_fphys_2023_1241324
crossref_primary_10_1038_s41598_021_96778_7
crossref_primary_10_1038_s41598_019_46532_x
crossref_primary_10_3390_ijms24043406
crossref_primary_10_1111_1744_7917_13178
crossref_primary_10_1016_j_snb_2020_129243
crossref_primary_10_1016_j_ijbiomac_2022_11_186
crossref_primary_10_1186_s12864_025_11231_7
crossref_primary_10_3390_plants14030407
crossref_primary_10_1016_j_pestbp_2020_01_012
crossref_primary_10_1038_s41598_021_87348_y
crossref_primary_10_1017_S0007485321001127
crossref_primary_10_3390_ijms21114073
crossref_primary_10_3390_ijms25179513
crossref_primary_10_1021_acs_jafc_3c09095
crossref_primary_10_1007_s12033_022_00560_7
crossref_primary_10_3390_plants13020185
crossref_primary_10_3389_fevo_2022_1065947
crossref_primary_10_1007_s00049_024_00416_3
crossref_primary_10_3389_fcimb_2024_1360680
crossref_primary_10_1111_jen_12922
crossref_primary_10_1111_mec_16740
crossref_primary_10_1007_s13353_020_00566_4
crossref_primary_10_1038_s41598_022_07840_x
crossref_primary_10_3390_plants11233298
crossref_primary_10_1007_s11240_021_02174_4
crossref_primary_10_7717_peerj_9584
crossref_primary_10_1016_j_pestbp_2024_106183
crossref_primary_10_3390_chemosensors9070174
crossref_primary_10_3390_insects15020111
crossref_primary_10_1016_j_ijbiomac_2023_125422
crossref_primary_10_1038_s41598_024_80094_x
crossref_primary_10_1016_j_cbd_2023_101174
crossref_primary_10_1111_mec_16739
crossref_primary_10_1016_j_cris_2023_100062
crossref_primary_10_16970_entoted_1337346
crossref_primary_10_1128_mBio_02531_21
crossref_primary_10_1080_00218839_2023_2246233
crossref_primary_10_3389_fphys_2021_668236
crossref_primary_10_3389_fphys_2019_01223
crossref_primary_10_1016_j_pestbp_2019_04_011
crossref_primary_10_1007_s00253_020_10860_0
crossref_primary_10_3390_insects12100939
crossref_primary_10_7717_peerj_12132
crossref_primary_10_1002_ps_6319
crossref_primary_10_3390_biom12020282
crossref_primary_10_3390_ijms25053055
crossref_primary_10_1016_j_pestbp_2023_105523
crossref_primary_10_1080_07391102_2023_2262583
crossref_primary_10_1002_ece3_10717
crossref_primary_10_1016_j_ijbiomac_2023_124744
crossref_primary_10_1002_ps_6674
crossref_primary_10_1016_j_jinsphys_2022_104383
crossref_primary_10_3389_fphys_2024_1537476
Cites_doi 10.1371/journal.pone.0189889
10.1007/s00359-013-0837-3
10.1111/jen.12396
10.1126/science.1138878
10.1038/s41598-017-11098-z
10.1186/1810-522X-52-42
10.3389/fphys.2018.00447
10.1126/science.1258522
10.1111/1744-7917.12576
10.1038/293161a0
10.1038/srep13093
10.1016/S0097-8485(96)00029-0
10.1007/s13355-017-0533-9
10.1007/s10886-012-0164-0
10.3389/fncel.2012.00029
10.1111/imb.12033
10.1371/journal.pone.0148159
10.1007/s10886-014-0418-0
10.1371/journal.pone.0125159
10.1371/journal.pone.0103420
10.1038/srep32806
10.1073/pnas.1102425108
10.1038/srep22336
10.1126/science.1192428
10.1371/journal.pone.0161839
10.1016/j.ijbiomac.2017.10.149
10.1007/s10886-015-0576-8
10.1016/0020-1790(87)90093-X
10.1111/j.1460-9568.2008.06429.x
10.1073/pnas.1717375114
10.1073/pnas.1008617108
10.1007/s10886-010-9861-8
10.1371/journal.pone.0064547
10.1371/journal.pone.0128550
10.1186/s12864-016-2362-6
10.1038/srep41105
10.1093/chemse/bju048
10.1093/chemse/bjt012
10.1007/s10886-017-0897-x
10.1038/srep33981
10.1186/1471-2164-15-209
10.1038/ncomms15709
10.7554/eLife.02115
10.1146/annurev-ento-120811-153635
10.1016/j.ibmb.2014.06.006
10.1073/pnas.1009690108
10.1146/annurev-pharmtox-032112-135923.Structure-Function
10.1371/journal.pone.0142193
10.1016/j.neuron.2004.08.019
10.1016/j.jinsphys.2012.12.004
10.1371/journal.pone.0031620
10.1007/s000180300032
10.1007/s10886-010-9863-6
10.1038/nature06536
10.1371/journal.pbio.0050118
10.1038/nature06341
10.1186/s12915-016-0306-x
10.1371/journal.pone.0062098
10.1016/j.cbd.2017.11.003
10.1111/1744-7917.12294
10.1016/j.jinsphys.2013.10.006
10.1038/nature06850
10.1371/journal.pone.0053840
10.1016/j.cbpb.2015.11.014
10.3389/fevo.2015.00039
10.1371/journal.pone.0084575
10.1016/j.ibmb.2015.03.003
10.1186/s13071-016-1644-9
10.1111/jen.12417
10.1016/j.jinsphys.2012.10.020
10.1101/gr.239402
10.1111/imb.12261
10.1371/journal.pbio.1000313
10.1111/j.1365-2583.2010.01045.x
10.1038/s41598-018-26137-6
10.1073/pnas.151103998
10.1038/nature06861
10.1016/j.bbrc.2005.07.176
10.1007/s00018-013-1308-2
10.1371/journal.pone.0180775
10.1038/ng.2524
10.1038/nature06784
10.1016/j.jmb.2009.04.015
10.1371/journal.pone.0147768
10.1098/rspb.2014.0558
10.1073/pnas.1718284115
10.1371/journal.pone.0165374
10.1016/j.bbrc.2014.03.054
10.1016/j.ibmb.2014.05.003
10.3389/fphys.2018.00107
10.1038/srep17320
10.1093/chemse/bjr022
10.1073/pnas.1017963108
10.1007/s00359-013-0812-z
10.1074/jbc.M100713200
10.1371/journal.pone.0084795
10.1242/jeb.154260
10.1016/j.jinsphys.2018.02.005
10.1073/pnas.1204661109
10.7150/ijbs.9297
10.1073/pnas.0607874103
10.1111/imb.12243
10.7150/ijbs.18402
10.1371/journal.pone.0164729
10.1016/S0014-5793(03)01521-7
10.3389/fphys.2014.00320
10.1016/j.cbpa.2014.11.005
10.1002/arch.21456
10.1111/ens.12180
10.1002/jez.b.22797
10.1371/journal.pone.0179433
10.7150/ijbs.12528
10.1046/j.1365-2583.2003.00440.x
10.1016/j.bbrc.2010.11.119
10.1038/srep26652
10.1074/jbc.M114.632299
10.1016/j.ibmb.2015.02.012
10.3389/fncel.2016.00275
10.1016/j.ibmb.2015.09.010
10.1016/j.pestbp.2014.11.004
10.1016/0965-1748(93)90005-D
10.1111/j.1460-9568.2012.08183.x
10.1371/journal.pone.0171739
10.1371/journal.pone.0003045
10.1073/pnas.0407596101
10.1016/j.ibmb.2013.05.009
10.1038/nn1371
10.1016/j.bbrc.2014.12.048
10.1111/1744-7917.12510
10.1371/journal.pone.0030304
10.1073/pnas.1317706110
10.1038/nature05260
10.1016/S1074-5521(00)00078-8
10.1016/j.cub.2014.01.018
10.1186/s12864-017-3939-4
10.1016/j.drudis.2013.10.027
10.1371/journal.pone.0036784
10.1016/j.ibmb.2014.08.005
10.1016/j.cbd.2013.12.002
10.1126/science.1178028
10.1186/s12864-015-1466-8
10.1186/s12864-015-2236-3
10.1073/pnas.1524968113
10.1186/s12864-015-1375-x
10.1101/gr.5057506
10.1016/j.ibmb.2009.03.004
10.1186/1471-2164-14-749
10.1073/pnas.1600205113
10.1007/s10886-010-9828-9
10.1021/cb300331z
10.1038/ncomms10165
10.1002/arch.21309
10.1016/j.ibmb.2008.11.004
10.1016/S0965-1748(01)00171-0
10.1371/journal.pone.0117054
10.1039/b914294k
10.1126/science.1249656.Genome
10.1093/chemse/bji049
10.1016/j.cbd.2018.05.001
10.1016/j.cell.2011.09.052
10.1016/j.cbd.2018.04.003
10.3389/fevo.2015.00060
10.1007/s00018-005-5607-0
10.1371/journal.pone.0015428
10.1016/j.cbd.2017.03.001
10.3389/fphys.2018.00090
10.7150/ijbs.11898
10.1111/imb.12322
10.1016/j.jinsphys.2016.09.008
10.1111/phen.12066
10.12688/f1000research.3825.1
10.1007/s10886-014-0458-5
10.1126/science.1191864
10.1093/chemse/bjj059
10.1016/j.cub.2016.10.013
10.1111/imb.12372
10.1007/s12038-014-9447-7
10.1016/j.cub.2005.02.007
10.1016/j.jspr.2017.08.006
10.1016/j.cbd.2016.03.002
10.1038/srep41829
10.1126/science.1076196
10.1038/s41598-018-20719-0
10.1074/jbc.M117.810374
10.3233/ISB-00271
10.1038/srep29067
10.1371/journal.pone.0114238
10.1146/annurev-pharmtox-010611-134548
10.1038/s41598-017-11456-x
10.1016/j.cbd.2016.03.001
10.1186/s12864-016-3008-4
10.1016/j.cbd.2015.01.004
10.1038/ncomms7077
10.1016/j.cub.2017.04.035
ContentType Journal Article
Copyright Copyright © 2018 Venthur and Zhou. 2018 Venthur and Zhou
Copyright_xml – notice: Copyright © 2018 Venthur and Zhou. 2018 Venthur and Zhou
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fphys.2018.01163
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1664-042X
ExternalDocumentID oai_doaj_org_article_e16dfaf0ca7a4750ab2f249bc153141f
PMC6117247
30197600
10_3389_fphys_2018_01163
Genre Journal Article
Review
GrantInformation_xml – fundername: Fondo Nacional de Desarrollo Científico y Tecnológico
  grantid: 3170433
– fundername: Northeastern University
– fundername: Jilin University
– fundername: Biotechnology and Biological Sciences Research Council
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
DIK
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-9c113e91a037c2ed562a2e2fa9938615316ebbb07781abf48458e75cad74dd643
IEDL.DBID M48
ISSN 1664-042X
IngestDate Wed Aug 27 01:31:57 EDT 2025
Thu Aug 21 14:08:13 EDT 2025
Fri Jul 11 02:11:35 EDT 2025
Thu Apr 03 07:05:06 EDT 2025
Thu Apr 24 22:58:40 EDT 2025
Thu Jul 10 08:19:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords antagonists
insect olfaction
agonists
odorant binding
pest management
modulators
chemosensory receptors
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-9c113e91a037c2ed562a2e2fa9938615316ebbb07781abf48458e75cad74dd643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
This article was submitted to Invertebrate Physiology, a section of the journal Frontiers in Physiology
Edited by: Shuang-Lin Dong, Nanjing Agricultural University, China
Reviewed by: Man-Qun Wang, Huazhong Agricultural University, China; Jalal Jalali Sendi, University of Gilan, Iran; Claudio C. Ramirez, University of Talca, Chile
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2018.01163
PMID 30197600
PQID 2101920619
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e16dfaf0ca7a4750ab2f249bc153141f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6117247
proquest_miscellaneous_2101920619
pubmed_primary_30197600
crossref_citationtrail_10_3389_fphys_2018_01163
crossref_primary_10_3389_fphys_2018_01163
PublicationCentury 2000
PublicationDate 2018-08-24
PublicationDateYYYYMMDD 2018-08-24
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-24
  day: 24
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in physiology
PublicationTitleAlternate Front Physiol
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Liu (B87) 2013; 43
Soques (B132) 2010; 36
Richards (B117) 2008; 452
Hu (B52); 17
Sato (B124) 2008; 452
Li (B85) 2013; 59
Jia (B59) 2016; 6
Montagné (B99) 2012; 36
Leal (B73) 2008; 3
Venthur (B147) 2016; 19
Bin (B10) 2017; 7
Franco (B40) 2016; 69
Chen (B22) 2014; 9
Sandler (B123) 2000; 7
Hill (B48) 2002; 298
Wicher (B161) 2017; 220
Bohbot (B11) 2012; 6
Nie (B102) 2018; 142
Wan (B151) 2015; 5
Arensburger (B2) 2010; 330
Civelli (B28) 2013; 53
Zheng (B189) 2015; 456
Neuhaus (B101) 2005; 8
Xue (B168) 2016; 11
Bohbot (B12) 2015; 3
Tian (B141) 2016; 25
Chang (B21) 2017; 22
Choo (B27) 2018; 115
Chen (B23) 2012; 7
Neafsey (B100) 2015; 347
Wicher (B162) 2008; 452
Smith (B130) 2011; 108
Yin (B172) 2013; 70
Bonasio (B13) 2010; 329
Jayanthi (B57) 2014; 15
Klein (B67) 1987; 17
Robertson (B119) 2018
Tsitoura (B143) 2016; 10
Li (B80) 2016
Zhao (B187) 2018; 9
Li (B81) 2014; 40
Mesquita (B96) 2016; 113
Grosse-Wilde (B44) 2006; 31
Rinker (B118) 2013; 14
Jones (B63) 2005; 15
Qiao (B113) 2009; 39
Schwaighofer (B126) 2014; 446
Peng (B110) 2017; 12
Clark (B29) 2007; 450
Sellanes (B127) 2010; 36
Li (B77) 2015; 11
Li (B82) 2017; 141
Zhang (B183) 2014; 52
Wang (B152) 2013; 8
Jones (B62) 2012; 7
Bengtsson (B6) 2012; 7
Zhao (B188) 2016; 11
Jia (B58) 2018; 13
Tsitoura (B144) 2015; 290
Chang (B20) 2015; 5
Zheng (B190) 2016; 6
Ray (B115) 2014; 39
Sinkins (B129) 2007; 316
Gu (B46) 2015; 10
Iovinella (B56) 2013; 38
Xu (B166) 2003; 12
Vogt (B148) 2015; 62
Zhou (B193) 2009
Brito (B14) 2016; 95
Xia (B164) 2008; 38
Wang (B153) 2016; 6
Zhang (B179) 2016; 11
Matsuo (B95) 2007; 5
Li (B79) 2016; 91
Godfray (B41) 2014; 281
Hopf (B50) 2015; 6
Lautenschlager (B69) 2005; 335
Xu (B167) 2011; 404
Vogt (B149) 1981
Zhang (B177) 2013; 22
Zhou (B191) 2004; 558
Niu (B103) 2016; 18
Zhan (B175) 2011; 147
Carraher (B17) 2015; 66
Lee (B75) 2015; 120
Daimon (B32) 2012; 38
Yan (B169) 2015; 41
Katritch (B66) 2013; 53
Campanacci (B15) 2001; 276
Larsson (B68) 2004; 43
Li (B78) 2015; 10
Sun (B136); 8
Jones (B60) 2008; 451
Wetzel (B160) 2001; 98
Leitch (B76) 2015; 16
Syed (B138) 2006; 103
Zhou (B192) 2010
Gu (B45) 2014; 9
Wang (B155) 2011; 20
Chen (B26) 2018; 98
Feng (B38) 2017; 12
Tsuchihara (B145) 2005; 30
Leal (B71) 2013; 58
Rahman (B114) 2017; 292
Leary (B74) 2012; 109
Vosshall (B150) 2011; 36
Zhou (B195) 2014; 60
Liu (B91) 2015; 13
Grosse-Wilde (B43) 2011; 108
Stengl (B133) 2013; 199
Hu (B51) 2018; 9
Leach (B70) 2001; 21
Bahk (B3) 2016; 14
Cao (B16) 2014; 10
Hekmat-Scafe (B47) 2002; 12
Hughes (B55) 2014; 39
Weinstock (B158) 2006; 443
Tian (B140) 2016; 6
Bass (B5) 2014; 51
Hooper (B49) 2009; 14
Wang (B154) 2017; 18
Li (B83) 2018; 27
Gonzalez (B42) 2017; 7
Sun (B135) 2018; 9
Pelosi (B109) 2006; 63
Mitsuno (B98) 2008; 28
Zhang (B181) 2017; 27
Hughes (B54) 2010; 36
Sakurai (B122) 2004; 101
Bette (B8) 2002; 32
Liu (B93) 2015; 3
Rojas (B121) 2018; 27
Yang (B170) 2017; 43
Zhang (B185) 2017; 74
Chang (B19) 2017; 27
Zhou (B194) 2014; 9
Richards (B116) 2010; 8
Zhang (B180) 2017; 24
Zhang (B178) 2015; 10
Antony (B1) 2016; 17
Feng (B39) 2015; 16
Bian (B9) 2018; 53
Werren (B159) 2010; 327
Shiao (B128) 2013; 52
Cui (B31) 2017; 24
Venthur (B146) 2014; 39
Tsitoura (B142) 2010; 5
Pelosi (B108) 2014; 5
Chen (B25) 2014; 3
Schmidt (B125) 2014; 19
Dong (B36) 2016; 11
You (B173) 2013; 45
Ban (B4) 2003; 60
Li (B84) 2015; 16
Wurm (B163) 2011; 108
De Fouchier (B34) 2017; 8
di Luccio (B35) 2013; 8
Pickett (B111) 2014; 40
Xu (B165) 2016; 113
Kaissling (B64) 2013; 199
Watanabe (B157) 2014; 344
Sun (B137); 59
Paramasivan (B106) 2007; 7
Liu (B92) 2018; 107
Leal (B72) 2017; 114
Missbach (B97) 2014; 2014
Karpe (B65) 2017; 7
Liu (B88) 2016; 9
Liu (B90) 2015; 180
Taylor (B139) 2012; 7
Cattaneo (B18) 2017; 7
Wang (B156) 2017; 12
Zhao (B186) 2016; 11
Robertson (B120) 2006; 16
Liu (B89) 2018; 25
Benoit (B7) 2016; 7
Zhang (B184) 2015; 10
Pregitzer (B112) 2017; 13
Hu (B53); 6
Zhang (B182) 2017
Zeng (B174) 2018
Zhang (B176) 2018; 8
Du (B37) 2018; 27
Damberger (B33) 2013; 110
Maida (B94) 1993; 23
Yi (B171) 2018; 107
Jones (B61) 2011; 108
Chen (B24) 2013; 8
Sun (B134) 2017; 26
Oxley (B105) 2014; 24
Corcoran (B30) 2014; 54
Lin (B86) 2015; 11
Oliferenko (B104) 2013; 8
Song (B131) 2018; 8
Paula (B107) 2016; 25
References_xml – volume: 13
  start-page: e0189889
  year: 2018
  ident: B58
  article-title: Identification of chemosensory genes from the antennal transcriptome of Indian meal moth Plodia interpunctella
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0189889
– volume: 199
  start-page: 897
  year: 2013
  ident: B133
  article-title: The role of the coreceptor Orco in insect olfactory transduction
  publication-title: J. Comp. Physiol. Neuroethol. Sensory Neural Behav. Physiol.
  doi: 10.1007/s00359-013-0837-3
– volume: 141
  start-page: 751
  year: 2017
  ident: B82
  article-title: Expression pattern and ligand-binding properties of odorant-binding protein 13 from Monochamus alternatus hope
  publication-title: J. Appl. Entomol.
  doi: 10.1111/jen.12396
– volume: 316
  start-page: 1718
  year: 2007
  ident: B129
  article-title: Genome sequence of Aedes aegypti, a major arbovirus vector
  publication-title: Science
  doi: 10.1126/science.1138878
– volume: 7
  start-page: 10823
  year: 2017
  ident: B65
  article-title: Computational genome-wide survey of odorant receptors from two solitary bees Dufourea novaeangliae (Hymenoptera: Halictidae) and Habropoda laboriosa (Hymenoptera: Apidae)
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11098-z
– volume: 52
  start-page: 1
  year: 2013
  ident: B128
  article-title: Transcriptional profiling of adult drosophila antennae by high-throughput sequencing
  publication-title: Zool. Stud.
  doi: 10.1186/1810-522X-52-42
– volume: 9
  start-page: 447
  year: 2018
  ident: B51
  article-title: Pheromone binding protein EhipPBP1 is highly enriched in the male antennae of the seabuckthorn carpenterworm and is binding to sex pheromone components
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00447
– volume-title: Odorant-Binding Proteins in Insects, 1st Edn.
  year: 2010
  ident: B192
– volume: 347
  start-page: 1
  year: 2015
  ident: B100
  article-title: Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes
  publication-title: Science
  doi: 10.1126/science.1258522
– year: 2018
  ident: B174
  article-title: Genome-wide analysis of odorant-binding proteins and chemosensory proteins in the sweet potato whitefly,
  publication-title: Bemisia tabaci. Insect Sci
  doi: 10.1111/1744-7917.12576
– year: 1981
  ident: B149
  article-title: Pheromone binding and inactivation by moth antennae
  publication-title: Nature
  doi: 10.1038/293161a0
– volume: 5
  start-page: 13093
  year: 2015
  ident: B20
  article-title: Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppressalis
  publication-title: Sci. Rep.
  doi: 10.1038/srep13093
– volume: 21
  start-page: 784
  year: 2001
  ident: B70
  article-title: Molecular modelling : principles and applications
  publication-title: Computers
  doi: 10.1016/S0097-8485(96)00029-0
– volume: 53
  start-page: 93
  year: 2018
  ident: B9
  article-title: Identification of the genes in tea leafhopper, Empoasca onukii (Hemiptera: Cicadellidae), that encode odorant-binding proteins and chemosensory proteins using transcriptome analyses of insect heads
  publication-title: Appl. Entomol. Zool.
  doi: 10.1007/s13355-017-0533-9
– volume: 38
  start-page: 1031
  year: 2012
  ident: B32
  article-title: Reinvestigation of the sex pheromone of the wild silkmoth Bombyx mandarina: the effects of bombykal and bombykyl acetate
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-012-0164-0
– volume: 6
  start-page: 29
  year: 2012
  ident: B11
  article-title: Selectivity of odorant receptors in insects
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2012.00029
– volume: 22
  start-page: 424
  year: 2013
  ident: B177
  article-title: An odorant receptor from the common cutworm (Spodoptera litura) exclusively tuned to the important plant volatile cis-3-Hexenyl acetate
  publication-title: Insect Mol. Biol.
  doi: 10.1111/imb.12033
– volume: 11
  start-page: e0148159
  year: 2016
  ident: B188
  article-title: Transcriptome and expression patterns of chemosensory genes in antennae of the parasitoid wasp Chouioia cunea
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0148159
– volume: 40
  start-page: 319
  year: 2014
  ident: B111
  article-title: Chemical ecology in the post genomics era
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-014-0418-0
– volume: 10
  start-page: e0125159
  year: 2015
  ident: B46
  article-title: Antennal transcriptome analysis of odorant reception genes in the red turpentine beetle (RTB), Dendroctonus valens
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0125159
– volume: 9
  start-page: e103420
  year: 2014
  ident: B45
  article-title: Molecular characterization and differential expression of olfactory genes in the antennae of the black cutworm moth Agrotis ipsilon
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0103420
– volume: 6
  start-page: 1
  year: 2016
  ident: B153
  article-title: Comparison of research methods for functional characterization of insect olfactory receptors
  publication-title: Sci. Rep.
  doi: 10.1038/srep32806
– volume: 108
  start-page: 8821
  year: 2011
  ident: B61
  article-title: Functional agonism of insect odorant receptor ion channels
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1102425108
– volume: 6
  start-page: 22336
  year: 2016
  ident: B140
  article-title: Structural insights into Cydia pomonella pheromone binding protein 2 mediated prediction of potentially active semiochemicals
  publication-title: Sci. Rep.
  doi: 10.1038/srep22336
– volume: 329
  start-page: 1068
  year: 2010
  ident: B13
  article-title: Genomic Comparison of the Ants Camponotus floridanus and Harpegnathos saltator
  publication-title: Science
  doi: 10.1126/science.1192428
– volume: 11
  start-page: e0161839
  year: 2016
  ident: B168
  article-title: Identification and expression analysis of candidate odorant-binding protein and chemosensory protein genes by antennal transcriptome of Sitobion avenae
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0161839
– volume: 107
  start-page: 2667
  year: 2018
  ident: B171
  article-title: Screening behaviorally active compounds based on fluorescence quenching in combination with binding mechanism analyses of SspOBP7, an odorant binding protein from Sclerodermus sp
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.10.149
– volume: 41
  start-page: 441
  year: 2015
  ident: B169
  article-title: (Z)-13-hexadecenyl acetate: a novel moth sex pheromone component from Herpetogramma submarginale (Lepidoptera: Crambidae)
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-015-0576-8
– volume: 17
  start-page: 1193
  year: 1987
  ident: B67
  article-title: Sensillum-lymph proteins from antennal olfactory hairs of the moth Antheraea polyphemus (Saturniidae)
  publication-title: Insect Biochem.
  doi: 10.1016/0020-1790(87)90093-X
– volume: 28
  start-page: 893
  year: 2008
  ident: B98
  article-title: Identification of receptors of main sex-pheromone components of three Lepidopteran species
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2008.06429.x
– volume: 114
  start-page: 12094
  year: 2017
  ident: B72
  article-title: Reverse chemical ecology at the service of conservation biology
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1717375114
– volume: 108
  start-page: 5673
  year: 2011
  ident: B130
  article-title: Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile)
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1008617108
– volume: 36
  start-page: 1234
  year: 2010
  ident: B127
  article-title: Formate analogs as antagonists of the sex pheromone of the honeydew moth, Cryptoblabes gnidiella: electrophysiological, behavioral and field evidence
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-010-9861-8
– volume: 8
  start-page: e64547
  year: 2013
  ident: B104
  article-title: Promising Aedes aegypti repellent chemotypes identified through integrated QSAR, virtual screening, synthesis, and bioassay
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0064547
– volume: 10
  start-page: e0128550
  year: 2015
  ident: B184
  article-title: Male- and female-biased gene expression of olfactory-related genes in the antennae of Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae)
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0128550
– volume: 17
  start-page: 69
  year: 2016
  ident: B1
  article-title: Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis
  publication-title: BMC Genomics
  doi: 10.1186/s12864-016-2362-6
– volume: 7
  start-page: 41105
  year: 2017
  ident: B18
  article-title: Candidate pheromone receptors of codling moth Cydia pomonella respond to pheromones and kairomones
  publication-title: Sci. Rep.
  doi: 10.1038/srep41105
– volume: 39
  start-page: 761
  year: 2014
  ident: B55
  article-title: A determinant of odorant specificity is located at the extracellular loop 2-transmembrane domain 4 interface of an Anopheles gambiae odorant receptor subunit
  publication-title: Chem. Senses
  doi: 10.1093/chemse/bju048
– volume: 38
  start-page: 409
  year: 2013
  ident: B56
  article-title: Ligand-binding study of Anopheles gambiae chemosensory proteins
  publication-title: Chem. Senses
  doi: 10.1093/chemse/bjt012
– volume: 43
  start-page: 1033
  year: 2017
  ident: B170
  article-title: Structural transformation detection contributes to screening of behaviorally active compounds : dynamic binding process analysis of DhelOBP21 from Dastarcus helophoroides
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-017-0897-x
– volume: 6
  start-page: 1
  year: 2016
  ident: B190
  article-title: Predicted structure of a Minus-C OBP from Batocera horsfieldi (Hope) suggests an intermediate structure in evolution of OBPs
  publication-title: Sci. Rep.
  doi: 10.1038/srep33981
– volume: 15
  start-page: 209
  year: 2014
  ident: B57
  article-title: Computational reverse chemical ecology : virtual screening and predicting behaviorally active semiochemicals for Bactrocera dorsalis
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-209
– volume: 8
  start-page: 15709
  year: 2017
  ident: B34
  article-title: Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15709
– volume: 2014
  start-page: 1
  year: 2014
  ident: B97
  article-title: Evolution of insect olfactory receptors
  publication-title: Elife
  doi: 10.7554/eLife.02115
– volume: 58
  start-page: 373
  year: 2013
  ident: B71
  article-title: Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes
  publication-title: Annu. Rev. Entomol.
  doi: 10.1146/annurev-ento-120811-153635
– volume: 52
  start-page: 69
  year: 2014
  ident: B183
  article-title: Antennal transcriptome analysis and comparison of olfactory genes in two sympatric defoliators, Dendrolimus houi and Dendrolimus kikuchii (lepidoptera: Lasiocampidae)
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2014.06.006
– volume: 108
  start-page: 5679
  year: 2011
  ident: B163
  article-title: The genome of the fire ant Solenopsis invicta
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1009690108
– volume: 53
  start-page: 531
  year: 2013
  ident: B66
  article-title: Structure-function of the G protein-coupled receptor superfamily
  publication-title: Annu. Rev.
  doi: 10.1146/annurev-pharmtox-032112-135923.Structure-Function
– volume: 10
  start-page: e0142193
  year: 2015
  ident: B78
  article-title: Identification of putative olfactory genes from the oriental fruit moth Grapholita molesta via an antennal transcriptome analysis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0142193
– volume: 43
  start-page: 703
  year: 2004
  ident: B68
  article-title: Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.08.019
– volume: 59
  start-page: 263
  year: 2013
  ident: B85
  article-title: Two Minus-C odorant binding proteins from Helicoverpa armigera display higher ligand binding affinity at acidic pH than neutral pH
  publication-title: J. Insect Physiol.
  doi: 10.1016/j.jinsphys.2012.12.004
– volume: 7
  start-page: e31620
  year: 2012
  ident: B6
  article-title: Putative chemosensory receptors of the codling moth, Cydia pomonella, identified by antennal transcriptome analysis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0031620
– volume: 60
  start-page: 390
  year: 2003
  ident: B4
  article-title: Biochemical characterization and bacterial expression of an odorant-binding protein from Locusta migratoria
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s000180300032
– volume: 36
  start-page: 1226
  year: 2010
  ident: B132
  article-title: Age and mating status do not affect transcript levels of odorant receptor genes in male antennae of Heliothis virescens and Heliothis subflexa
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-010-9863-6
– volume: 451
  start-page: 990
  year: 2008
  ident: B60
  article-title: Global trends in emerging infectious diseases
  publication-title: Nature
  doi: 10.1038/nature06536
– volume: 5
  start-page: e118
  year: 2007
  ident: B95
  article-title: Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050118
– volume: 450
  start-page: 203
  year: 2007
  ident: B29
  article-title: Evolution of genes and genomes on the Drosophila phylogeny
  publication-title: Nature
  doi: 10.1038/nature06341
– volume: 14
  start-page: 83
  year: 2016
  ident: B3
  article-title: Insect odorant receptor trafficking requires calmodulin
  publication-title: BMC Biol.
  doi: 10.1186/s12915-016-0306-x
– volume: 8
  start-page: e62098
  ident: B136
  article-title: Identification and characterization of pheromone receptors and interplay between receptors and pheromone binding proteins in the diamondback moth, Plutella xylostella
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0062098
– volume: 25
  start-page: 73
  year: 2018
  ident: B89
  article-title: Identification and characterization of chemosensory gene families in the bark beetle, Tomicus yunnanensis
  publication-title: Comp. Biochem. Physiol. D Genomics Proteomics
  doi: 10.1016/j.cbd.2017.11.003
– volume: 24
  start-page: 543
  year: 2017
  ident: B180
  article-title: Molecular and functional characterization of a candidate sex pheromone receptor OR1 in Spodoptera litura
  publication-title: Insect Sci.
  doi: 10.1111/1744-7917.12294
– volume: 60
  start-page: 31
  year: 2014
  ident: B195
  article-title: Silencing in Apolygus lucorum of the olfactory coreceptor Orco gene by RNA interference induces EAG response declining to two putative semiochemicals
  publication-title: J. Insect Physiol.
  doi: 10.1016/j.jinsphys.2013.10.006
– volume: 452
  start-page: 1002
  year: 2008
  ident: B124
  article-title: Insect olfactory receptors are heteromeric ligand-gated ion channels
  publication-title: Nature
  doi: 10.1038/nature06850
– volume: 8
  start-page: e53840
  year: 2013
  ident: B35
  article-title: Crystallographic observation of pH-induced conformational changes in the Amyelois transitella pheromone-binding protein AtraPBP1
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0053840
– start-page: 11
  year: 2016
  ident: B80
  article-title: Chemosensory proteins of the eastern honeybee, Apis cerana: Identification, tissue distribution and olfactory related functional characterization
  publication-title: Comp. Biochem. Physiol. B Biochem. Mol. Biol
  doi: 10.1016/j.cbpb.2015.11.014
– volume: 3
  start-page: 39
  year: 2015
  ident: B12
  article-title: The narrowing olfactory landscape of insect odorant receptors
  publication-title: Front. Ecol. Evol.
  doi: 10.3389/fevo.2015.00039
– volume: 8
  start-page: e84575
  year: 2013
  ident: B24
  article-title: Phenylthiophenecarboxamide antagonists of the olfactory receptor co-receptor subunit from a mosquito
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0084575
– volume: 62
  start-page: 142
  year: 2015
  ident: B148
  article-title: The lepidoptera odorant binding protein gene family: gene gain and loss within the GOBP/PBP complex of moths and butterflies
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2015.03.003
– volume: 9
  start-page: 1
  year: 2016
  ident: B88
  article-title: Functional analysis of Orco and odorant receptors in odor recognition in Aedes albopictus
  publication-title: Parasites Vectors
  doi: 10.1186/s13071-016-1644-9
– volume: 142
  start-page: 149
  year: 2018
  ident: B102
  article-title: Antennal transcriptome and odorant binding protein expression profiles of an invasive mealybug and its parasitoid
  publication-title: J. Appl. Entomol.
  doi: 10.1111/jen.12417
– volume: 59
  start-page: 46
  ident: B137
  article-title: Expression patterns and binding properties of three pheromone binding proteins in the diamondback moth, Plutella xylostella
  publication-title: J. Insect Physiol.
  doi: 10.1016/j.jinsphys.2012.10.020
– volume: 12
  start-page: 1357
  year: 2002
  ident: B47
  article-title: Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster
  publication-title: Genome Res
  doi: 10.1101/gr.239402
– volume: 25
  start-page: 769
  year: 2016
  ident: B141
  article-title: Molecular characterization and functional analysis of pheromone binding protein 1 from Cydia pomonella (L.)
  publication-title: Insect Mol. Biol.
  doi: 10.1111/imb.12261
– volume: 8
  start-page: e1000313
  year: 2010
  ident: B116
  article-title: Genome sequence of the pea aphid Acyrthosiphon pisum
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000313
– volume: 20
  start-page: 125
  year: 2011
  ident: B155
  article-title: Functional characterization of pheromone receptors in the tobacco budworm Heliothis virescens
  publication-title: Insect Mol. Biol.
  doi: 10.1111/j.1365-2583.2010.01045.x
– volume: 8
  start-page: 7803
  year: 2018
  ident: B131
  article-title: Identification and tissue distribution of chemosensory protein and odorant binding protein genes in Tropidothorax elegans Distant (Hemiptera : Lygaeidae)
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-26137-6
– volume: 98
  start-page: 9377
  year: 2001
  ident: B160
  article-title: Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.151103998
– volume: 452
  start-page: 1007
  year: 2008
  ident: B162
  article-title: Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels
  publication-title: Nature
  doi: 10.1038/nature06861
– volume: 335
  start-page: 1044
  year: 2005
  ident: B69
  article-title: Coil-to-helix transition and ligand release of Bombyx mori pheromone-binding protein
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2005.07.176
– volume: 70
  start-page: 3029
  year: 2013
  ident: B172
  article-title: Odorant-binding proteins and olfactory coding in the solitary bee Osmia cornuta
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-013-1308-2
– volume: 12
  start-page: e0180775
  year: 2017
  ident: B110
  article-title: Identification of odorant binding proteins and chemosensory proteins in Microplitis mediator as well as functional characterization of chemosensory protein 3
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0180775
– volume: 45
  start-page: 220
  year: 2013
  ident: B173
  article-title: A heterozygous moth genome provides insights into herbivory and detoxification
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2524
– volume: 452
  start-page: 949
  year: 2008
  ident: B117
  article-title: The genome of the model beetle and pest Tribolium castaneum
  publication-title: Nature
  doi: 10.1038/nature06784
– year: 2009
  ident: B193
  article-title: Characterisation of Bombyx mori odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2009.04.015
– volume: 11
  start-page: e0147768
  year: 2016
  ident: B36
  article-title: Identification of putative chemosensory receptor genes from the Athetis dissimilis antennal transcriptome
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0147768
– volume: 281
  start-page: 20140558
  year: 2014
  ident: B41
  article-title: A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators
  publication-title: Proc. R. Soc. B Biol. Sci.
  doi: 10.1098/rspb.2014.0558
– volume: 115
  start-page: 714
  year: 2018
  ident: B27
  article-title: Reverse chemical ecology approach for the identification of an oviposition attractant for Culex quinquefasciatus
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1718284115
– volume: 11
  start-page: e0165374
  year: 2016
  ident: B186
  article-title: Antennal transcriptome and differential expression analysis of five chemosensory gene families from the Asian honeybee Apis cerana cerana
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0165374
– volume: 446
  start-page: 1042
  year: 2014
  ident: B126
  article-title: Insights into structural features determining odorant affinities to honey bee odorant binding protein 14
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2014.03.054
– volume: 51
  start-page: 41
  year: 2014
  ident: B5
  article-title: The evolution of insecticide resistance in the peach potato aphid, Myzus persicae
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2014.05.003
– volume: 9
  start-page: 107
  year: 2018
  ident: B187
  article-title: Sex- and tissue-specific expression profiles of odorant binding protein and chemosensory protein genes in Bradysia odoriphaga (Diptera: Sciaridae)
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00107
– volume: 5
  start-page: 17320
  year: 2015
  ident: B151
  article-title: Synthetic pheromones and plant volatiles alter the expression of chemosensory genes in Spodoptera exigua
  publication-title: Sci. Rep.
  doi: 10.1038/srep17320
– volume: 36
  start-page: 497
  year: 2011
  ident: B150
  article-title: A unified nomenclature system for the insect olfactory coreceptor
  publication-title: Chem. Senses
  doi: 10.1093/chemse/bjr022
– volume: 108
  start-page: 7449
  year: 2011
  ident: B43
  article-title: Antennal transcriptome of Manduca sexta
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1017963108
– volume: 199
  start-page: 879
  year: 2013
  ident: B64
  article-title: Kinetics of olfactory responses might largely depend on the odorant-receptor interaction and the odorant deactivation postulated for flux detectors
  publication-title: J. Comp. Physiol. Neuroethol. Sensory Neural Behav. Physiol.
  doi: 10.1007/s00359-013-0812-z
– volume: 276
  start-page: 20078
  year: 2001
  ident: B15
  article-title: Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence binding assay
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M100713200
– volume: 8
  start-page: e84795
  year: 2013
  ident: B152
  article-title: Potential cooperations between odorant-binding proteins of the scarab beetle Holotrichia oblita Faldermann (Coleoptera: Scarabaeidae)
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0084795
– volume: 220
  start-page: 1781
  year: 2017
  ident: B161
  article-title: Identification and characterization of the bombykal receptor in the hawkmoth Manduca sexta
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.154260
– volume: 107
  start-page: 14
  year: 2018
  ident: B92
  article-title: Cloning and functional characterization of three new pheromone receptors from the diamondback moth, Plutella xylostella
  publication-title: J. Insect Physiol.
  doi: 10.1016/j.jinsphys.2018.02.005
– volume: 109
  start-page: 14081
  year: 2012
  ident: B74
  article-title: Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1204661109
– volume: 10
  start-page: 846
  year: 2014
  ident: B16
  article-title: Identification of candidate olfactory genes in Chilo suppressalis by antennal transcriptome analysis
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.9297
– volume: 103
  start-page: 16538
  year: 2006
  ident: B138
  article-title: Pheromone reception in fruit flies expressing a moth's odorant receptor
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0607874103
– volume: 25
  start-page: 580
  year: 2016
  ident: B107
  article-title: Identification and expression profile of odorant-binding proteins in Halyomorpha halys (Hemiptera: Pentatomidae)
  publication-title: Insect Mol. Biol.
  doi: 10.1111/imb.12243
– volume: 13
  start-page: 911
  year: 2017
  ident: B112
  article-title: In search for pheromone receptors: certain members of the odorant receptor family in the desert locust Schistocerca gregaria (orthoptera: Acrididae) are co-expressed with SNMP1
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.18402
– volume: 11
  start-page: e0164729
  year: 2016
  ident: B179
  article-title: Analysis of the antennal transcriptome and insights into olfactory genes in Hyphantria cunea (Drury)
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0164729
– volume: 558
  start-page: 23
  year: 2004
  ident: B191
  article-title: Revisiting the odorant-binding protein LUSH of Drosophila melanogaster: evidence for odour recognition and discrimination
  doi: 10.1016/S0014-5793(03)01521-7
– volume: 5
  start-page: 320
  year: 2014
  ident: B108
  article-title: Soluble proteins of chemical communication: an overview across arthropods
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2014.00320
– volume: 180
  start-page: 23
  year: 2015
  ident: B90
  article-title: Two general-odorant binding proteins in Spodoptera litura are differentially tuned to sex pheromones and plant odorants
  publication-title: Comp. Biochem. Physiol. A Mol. Integr. Physiol.
  doi: 10.1016/j.cbpa.2014.11.005
– volume: 98
  start-page: e21456
  year: 2018
  ident: B26
  article-title: Molecular and functional characterization of three odorant binding proteins from the oriental fruit moth Grapholita molesta (Busck) (Lepidoptera: Tortricide)
  publication-title: Arch. Insect Biochem. Physiol
  doi: 10.1002/arch.21456
– volume: 19
  start-page: 188
  year: 2016
  ident: B147
  article-title: β-Ionone as putative semiochemical suggested by ligand binding on an odorant-binding protein of Hylamorpha elegans and electroantennographic recordings
  publication-title: Entomol. Sci.
  doi: 10.1111/ens.12180
– year: 2018
  ident: B119
  article-title: Enormous expansion of the chemosensory gene repertoire in the omnivorous German cockroach
  publication-title: Blattella germanica
  doi: 10.1002/jez.b.22797
– volume: 12
  start-page: e0179433
  year: 2017
  ident: B38
  article-title: Antennal transcriptome analysis of the piercing moth Oraesia emarginata (Lepidoptera: Noctuidae)
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0179433
– volume: 11
  start-page: 1281
  year: 2015
  ident: B77
  article-title: Structure-based analysis of the ligand-binding mechanism for DhelOBP21, a C-minus odorant binding protein, from Dastarcus Helophoroides (Fairmaire; Coleoptera: Bothrideridae)
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.12528
– volume: 12
  start-page: 549
  year: 2003
  ident: B166
  article-title: Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae
  publication-title: Insect Mol. Biol.
  doi: 10.1046/j.1365-2583.2003.00440.x
– volume: 404
  start-page: 335
  year: 2011
  ident: B167
  article-title: Extrusion of the C-terminal helix in navel orangeworm moth pheromone-binding protein (AtraPBP1) controls pheromone binding
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2010.11.119
– volume: 6
  start-page: 26652
  ident: B53
  article-title: Antennal transcriptome analysis of the Asian longhorned beetle Anoplophora glabripennis
  publication-title: Sci. Rep.
  doi: 10.1038/srep26652
– volume: 290
  start-page: 7961
  year: 2015
  ident: B144
  article-title: Inhibition of Anopheles gambiae odorant receptor function by mosquito repellents
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.632299
– volume: 69
  start-page: 82
  year: 2016
  ident: B40
  article-title: Silencing the odorant receptor co-receptor RproOrco affects the physiology and behavior of the Chagas disease vector Rhodnius prolixus
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2015.02.012
– volume: 10
  start-page: 275
  year: 2016
  ident: B143
  article-title: Positive allosteric modulation of insect olfactory receptor function by ORco agonists
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2016.00275
– volume: 66
  start-page: 31
  year: 2015
  ident: B17
  article-title: Towards an understanding of the structural basis for insect olfaction by odorant receptors
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2015.09.010
– volume: 120
  start-page: 118
  year: 2015
  ident: B75
  article-title: Mutation and duplication of arthropod acetylcholinesterase: implications for pesticide resistance and tolerance
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2014.11.004
– volume: 23
  start-page: 243
  year: 1993
  ident: B94
  article-title: The pheromone binding protein of Bombyx mori: purification, characterization and immunocytochemical localization
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/0965-1748(93)90005-D
– volume: 36
  start-page: 2588
  year: 2012
  ident: B99
  article-title: Functional characterization of a sex pheromone receptor in the pest moth Spodoptera littoralis by heterologous expression in Drosophila
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2012.08183.x
– volume: 12
  start-page: e0171739
  year: 2017
  ident: B156
  article-title: Identification and expression profile analysis of odorant binding protein and chemosensory protein genes in Bemisia tabaci MED by head transcriptome
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0171739
– volume: 3
  start-page: e3045
  year: 2008
  ident: B73
  article-title: Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003045
– volume: 101
  start-page: 16653
  year: 2004
  ident: B122
  article-title: Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0407596101
– volume: 43
  start-page: 747
  year: 2013
  ident: B87
  article-title: Identification and functional characterization of sex pheromone receptors in beet armyworm Spodoptera exigua (Hübner)
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2013.05.009
– volume: 8
  start-page: 15
  year: 2005
  ident: B101
  article-title: Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1371
– volume: 456
  start-page: 737
  year: 2015
  ident: B189
  article-title: Crystal structure of the Locusta migratoria odorant binding protein
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2014.12.048
– year: 2017
  ident: B182
  article-title: Identification and functional characterization of an odorant receptor in pea aphid
  publication-title: Acyrthosiphon pisum. Insect Sci.
  doi: 10.1111/1744-7917.12510
– volume: 7
  start-page: e30304
  year: 2012
  ident: B62
  article-title: Allosteric antagonism of insect odorant receptor ion channels
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030304
– volume: 110
  start-page: 18680
  year: 2013
  ident: B33
  article-title: Pheromone discrimination by a pH-tuned polymorphism of the Bombyx mori pheromone-binding protein
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1317706110
– volume: 443
  start-page: 931
  year: 2006
  ident: B158
  article-title: Insights into social insects from the genome of the honeybee Apis mellifera
  publication-title: Nature
  doi: 10.1038/nature05260
– volume: 7
  start-page: 143
  year: 2000
  ident: B123
  article-title: Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex
  publication-title: Chem. Biol.
  doi: 10.1016/S1074-5521(00)00078-8
– volume: 24
  start-page: 451
  year: 2014
  ident: B105
  article-title: The genome of the Clonal raider ant Cerapachys biroi
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.01.018
– volume: 18
  start-page: 586
  year: 2017
  ident: B154
  article-title: Chemosensory genes in the antennal transcriptome of two syrphid species, Episyrphus balteatus and Eupeodes corollae (Diptera: Syrphidae)
  doi: 10.1186/s12864-017-3939-4
– volume: 19
  start-page: 890
  year: 2014
  ident: B125
  article-title: Modelling three-dimensional protein structures for applications in drug design
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2013.10.027
– volume: 7
  start-page: e36784
  year: 2012
  ident: B23
  article-title: Identification of new agonists and antagonists of the insect odorant receptor co-receptor subunit
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0036784
– volume: 54
  start-page: 22
  year: 2014
  ident: B30
  article-title: A novel method to study insect olfactory receptor function using HEK293 cells
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2014.08.005
– volume: 9
  start-page: 31
  year: 2014
  ident: B194
  article-title: De novo analysis of the Nilaparvata lugens (Stål) antenna transcriptome and expression patterns of olfactory genes
  publication-title: Comp. Biochem. Physiol. D Genomics Proteomics
  doi: 10.1016/j.cbd.2013.12.002
– volume: 327
  start-page: 343
  year: 2010
  ident: B159
  article-title: Functional and evolutionary insights from the genomes of three parasitoid Nasonia species
  publication-title: Science
  doi: 10.1126/science.1178028
– volume: 16
  start-page: 255
  year: 2015
  ident: B76
  article-title: Chemosensory genes identified in the antennal transcriptome of the blowfly Calliphora stygia
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1466-8
– volume: 16
  start-page: 1028
  year: 2015
  ident: B84
  article-title: Candidate chemosensory genes identified in Colaphellus bowringi by antennal transcriptome analysis
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-2236-3
– volume: 113
  start-page: E489
  year: 2016
  ident: B165
  article-title: Correction for Chen et al., Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1524968113
– volume: 16
  start-page: 269
  year: 2015
  ident: B39
  article-title: Transcriptome and expression profiling analysis link patterns of gene expression to antennal responses in Spodoptera litura
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1375-x
– volume: 16
  start-page: 1395
  year: 2006
  ident: B120
  article-title: The chemoreceptor superfamily in the honey bee
  publication-title: Genome Res.
  doi: 10.1101/gr.5057506
– volume: 39
  start-page: 414
  year: 2009
  ident: B113
  article-title: Discrimination of alarm pheromone (E)-β-farnesene by aphid odorant-binding proteins
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2009.03.004
– volume: 14
  start-page: 749
  year: 2013
  ident: B118
  article-title: Antennal transcriptome profiles of anopheline mosquitoes reveal human host olfactory specialization in Anopheles gambiae
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-749
– volume: 113
  start-page: E1415
  year: 2016
  ident: B96
  article-title: Correction for Mesquita et al., genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1600205113
– volume: 36
  start-page: 797
  year: 2010
  ident: B54
  article-title: Odorant receptor from the Southern House mosquito narrowly tuned to the oviposition attractant skatole
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-010-9828-9
– volume: 7
  start-page: 1647
  year: 2012
  ident: B139
  article-title: Structure-activity relationship of a broad-spectrum insect odorant receptor agonist
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb300331z
– volume: 7
  start-page: 10165
  year: 2016
  ident: B7
  article-title: Unique features of a global human ectoparasite identified through sequencing of the bed bug genome
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10165
– volume: 91
  start-page: 67
  year: 2016
  ident: B79
  article-title: Cloning, expression, and functional analysis of three odorant-binding proteins of the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae)
  publication-title: Arch. Insect Biochem. Physiol.
  doi: 10.1002/arch.21309
– volume: 38
  start-page: 1036
  year: 2008
  ident: B164
  article-title: The genome of a lepidopteran model insect, the silkworm Bombyx mori
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2008.11.004
– volume: 32
  start-page: 241
  year: 2002
  ident: B8
  article-title: Probing a pheromone binding protein of the silkmoth Antheraea polyphemus by endogenous tryptophan fluorescence
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/S0965-1748(01)00171-0
– volume: 10
  start-page: e0117054
  year: 2015
  ident: B178
  article-title: Antennal transcriptome analysis and comparison of chemosensory gene families in two closely related noctuidae moths, Helicoverpa armigera
  publication-title: H. assulta. PLoS ONE
  doi: 10.1371/journal.pone.0117054
– volume: 14
  start-page: 5725
  year: 2009
  ident: B49
  article-title: High-throughput ESI-MS analysis of binding between the Bombyx mori pheromone-binding protein BmorPBP1, its pheromone components and some analogues
  publication-title: Chem. Commun.
  doi: 10.1039/b914294k
– volume: 344
  start-page: 380
  year: 2014
  ident: B157
  article-title: Genome sequence of the tsetse fly (Glossina morsitans): vector of African Trypanosomiasis
  publication-title: Science
  doi: 10.1126/science.1249656.Genome
– volume: 30
  start-page: 559
  year: 2005
  ident: B145
  article-title: An odorant-binding protein facilitates odorant transfer from air to hydrophilic surroundings in the blowfly
  publication-title: Chem. Senses
  doi: 10.1093/chemse/bji049
– volume: 27
  start-page: 54
  year: 2018
  ident: B37
  article-title: Identification and characterization of chemosensory genes in the antennal transcriptome of Spodoptera exigua
  publication-title: Comp. Biochem. Physiol. D Genomics Proteomics
  doi: 10.1016/j.cbd.2018.05.001
– volume: 147
  start-page: 1171
  year: 2011
  ident: B175
  article-title: The monarch butterfly genome yields insights into long-distance migration
  publication-title: Cell
  doi: 10.1016/j.cell.2011.09.052
– volume: 27
  start-page: 1
  year: 2018
  ident: B121
  article-title: Analysis of the grapevine moth Lobesia botrana antennal transcriptome and expression of odorant-binding and chemosensory proteins
  publication-title: Comp. Biochem. Physiol. D Genomics Proteomics
  doi: 10.1016/j.cbd.2018.04.003
– volume: 3
  start-page: 60
  year: 2015
  ident: B93
  article-title: Identification of candidate olfactory genes in Leptinotarsa decemlineata by antennal transcriptome analysis
  publication-title: Front. Ecol. Evol.
  doi: 10.3389/fevo.2015.00060
– volume: 63
  start-page: 1658
  year: 2006
  ident: B109
  article-title: Soluble proteins in insect chemical communication
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-005-5607-0
– volume: 5
  start-page: e15428
  year: 2010
  ident: B142
  article-title: Expression and membrane topology of Anopheles gambiae odorant receptors in lepidopteran insect cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0015428
– volume: 22
  start-page: 120
  year: 2017
  ident: B21
  article-title: De novo analysis of the oriental armyworm Mythimna separata antennal transcriptome and expression patterns of odorant-binding proteins
  publication-title: Comp. Biochem. Physiol. D Genomics Proteomics
  doi: 10.1016/j.cbd.2017.03.001
– volume: 9
  start-page: 90
  year: 2018
  ident: B135
  article-title: Identification and expression patterns of Anoplophora chinensis (Forster) chemosensory receptor genes from the antennal transcriptome
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00090
– volume: 11
  start-page: 772
  year: 2015
  ident: B86
  article-title: Identification and knockdown of the olfactory receptor (OrCo) in gypsy moth, Lymantria dispar
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.11898
– volume: 26
  start-page: 601
  year: 2017
  ident: B134
  article-title: Functional analysis of female-biased odorant binding protein 6 for volatile and nonvolatile host compounds in Adelphocoris lineolatus (Goeze)
  publication-title: Insect Mol. Biol.
  doi: 10.1111/imb.12322
– volume: 95
  start-page: 51
  year: 2016
  ident: B14
  article-title: A look inside odorant-binding proteins in insect chemoreception
  publication-title: J. Insect Physiol.
  doi: 10.1016/j.jinsphys.2016.09.008
– volume: 39
  start-page: 183
  year: 2014
  ident: B146
  article-title: Ligand binding and homology modelling of insect odorant-binding proteins
  publication-title: Physiol. Entomol.
  doi: 10.1111/phen.12066
– volume: 3
  start-page: 84
  year: 2014
  ident: B25
  article-title: Trace amines inhibit insect odorant receptor function through antagonism of the co-receptor subunit
  publication-title: F1000Res
  doi: 10.12688/f1000research.3825.1
– volume: 40
  start-page: 541
  year: 2014
  ident: B81
  article-title: Odorant binding characteristics of three recombinant odorant binding proteins in Microplitis mediator (Hymenoptera: Braconidae)
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-014-0458-5
– volume: 330
  start-page: 86
  year: 2010
  ident: B2
  article-title: Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics
  publication-title: Science
  doi: 10.1126/science.1191864
– volume: 31
  start-page: 547
  year: 2006
  ident: B44
  article-title: A Pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro
  publication-title: Chem. Senses
  doi: 10.1093/chemse/bjj059
– volume: 27
  start-page: 55
  year: 2017
  ident: B181
  article-title: Molecular basis of alarm pheromone detection in aphids
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2016.10.013
– volume: 27
  start-page: 305
  year: 2018
  ident: B83
  article-title: Optimization of reverse chemical ecology method: false positive binding of Aenasius bambawalei odorant binding protein 1 caused by uncertain binding mechanism
  publication-title: Insect Mol. Biol.
  doi: 10.1111/imb.12372
– volume: 39
  start-page: 555
  year: 2014
  ident: B115
  article-title: Molecular determinants of odorant receptor function in insects
  publication-title: J. Biosci.
  doi: 10.1007/s12038-014-9447-7
– volume: 15
  start-page: 119
  year: 2005
  ident: B63
  article-title: Functional conservation of an insect odorant receptor gene across 250 million years of evolution
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2005.02.007
– volume: 74
  start-page: 13
  year: 2017
  ident: B185
  article-title: Deep sequencing of antennal transcriptome from Callosobruchus chinensis to characterize odorant binding protein and chemosensory protein genes
  publication-title: J. Stored Prod. Res.
  doi: 10.1016/j.jspr.2017.08.006
– volume: 18
  start-page: 30
  year: 2016
  ident: B103
  article-title: Transcriptome based identification and tissue expression profiles of chemosensory genes in Blattella germanica (Blattaria: Blattidae)
  publication-title: Comp. Biochem. Physiol. D Genomics Proteomics
  doi: 10.1016/j.cbd.2016.03.002
– volume: 7
  start-page: 1
  year: 2017
  ident: B42
  article-title: Antennal transcriptomes of three tortricid moths reveal putative conserved chemosensory receptors for social and habitat olfactory cues
  publication-title: Sci. Rep.
  doi: 10.1038/srep41829
– volume: 298
  start-page: 176
  year: 2002
  ident: B48
  article-title: G protein-coupled receptors in Anopheles gambiae
  publication-title: Science
  doi: 10.1126/science.1076196
– volume: 8
  start-page: 1
  year: 2018
  ident: B176
  article-title: Molecular and functional characterization of pheromone binding protein 1 from the oriental fruit moth, Grapholita molesta (Busck)
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-20719-0
– volume: 292
  start-page: 18916
  year: 2017
  ident: B114
  article-title: Mutant cycle analysis identifies a ligand interaction site in an odorant receptor of the malaria vector Anopheles gambiae
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.810374
– volume: 7
  start-page: 1
  year: 2007
  ident: B106
  article-title: Prediction of 3-dimensional structure of salivary odorant-binding protein-2 of the mosquito Culex quinquefasciatus, the vector of human lymphatic filariasis
  publication-title: In Silico Biol.
  doi: 10.3233/ISB-00271
– volume: 6
  start-page: 29067
  year: 2016
  ident: B59
  article-title: Antennal transcriptome and differential expression of olfactory genes in the yellow peach moth, Conogethes punctiferalis (Lepidoptera: Crambidae)
  publication-title: Sci. Rep.
  doi: 10.1038/srep29067
– volume: 9
  start-page: e114238
  year: 2014
  ident: B22
  article-title: De novo sequencing, assembly and characterization of antennal transcriptome of Anomala corpulenta Motschulsky (Coleoptera: Rutelidae)
  doi: 10.1371/journal.pone.0114238
– volume: 53
  start-page: 127
  year: 2013
  ident: B28
  article-title: G protein–coupled receptor deorphanizations
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev-pharmtox-010611-134548
– volume: 7
  start-page: 1
  year: 2017
  ident: B10
  article-title: Antennal transcriptome and expression analyses of olfactory genes in the sweetpotato weevil Cylas formicarius
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11456-x
– volume: 24
  start-page: 139
  year: 2017
  ident: B31
  article-title: Odorant-binding and chemosensory proteins identified in the antennal transcriptome of Adelphocoris suturalis Jakovlev
  publication-title: Comp. Biochem. Physiol. D Genomics Proteomics
  doi: 10.1016/j.cbd.2016.03.001
– volume: 17
  start-page: 651
  ident: B52
  article-title: Antennal transcriptome analysis and expression profiles of odorant binding proteins in Eogystia hippophaecolus (Lepidoptera: Cossidae)
  publication-title: BMC Genomics
  doi: 10.1186/s12864-016-3008-4
– volume: 13
  start-page: 44
  year: 2015
  ident: B91
  article-title: Identification of candidate chemosensory genes in the antennal transcriptome of Tenebrio molitor (Coleoptera: Tenebrionidae)
  publication-title: Comp. Biochem. Physiol. D Genomics Proteomics
  doi: 10.1016/j.cbd.2015.01.004
– volume: 6
  start-page: 6077
  year: 2015
  ident: B50
  article-title: Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7077
– volume: 27
  start-page: 1610.e3
  year: 2017
  ident: B19
  article-title: A pheromone antagonist regulates optimal mating time in the moth Helicoverpa armigera
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.04.035
SSID ssj0000402001
Score 2.553176
SecondaryResourceType review_article
Snippet Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1163
SubjectTerms agonists
antagonists
insect olfaction
modulators
odorant binding
pest management
Physiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQpVBSHjISQuohbOw4dsJtu6IqSEAPrdRb5MdYXan1Vuz2wL9nxskuuwjBhaudyCOP7fnGM_6GsbeNNWhka12iMWtLBUGW1nsigmykB99o19JD4S9f9dml-nzVXG2V-qKcsIEeeJi4CQgdoo2Vt8YqNG_WyYgug_O4VYUSkU5ftHlbzlQ-g8ktqsQQl0QvrJtEuimgVK72PcUe6h07lOn6_4Qxf0-V3LI9p4_ZoxE08ukg7D57AOkJO5gmdJhvf_B3PKdx5vvxAwbfAmo1rTgCQrijWjrcpsDH1vJknp-x8HPiZ5gn7FzyT2mJxx4_R5H4bEhd5xc5Q3z5gU_57BdBOF9zmDxll6cfL2Zn5VhLofRKy1XZeSFq6IStauMlBIQ9VoKMFvFJS6BPaHDOVca0wrqoWtW0YBpvg1EhIGx5xvbSIsFzxo2EJjhD1jUq26oOjIYqqtoL6TotCzZZz2zvR6Jxqndx06PDQbrosy560kWfdVGw480fdwPJxl--PSFlbb4jeuzcgIumHxdN_69FU7A3a1X3uJ0oRmITLO5xIEGYF0FOV7DDQfWbofAs7CiOWTCzsyh2ZNntSfPrTNmtBQJFZY7-h_Av2EOaDrrYluol21t9v4dXiIxW7nXeBD8BhpgO3g
  priority: 102
  providerName: Directory of Open Access Journals
Title Odorant Receptors and Odorant-Binding Proteins as Insect Pest Control Targets: A Comparative Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/30197600
https://www.proquest.com/docview/2101920619
https://pubmed.ncbi.nlm.nih.gov/PMC6117247
https://doaj.org/article/e16dfaf0ca7a4750ab2f249bc153141f
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxsxEBZpcumlpE0f2zZBgVLoYRNLq5V2C6E4JiEppM0hBt8WPVtDKie2A82_74x27dTFlFwl7eoxkuYbafQNIR9KrUDJFjIHZVblwjuea2uRCLLk1ttSmgofCl98k2dD8XVUjh6eR3cDOFtr2mE8qeH0-uD37f0XWPBHaHGCvj0MeAiAXlrVAV4rFE_IFuglhfEMLjqwn_ZlNJVSPGQmJXpf8FF7b7n2Jyt6KtH5r8Og_7pS_qWbTrfJsw5U0n47C56TDR9fkJ1-BIP61z39SJObZzo_3yH-uwOpxzkFwOhvMNYO1dHRLjU_HqdnLvQS-RvGETJn9DzOYFukl9AkOmhd2-lV8iCffaZ9OnggEKcLjpOXZHh6cjU4y7tYC7kVks_z2jJW-JrpXqEs9w5gkeaeBw34pUJQyKQ3xvSUqpg2QVSirLwqrXZKOAew5hXZjJPo3xCquC-dUah9g9CVqL2SvhdEYRk3teQZOVyMbGM7InKMh3HdgEGCsmiSLBqURZNkkZFPyy9uWhKO_5Q9RmEtyyF9dkqYTH803WpsPJMu6NCzWmkBmEkbHsAONRY7KljIyP5C1A0sN7xD0dFP7qAihpgYQFCdkdet6JdVwV5Z4z1nRtTKpFhpy2pOHP9MlN6SwXwV6u0j6n1HnmJv8Vybi_dkcz6987sAjOZmLx0o7KVZ_wcr9g5V
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Odorant+Receptors+and+Odorant-Binding+Proteins+as+Insect+Pest+Control+Targets%3A+A+Comparative+Analysis&rft.jtitle=Frontiers+in+physiology&rft.au=Venthur%2C+Herbert&rft.au=Zhou%2C+Jing-Jiang&rft.date=2018-08-24&rft.issn=1664-042X&rft.eissn=1664-042X&rft.volume=9&rft.spage=1163&rft_id=info:doi/10.3389%2Ffphys.2018.01163&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon