How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully

The efficient activation of dinitrogen for the production of ammonia plays a crucial role in our modern society, considering the significant impact of ammonia on food, chemicals, and energy. As an attractive alternative to the century-old Haber-Bosch process which is responsible for 1-2% of global e...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 48; no. 12; pp. 3166 - 318
Main Authors Tang, Cheng, Qiao, Shi-Zhang
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 17.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The efficient activation of dinitrogen for the production of ammonia plays a crucial role in our modern society, considering the significant impact of ammonia on food, chemicals, and energy. As an attractive alternative to the century-old Haber-Bosch process which is responsible for 1-2% of global energy consumption, utilization of half the hydrogen produced globally, and ∼1% of global energy-related CO 2 emissions, the ambient electrocatalytic nitrogen reduction reaction has attracted tremendous interest during the past few years. Some achievements have revealed the possibility of this process, but have also identified great challenges. The activity and selectivity of the nitrogen reduction reaction are fundamentally limited by competing hydrogen evolution and nitrogen scaling relations, while low production rates and ubiquitous contaminants plague experimental practices. Aiming toward higher accuracy and reproducibility of claimed results, and more meaningful, impactful, and insightful research, this tutorial review summarizes the present status and challenges in the study of ambient electrocatalytic nitrogen reduction, followed by a thorough discussion of various experimental parameters. We then recommend a series of protocols and best practices for experiments, and also highlight some potential directions for future research in this exciting and important field. A guidebook with best practices and potential opportunities to explore ambient electrocatalytic nitrogen reduction reliably and insightfully.
AbstractList The efficient activation of dinitrogen for the production of ammonia plays a crucial role in our modern society, considering the significant impact of ammonia on food, chemicals, and energy. As an attractive alternative to the century-old Haber-Bosch process which is responsible for 1-2% of global energy consumption, utilization of half the hydrogen produced globally, and ∼1% of global energy-related CO2 emissions, the ambient electrocatalytic nitrogen reduction reaction has attracted tremendous interest during the past few years. Some achievements have revealed the possibility of this process, but have also identified great challenges. The activity and selectivity of the nitrogen reduction reaction are fundamentally limited by competing hydrogen evolution and nitrogen scaling relations, while low production rates and ubiquitous contaminants plague experimental practices. Aiming toward higher accuracy and reproducibility of claimed results, and more meaningful, impactful, and insightful research, this tutorial review summarizes the present status and challenges in the study of ambient electrocatalytic nitrogen reduction, followed by a thorough discussion of various experimental parameters. We then recommend a series of protocols and best practices for experiments, and also highlight some potential directions for future research in this exciting and important field.
The efficient activation of dinitrogen for the production of ammonia plays a crucial role in our modern society, considering the significant impact of ammonia on food, chemicals, and energy. As an attractive alternative to the century-old Haber–Bosch process which is responsible for 1–2% of global energy consumption, utilization of half the hydrogen produced globally, and ∼1% of global energy-related CO 2 emissions, the ambient electrocatalytic nitrogen reduction reaction has attracted tremendous interest during the past few years. Some achievements have revealed the possibility of this process, but have also identified great challenges. The activity and selectivity of the nitrogen reduction reaction are fundamentally limited by competing hydrogen evolution and nitrogen scaling relations, while low production rates and ubiquitous contaminants plague experimental practices. Aiming toward higher accuracy and reproducibility of claimed results, and more meaningful, impactful, and insightful research, this tutorial review summarizes the present status and challenges in the study of ambient electrocatalytic nitrogen reduction, followed by a thorough discussion of various experimental parameters. We then recommend a series of protocols and best practices for experiments, and also highlight some potential directions for future research in this exciting and important field.
The efficient activation of dinitrogen for the production of ammonia plays a crucial role in our modern society, considering the significant impact of ammonia on food, chemicals, and energy. As an attractive alternative to the century-old Haber-Bosch process which is responsible for 1-2% of global energy consumption, utilization of half the hydrogen produced globally, and ∼1% of global energy-related CO 2 emissions, the ambient electrocatalytic nitrogen reduction reaction has attracted tremendous interest during the past few years. Some achievements have revealed the possibility of this process, but have also identified great challenges. The activity and selectivity of the nitrogen reduction reaction are fundamentally limited by competing hydrogen evolution and nitrogen scaling relations, while low production rates and ubiquitous contaminants plague experimental practices. Aiming toward higher accuracy and reproducibility of claimed results, and more meaningful, impactful, and insightful research, this tutorial review summarizes the present status and challenges in the study of ambient electrocatalytic nitrogen reduction, followed by a thorough discussion of various experimental parameters. We then recommend a series of protocols and best practices for experiments, and also highlight some potential directions for future research in this exciting and important field. A guidebook with best practices and potential opportunities to explore ambient electrocatalytic nitrogen reduction reliably and insightfully.
The efficient activation of dinitrogen for the production of ammonia plays a crucial role in our modern society, considering the significant impact of ammonia on food, chemicals, and energy. As an attractive alternative to the century-old Haber-Bosch process which is responsible for 1-2% of global energy consumption, utilization of half the hydrogen produced globally, and ∼1% of global energy-related CO2 emissions, the ambient electrocatalytic nitrogen reduction reaction has attracted tremendous interest during the past few years. Some achievements have revealed the possibility of this process, but have also identified great challenges. The activity and selectivity of the nitrogen reduction reaction are fundamentally limited by competing hydrogen evolution and nitrogen scaling relations, while low production rates and ubiquitous contaminants plague experimental practices. Aiming toward higher accuracy and reproducibility of claimed results, and more meaningful, impactful, and insightful research, this tutorial review summarizes the present status and challenges in the study of ambient electrocatalytic nitrogen reduction, followed by a thorough discussion of various experimental parameters. We then recommend a series of protocols and best practices for experiments, and also highlight some potential directions for future research in this exciting and important field.The efficient activation of dinitrogen for the production of ammonia plays a crucial role in our modern society, considering the significant impact of ammonia on food, chemicals, and energy. As an attractive alternative to the century-old Haber-Bosch process which is responsible for 1-2% of global energy consumption, utilization of half the hydrogen produced globally, and ∼1% of global energy-related CO2 emissions, the ambient electrocatalytic nitrogen reduction reaction has attracted tremendous interest during the past few years. Some achievements have revealed the possibility of this process, but have also identified great challenges. The activity and selectivity of the nitrogen reduction reaction are fundamentally limited by competing hydrogen evolution and nitrogen scaling relations, while low production rates and ubiquitous contaminants plague experimental practices. Aiming toward higher accuracy and reproducibility of claimed results, and more meaningful, impactful, and insightful research, this tutorial review summarizes the present status and challenges in the study of ambient electrocatalytic nitrogen reduction, followed by a thorough discussion of various experimental parameters. We then recommend a series of protocols and best practices for experiments, and also highlight some potential directions for future research in this exciting and important field.
The efficient activation of dinitrogen for the production of ammonia plays a crucial role in our modern society, considering the significant impact of ammonia on food, chemicals, and energy. As an attractive alternative to the century-old Haber–Bosch process which is responsible for 1–2% of global energy consumption, utilization of half the hydrogen produced globally, and ∼1% of global energy-related CO₂ emissions, the ambient electrocatalytic nitrogen reduction reaction has attracted tremendous interest during the past few years. Some achievements have revealed the possibility of this process, but have also identified great challenges. The activity and selectivity of the nitrogen reduction reaction are fundamentally limited by competing hydrogen evolution and nitrogen scaling relations, while low production rates and ubiquitous contaminants plague experimental practices. Aiming toward higher accuracy and reproducibility of claimed results, and more meaningful, impactful, and insightful research, this tutorial review summarizes the present status and challenges in the study of ambient electrocatalytic nitrogen reduction, followed by a thorough discussion of various experimental parameters. We then recommend a series of protocols and best practices for experiments, and also highlight some potential directions for future research in this exciting and important field.
Author Qiao, Shi-Zhang
Tang, Cheng
AuthorAffiliation School of Chemical Engineering
The University of Adelaide
AuthorAffiliation_xml – name: The University of Adelaide
– name: School of Chemical Engineering
Author_xml – sequence: 1
  givenname: Cheng
  surname: Tang
  fullname: Tang, Cheng
– sequence: 2
  givenname: Shi-Zhang
  surname: Qiao
  fullname: Qiao, Shi-Zhang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31107485$$D View this record in MEDLINE/PubMed
BookMark eNqN0s1LHDEUAPBQLHW1vfSuTPEihWlfPjaTOcr6CQs91J6HTJLRSDZZkwx2_3uz7lZBRHrKC-_3HuS97KEdH7xB6CuGHxho-1O1KgEQAfoDmmDGoWYNYztoAhR4DYDJLtpL6a5EuOHkE9qlGEPDxHSCri_DQ5VDZf4uXYimkoveGp8r44zKMSiZpVtlqypvy_XG-CoaPapswzpyVvZuVUmvK-uTvbnNw-jc6jP6OEiXzJftuY_-nJ9dzy7r-a-Lq9nJvFaMk1y3jWg5SKo5JZow0ktBWdMoxbEY-sEIAoxQIxTt5dBTwlmv5FRqzFrNByroPjre9F3GcD-alLuFTco4J70JY-oIEVxMOWb0PyglIIBOm0KPXtG7MEZfHlIUw5QxDKSow60a-4XR3TLahYyr7t9oC_i-ASqGlKIZngmGbr23btbOfj_t7bRgeIWVzXI95RyldW-XHGxKYlLPrV--Qsl_ey_fLfVAHwHWUa4y
CitedBy_id crossref_primary_10_1002_cplu_202100356
crossref_primary_10_1016_j_rser_2023_113197
crossref_primary_10_1016_j_cej_2022_141060
crossref_primary_10_1002_anie_202115198
crossref_primary_10_1039_D2CS00041E
crossref_primary_10_1016_j_electacta_2023_143360
crossref_primary_10_1021_acs_jpcc_1c07278
crossref_primary_10_1002_advs_202104183
crossref_primary_10_1039_D4TA04884A
crossref_primary_10_1016_j_apcatb_2024_124728
crossref_primary_10_1016_j_coelec_2024_101487
crossref_primary_10_1002_aenm_202302274
crossref_primary_10_1016_j_nanoen_2020_105283
crossref_primary_10_1016_j_apsoil_2025_105996
crossref_primary_10_1002_smll_202401327
crossref_primary_10_1039_D1EE03097C
crossref_primary_10_1016_j_jiec_2025_02_029
crossref_primary_10_1007_s12274_021_3725_0
crossref_primary_10_1039_D0TA07720H
crossref_primary_10_1007_s12274_023_5943_0
crossref_primary_10_1021_acs_inorgchem_1c03938
crossref_primary_10_1002_advs_201902390
crossref_primary_10_1039_D1MA00953B
crossref_primary_10_1002_aenm_202003294
crossref_primary_10_1021_acs_energyfuels_3c02754
crossref_primary_10_1016_j_est_2022_105684
crossref_primary_10_1016_j_checat_2024_101239
crossref_primary_10_1002_ange_202218122
crossref_primary_10_1039_D1TA02684D
crossref_primary_10_1016_j_ijhydene_2021_07_184
crossref_primary_10_1007_s12274_023_6140_x
crossref_primary_10_1039_D2CP01711C
crossref_primary_10_1016_j_electacta_2021_138222
crossref_primary_10_1007_s40843_020_1522_y
crossref_primary_10_1016_j_electacta_2021_139551
crossref_primary_10_1002_adfm_202106713
crossref_primary_10_1016_j_ccr_2025_216546
crossref_primary_10_1002_smll_202308311
crossref_primary_10_1002_aenm_202202403
crossref_primary_10_1016_j_ccr_2025_216543
crossref_primary_10_1021_jacs_4c06784
crossref_primary_10_1039_C9TA11378A
crossref_primary_10_1063_5_0194388
crossref_primary_10_1002_adma_202007509
crossref_primary_10_1002_smll_202100372
crossref_primary_10_1021_acscatal_1c05820
crossref_primary_10_1002_smtd_202201524
crossref_primary_10_1007_s43979_023_00055_7
crossref_primary_10_1002_adfm_202000768
crossref_primary_10_1002_cssc_202201715
crossref_primary_10_1007_s10562_023_04539_0
crossref_primary_10_1039_D4TA02904F
crossref_primary_10_1002_adma_202007733
crossref_primary_10_1039_D0TA04580B
crossref_primary_10_1016_S1872_2067_23_64504_8
crossref_primary_10_1039_D2NR00198E
crossref_primary_10_1016_j_cej_2025_159874
crossref_primary_10_1021_jacs_3c06904
crossref_primary_10_1002_adma_202313086
crossref_primary_10_1021_acsenergylett_0c01317
crossref_primary_10_1016_j_fuel_2022_126213
crossref_primary_10_1021_jacs_0c06118
crossref_primary_10_1016_j_apcatb_2022_122186
crossref_primary_10_3390_membranes12100969
crossref_primary_10_1039_D1TA08257D
crossref_primary_10_1021_acs_jpcc_3c08230
crossref_primary_10_1002_ange_202108769
crossref_primary_10_1016_j_cej_2020_126385
crossref_primary_10_1007_s40820_023_01217_z
crossref_primary_10_1039_D1TA03666A
crossref_primary_10_1073_pnas_2015108117
crossref_primary_10_1007_s12209_020_00235_x
crossref_primary_10_1021_acsami_2c02329
crossref_primary_10_1039_D4QI02346C
crossref_primary_10_1002_ange_202104394
crossref_primary_10_1039_D0EE01102A
crossref_primary_10_1039_D3GC02084C
crossref_primary_10_1002_ange_201915001
crossref_primary_10_1016_j_compchemeng_2023_108528
crossref_primary_10_1039_C9TA07096F
crossref_primary_10_1002_smll_202206776
crossref_primary_10_1360_nso_20220059
crossref_primary_10_1016_j_ijhydene_2023_03_241
crossref_primary_10_1002_ange_202217473
crossref_primary_10_1016_j_coche_2019_09_007
crossref_primary_10_2139_ssrn_4007241
crossref_primary_10_1021_acs_nanolett_3c04416
crossref_primary_10_1039_D1SE01932E
crossref_primary_10_1021_acsnano_9b08835
crossref_primary_10_1063_5_0240996
crossref_primary_10_1002_aenm_202001289
crossref_primary_10_1039_D0CC01759K
crossref_primary_10_1002_anie_202415208
crossref_primary_10_1039_D1EE02512K
crossref_primary_10_1021_acsenergylett_2c02730
crossref_primary_10_1016_j_checat_2022_01_022
crossref_primary_10_1007_s40843_023_2847_1
crossref_primary_10_1038_s41467_021_23115_x
crossref_primary_10_1016_S1872_2067_24_60032_X
crossref_primary_10_1039_C9TA13599E
crossref_primary_10_1039_D0TA09590G
crossref_primary_10_1021_acs_langmuir_1c02358
crossref_primary_10_1002_anie_202417631
crossref_primary_10_1016_j_nanoen_2020_105211
crossref_primary_10_1002_admi_202202147
crossref_primary_10_1021_acsaem_2c01346
crossref_primary_10_1021_acsami_9b18510
crossref_primary_10_3390_en16010027
crossref_primary_10_1038_s41427_022_00439_8
crossref_primary_10_1021_acsami_4c00253
crossref_primary_10_1039_D3QI01021J
crossref_primary_10_2139_ssrn_4048847
crossref_primary_10_1016_j_jechem_2021_06_012
crossref_primary_10_1016_j_ccr_2020_213483
crossref_primary_10_1002_adfm_202100300
crossref_primary_10_1039_C9TA13485A
crossref_primary_10_1039_D1QM01620B
crossref_primary_10_1016_j_envres_2025_121123
crossref_primary_10_1016_j_apcatb_2022_121291
crossref_primary_10_1002_cptc_202100084
crossref_primary_10_1021_acssuschemeng_2c06506
crossref_primary_10_1002_anie_202411068
crossref_primary_10_1016_j_gee_2020_04_012
crossref_primary_10_1039_D4SE00471J
crossref_primary_10_1002_cphc_202200149
crossref_primary_10_1021_acsaem_3c00709
crossref_primary_10_1021_acssuschemeng_1c00575
crossref_primary_10_1016_j_jelechem_2022_116171
crossref_primary_10_1039_D0TA00468E
crossref_primary_10_1021_acs_jpcc_4c02148
crossref_primary_10_1021_acsami_2c14134
crossref_primary_10_1002_ange_202215938
crossref_primary_10_1021_acscatal_9b03903
crossref_primary_10_1016_j_nanoen_2021_106026
crossref_primary_10_1002_anie_201915992
crossref_primary_10_1016_j_jcis_2024_11_026
crossref_primary_10_3390_ma15196609
crossref_primary_10_1002_cctc_202401001
crossref_primary_10_1002_anie_202104918
crossref_primary_10_1038_s41467_020_18080_w
crossref_primary_10_1016_j_apcatb_2019_118525
crossref_primary_10_1002_ange_202115409
crossref_primary_10_1016_j_mtener_2022_101240
crossref_primary_10_1021_jacs_4c00827
crossref_primary_10_1039_D1NR06411H
crossref_primary_10_1007_s12274_022_5117_5
crossref_primary_10_1016_j_apcatb_2022_121277
crossref_primary_10_1021_acsami_9b14187
crossref_primary_10_1002_ange_202202604
crossref_primary_10_1039_C9TA13026H
crossref_primary_10_1002_sus2_193
crossref_primary_10_1039_C9TA13135C
crossref_primary_10_1002_admi_202101842
crossref_primary_10_1088_2515_7639_abd596
crossref_primary_10_1016_j_mattod_2021_01_029
crossref_primary_10_1002_adfm_202204755
crossref_primary_10_1007_s10562_023_04574_x
crossref_primary_10_1016_j_apcatb_2021_121001
crossref_primary_10_1016_j_jclepro_2019_119525
crossref_primary_10_1039_C9NR08788E
crossref_primary_10_1039_D1CC06690K
crossref_primary_10_1021_acs_nanolett_4c02030
crossref_primary_10_1039_D3CP02647G
crossref_primary_10_1039_D2CS00441K
crossref_primary_10_2139_ssrn_4093859
crossref_primary_10_1039_D2CP01446G
crossref_primary_10_1039_D1CY01292D
crossref_primary_10_1002_anie_202300989
crossref_primary_10_1016_j_jechem_2021_03_001
crossref_primary_10_1038_s41565_022_01121_4
crossref_primary_10_1016_j_mtener_2022_101220
crossref_primary_10_1021_acsnano_2c07260
crossref_primary_10_1039_D1TA00766A
crossref_primary_10_1039_D2CC02261C
crossref_primary_10_1021_acsami_1c01160
crossref_primary_10_1016_j_jechem_2023_07_006
crossref_primary_10_1002_anie_202007998
crossref_primary_10_1002_celc_202200625
crossref_primary_10_1016_j_ccr_2022_214761
crossref_primary_10_3389_fchem_2022_978078
crossref_primary_10_1021_acsnano_2c09691
crossref_primary_10_1002_cctc_202201114
crossref_primary_10_1007_s12274_020_3276_9
crossref_primary_10_1016_j_apsusc_2024_160908
crossref_primary_10_1002_adfm_202201262
crossref_primary_10_1016_j_cej_2022_134504
crossref_primary_10_1016_j_seppur_2023_125129
crossref_primary_10_1002_aenm_202003410
crossref_primary_10_1016_j_apcatb_2021_121023
crossref_primary_10_1016_j_jechem_2021_10_012
crossref_primary_10_1088_2515_7655_abee33
crossref_primary_10_1039_D3DT01790G
crossref_primary_10_1021_jacs_3c11676
crossref_primary_10_1038_s41929_024_01115_6
crossref_primary_10_1016_j_jcis_2021_07_111
crossref_primary_10_1021_acs_jpclett_1c00855
crossref_primary_10_1039_D3CC02693K
crossref_primary_10_1002_ange_202107858
crossref_primary_10_1002_anie_201913122
crossref_primary_10_1016_j_apsusc_2021_149682
crossref_primary_10_1016_j_ijhydene_2021_01_203
crossref_primary_10_3390_nano15010065
crossref_primary_10_1002_smll_202312210
crossref_primary_10_1039_D2TA00308B
crossref_primary_10_1016_j_cej_2023_143776
crossref_primary_10_1016_j_cej_2023_142447
crossref_primary_10_1039_D2TA00744D
crossref_primary_10_1016_j_ccr_2022_214981
crossref_primary_10_1021_acsaem_2c01745
crossref_primary_10_1021_acs_jpclett_1c01714
crossref_primary_10_1016_j_electacta_2020_137421
crossref_primary_10_1016_j_mattod_2020_09_006
crossref_primary_10_1016_j_jcat_2025_115941
crossref_primary_10_1016_S1872_2067_22_64148_2
crossref_primary_10_1021_acsami_3c16521
crossref_primary_10_1002_anie_202100526
crossref_primary_10_1007_s10800_022_01712_y
crossref_primary_10_1016_j_apcatb_2022_121465
crossref_primary_10_1021_acsami_0c21429
crossref_primary_10_1002_sus2_226
crossref_primary_10_1002_asia_202000969
crossref_primary_10_1021_acs_inorgchem_3c02334
crossref_primary_10_1002_anie_202418095
crossref_primary_10_1021_acs_jpcc_3c01242
crossref_primary_10_1002_anie_202217411
crossref_primary_10_1016_j_nanoen_2021_106099
crossref_primary_10_1021_acs_langmuir_3c04025
crossref_primary_10_1039_D0SE00915F
crossref_primary_10_1016_j_apsusc_2022_153678
crossref_primary_10_1016_j_colsurfa_2022_130549
crossref_primary_10_1002_ange_202104918
crossref_primary_10_1039_D3CP05342C
crossref_primary_10_1039_D1EE03211A
crossref_primary_10_1002_adma_202207305
crossref_primary_10_1039_C9CY02500F
crossref_primary_10_1039_D3QM01076G
crossref_primary_10_1002_ange_202418035
crossref_primary_10_1002_smtd_202100460
crossref_primary_10_1016_j_ijhydene_2023_07_267
crossref_primary_10_1021_acsnano_4c09247
crossref_primary_10_1016_j_mcat_2022_112637
crossref_primary_10_1002_cey2_491
crossref_primary_10_1016_j_nanoen_2025_110693
crossref_primary_10_1002_anie_202002923
crossref_primary_10_1021_jacs_4c06098
crossref_primary_10_1016_j_ijhydene_2023_05_206
crossref_primary_10_1007_s10008_022_05228_5
crossref_primary_10_1039_D3SC02862C
crossref_primary_10_1002_adma_202104562
crossref_primary_10_1088_1361_6528_ad64d9
crossref_primary_10_1016_j_scib_2020_02_015
crossref_primary_10_1007_s11426_022_1419_y
crossref_primary_10_1002_cey2_263
crossref_primary_10_1002_sstr_202000075
crossref_primary_10_1002_smll_202303424
crossref_primary_10_1039_D1QM00269D
crossref_primary_10_1021_jacs_2c03661
crossref_primary_10_1002_aenm_202002967
crossref_primary_10_1007_s40820_021_00638_y
crossref_primary_10_1016_j_apsusc_2024_160975
crossref_primary_10_1016_j_mtener_2022_101181
crossref_primary_10_1039_D4TA02863E
crossref_primary_10_1039_D3GC02996D
crossref_primary_10_1016_j_ijhydene_2020_08_173
crossref_primary_10_1039_D4QI01638F
crossref_primary_10_1002_aenm_202302515
crossref_primary_10_1002_anie_202217473
crossref_primary_10_1039_D3RA00679D
crossref_primary_10_1016_j_cclet_2023_108550
crossref_primary_10_1016_j_cattod_2022_09_011
crossref_primary_10_1002_asia_201900793
crossref_primary_10_1039_D4TA08549C
crossref_primary_10_1016_j_cej_2022_140106
crossref_primary_10_1016_j_arabjc_2024_105950
crossref_primary_10_1039_D4NA00281D
crossref_primary_10_1002_adfm_202200333
crossref_primary_10_1016_j_jechem_2023_12_024
crossref_primary_10_1002_ange_202205923
crossref_primary_10_1016_j_checat_2021_03_003
crossref_primary_10_1016_j_jcis_2023_10_125
crossref_primary_10_1016_j_apcatb_2020_119622
crossref_primary_10_1039_C9TA06573C
crossref_primary_10_1016_j_cjche_2023_03_009
crossref_primary_10_1002_ange_202305447
crossref_primary_10_1039_D4TA04389H
crossref_primary_10_1002_anie_202418035
crossref_primary_10_1016_j_apcatb_2022_121750
crossref_primary_10_1016_j_matre_2021_100076
crossref_primary_10_1021_acsenergylett_2c02175
crossref_primary_10_1002_smll_202407594
crossref_primary_10_1016_j_ijhydene_2021_11_157
crossref_primary_10_1016_j_cej_2021_132440
crossref_primary_10_1021_acssuschemeng_9b06827
crossref_primary_10_1039_D3CS00669G
crossref_primary_10_1016_j_apenergy_2023_121960
crossref_primary_10_1038_s43586_021_00053_y
crossref_primary_10_1002_smll_202303221
crossref_primary_10_1016_j_cej_2024_153108
crossref_primary_10_1002_anie_202305447
crossref_primary_10_1016_j_seppur_2023_125304
crossref_primary_10_1002_cssc_202102352
crossref_primary_10_1002_smll_202004398
crossref_primary_10_1016_j_apcatb_2022_121981
crossref_primary_10_1021_jacs_3c03432
crossref_primary_10_1007_s10853_019_04304_y
crossref_primary_10_1002_elsa_70001
crossref_primary_10_1002_adfm_202400849
crossref_primary_10_1016_j_electacta_2024_144578
crossref_primary_10_1039_D3QI00554B
crossref_primary_10_1002_ange_202015496
crossref_primary_10_1021_acsenergylett_9b01573
crossref_primary_10_1016_j_apsusc_2024_160140
crossref_primary_10_1038_s41929_020_00527_4
crossref_primary_10_1002_ange_202203170
crossref_primary_10_1007_s40843_024_3198_6
crossref_primary_10_1016_j_nanoen_2023_108434
crossref_primary_10_1088_1361_6528_ac5929
crossref_primary_10_1016_j_apcatb_2020_119419
crossref_primary_10_1021_acsanm_4c02221
crossref_primary_10_1039_D0NJ04365F
crossref_primary_10_1016_j_cclet_2021_06_077
crossref_primary_10_1039_D4GC02069C
crossref_primary_10_1002_anie_202218122
crossref_primary_10_1021_acs_chemrev_9b00638
crossref_primary_10_1039_D0TA03793A
crossref_primary_10_1021_jacs_3c14586
crossref_primary_10_1039_D3CC05928F
crossref_primary_10_1002_aesr_202100033
crossref_primary_10_1021_acs_accounts_1c00645
crossref_primary_10_1021_acsaem_3c02461
crossref_primary_10_1021_acsami_0c11487
crossref_primary_10_1021_acsami_4c18683
crossref_primary_10_1039_D2TA06187B
crossref_primary_10_1016_j_apsusc_2023_159082
crossref_primary_10_1021_acs_jpcc_3c01415
crossref_primary_10_1021_acscatal_0c01081
crossref_primary_10_1002_adma_202005721
crossref_primary_10_1126_sciadv_adm9325
crossref_primary_10_1016_j_xcrp_2023_101595
crossref_primary_10_1039_D1SC01467F
crossref_primary_10_2139_ssrn_4059073
crossref_primary_10_1016_j_jechem_2020_12_012
crossref_primary_10_1016_j_jmst_2020_10_056
crossref_primary_10_1039_D0TA01154A
crossref_primary_10_1016_j_jece_2024_112627
crossref_primary_10_1021_acsenergylett_9b02679
crossref_primary_10_1021_acsnano_2c06441
crossref_primary_10_1021_acsami_2c12772
crossref_primary_10_1002_ange_202418095
crossref_primary_10_1039_C9TA10346E
crossref_primary_10_1039_D0TA06576E
crossref_primary_10_1016_j_tgchem_2024_100040
crossref_primary_10_1039_D3QI01536J
crossref_primary_10_1016_j_jechem_2021_09_020
crossref_primary_10_1039_D1CY01442K
crossref_primary_10_1021_acssuschemeng_3c07455
crossref_primary_10_1002_aesr_202400083
crossref_primary_10_1021_acscatal_1c03407
crossref_primary_10_1021_acscatal_9b03015
crossref_primary_10_1002_cctc_202301253
crossref_primary_10_1002_ange_201915992
crossref_primary_10_1002_ange_202100526
crossref_primary_10_1039_D0CP06178F
crossref_primary_10_1016_j_apsusc_2024_161439
crossref_primary_10_1002_adma_202002435
crossref_primary_10_1007_s12045_023_1548_x
crossref_primary_10_1016_j_fuel_2024_133159
crossref_primary_10_1002_anie_201910658
crossref_primary_10_1021_acsnano_1c07973
crossref_primary_10_1039_D3CP04302A
crossref_primary_10_1016_j_jhazmat_2022_128909
crossref_primary_10_1016_j_ijhydene_2022_06_305
crossref_primary_10_1039_D2GC03174D
crossref_primary_10_1039_D0TA11566E
crossref_primary_10_1016_j_seppur_2025_132609
crossref_primary_10_1021_acsami_4c00719
crossref_primary_10_1007_s12274_021_4015_6
crossref_primary_10_1016_j_jechem_2021_09_004
crossref_primary_10_1039_D4CY00171K
crossref_primary_10_1021_acscatal_4c01203
crossref_primary_10_3390_catal13030639
crossref_primary_10_1016_j_jelechem_2023_117174
crossref_primary_10_1021_acsami_1c23643
crossref_primary_10_1002_cssc_202102180
crossref_primary_10_1016_j_pecs_2020_100860
crossref_primary_10_1002_adfm_202315548
crossref_primary_10_1016_j_apcatb_2023_123133
crossref_primary_10_1039_D2CC00331G
crossref_primary_10_1016_j_apsusc_2022_155872
crossref_primary_10_1039_D1TA00298H
crossref_primary_10_1002_cssc_202000487
crossref_primary_10_1039_D0QI01014F
crossref_primary_10_1002_anie_202105536
crossref_primary_10_1016_j_nanoen_2020_104645
crossref_primary_10_1039_D2EE03461A
crossref_primary_10_1002_ange_201913122
crossref_primary_10_1002_anie_202202604
crossref_primary_10_1021_acssuschemeng_2c00018
crossref_primary_10_1016_j_cej_2024_151544
crossref_primary_10_1039_D3CP01363D
crossref_primary_10_1002_cctc_202101683
crossref_primary_10_1039_D3QI00732D
crossref_primary_10_1016_j_ijhydene_2021_07_039
crossref_primary_10_1039_D3SC00081H
crossref_primary_10_3389_fenrg_2021_676876
crossref_primary_10_1002_adma_202007650
crossref_primary_10_1002_EXP_20210077
crossref_primary_10_1002_anie_201915001
crossref_primary_10_1021_acscatal_3c02951
crossref_primary_10_1002_smll_202402779
crossref_primary_10_1039_D0SC04575F
crossref_primary_10_1002_adma_202313155
crossref_primary_10_1021_acscatal_1c01324
crossref_primary_10_1039_D0TA00658K
crossref_primary_10_1021_acs_inorgchem_0c02058
crossref_primary_10_1002_ange_202415208
crossref_primary_10_1016_j_diamond_2024_111814
crossref_primary_10_1016_j_nanoen_2021_106784
crossref_primary_10_1021_acscatal_2c03367
crossref_primary_10_1039_D4NR02852J
crossref_primary_10_1002_adma_202002189
crossref_primary_10_1039_C9NR09117C
crossref_primary_10_1016_j_jcis_2023_05_108
crossref_primary_10_1002_adma_202110699
crossref_primary_10_1016_j_solmat_2024_113315
crossref_primary_10_1021_acsami_1c21789
crossref_primary_10_1039_D0EE01790F
crossref_primary_10_1016_j_apcatb_2021_120667
crossref_primary_10_1021_acsami_3c16456
crossref_primary_10_1039_D0RA00155D
crossref_primary_10_1002_adma_202002177
crossref_primary_10_1016_j_cej_2024_158390
crossref_primary_10_1016_j_apcatb_2024_124609
crossref_primary_10_1039_D3TA01063E
crossref_primary_10_1021_acsami_9b18263
crossref_primary_10_1021_acscatal_9b02794
crossref_primary_10_1039_D3SC03002D
crossref_primary_10_1021_acs_chemmater_2c03788
crossref_primary_10_1016_j_cej_2022_137951
crossref_primary_10_1021_acselectrochem_4c00135
crossref_primary_10_1002_ange_202411068
crossref_primary_10_1039_D2TA07781G
crossref_primary_10_1016_j_jpowsour_2022_231832
crossref_primary_10_1016_j_cej_2020_126269
crossref_primary_10_1016_j_eurpolymj_2022_111734
crossref_primary_10_1016_j_electacta_2024_144415
crossref_primary_10_1016_j_cej_2021_133085
crossref_primary_10_1021_acscatal_2c03186
crossref_primary_10_1016_j_nanoen_2020_105126
crossref_primary_10_1093_nsr_nwaa088
crossref_primary_10_1002_ange_202200937
crossref_primary_10_1016_j_chempr_2020_11_002
crossref_primary_10_34133_2019_1401209
crossref_primary_10_1002_smtd_202200561
crossref_primary_10_1016_S1872_2067_22_64178_0
crossref_primary_10_1002_ange_202115198
crossref_primary_10_1002_anie_202205923
crossref_primary_10_1002_anie_202104394
crossref_primary_10_1016_j_ccr_2023_215196
crossref_primary_10_1016_j_enchem_2020_100040
crossref_primary_10_1016_j_inoche_2022_110003
crossref_primary_10_1039_D2TA06938E
crossref_primary_10_1039_D2TA01669A
crossref_primary_10_1016_S1872_2067_21_63877_9
crossref_primary_10_1039_D1TA04743D
crossref_primary_10_1016_j_apcatb_2021_120216
crossref_primary_10_1007_s12274_023_5508_2
crossref_primary_10_1039_D3TA05136F
crossref_primary_10_1007_s40242_020_0163_6
crossref_primary_10_1002_smll_202207743
crossref_primary_10_1038_s41378_020_00235_w
crossref_primary_10_1007_s12274_024_6480_1
crossref_primary_10_1002_adma_201907690
crossref_primary_10_1002_anie_202215938
crossref_primary_10_1002_adma_202410909
crossref_primary_10_1002_aenm_202303068
crossref_primary_10_1002_celc_202001370
crossref_primary_10_1021_acsanm_4c00522
crossref_primary_10_1016_j_apcatb_2021_120468
crossref_primary_10_1039_D1CS00857A
crossref_primary_10_1039_C9TA10935H
crossref_primary_10_1016_j_mcat_2023_113531
crossref_primary_10_1002_adfm_202400773
crossref_primary_10_1002_ange_202417631
crossref_primary_10_2139_ssrn_4147430
crossref_primary_10_1016_j_jechem_2023_01_021
crossref_primary_10_1016_j_mcat_2022_112141
crossref_primary_10_1002_aenm_202403295
crossref_primary_10_1126_sciadv_adh9487
crossref_primary_10_1039_D3TA04155G
crossref_primary_10_1002_smll_202406718
crossref_primary_10_1016_j_joule_2019_06_020
crossref_primary_10_1016_j_isci_2020_101803
crossref_primary_10_1002_anie_202108769
crossref_primary_10_1021_acs_inorgchem_1c02946
crossref_primary_10_1039_D4CC02012J
crossref_primary_10_1039_C9MH01094G
crossref_primary_10_1039_D2TA09348K
crossref_primary_10_1016_j_jece_2022_107713
crossref_primary_10_1016_j_fmre_2021_09_001
crossref_primary_10_70436_nuijb_v3i02_294
crossref_primary_10_1002_aenm_202400650
crossref_primary_10_1039_C9TA13473E
crossref_primary_10_1039_C9NR09624H
crossref_primary_10_1002_smll_202301438
crossref_primary_10_1021_acssuschemeng_9b07526
crossref_primary_10_1039_D0EE02263B
crossref_primary_10_1002_adfm_202424142
crossref_primary_10_1021_acsenergylett_2c00207
crossref_primary_10_26599_NRE_2022_9120010
crossref_primary_10_1039_D4TA09260K
crossref_primary_10_1039_D1TA10273G
crossref_primary_10_1002_cssc_202100502
crossref_primary_10_1039_D0EE03596C
crossref_primary_10_1039_D0NJ01102A
crossref_primary_10_1007_s11426_020_9740_8
crossref_primary_10_1016_j_jechem_2020_01_029
crossref_primary_10_1016_j_apcata_2024_119650
crossref_primary_10_1039_D2EE03956G
crossref_primary_10_1016_j_jcis_2020_12_061
crossref_primary_10_1016_j_nantod_2021_101273
crossref_primary_10_1002_cphc_202400379
crossref_primary_10_2139_ssrn_4067022
crossref_primary_10_1016_j_rser_2023_113691
crossref_primary_10_1002_smll_202200996
crossref_primary_10_1016_j_jcis_2023_01_002
crossref_primary_10_1021_acscatal_0c02606
crossref_primary_10_1039_D1EE00806D
crossref_primary_10_1515_nanoph_2024_0417
crossref_primary_10_1039_D2DT02131E
crossref_primary_10_1016_j_jechem_2020_01_011
crossref_primary_10_1002_anie_202101522
crossref_primary_10_1021_acsami_4c05818
crossref_primary_10_1007_s40843_024_3017_4
crossref_primary_10_1038_s41467_023_44469_4
crossref_primary_10_1039_D3TA01592K
crossref_primary_10_1039_D2SC03804H
crossref_primary_10_1039_C9TA05505C
crossref_primary_10_1002_adfm_202212483
crossref_primary_10_1126_science_abg2371
crossref_primary_10_1002_asia_202000310
crossref_primary_10_2139_ssrn_4117601
crossref_primary_10_1016_j_enchem_2024_100139
crossref_primary_10_1016_j_nanoen_2022_107517
crossref_primary_10_1002_anie_202307780
crossref_primary_10_1021_acsmaterialsau_4c00092
crossref_primary_10_1002_smll_202300794
crossref_primary_10_1016_j_carbon_2023_118359
crossref_primary_10_1039_D2FD00145D
crossref_primary_10_1039_D4QI00310A
crossref_primary_10_1039_D2CS00368F
crossref_primary_10_1002_gch2_202300345
crossref_primary_10_1002_smll_202403253
crossref_primary_10_1016_S1872_2067_23_64464_X
crossref_primary_10_1039_D2CP01107G
crossref_primary_10_1039_D2TA00070A
crossref_primary_10_1021_acsami_1c03698
crossref_primary_10_1002_adfm_202006317
crossref_primary_10_1002_ange_202105536
crossref_primary_10_1021_jacs_3c14816
crossref_primary_10_1016_j_apcatb_2021_120047
crossref_primary_10_1016_j_jechem_2020_10_043
crossref_primary_10_1039_D0SE00445F
crossref_primary_10_1021_acsami_1c15206
crossref_primary_10_1016_S1872_2067_22_64136_6
crossref_primary_10_1039_D4CS00217B
crossref_primary_10_1002_anie_202015496
crossref_primary_10_1002_celc_201901970
crossref_primary_10_1002_cey2_160
crossref_primary_10_1038_s41467_024_50988_5
crossref_primary_10_1002_adfm_202008983
crossref_primary_10_1016_j_jhazmat_2022_130651
crossref_primary_10_1016_j_apcatb_2020_118919
crossref_primary_10_1002_adfm_202401472
crossref_primary_10_1002_cssc_202002098
crossref_primary_10_1039_D3TA06666E
crossref_primary_10_1007_s12209_024_00416_y
crossref_primary_10_1016_j_cej_2020_126208
crossref_primary_10_1002_adfm_202107280
crossref_primary_10_1002_anie_202402678
crossref_primary_10_1016_j_ijhydene_2024_05_408
crossref_primary_10_1016_j_chempr_2021_10_008
crossref_primary_10_1021_acsami_3c07947
crossref_primary_10_1002_smtd_202300169
crossref_primary_10_1016_j_cattod_2022_12_010
crossref_primary_10_1016_j_enchem_2019_100013
crossref_primary_10_1007_s10562_022_04112_1
crossref_primary_10_1016_j_jhazmat_2022_129653
crossref_primary_10_1002_ange_201910658
crossref_primary_10_1002_anie_202412426
crossref_primary_10_1016_j_jechem_2020_06_011
crossref_primary_10_1016_j_joule_2021_01_001
crossref_primary_10_1021_jacs_4c00898
crossref_primary_10_1016_j_cej_2024_155474
crossref_primary_10_1039_D1CS00120E
crossref_primary_10_1088_1361_6463_ac4b56
crossref_primary_10_1016_j_jechem_2021_01_039
crossref_primary_10_1088_1361_6528_ad1649
crossref_primary_10_1016_j_jhazmat_2022_128892
crossref_primary_10_1021_acsami_4c20810
crossref_primary_10_1016_j_apsusc_2022_154401
crossref_primary_10_1039_C9TA10206J
crossref_primary_10_1016_j_mtphys_2020_100310
crossref_primary_10_1002_ange_202307780
crossref_primary_10_1021_acsnano_1c08109
crossref_primary_10_1002_cssc_202102648
crossref_primary_10_1021_acssuschemeng_4c09914
crossref_primary_10_1039_D3EY00191A
crossref_primary_10_2139_ssrn_4103273
crossref_primary_10_1002_adma_202312746
crossref_primary_10_1021_acs_nanolett_3c04049
crossref_primary_10_1002_ange_202101522
crossref_primary_10_1016_j_jelechem_2024_118633
crossref_primary_10_1016_j_cej_2023_145368
crossref_primary_10_1002_cssc_202202265
crossref_primary_10_1002_aenm_202302608
crossref_primary_10_1038_s41467_022_28728_4
crossref_primary_10_1016_j_jechem_2020_06_032
crossref_primary_10_1002_aic_18652
crossref_primary_10_1021_acsami_0c22623
crossref_primary_10_1007_s12598_022_02215_7
crossref_primary_10_1038_s41929_021_00599_w
crossref_primary_10_1016_j_checat_2021_09_017
crossref_primary_10_1016_j_apsusc_2019_144943
crossref_primary_10_1002_anie_202115409
crossref_primary_10_1002_eem2_12192
crossref_primary_10_1002_cey2_382
crossref_primary_10_1016_j_ccr_2021_213946
crossref_primary_10_1002_adma_201904804
crossref_primary_10_3390_pr10040751
crossref_primary_10_1002_er_6996
crossref_primary_10_1016_j_jechem_2020_07_055
crossref_primary_10_1360_TB_2021_0333
crossref_primary_10_1039_D0TA00384K
crossref_primary_10_1016_j_nanoen_2019_104374
crossref_primary_10_1002_adfm_202106684
crossref_primary_10_1007_s10562_024_04681_3
crossref_primary_10_1002_adma_201904870
crossref_primary_10_1016_S1872_2067_21_64001_9
crossref_primary_10_1002_aic_17549
crossref_primary_10_1038_s41467_021_23360_0
crossref_primary_10_1021_acsenergylett_4c02961
crossref_primary_10_1002_adma_202211730
crossref_primary_10_1021_acscatal_4c01510
crossref_primary_10_1039_D4TA00454J
crossref_primary_10_1016_j_apsusc_2021_150801
crossref_primary_10_1002_adma_202101126
crossref_primary_10_1016_j_apcatb_2022_121651
crossref_primary_10_1021_acsnano_2c00596
crossref_primary_10_1016_j_jelechem_2021_115953
crossref_primary_10_1016_j_mattod_2020_03_022
crossref_primary_10_1039_D1CC01642C
crossref_primary_10_3390_molecules30061271
crossref_primary_10_1021_acs_inorgchem_2c02834
crossref_primary_10_1002_ange_202002923
crossref_primary_10_1016_j_apsusc_2022_154831
crossref_primary_10_1016_j_ces_2022_117735
crossref_primary_10_1002_cctc_202000006
crossref_primary_10_1016_j_cej_2023_146896
crossref_primary_10_1021_acs_jpcc_2c00632
crossref_primary_10_1039_D4CP00076E
crossref_primary_10_1007_s11426_020_9795_x
crossref_primary_10_1007_s40843_023_2620_4
crossref_primary_10_1016_j_jcat_2021_10_017
crossref_primary_10_3866_PKU_WHXB202307057
crossref_primary_10_1016_j_pmatsci_2022_101044
crossref_primary_10_1039_D2SE00557C
crossref_primary_10_1016_j_cattod_2021_06_008
crossref_primary_10_1021_acscatal_0c03985
crossref_primary_10_1002_sstr_202300168
crossref_primary_10_1016_j_apcatb_2022_121876
crossref_primary_10_1016_j_colsurfa_2024_133557
crossref_primary_10_1002_smtd_201900474
crossref_primary_10_1002_adfm_202006939
crossref_primary_10_1016_j_apenergy_2022_119463
crossref_primary_10_54227_mlab_20220011
crossref_primary_10_1016_j_ccr_2022_214468
crossref_primary_10_1039_D4TA08757G
crossref_primary_10_1002_advs_202204205
crossref_primary_10_1002_anie_202203170
crossref_primary_10_1002_aesr_202300284
crossref_primary_10_1016_j_diamond_2020_108037
crossref_primary_10_1016_j_ccr_2023_215609
crossref_primary_10_1039_D4EY00002A
crossref_primary_10_1039_D3GC02135A
crossref_primary_10_1002_ece2_39
crossref_primary_10_1039_D0CC05635A
crossref_primary_10_1016_j_mcat_2024_114433
crossref_primary_10_1002_smll_202408111
crossref_primary_10_1002_adfm_202418492
crossref_primary_10_1016_j_chempr_2025_102441
crossref_primary_10_1002_sstr_202200017
crossref_primary_10_1016_j_apsusc_2021_151257
crossref_primary_10_1039_C9CC05309C
crossref_primary_10_1016_j_chemosphere_2023_139621
crossref_primary_10_1021_acsami_3c01929
crossref_primary_10_1039_D4EE04438J
crossref_primary_10_1016_j_jece_2024_111871
crossref_primary_10_1039_D0NJ04244G
crossref_primary_10_1002_aenm_202103872
crossref_primary_10_1039_D4CY00071D
crossref_primary_10_3390_catal10030353
crossref_primary_10_1021_acs_jpcc_4c08138
crossref_primary_10_1016_j_enchem_2021_100066
crossref_primary_10_1039_D2CY00428C
crossref_primary_10_1002_ange_202300989
crossref_primary_10_1002_cctc_202300076
crossref_primary_10_1002_anie_202107858
crossref_primary_10_1039_D1CP02391H
crossref_primary_10_1002_adma_202301477
crossref_primary_10_1039_D3TA06254F
crossref_primary_10_1002_eem2_12120
crossref_primary_10_1016_j_fuel_2025_134896
crossref_primary_10_1039_D3TA04848A
crossref_primary_10_1016_j_apcatb_2020_118693
crossref_primary_10_3390_nano13182580
crossref_primary_10_1021_acs_energyfuels_4c05837
crossref_primary_10_1002_adma_202210669
crossref_primary_10_1016_j_chempr_2021_01_009
crossref_primary_10_1002_ange_202412426
crossref_primary_10_1016_j_mtnano_2022_100202
crossref_primary_10_1016_j_coelec_2023_101383
crossref_primary_10_1002_cctc_202001775
crossref_primary_10_1021_jacs_1c13396
crossref_primary_10_1002_cssc_202200231
crossref_primary_10_1039_D2QI02290G
crossref_primary_10_1021_acscatal_3c02410
crossref_primary_10_1016_j_jece_2023_109275
crossref_primary_10_1002_aenm_202202247
crossref_primary_10_1039_C9CS00159J
crossref_primary_10_1039_D0EE03756G
crossref_primary_10_1002_ange_202217411
crossref_primary_10_1002_anie_202200937
crossref_primary_10_1016_j_jcat_2022_07_030
crossref_primary_10_1039_D3NR06549A
crossref_primary_10_1021_acscatal_3c01315
crossref_primary_10_1039_D3CC02979D
crossref_primary_10_1021_acsenergylett_4c00707
crossref_primary_10_1021_acs_langmuir_4c01283
crossref_primary_10_1016_j_apcatb_2020_119325
crossref_primary_10_1021_acs_inorgchem_1c00218
crossref_primary_10_1039_D0TA11797H
crossref_primary_10_1002_smll_202106358
crossref_primary_10_1016_j_apcatb_2024_124408
crossref_primary_10_1002_advs_202102915
crossref_primary_10_1039_D4CP04569F
crossref_primary_10_1002_smll_202102814
crossref_primary_10_1016_j_apcatb_2021_120844
crossref_primary_10_1021_acsaem_3c03207
crossref_primary_10_1021_acssuschemeng_2c07114
crossref_primary_10_1039_D2EE00953F
crossref_primary_10_1016_j_ijhydene_2023_02_039
crossref_primary_10_1021_acsami_2c17280
crossref_primary_10_1016_j_mcat_2021_111935
crossref_primary_10_1016_j_electacta_2022_139988
crossref_primary_10_1063_1674_0068_cjcp2112286
crossref_primary_10_1016_j_jcat_2020_04_025
crossref_primary_10_1016_j_ijhydene_2020_12_147
crossref_primary_10_1021_jacs_3c06402
crossref_primary_10_1016_j_apsusc_2022_155521
crossref_primary_10_1016_j_checat_2024_101157
crossref_primary_10_1016_j_isci_2020_101757
crossref_primary_10_1039_D3TA02403B
crossref_primary_10_1021_acssuschemeng_4c05149
crossref_primary_10_1093_nsr_nwaa142
crossref_primary_10_1038_s41467_023_44131_z
crossref_primary_10_1021_acs_inorgchem_0c01596
crossref_primary_10_1007_s40843_024_2798_5
crossref_primary_10_1039_D3CC01428B
crossref_primary_10_1002_smll_202307315
crossref_primary_10_1039_D2TA08928A
crossref_primary_10_1039_D4DT02817A
crossref_primary_10_1002_eem2_12552
crossref_primary_10_1002_ange_202402678
crossref_primary_10_1016_j_cej_2022_138320
crossref_primary_10_1002_aenm_202101670
crossref_primary_10_1016_j_chempr_2020_07_006
crossref_primary_10_1039_D3TA01883K
crossref_primary_10_1002_ange_202007998
crossref_primary_10_1021_acssuschemeng_0c04091
crossref_primary_10_1039_D4CC05220J
crossref_primary_10_1016_j_trechm_2021_11_007
crossref_primary_10_1039_D1QI00258A
Cites_doi 10.1016/j.nanoen.2018.03.059
10.1021/acs.jpclett.8b02188
10.1038/s41467-018-04213-9
10.1021/acssuschemeng.8b06163
10.1002/chem.201800535
10.1038/srep01145
10.1016/j.electacta.2017.11.105
10.1002/advs.201802109
10.1038/s41929-018-0092-7
10.1021/acssuschemeng.7b02890
10.1149/2.0071802jes
10.1016/j.chempr.2018.10.010
10.1126/sciadv.aar3208
10.1021/acscatal.8b02585
10.1149/2.0741614jes
10.1021/acs.accounts.7b00616
10.1038/s41929-019-0241-7
10.1126/science.aar6611
10.1021/acscatal.6b00183
10.1021/jacs.8b08379
10.1002/smtd.201800332
10.1021/acs.chemmater.6b02796
10.1149/2.0231607jes
10.1126/sciadv.1700336
10.1021/acscatal.8b02120
10.1016/j.joule.2018.04.017
10.1021/jacs.7b12101
10.1021/acs.accounts.8b00010
10.1039/C1CP22271F
10.1038/ngeo325
10.1021/acscatal.5b01918
10.1002/aenm.201800369
10.1039/C7EE02220D
10.1002/smtd.201800337
10.1016/j.joule.2019.02.003
10.1021/acscatal.9b00366
10.1039/C7EE02716H
10.1002/cssc.201500322
10.1063/1.555713
10.1021/acscatal.6b03035
10.1016/j.coche.2018.05.003
10.1002/anie.201813174
10.1021/acscatal.8b01340
10.1002/smtd.201800331
10.1021/acscatal.8b00905
10.1021/jacs.7b04393
10.1142/8199
10.1038/s41929-019-0252-4
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/c9cs00280d
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
Materials Research Database
CrossRef

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 318
ExternalDocumentID 31107485
10_1039_C9CS00280D
c9cs00280d
Genre Journal Article
GroupedDBID -
0-7
02
0R
29B
4.4
53G
5GY
70
705
70J
7~J
85S
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
COF
CS3
DU5
DZ
EBS
ECGLT
EE0
EF-
EJD
F5P
GNO
H13
HZ
H~N
IDZ
IPNFZ
J3I
JG
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
X
XFK
---
-DZ
-~X
0R~
2WC
6J9
70~
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
HZ~
R56
RAOCF
~02
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c462t-978960a3d632d242ba83477cc618fbfe820423e8c3bafb3264bca5ad149d6f383
ISSN 0306-0012
1460-4744
IngestDate Thu Jul 10 17:54:35 EDT 2025
Fri Jul 11 05:50:19 EDT 2025
Mon Jun 30 06:07:48 EDT 2025
Thu Apr 03 07:00:24 EDT 2025
Thu Apr 24 23:00:21 EDT 2025
Tue Jul 01 04:18:42 EDT 2025
Sat Jan 08 11:09:30 EST 2022
Wed Nov 11 00:29:03 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c462t-978960a3d632d242ba83477cc618fbfe820423e8c3bafb3264bca5ad149d6f383
Notes Shi-Zhang Qiao is currently a Chair Professor and Australian Laureate Fellow at the School of Chemical Engineering of The University of Adelaide, Australia. Dr Qiao received his PhD in chemical engineering from the Hong Kong University of Science and Technology in 2000. His research expertise is in nanomaterials for electrocatalysis, photocatalysis and energy storage and conversion technologies. Dr Qiao is also a Thomson Reuters/Clarivate Analytics Highly Cited Researcher (Chemistry, Materials Science). In recognition of his achievements in research, he was honored with the prestigious ExxonMobil Award (2016), ARC Discovery Outstanding Researcher Award (2013), the Emerging Researcher Award (2013, ENFL Division of the American Chemical Society) and the ARC, ARF and APD Fellowships.
Cheng Tang received his BEng and PhD from the Department of Chemical Engineering, Tsinghua University, in 2013 and 2018, respectively, under the supervision of Prof. Qiang Zhang and Prof. Fei Wei. Currently, he is a postdoctoral researcher at The University of Adelaide working with Prof. Shi-Zhang Qiao. His research focuses on nanomaterials and energy electrocatalysis, including 3D graphene, hierarchical nanomaterials, oxygen reduction/evolution, hydrogen evolution, nitrogen reduction, etc.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4568-8422
0000-0002-5167-1192
PMID 31107485
PQID 2241344102
PQPubID 2047503
PageCount 15
ParticipantIDs crossref_primary_10_1039_C9CS00280D
proquest_miscellaneous_2286856143
proquest_miscellaneous_2232080357
rsc_primary_c9cs00280d
crossref_citationtrail_10_1039_C9CS00280D
proquest_journals_2241344102
pubmed_primary_31107485
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190617
PublicationDateYYYYMMDD 2019-06-17
PublicationDate_xml – month: 6
  year: 2019
  text: 20190617
  day: 17
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Choi (C9CS00280D-(cit47)/*[position()=1]) 2018; 8
Wang (C9CS00280D-(cit31)/*[position()=1]) 2018; 9
Zhang (C9CS00280D-(cit42)/*[position()=1]) 2019; 58
Singh (C9CS00280D-(cit9)/*[position()=1]) 2017; 7
Yao (C9CS00280D-(cit40)/*[position()=1]) 2018; 140
Weekes (C9CS00280D-(cit50)/*[position()=1]) 2018; 51
Bligaard (C9CS00280D-(cit13)/*[position()=1]) 2016; 6
Lu (C9CS00280D-(cit48)/*[position()=1]) 2018; 2
Kim (C9CS00280D-(cit37)/*[position()=1]) 2016; 163
Battino (C9CS00280D-(cit22)/*[position()=1]) 1984; 13
Wang (C9CS00280D-(cit5)/*[position()=1]) 2018; 2
Nash (C9CS00280D-(cit39)/*[position()=1]) 2017; 164
Stevens (C9CS00280D-(cit14)/*[position()=1]) 2017; 29
Yan (C9CS00280D-(cit11)/*[position()=1]) 2018; 2
Yang (C9CS00280D-(cit20)/*[position()=1]) 2018; 140
Lee (C9CS00280D-(cit26)/*[position()=1]) 2018; 4
Dunwell (C9CS00280D-(cit34)/*[position()=1]) 2018; 20
Chen (C9CS00280D-(cit17)/*[position()=1]) 2018; 2
C9CS00280D-(cit8)/*[position()=1]
Suryanto (C9CS00280D-(cit7)/*[position()=1]) 2019; 2
Kim (C9CS00280D-(cit36)/*[position()=1]) 2016; 163
Chen (C9CS00280D-(cit35)/*[position()=1]) 2017; 139
Abghoui (C9CS00280D-(cit46)/*[position()=1]) 2016; 6
Chen (C9CS00280D-(cit4)/*[position()=1]) 2018; 360
Philibert (C9CS00280D-(cit2)/*[position()=1])
Lan (C9CS00280D-(cit19)/*[position()=1]) 2013; 3
Song (C9CS00280D-(cit30)/*[position()=1]) 2018; 4
Tang (C9CS00280D-(cit49)/*[position()=1]) 2018; 51
Erisman (C9CS00280D-(cit1)/*[position()=1]) 2008; 1
Li (C9CS00280D-(cit25)/*[position()=1]) 2019; 9
Liu (C9CS00280D-(cit3)/*[position()=1]) 2013
Martín (C9CS00280D-(cit21)/*[position()=1]) 2019; 5
Hu (C9CS00280D-(cit29)/*[position()=1]) 2018; 8
Hao (C9CS00280D-(cit32)/*[position()=1]) 2019; 2
Greenlee (C9CS00280D-(cit16)/*[position()=1]) 2018; 8
Montoya (C9CS00280D-(cit44)/*[position()=1]) 2015; 8
Clark (C9CS00280D-(cit15)/*[position()=1]) 2018; 8
Shipman (C9CS00280D-(cit23)/*[position()=1]) 2017; 258
Mukherjee (C9CS00280D-(cit33)/*[position()=1]) 2018; 48
Cui (C9CS00280D-(cit12)/*[position()=1]) 2018; 8
Guo (C9CS00280D-(cit10)/*[position()=1]) 2018; 11
Du (C9CS00280D-(cit24)/*[position()=1]) 2019; 7
Nazemi (C9CS00280D-(cit27)/*[position()=1]) 2018; 9
Zhou (C9CS00280D-(cit28)/*[position()=1]) 2017; 10
Foster (C9CS00280D-(cit6)/*[position()=1]) 2018; 1
Zhao (C9CS00280D-(cit43)/*[position()=1]) 2019; 6
Skulason (C9CS00280D-(cit45)/*[position()=1]) 2012; 14
Lazouski (C9CS00280D-(cit38)/*[position()=1]) 2019; 3
Cui (C9CS00280D-(cit18)/*[position()=1]) 2018; 24
Kong (C9CS00280D-(cit41)/*[position()=1]) 2017; 5
References_xml – doi: Philibert
– issn: 2013
  publication-title: Ammonia Synthesis Catalysts
  doi: Liu
– volume: 48
  start-page: 217
  year: 2018
  ident: C9CS00280D-(cit33)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.059
– volume: 9
  start-page: 5160
  year: 2018
  ident: C9CS00280D-(cit27)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b02188
– ident: C9CS00280D-(cit8)/*[position()=1]
– volume: 9
  start-page: 1795
  year: 2018
  ident: C9CS00280D-(cit31)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04213-9
– volume: 7
  start-page: 6839
  year: 2019
  ident: C9CS00280D-(cit24)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b06163
– volume: 24
  start-page: 18494
  year: 2018
  ident: C9CS00280D-(cit18)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201800535
– volume: 3
  start-page: 1145
  year: 2013
  ident: C9CS00280D-(cit19)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep01145
– volume: 258
  start-page: 618
  year: 2017
  ident: C9CS00280D-(cit23)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.11.105
– volume: 6
  start-page: 1802109
  year: 2019
  ident: C9CS00280D-(cit43)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201802109
– volume: 1
  start-page: 490
  year: 2018
  ident: C9CS00280D-(cit6)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0092-7
– volume: 5
  start-page: 10986
  year: 2017
  ident: C9CS00280D-(cit41)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02890
– volume: 164
  start-page: F1712
  year: 2017
  ident: C9CS00280D-(cit39)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0071802jes
– volume: 5
  start-page: 263
  year: 2019
  ident: C9CS00280D-(cit21)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.10.010
– volume: 4
  start-page: eaar3208
  year: 2018
  ident: C9CS00280D-(cit26)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aar3208
– volume: 8
  start-page: 9312
  year: 2018
  ident: C9CS00280D-(cit29)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02585
– volume: 163
  start-page: F1523
  year: 2016
  ident: C9CS00280D-(cit37)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0741614jes
– volume: 51
  start-page: 881
  year: 2018
  ident: C9CS00280D-(cit49)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00616
– volume: 2
  start-page: 448
  year: 2019
  ident: C9CS00280D-(cit32)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0241-7
– volume: 360
  start-page: eaar6611
  year: 2018
  ident: C9CS00280D-(cit4)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aar6611
– volume: 6
  start-page: 2590
  year: 2016
  ident: C9CS00280D-(cit13)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00183
– volume: 140
  start-page: 13387
  year: 2018
  ident: C9CS00280D-(cit20)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08379
– volume: 2
  start-page: 1800332
  year: 2018
  ident: C9CS00280D-(cit48)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.201800332
– volume: 29
  start-page: 120
  year: 2017
  ident: C9CS00280D-(cit14)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02796
– volume: 163
  start-page: F610
  year: 2016
  ident: C9CS00280D-(cit36)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0231607jes
– volume: 4
  start-page: e1700336
  year: 2018
  ident: C9CS00280D-(cit30)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700336
– volume: 8
  start-page: 7820
  year: 2018
  ident: C9CS00280D-(cit16)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02120
– volume: 2
  start-page: 1055
  year: 2018
  ident: C9CS00280D-(cit5)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2018.04.017
– volume: 140
  start-page: 1496
  year: 2018
  ident: C9CS00280D-(cit40)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12101
– volume: 51
  start-page: 910
  year: 2018
  ident: C9CS00280D-(cit50)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00010
– volume: 14
  start-page: 1235
  year: 2012
  ident: C9CS00280D-(cit45)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP22271F
– volume: 1
  start-page: 636
  year: 2008
  ident: C9CS00280D-(cit1)/*[position()=1]
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo325
– volume: 6
  start-page: 635
  year: 2016
  ident: C9CS00280D-(cit46)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01918
– volume: 8
  start-page: 1800369
  year: 2018
  ident: C9CS00280D-(cit12)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800369
– volume: 11
  start-page: 45
  year: 2018
  ident: C9CS00280D-(cit10)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02220D
– volume: 2
  start-page: 1800337
  year: 2018
  ident: C9CS00280D-(cit17)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.201800337
– volume: 3
  start-page: 1127
  year: 2019
  ident: C9CS00280D-(cit38)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2019.02.003
– volume: 9
  start-page: 2902
  year: 2019
  ident: C9CS00280D-(cit25)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00366
– volume: 10
  start-page: 2516
  year: 2017
  ident: C9CS00280D-(cit28)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02716H
– volume: 8
  start-page: 2180
  year: 2015
  ident: C9CS00280D-(cit44)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500322
– volume: 13
  start-page: 563
  year: 1984
  ident: C9CS00280D-(cit22)/*[position()=1]
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555713
– volume: 7
  start-page: 706
  year: 2017
  ident: C9CS00280D-(cit9)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03035
– volume: 20
  start-page: 151
  year: 2018
  ident: C9CS00280D-(cit34)/*[position()=1]
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2018.05.003
– volume: 58
  start-page: 2612
  year: 2019
  ident: C9CS00280D-(cit42)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201813174
– volume: 8
  start-page: 6560
  year: 2018
  ident: C9CS00280D-(cit15)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01340
– volume: 2
  start-page: 1800331
  year: 2018
  ident: C9CS00280D-(cit11)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.201800331
– volume: 8
  start-page: 7517
  year: 2018
  ident: C9CS00280D-(cit47)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00905
– volume: 139
  start-page: 9771
  year: 2017
  ident: C9CS00280D-(cit35)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04393
– volume-title: Ammonia Synthesis Catalysts
  year: 2013
  ident: C9CS00280D-(cit3)/*[position()=1]
  doi: 10.1142/8199
– ident: C9CS00280D-(cit2)/*[position()=1]
– volume: 2
  start-page: 290
  year: 2019
  ident: C9CS00280D-(cit7)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0252-4
SSID ssj0011762
Score 2.7095315
SecondaryResourceType review_article
Snippet The efficient activation of dinitrogen for the production of ammonia plays a crucial role in our modern society, considering the significant impact of ammonia...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3166
SubjectTerms Ammonia
carbon dioxide
Chemical reduction
Contaminants
energy
Energy consumption
greenhouse gas emissions
hydrogen
Hydrogen evolution
hydrogen production
Nitrogen
Organic chemistry
plague
Selectivity
Title How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully
URI https://www.ncbi.nlm.nih.gov/pubmed/31107485
https://www.proquest.com/docview/2241344102
https://www.proquest.com/docview/2232080357
https://www.proquest.com/docview/2286856143
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagO8AF8WuQMZARXFAVSPMSJzlOpdNAZRyWSr1FduJolUpTpdmB_fV7duwkYxUaXKLKttzIn3-87znve4R8BCXlwzi4vIDIDSa8dONQ-C6IxBMRFEmo0739OGdni-D7Mlz2GQV1dEkjPufXe-NK_gdVLENcVZTsPyDbdYoF-BvxxScijM97YazzwVVKpR9ZtxzzX0JFN45NahvtmfmtBFlx2dYV9jKulVCrRryW6xUXa6u-tFMcXbnib93ydmoC9ttOo13a0_12p8B25gBULtQV1-7Xi8uVq93RQ8eCimVibhtHafbCgHluELXyjHazDOLhpPDHWyT9jKkYbG-wDaqywZFqa-9s1x4otdM8yXf6irfoDyV7EX_-MztdzOdZOlumD8mBj2TAH5GDk1n6bd7dFk0inTi2e2ErQwvJl77v24bHHTaBtkVtc75o2yJ9Sp4YUkBPWoSfkQdy85w8mtpcfC9IikjTpqIGaWqQpn8iTS3StEOaWqQpIk2HSL8ki9NZOj1zTT4MNw-Y37hI-JFvcigY-AWaVoLHEERRnrNJXIpSojGHxrGMcxC8FGiXByLnIS-QBBeshBgOyWhTbeRrQgFZrpAcSphA4Em0CiNl7SvxQ5ZInzvkkx2sLDdi8SpnyTrTHy1Akk2T6YUe2K8O-dC13bYSKXtbHdsxz8wS2mX6VhcNcs93yPuuGsdW3VrxjayuVBvwkdZAGP2tTcxipWkLDnnV4tm9CigPRxCHDjlEgLvifmI45Gh_RbYtyqN7_Ocb8rhfP8dk1NRX8i2aqo14Z2bqDTLYlCg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+to+explore+ambient+electrocatalytic+nitrogen+reduction+reliably+and+insightfully&rft.jtitle=Chemical+Society+reviews&rft.au=Tang%2C+Cheng&rft.au=Qiao%2C+Shi-Zhang&rft.date=2019-06-17&rft.issn=1460-4744&rft.volume=48&rft.issue=12+p.3166-3180&rft.spage=3166&rft.epage=3180&rft_id=info:doi/10.1039%2Fc9cs00280d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon