How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully
The efficient activation of dinitrogen for the production of ammonia plays a crucial role in our modern society, considering the significant impact of ammonia on food, chemicals, and energy. As an attractive alternative to the century-old Haber-Bosch process which is responsible for 1-2% of global e...
Saved in:
Published in | Chemical Society reviews Vol. 48; no. 12; pp. 3166 - 318 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
17.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The efficient activation of dinitrogen for the production of ammonia plays a crucial role in our modern society, considering the significant impact of ammonia on food, chemicals, and energy. As an attractive alternative to the century-old Haber-Bosch process which is responsible for 1-2% of global energy consumption, utilization of half the hydrogen produced globally, and ∼1% of global energy-related CO
2
emissions, the ambient electrocatalytic nitrogen reduction reaction has attracted tremendous interest during the past few years. Some achievements have revealed the possibility of this process, but have also identified great challenges. The activity and selectivity of the nitrogen reduction reaction are fundamentally limited by competing hydrogen evolution and nitrogen scaling relations, while low production rates and ubiquitous contaminants plague experimental practices. Aiming toward higher accuracy and reproducibility of claimed results, and more meaningful, impactful, and insightful research, this tutorial review summarizes the present status and challenges in the study of ambient electrocatalytic nitrogen reduction, followed by a thorough discussion of various experimental parameters. We then recommend a series of protocols and best practices for experiments, and also highlight some potential directions for future research in this exciting and important field.
A guidebook with best practices and potential opportunities to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. |
---|---|
AbstractList | The efficient activation of dinitrogen for the production of ammonia plays a crucial role in our modern society, considering the significant impact of ammonia on food, chemicals, and energy. As an attractive alternative to the century-old Haber-Bosch process which is responsible for 1-2% of global energy consumption, utilization of half the hydrogen produced globally, and ∼1% of global energy-related CO2 emissions, the ambient electrocatalytic nitrogen reduction reaction has attracted tremendous interest during the past few years. Some achievements have revealed the possibility of this process, but have also identified great challenges. The activity and selectivity of the nitrogen reduction reaction are fundamentally limited by competing hydrogen evolution and nitrogen scaling relations, while low production rates and ubiquitous contaminants plague experimental practices. Aiming toward higher accuracy and reproducibility of claimed results, and more meaningful, impactful, and insightful research, this tutorial review summarizes the present status and challenges in the study of ambient electrocatalytic nitrogen reduction, followed by a thorough discussion of various experimental parameters. We then recommend a series of protocols and best practices for experiments, and also highlight some potential directions for future research in this exciting and important field. The efficient activation of dinitrogen for the production of ammonia plays a crucial role in our modern society, considering the significant impact of ammonia on food, chemicals, and energy. As an attractive alternative to the century-old Haber–Bosch process which is responsible for 1–2% of global energy consumption, utilization of half the hydrogen produced globally, and ∼1% of global energy-related CO 2 emissions, the ambient electrocatalytic nitrogen reduction reaction has attracted tremendous interest during the past few years. Some achievements have revealed the possibility of this process, but have also identified great challenges. The activity and selectivity of the nitrogen reduction reaction are fundamentally limited by competing hydrogen evolution and nitrogen scaling relations, while low production rates and ubiquitous contaminants plague experimental practices. Aiming toward higher accuracy and reproducibility of claimed results, and more meaningful, impactful, and insightful research, this tutorial review summarizes the present status and challenges in the study of ambient electrocatalytic nitrogen reduction, followed by a thorough discussion of various experimental parameters. We then recommend a series of protocols and best practices for experiments, and also highlight some potential directions for future research in this exciting and important field. The efficient activation of dinitrogen for the production of ammonia plays a crucial role in our modern society, considering the significant impact of ammonia on food, chemicals, and energy. As an attractive alternative to the century-old Haber-Bosch process which is responsible for 1-2% of global energy consumption, utilization of half the hydrogen produced globally, and ∼1% of global energy-related CO 2 emissions, the ambient electrocatalytic nitrogen reduction reaction has attracted tremendous interest during the past few years. Some achievements have revealed the possibility of this process, but have also identified great challenges. The activity and selectivity of the nitrogen reduction reaction are fundamentally limited by competing hydrogen evolution and nitrogen scaling relations, while low production rates and ubiquitous contaminants plague experimental practices. Aiming toward higher accuracy and reproducibility of claimed results, and more meaningful, impactful, and insightful research, this tutorial review summarizes the present status and challenges in the study of ambient electrocatalytic nitrogen reduction, followed by a thorough discussion of various experimental parameters. We then recommend a series of protocols and best practices for experiments, and also highlight some potential directions for future research in this exciting and important field. A guidebook with best practices and potential opportunities to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. The efficient activation of dinitrogen for the production of ammonia plays a crucial role in our modern society, considering the significant impact of ammonia on food, chemicals, and energy. As an attractive alternative to the century-old Haber-Bosch process which is responsible for 1-2% of global energy consumption, utilization of half the hydrogen produced globally, and ∼1% of global energy-related CO2 emissions, the ambient electrocatalytic nitrogen reduction reaction has attracted tremendous interest during the past few years. Some achievements have revealed the possibility of this process, but have also identified great challenges. The activity and selectivity of the nitrogen reduction reaction are fundamentally limited by competing hydrogen evolution and nitrogen scaling relations, while low production rates and ubiquitous contaminants plague experimental practices. Aiming toward higher accuracy and reproducibility of claimed results, and more meaningful, impactful, and insightful research, this tutorial review summarizes the present status and challenges in the study of ambient electrocatalytic nitrogen reduction, followed by a thorough discussion of various experimental parameters. We then recommend a series of protocols and best practices for experiments, and also highlight some potential directions for future research in this exciting and important field.The efficient activation of dinitrogen for the production of ammonia plays a crucial role in our modern society, considering the significant impact of ammonia on food, chemicals, and energy. As an attractive alternative to the century-old Haber-Bosch process which is responsible for 1-2% of global energy consumption, utilization of half the hydrogen produced globally, and ∼1% of global energy-related CO2 emissions, the ambient electrocatalytic nitrogen reduction reaction has attracted tremendous interest during the past few years. Some achievements have revealed the possibility of this process, but have also identified great challenges. The activity and selectivity of the nitrogen reduction reaction are fundamentally limited by competing hydrogen evolution and nitrogen scaling relations, while low production rates and ubiquitous contaminants plague experimental practices. Aiming toward higher accuracy and reproducibility of claimed results, and more meaningful, impactful, and insightful research, this tutorial review summarizes the present status and challenges in the study of ambient electrocatalytic nitrogen reduction, followed by a thorough discussion of various experimental parameters. We then recommend a series of protocols and best practices for experiments, and also highlight some potential directions for future research in this exciting and important field. The efficient activation of dinitrogen for the production of ammonia plays a crucial role in our modern society, considering the significant impact of ammonia on food, chemicals, and energy. As an attractive alternative to the century-old Haber–Bosch process which is responsible for 1–2% of global energy consumption, utilization of half the hydrogen produced globally, and ∼1% of global energy-related CO₂ emissions, the ambient electrocatalytic nitrogen reduction reaction has attracted tremendous interest during the past few years. Some achievements have revealed the possibility of this process, but have also identified great challenges. The activity and selectivity of the nitrogen reduction reaction are fundamentally limited by competing hydrogen evolution and nitrogen scaling relations, while low production rates and ubiquitous contaminants plague experimental practices. Aiming toward higher accuracy and reproducibility of claimed results, and more meaningful, impactful, and insightful research, this tutorial review summarizes the present status and challenges in the study of ambient electrocatalytic nitrogen reduction, followed by a thorough discussion of various experimental parameters. We then recommend a series of protocols and best practices for experiments, and also highlight some potential directions for future research in this exciting and important field. |
Author | Qiao, Shi-Zhang Tang, Cheng |
AuthorAffiliation | School of Chemical Engineering The University of Adelaide |
AuthorAffiliation_xml | – name: The University of Adelaide – name: School of Chemical Engineering |
Author_xml | – sequence: 1 givenname: Cheng surname: Tang fullname: Tang, Cheng – sequence: 2 givenname: Shi-Zhang surname: Qiao fullname: Qiao, Shi-Zhang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31107485$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0s1LHDEUAPBQLHW1vfSuTPEihWlfPjaTOcr6CQs91J6HTJLRSDZZkwx2_3uz7lZBRHrKC-_3HuS97KEdH7xB6CuGHxho-1O1KgEQAfoDmmDGoWYNYztoAhR4DYDJLtpL6a5EuOHkE9qlGEPDxHSCri_DQ5VDZf4uXYimkoveGp8r44zKMSiZpVtlqypvy_XG-CoaPapswzpyVvZuVUmvK-uTvbnNw-jc6jP6OEiXzJftuY_-nJ9dzy7r-a-Lq9nJvFaMk1y3jWg5SKo5JZow0ktBWdMoxbEY-sEIAoxQIxTt5dBTwlmv5FRqzFrNByroPjre9F3GcD-alLuFTco4J70JY-oIEVxMOWb0PyglIIBOm0KPXtG7MEZfHlIUw5QxDKSow60a-4XR3TLahYyr7t9oC_i-ASqGlKIZngmGbr23btbOfj_t7bRgeIWVzXI95RyldW-XHGxKYlLPrV--Qsl_ey_fLfVAHwHWUa4y |
CitedBy_id | crossref_primary_10_1002_cplu_202100356 crossref_primary_10_1016_j_rser_2023_113197 crossref_primary_10_1016_j_cej_2022_141060 crossref_primary_10_1002_anie_202115198 crossref_primary_10_1039_D2CS00041E crossref_primary_10_1016_j_electacta_2023_143360 crossref_primary_10_1021_acs_jpcc_1c07278 crossref_primary_10_1002_advs_202104183 crossref_primary_10_1039_D4TA04884A crossref_primary_10_1016_j_apcatb_2024_124728 crossref_primary_10_1016_j_coelec_2024_101487 crossref_primary_10_1002_aenm_202302274 crossref_primary_10_1016_j_nanoen_2020_105283 crossref_primary_10_1016_j_apsoil_2025_105996 crossref_primary_10_1002_smll_202401327 crossref_primary_10_1039_D1EE03097C crossref_primary_10_1016_j_jiec_2025_02_029 crossref_primary_10_1007_s12274_021_3725_0 crossref_primary_10_1039_D0TA07720H crossref_primary_10_1007_s12274_023_5943_0 crossref_primary_10_1021_acs_inorgchem_1c03938 crossref_primary_10_1002_advs_201902390 crossref_primary_10_1039_D1MA00953B crossref_primary_10_1002_aenm_202003294 crossref_primary_10_1021_acs_energyfuels_3c02754 crossref_primary_10_1016_j_est_2022_105684 crossref_primary_10_1016_j_checat_2024_101239 crossref_primary_10_1002_ange_202218122 crossref_primary_10_1039_D1TA02684D crossref_primary_10_1016_j_ijhydene_2021_07_184 crossref_primary_10_1007_s12274_023_6140_x crossref_primary_10_1039_D2CP01711C crossref_primary_10_1016_j_electacta_2021_138222 crossref_primary_10_1007_s40843_020_1522_y crossref_primary_10_1016_j_electacta_2021_139551 crossref_primary_10_1002_adfm_202106713 crossref_primary_10_1016_j_ccr_2025_216546 crossref_primary_10_1002_smll_202308311 crossref_primary_10_1002_aenm_202202403 crossref_primary_10_1016_j_ccr_2025_216543 crossref_primary_10_1021_jacs_4c06784 crossref_primary_10_1039_C9TA11378A crossref_primary_10_1063_5_0194388 crossref_primary_10_1002_adma_202007509 crossref_primary_10_1002_smll_202100372 crossref_primary_10_1021_acscatal_1c05820 crossref_primary_10_1002_smtd_202201524 crossref_primary_10_1007_s43979_023_00055_7 crossref_primary_10_1002_adfm_202000768 crossref_primary_10_1002_cssc_202201715 crossref_primary_10_1007_s10562_023_04539_0 crossref_primary_10_1039_D4TA02904F crossref_primary_10_1002_adma_202007733 crossref_primary_10_1039_D0TA04580B crossref_primary_10_1016_S1872_2067_23_64504_8 crossref_primary_10_1039_D2NR00198E crossref_primary_10_1016_j_cej_2025_159874 crossref_primary_10_1021_jacs_3c06904 crossref_primary_10_1002_adma_202313086 crossref_primary_10_1021_acsenergylett_0c01317 crossref_primary_10_1016_j_fuel_2022_126213 crossref_primary_10_1021_jacs_0c06118 crossref_primary_10_1016_j_apcatb_2022_122186 crossref_primary_10_3390_membranes12100969 crossref_primary_10_1039_D1TA08257D crossref_primary_10_1021_acs_jpcc_3c08230 crossref_primary_10_1002_ange_202108769 crossref_primary_10_1016_j_cej_2020_126385 crossref_primary_10_1007_s40820_023_01217_z crossref_primary_10_1039_D1TA03666A crossref_primary_10_1073_pnas_2015108117 crossref_primary_10_1007_s12209_020_00235_x crossref_primary_10_1021_acsami_2c02329 crossref_primary_10_1039_D4QI02346C crossref_primary_10_1002_ange_202104394 crossref_primary_10_1039_D0EE01102A crossref_primary_10_1039_D3GC02084C crossref_primary_10_1002_ange_201915001 crossref_primary_10_1016_j_compchemeng_2023_108528 crossref_primary_10_1039_C9TA07096F crossref_primary_10_1002_smll_202206776 crossref_primary_10_1360_nso_20220059 crossref_primary_10_1016_j_ijhydene_2023_03_241 crossref_primary_10_1002_ange_202217473 crossref_primary_10_1016_j_coche_2019_09_007 crossref_primary_10_2139_ssrn_4007241 crossref_primary_10_1021_acs_nanolett_3c04416 crossref_primary_10_1039_D1SE01932E crossref_primary_10_1021_acsnano_9b08835 crossref_primary_10_1063_5_0240996 crossref_primary_10_1002_aenm_202001289 crossref_primary_10_1039_D0CC01759K crossref_primary_10_1002_anie_202415208 crossref_primary_10_1039_D1EE02512K crossref_primary_10_1021_acsenergylett_2c02730 crossref_primary_10_1016_j_checat_2022_01_022 crossref_primary_10_1007_s40843_023_2847_1 crossref_primary_10_1038_s41467_021_23115_x crossref_primary_10_1016_S1872_2067_24_60032_X crossref_primary_10_1039_C9TA13599E crossref_primary_10_1039_D0TA09590G crossref_primary_10_1021_acs_langmuir_1c02358 crossref_primary_10_1002_anie_202417631 crossref_primary_10_1016_j_nanoen_2020_105211 crossref_primary_10_1002_admi_202202147 crossref_primary_10_1021_acsaem_2c01346 crossref_primary_10_1021_acsami_9b18510 crossref_primary_10_3390_en16010027 crossref_primary_10_1038_s41427_022_00439_8 crossref_primary_10_1021_acsami_4c00253 crossref_primary_10_1039_D3QI01021J crossref_primary_10_2139_ssrn_4048847 crossref_primary_10_1016_j_jechem_2021_06_012 crossref_primary_10_1016_j_ccr_2020_213483 crossref_primary_10_1002_adfm_202100300 crossref_primary_10_1039_C9TA13485A crossref_primary_10_1039_D1QM01620B crossref_primary_10_1016_j_envres_2025_121123 crossref_primary_10_1016_j_apcatb_2022_121291 crossref_primary_10_1002_cptc_202100084 crossref_primary_10_1021_acssuschemeng_2c06506 crossref_primary_10_1002_anie_202411068 crossref_primary_10_1016_j_gee_2020_04_012 crossref_primary_10_1039_D4SE00471J crossref_primary_10_1002_cphc_202200149 crossref_primary_10_1021_acsaem_3c00709 crossref_primary_10_1021_acssuschemeng_1c00575 crossref_primary_10_1016_j_jelechem_2022_116171 crossref_primary_10_1039_D0TA00468E crossref_primary_10_1021_acs_jpcc_4c02148 crossref_primary_10_1021_acsami_2c14134 crossref_primary_10_1002_ange_202215938 crossref_primary_10_1021_acscatal_9b03903 crossref_primary_10_1016_j_nanoen_2021_106026 crossref_primary_10_1002_anie_201915992 crossref_primary_10_1016_j_jcis_2024_11_026 crossref_primary_10_3390_ma15196609 crossref_primary_10_1002_cctc_202401001 crossref_primary_10_1002_anie_202104918 crossref_primary_10_1038_s41467_020_18080_w crossref_primary_10_1016_j_apcatb_2019_118525 crossref_primary_10_1002_ange_202115409 crossref_primary_10_1016_j_mtener_2022_101240 crossref_primary_10_1021_jacs_4c00827 crossref_primary_10_1039_D1NR06411H crossref_primary_10_1007_s12274_022_5117_5 crossref_primary_10_1016_j_apcatb_2022_121277 crossref_primary_10_1021_acsami_9b14187 crossref_primary_10_1002_ange_202202604 crossref_primary_10_1039_C9TA13026H crossref_primary_10_1002_sus2_193 crossref_primary_10_1039_C9TA13135C crossref_primary_10_1002_admi_202101842 crossref_primary_10_1088_2515_7639_abd596 crossref_primary_10_1016_j_mattod_2021_01_029 crossref_primary_10_1002_adfm_202204755 crossref_primary_10_1007_s10562_023_04574_x crossref_primary_10_1016_j_apcatb_2021_121001 crossref_primary_10_1016_j_jclepro_2019_119525 crossref_primary_10_1039_C9NR08788E crossref_primary_10_1039_D1CC06690K crossref_primary_10_1021_acs_nanolett_4c02030 crossref_primary_10_1039_D3CP02647G crossref_primary_10_1039_D2CS00441K crossref_primary_10_2139_ssrn_4093859 crossref_primary_10_1039_D2CP01446G crossref_primary_10_1039_D1CY01292D crossref_primary_10_1002_anie_202300989 crossref_primary_10_1016_j_jechem_2021_03_001 crossref_primary_10_1038_s41565_022_01121_4 crossref_primary_10_1016_j_mtener_2022_101220 crossref_primary_10_1021_acsnano_2c07260 crossref_primary_10_1039_D1TA00766A crossref_primary_10_1039_D2CC02261C crossref_primary_10_1021_acsami_1c01160 crossref_primary_10_1016_j_jechem_2023_07_006 crossref_primary_10_1002_anie_202007998 crossref_primary_10_1002_celc_202200625 crossref_primary_10_1016_j_ccr_2022_214761 crossref_primary_10_3389_fchem_2022_978078 crossref_primary_10_1021_acsnano_2c09691 crossref_primary_10_1002_cctc_202201114 crossref_primary_10_1007_s12274_020_3276_9 crossref_primary_10_1016_j_apsusc_2024_160908 crossref_primary_10_1002_adfm_202201262 crossref_primary_10_1016_j_cej_2022_134504 crossref_primary_10_1016_j_seppur_2023_125129 crossref_primary_10_1002_aenm_202003410 crossref_primary_10_1016_j_apcatb_2021_121023 crossref_primary_10_1016_j_jechem_2021_10_012 crossref_primary_10_1088_2515_7655_abee33 crossref_primary_10_1039_D3DT01790G crossref_primary_10_1021_jacs_3c11676 crossref_primary_10_1038_s41929_024_01115_6 crossref_primary_10_1016_j_jcis_2021_07_111 crossref_primary_10_1021_acs_jpclett_1c00855 crossref_primary_10_1039_D3CC02693K crossref_primary_10_1002_ange_202107858 crossref_primary_10_1002_anie_201913122 crossref_primary_10_1016_j_apsusc_2021_149682 crossref_primary_10_1016_j_ijhydene_2021_01_203 crossref_primary_10_3390_nano15010065 crossref_primary_10_1002_smll_202312210 crossref_primary_10_1039_D2TA00308B crossref_primary_10_1016_j_cej_2023_143776 crossref_primary_10_1016_j_cej_2023_142447 crossref_primary_10_1039_D2TA00744D crossref_primary_10_1016_j_ccr_2022_214981 crossref_primary_10_1021_acsaem_2c01745 crossref_primary_10_1021_acs_jpclett_1c01714 crossref_primary_10_1016_j_electacta_2020_137421 crossref_primary_10_1016_j_mattod_2020_09_006 crossref_primary_10_1016_j_jcat_2025_115941 crossref_primary_10_1016_S1872_2067_22_64148_2 crossref_primary_10_1021_acsami_3c16521 crossref_primary_10_1002_anie_202100526 crossref_primary_10_1007_s10800_022_01712_y crossref_primary_10_1016_j_apcatb_2022_121465 crossref_primary_10_1021_acsami_0c21429 crossref_primary_10_1002_sus2_226 crossref_primary_10_1002_asia_202000969 crossref_primary_10_1021_acs_inorgchem_3c02334 crossref_primary_10_1002_anie_202418095 crossref_primary_10_1021_acs_jpcc_3c01242 crossref_primary_10_1002_anie_202217411 crossref_primary_10_1016_j_nanoen_2021_106099 crossref_primary_10_1021_acs_langmuir_3c04025 crossref_primary_10_1039_D0SE00915F crossref_primary_10_1016_j_apsusc_2022_153678 crossref_primary_10_1016_j_colsurfa_2022_130549 crossref_primary_10_1002_ange_202104918 crossref_primary_10_1039_D3CP05342C crossref_primary_10_1039_D1EE03211A crossref_primary_10_1002_adma_202207305 crossref_primary_10_1039_C9CY02500F crossref_primary_10_1039_D3QM01076G crossref_primary_10_1002_ange_202418035 crossref_primary_10_1002_smtd_202100460 crossref_primary_10_1016_j_ijhydene_2023_07_267 crossref_primary_10_1021_acsnano_4c09247 crossref_primary_10_1016_j_mcat_2022_112637 crossref_primary_10_1002_cey2_491 crossref_primary_10_1016_j_nanoen_2025_110693 crossref_primary_10_1002_anie_202002923 crossref_primary_10_1021_jacs_4c06098 crossref_primary_10_1016_j_ijhydene_2023_05_206 crossref_primary_10_1007_s10008_022_05228_5 crossref_primary_10_1039_D3SC02862C crossref_primary_10_1002_adma_202104562 crossref_primary_10_1088_1361_6528_ad64d9 crossref_primary_10_1016_j_scib_2020_02_015 crossref_primary_10_1007_s11426_022_1419_y crossref_primary_10_1002_cey2_263 crossref_primary_10_1002_sstr_202000075 crossref_primary_10_1002_smll_202303424 crossref_primary_10_1039_D1QM00269D crossref_primary_10_1021_jacs_2c03661 crossref_primary_10_1002_aenm_202002967 crossref_primary_10_1007_s40820_021_00638_y crossref_primary_10_1016_j_apsusc_2024_160975 crossref_primary_10_1016_j_mtener_2022_101181 crossref_primary_10_1039_D4TA02863E crossref_primary_10_1039_D3GC02996D crossref_primary_10_1016_j_ijhydene_2020_08_173 crossref_primary_10_1039_D4QI01638F crossref_primary_10_1002_aenm_202302515 crossref_primary_10_1002_anie_202217473 crossref_primary_10_1039_D3RA00679D crossref_primary_10_1016_j_cclet_2023_108550 crossref_primary_10_1016_j_cattod_2022_09_011 crossref_primary_10_1002_asia_201900793 crossref_primary_10_1039_D4TA08549C crossref_primary_10_1016_j_cej_2022_140106 crossref_primary_10_1016_j_arabjc_2024_105950 crossref_primary_10_1039_D4NA00281D crossref_primary_10_1002_adfm_202200333 crossref_primary_10_1016_j_jechem_2023_12_024 crossref_primary_10_1002_ange_202205923 crossref_primary_10_1016_j_checat_2021_03_003 crossref_primary_10_1016_j_jcis_2023_10_125 crossref_primary_10_1016_j_apcatb_2020_119622 crossref_primary_10_1039_C9TA06573C crossref_primary_10_1016_j_cjche_2023_03_009 crossref_primary_10_1002_ange_202305447 crossref_primary_10_1039_D4TA04389H crossref_primary_10_1002_anie_202418035 crossref_primary_10_1016_j_apcatb_2022_121750 crossref_primary_10_1016_j_matre_2021_100076 crossref_primary_10_1021_acsenergylett_2c02175 crossref_primary_10_1002_smll_202407594 crossref_primary_10_1016_j_ijhydene_2021_11_157 crossref_primary_10_1016_j_cej_2021_132440 crossref_primary_10_1021_acssuschemeng_9b06827 crossref_primary_10_1039_D3CS00669G crossref_primary_10_1016_j_apenergy_2023_121960 crossref_primary_10_1038_s43586_021_00053_y crossref_primary_10_1002_smll_202303221 crossref_primary_10_1016_j_cej_2024_153108 crossref_primary_10_1002_anie_202305447 crossref_primary_10_1016_j_seppur_2023_125304 crossref_primary_10_1002_cssc_202102352 crossref_primary_10_1002_smll_202004398 crossref_primary_10_1016_j_apcatb_2022_121981 crossref_primary_10_1021_jacs_3c03432 crossref_primary_10_1007_s10853_019_04304_y crossref_primary_10_1002_elsa_70001 crossref_primary_10_1002_adfm_202400849 crossref_primary_10_1016_j_electacta_2024_144578 crossref_primary_10_1039_D3QI00554B crossref_primary_10_1002_ange_202015496 crossref_primary_10_1021_acsenergylett_9b01573 crossref_primary_10_1016_j_apsusc_2024_160140 crossref_primary_10_1038_s41929_020_00527_4 crossref_primary_10_1002_ange_202203170 crossref_primary_10_1007_s40843_024_3198_6 crossref_primary_10_1016_j_nanoen_2023_108434 crossref_primary_10_1088_1361_6528_ac5929 crossref_primary_10_1016_j_apcatb_2020_119419 crossref_primary_10_1021_acsanm_4c02221 crossref_primary_10_1039_D0NJ04365F crossref_primary_10_1016_j_cclet_2021_06_077 crossref_primary_10_1039_D4GC02069C crossref_primary_10_1002_anie_202218122 crossref_primary_10_1021_acs_chemrev_9b00638 crossref_primary_10_1039_D0TA03793A crossref_primary_10_1021_jacs_3c14586 crossref_primary_10_1039_D3CC05928F crossref_primary_10_1002_aesr_202100033 crossref_primary_10_1021_acs_accounts_1c00645 crossref_primary_10_1021_acsaem_3c02461 crossref_primary_10_1021_acsami_0c11487 crossref_primary_10_1021_acsami_4c18683 crossref_primary_10_1039_D2TA06187B crossref_primary_10_1016_j_apsusc_2023_159082 crossref_primary_10_1021_acs_jpcc_3c01415 crossref_primary_10_1021_acscatal_0c01081 crossref_primary_10_1002_adma_202005721 crossref_primary_10_1126_sciadv_adm9325 crossref_primary_10_1016_j_xcrp_2023_101595 crossref_primary_10_1039_D1SC01467F crossref_primary_10_2139_ssrn_4059073 crossref_primary_10_1016_j_jechem_2020_12_012 crossref_primary_10_1016_j_jmst_2020_10_056 crossref_primary_10_1039_D0TA01154A crossref_primary_10_1016_j_jece_2024_112627 crossref_primary_10_1021_acsenergylett_9b02679 crossref_primary_10_1021_acsnano_2c06441 crossref_primary_10_1021_acsami_2c12772 crossref_primary_10_1002_ange_202418095 crossref_primary_10_1039_C9TA10346E crossref_primary_10_1039_D0TA06576E crossref_primary_10_1016_j_tgchem_2024_100040 crossref_primary_10_1039_D3QI01536J crossref_primary_10_1016_j_jechem_2021_09_020 crossref_primary_10_1039_D1CY01442K crossref_primary_10_1021_acssuschemeng_3c07455 crossref_primary_10_1002_aesr_202400083 crossref_primary_10_1021_acscatal_1c03407 crossref_primary_10_1021_acscatal_9b03015 crossref_primary_10_1002_cctc_202301253 crossref_primary_10_1002_ange_201915992 crossref_primary_10_1002_ange_202100526 crossref_primary_10_1039_D0CP06178F crossref_primary_10_1016_j_apsusc_2024_161439 crossref_primary_10_1002_adma_202002435 crossref_primary_10_1007_s12045_023_1548_x crossref_primary_10_1016_j_fuel_2024_133159 crossref_primary_10_1002_anie_201910658 crossref_primary_10_1021_acsnano_1c07973 crossref_primary_10_1039_D3CP04302A crossref_primary_10_1016_j_jhazmat_2022_128909 crossref_primary_10_1016_j_ijhydene_2022_06_305 crossref_primary_10_1039_D2GC03174D crossref_primary_10_1039_D0TA11566E crossref_primary_10_1016_j_seppur_2025_132609 crossref_primary_10_1021_acsami_4c00719 crossref_primary_10_1007_s12274_021_4015_6 crossref_primary_10_1016_j_jechem_2021_09_004 crossref_primary_10_1039_D4CY00171K crossref_primary_10_1021_acscatal_4c01203 crossref_primary_10_3390_catal13030639 crossref_primary_10_1016_j_jelechem_2023_117174 crossref_primary_10_1021_acsami_1c23643 crossref_primary_10_1002_cssc_202102180 crossref_primary_10_1016_j_pecs_2020_100860 crossref_primary_10_1002_adfm_202315548 crossref_primary_10_1016_j_apcatb_2023_123133 crossref_primary_10_1039_D2CC00331G crossref_primary_10_1016_j_apsusc_2022_155872 crossref_primary_10_1039_D1TA00298H crossref_primary_10_1002_cssc_202000487 crossref_primary_10_1039_D0QI01014F crossref_primary_10_1002_anie_202105536 crossref_primary_10_1016_j_nanoen_2020_104645 crossref_primary_10_1039_D2EE03461A crossref_primary_10_1002_ange_201913122 crossref_primary_10_1002_anie_202202604 crossref_primary_10_1021_acssuschemeng_2c00018 crossref_primary_10_1016_j_cej_2024_151544 crossref_primary_10_1039_D3CP01363D crossref_primary_10_1002_cctc_202101683 crossref_primary_10_1039_D3QI00732D crossref_primary_10_1016_j_ijhydene_2021_07_039 crossref_primary_10_1039_D3SC00081H crossref_primary_10_3389_fenrg_2021_676876 crossref_primary_10_1002_adma_202007650 crossref_primary_10_1002_EXP_20210077 crossref_primary_10_1002_anie_201915001 crossref_primary_10_1021_acscatal_3c02951 crossref_primary_10_1002_smll_202402779 crossref_primary_10_1039_D0SC04575F crossref_primary_10_1002_adma_202313155 crossref_primary_10_1021_acscatal_1c01324 crossref_primary_10_1039_D0TA00658K crossref_primary_10_1021_acs_inorgchem_0c02058 crossref_primary_10_1002_ange_202415208 crossref_primary_10_1016_j_diamond_2024_111814 crossref_primary_10_1016_j_nanoen_2021_106784 crossref_primary_10_1021_acscatal_2c03367 crossref_primary_10_1039_D4NR02852J crossref_primary_10_1002_adma_202002189 crossref_primary_10_1039_C9NR09117C crossref_primary_10_1016_j_jcis_2023_05_108 crossref_primary_10_1002_adma_202110699 crossref_primary_10_1016_j_solmat_2024_113315 crossref_primary_10_1021_acsami_1c21789 crossref_primary_10_1039_D0EE01790F crossref_primary_10_1016_j_apcatb_2021_120667 crossref_primary_10_1021_acsami_3c16456 crossref_primary_10_1039_D0RA00155D crossref_primary_10_1002_adma_202002177 crossref_primary_10_1016_j_cej_2024_158390 crossref_primary_10_1016_j_apcatb_2024_124609 crossref_primary_10_1039_D3TA01063E crossref_primary_10_1021_acsami_9b18263 crossref_primary_10_1021_acscatal_9b02794 crossref_primary_10_1039_D3SC03002D crossref_primary_10_1021_acs_chemmater_2c03788 crossref_primary_10_1016_j_cej_2022_137951 crossref_primary_10_1021_acselectrochem_4c00135 crossref_primary_10_1002_ange_202411068 crossref_primary_10_1039_D2TA07781G crossref_primary_10_1016_j_jpowsour_2022_231832 crossref_primary_10_1016_j_cej_2020_126269 crossref_primary_10_1016_j_eurpolymj_2022_111734 crossref_primary_10_1016_j_electacta_2024_144415 crossref_primary_10_1016_j_cej_2021_133085 crossref_primary_10_1021_acscatal_2c03186 crossref_primary_10_1016_j_nanoen_2020_105126 crossref_primary_10_1093_nsr_nwaa088 crossref_primary_10_1002_ange_202200937 crossref_primary_10_1016_j_chempr_2020_11_002 crossref_primary_10_34133_2019_1401209 crossref_primary_10_1002_smtd_202200561 crossref_primary_10_1016_S1872_2067_22_64178_0 crossref_primary_10_1002_ange_202115198 crossref_primary_10_1002_anie_202205923 crossref_primary_10_1002_anie_202104394 crossref_primary_10_1016_j_ccr_2023_215196 crossref_primary_10_1016_j_enchem_2020_100040 crossref_primary_10_1016_j_inoche_2022_110003 crossref_primary_10_1039_D2TA06938E crossref_primary_10_1039_D2TA01669A crossref_primary_10_1016_S1872_2067_21_63877_9 crossref_primary_10_1039_D1TA04743D crossref_primary_10_1016_j_apcatb_2021_120216 crossref_primary_10_1007_s12274_023_5508_2 crossref_primary_10_1039_D3TA05136F crossref_primary_10_1007_s40242_020_0163_6 crossref_primary_10_1002_smll_202207743 crossref_primary_10_1038_s41378_020_00235_w crossref_primary_10_1007_s12274_024_6480_1 crossref_primary_10_1002_adma_201907690 crossref_primary_10_1002_anie_202215938 crossref_primary_10_1002_adma_202410909 crossref_primary_10_1002_aenm_202303068 crossref_primary_10_1002_celc_202001370 crossref_primary_10_1021_acsanm_4c00522 crossref_primary_10_1016_j_apcatb_2021_120468 crossref_primary_10_1039_D1CS00857A crossref_primary_10_1039_C9TA10935H crossref_primary_10_1016_j_mcat_2023_113531 crossref_primary_10_1002_adfm_202400773 crossref_primary_10_1002_ange_202417631 crossref_primary_10_2139_ssrn_4147430 crossref_primary_10_1016_j_jechem_2023_01_021 crossref_primary_10_1016_j_mcat_2022_112141 crossref_primary_10_1002_aenm_202403295 crossref_primary_10_1126_sciadv_adh9487 crossref_primary_10_1039_D3TA04155G crossref_primary_10_1002_smll_202406718 crossref_primary_10_1016_j_joule_2019_06_020 crossref_primary_10_1016_j_isci_2020_101803 crossref_primary_10_1002_anie_202108769 crossref_primary_10_1021_acs_inorgchem_1c02946 crossref_primary_10_1039_D4CC02012J crossref_primary_10_1039_C9MH01094G crossref_primary_10_1039_D2TA09348K crossref_primary_10_1016_j_jece_2022_107713 crossref_primary_10_1016_j_fmre_2021_09_001 crossref_primary_10_70436_nuijb_v3i02_294 crossref_primary_10_1002_aenm_202400650 crossref_primary_10_1039_C9TA13473E crossref_primary_10_1039_C9NR09624H crossref_primary_10_1002_smll_202301438 crossref_primary_10_1021_acssuschemeng_9b07526 crossref_primary_10_1039_D0EE02263B crossref_primary_10_1002_adfm_202424142 crossref_primary_10_1021_acsenergylett_2c00207 crossref_primary_10_26599_NRE_2022_9120010 crossref_primary_10_1039_D4TA09260K crossref_primary_10_1039_D1TA10273G crossref_primary_10_1002_cssc_202100502 crossref_primary_10_1039_D0EE03596C crossref_primary_10_1039_D0NJ01102A crossref_primary_10_1007_s11426_020_9740_8 crossref_primary_10_1016_j_jechem_2020_01_029 crossref_primary_10_1016_j_apcata_2024_119650 crossref_primary_10_1039_D2EE03956G crossref_primary_10_1016_j_jcis_2020_12_061 crossref_primary_10_1016_j_nantod_2021_101273 crossref_primary_10_1002_cphc_202400379 crossref_primary_10_2139_ssrn_4067022 crossref_primary_10_1016_j_rser_2023_113691 crossref_primary_10_1002_smll_202200996 crossref_primary_10_1016_j_jcis_2023_01_002 crossref_primary_10_1021_acscatal_0c02606 crossref_primary_10_1039_D1EE00806D crossref_primary_10_1515_nanoph_2024_0417 crossref_primary_10_1039_D2DT02131E crossref_primary_10_1016_j_jechem_2020_01_011 crossref_primary_10_1002_anie_202101522 crossref_primary_10_1021_acsami_4c05818 crossref_primary_10_1007_s40843_024_3017_4 crossref_primary_10_1038_s41467_023_44469_4 crossref_primary_10_1039_D3TA01592K crossref_primary_10_1039_D2SC03804H crossref_primary_10_1039_C9TA05505C crossref_primary_10_1002_adfm_202212483 crossref_primary_10_1126_science_abg2371 crossref_primary_10_1002_asia_202000310 crossref_primary_10_2139_ssrn_4117601 crossref_primary_10_1016_j_enchem_2024_100139 crossref_primary_10_1016_j_nanoen_2022_107517 crossref_primary_10_1002_anie_202307780 crossref_primary_10_1021_acsmaterialsau_4c00092 crossref_primary_10_1002_smll_202300794 crossref_primary_10_1016_j_carbon_2023_118359 crossref_primary_10_1039_D2FD00145D crossref_primary_10_1039_D4QI00310A crossref_primary_10_1039_D2CS00368F crossref_primary_10_1002_gch2_202300345 crossref_primary_10_1002_smll_202403253 crossref_primary_10_1016_S1872_2067_23_64464_X crossref_primary_10_1039_D2CP01107G crossref_primary_10_1039_D2TA00070A crossref_primary_10_1021_acsami_1c03698 crossref_primary_10_1002_adfm_202006317 crossref_primary_10_1002_ange_202105536 crossref_primary_10_1021_jacs_3c14816 crossref_primary_10_1016_j_apcatb_2021_120047 crossref_primary_10_1016_j_jechem_2020_10_043 crossref_primary_10_1039_D0SE00445F crossref_primary_10_1021_acsami_1c15206 crossref_primary_10_1016_S1872_2067_22_64136_6 crossref_primary_10_1039_D4CS00217B crossref_primary_10_1002_anie_202015496 crossref_primary_10_1002_celc_201901970 crossref_primary_10_1002_cey2_160 crossref_primary_10_1038_s41467_024_50988_5 crossref_primary_10_1002_adfm_202008983 crossref_primary_10_1016_j_jhazmat_2022_130651 crossref_primary_10_1016_j_apcatb_2020_118919 crossref_primary_10_1002_adfm_202401472 crossref_primary_10_1002_cssc_202002098 crossref_primary_10_1039_D3TA06666E crossref_primary_10_1007_s12209_024_00416_y crossref_primary_10_1016_j_cej_2020_126208 crossref_primary_10_1002_adfm_202107280 crossref_primary_10_1002_anie_202402678 crossref_primary_10_1016_j_ijhydene_2024_05_408 crossref_primary_10_1016_j_chempr_2021_10_008 crossref_primary_10_1021_acsami_3c07947 crossref_primary_10_1002_smtd_202300169 crossref_primary_10_1016_j_cattod_2022_12_010 crossref_primary_10_1016_j_enchem_2019_100013 crossref_primary_10_1007_s10562_022_04112_1 crossref_primary_10_1016_j_jhazmat_2022_129653 crossref_primary_10_1002_ange_201910658 crossref_primary_10_1002_anie_202412426 crossref_primary_10_1016_j_jechem_2020_06_011 crossref_primary_10_1016_j_joule_2021_01_001 crossref_primary_10_1021_jacs_4c00898 crossref_primary_10_1016_j_cej_2024_155474 crossref_primary_10_1039_D1CS00120E crossref_primary_10_1088_1361_6463_ac4b56 crossref_primary_10_1016_j_jechem_2021_01_039 crossref_primary_10_1088_1361_6528_ad1649 crossref_primary_10_1016_j_jhazmat_2022_128892 crossref_primary_10_1021_acsami_4c20810 crossref_primary_10_1016_j_apsusc_2022_154401 crossref_primary_10_1039_C9TA10206J crossref_primary_10_1016_j_mtphys_2020_100310 crossref_primary_10_1002_ange_202307780 crossref_primary_10_1021_acsnano_1c08109 crossref_primary_10_1002_cssc_202102648 crossref_primary_10_1021_acssuschemeng_4c09914 crossref_primary_10_1039_D3EY00191A crossref_primary_10_2139_ssrn_4103273 crossref_primary_10_1002_adma_202312746 crossref_primary_10_1021_acs_nanolett_3c04049 crossref_primary_10_1002_ange_202101522 crossref_primary_10_1016_j_jelechem_2024_118633 crossref_primary_10_1016_j_cej_2023_145368 crossref_primary_10_1002_cssc_202202265 crossref_primary_10_1002_aenm_202302608 crossref_primary_10_1038_s41467_022_28728_4 crossref_primary_10_1016_j_jechem_2020_06_032 crossref_primary_10_1002_aic_18652 crossref_primary_10_1021_acsami_0c22623 crossref_primary_10_1007_s12598_022_02215_7 crossref_primary_10_1038_s41929_021_00599_w crossref_primary_10_1016_j_checat_2021_09_017 crossref_primary_10_1016_j_apsusc_2019_144943 crossref_primary_10_1002_anie_202115409 crossref_primary_10_1002_eem2_12192 crossref_primary_10_1002_cey2_382 crossref_primary_10_1016_j_ccr_2021_213946 crossref_primary_10_1002_adma_201904804 crossref_primary_10_3390_pr10040751 crossref_primary_10_1002_er_6996 crossref_primary_10_1016_j_jechem_2020_07_055 crossref_primary_10_1360_TB_2021_0333 crossref_primary_10_1039_D0TA00384K crossref_primary_10_1016_j_nanoen_2019_104374 crossref_primary_10_1002_adfm_202106684 crossref_primary_10_1007_s10562_024_04681_3 crossref_primary_10_1002_adma_201904870 crossref_primary_10_1016_S1872_2067_21_64001_9 crossref_primary_10_1002_aic_17549 crossref_primary_10_1038_s41467_021_23360_0 crossref_primary_10_1021_acsenergylett_4c02961 crossref_primary_10_1002_adma_202211730 crossref_primary_10_1021_acscatal_4c01510 crossref_primary_10_1039_D4TA00454J crossref_primary_10_1016_j_apsusc_2021_150801 crossref_primary_10_1002_adma_202101126 crossref_primary_10_1016_j_apcatb_2022_121651 crossref_primary_10_1021_acsnano_2c00596 crossref_primary_10_1016_j_jelechem_2021_115953 crossref_primary_10_1016_j_mattod_2020_03_022 crossref_primary_10_1039_D1CC01642C crossref_primary_10_3390_molecules30061271 crossref_primary_10_1021_acs_inorgchem_2c02834 crossref_primary_10_1002_ange_202002923 crossref_primary_10_1016_j_apsusc_2022_154831 crossref_primary_10_1016_j_ces_2022_117735 crossref_primary_10_1002_cctc_202000006 crossref_primary_10_1016_j_cej_2023_146896 crossref_primary_10_1021_acs_jpcc_2c00632 crossref_primary_10_1039_D4CP00076E crossref_primary_10_1007_s11426_020_9795_x crossref_primary_10_1007_s40843_023_2620_4 crossref_primary_10_1016_j_jcat_2021_10_017 crossref_primary_10_3866_PKU_WHXB202307057 crossref_primary_10_1016_j_pmatsci_2022_101044 crossref_primary_10_1039_D2SE00557C crossref_primary_10_1016_j_cattod_2021_06_008 crossref_primary_10_1021_acscatal_0c03985 crossref_primary_10_1002_sstr_202300168 crossref_primary_10_1016_j_apcatb_2022_121876 crossref_primary_10_1016_j_colsurfa_2024_133557 crossref_primary_10_1002_smtd_201900474 crossref_primary_10_1002_adfm_202006939 crossref_primary_10_1016_j_apenergy_2022_119463 crossref_primary_10_54227_mlab_20220011 crossref_primary_10_1016_j_ccr_2022_214468 crossref_primary_10_1039_D4TA08757G crossref_primary_10_1002_advs_202204205 crossref_primary_10_1002_anie_202203170 crossref_primary_10_1002_aesr_202300284 crossref_primary_10_1016_j_diamond_2020_108037 crossref_primary_10_1016_j_ccr_2023_215609 crossref_primary_10_1039_D4EY00002A crossref_primary_10_1039_D3GC02135A crossref_primary_10_1002_ece2_39 crossref_primary_10_1039_D0CC05635A crossref_primary_10_1016_j_mcat_2024_114433 crossref_primary_10_1002_smll_202408111 crossref_primary_10_1002_adfm_202418492 crossref_primary_10_1016_j_chempr_2025_102441 crossref_primary_10_1002_sstr_202200017 crossref_primary_10_1016_j_apsusc_2021_151257 crossref_primary_10_1039_C9CC05309C crossref_primary_10_1016_j_chemosphere_2023_139621 crossref_primary_10_1021_acsami_3c01929 crossref_primary_10_1039_D4EE04438J crossref_primary_10_1016_j_jece_2024_111871 crossref_primary_10_1039_D0NJ04244G crossref_primary_10_1002_aenm_202103872 crossref_primary_10_1039_D4CY00071D crossref_primary_10_3390_catal10030353 crossref_primary_10_1021_acs_jpcc_4c08138 crossref_primary_10_1016_j_enchem_2021_100066 crossref_primary_10_1039_D2CY00428C crossref_primary_10_1002_ange_202300989 crossref_primary_10_1002_cctc_202300076 crossref_primary_10_1002_anie_202107858 crossref_primary_10_1039_D1CP02391H crossref_primary_10_1002_adma_202301477 crossref_primary_10_1039_D3TA06254F crossref_primary_10_1002_eem2_12120 crossref_primary_10_1016_j_fuel_2025_134896 crossref_primary_10_1039_D3TA04848A crossref_primary_10_1016_j_apcatb_2020_118693 crossref_primary_10_3390_nano13182580 crossref_primary_10_1021_acs_energyfuels_4c05837 crossref_primary_10_1002_adma_202210669 crossref_primary_10_1016_j_chempr_2021_01_009 crossref_primary_10_1002_ange_202412426 crossref_primary_10_1016_j_mtnano_2022_100202 crossref_primary_10_1016_j_coelec_2023_101383 crossref_primary_10_1002_cctc_202001775 crossref_primary_10_1021_jacs_1c13396 crossref_primary_10_1002_cssc_202200231 crossref_primary_10_1039_D2QI02290G crossref_primary_10_1021_acscatal_3c02410 crossref_primary_10_1016_j_jece_2023_109275 crossref_primary_10_1002_aenm_202202247 crossref_primary_10_1039_C9CS00159J crossref_primary_10_1039_D0EE03756G crossref_primary_10_1002_ange_202217411 crossref_primary_10_1002_anie_202200937 crossref_primary_10_1016_j_jcat_2022_07_030 crossref_primary_10_1039_D3NR06549A crossref_primary_10_1021_acscatal_3c01315 crossref_primary_10_1039_D3CC02979D crossref_primary_10_1021_acsenergylett_4c00707 crossref_primary_10_1021_acs_langmuir_4c01283 crossref_primary_10_1016_j_apcatb_2020_119325 crossref_primary_10_1021_acs_inorgchem_1c00218 crossref_primary_10_1039_D0TA11797H crossref_primary_10_1002_smll_202106358 crossref_primary_10_1016_j_apcatb_2024_124408 crossref_primary_10_1002_advs_202102915 crossref_primary_10_1039_D4CP04569F crossref_primary_10_1002_smll_202102814 crossref_primary_10_1016_j_apcatb_2021_120844 crossref_primary_10_1021_acsaem_3c03207 crossref_primary_10_1021_acssuschemeng_2c07114 crossref_primary_10_1039_D2EE00953F crossref_primary_10_1016_j_ijhydene_2023_02_039 crossref_primary_10_1021_acsami_2c17280 crossref_primary_10_1016_j_mcat_2021_111935 crossref_primary_10_1016_j_electacta_2022_139988 crossref_primary_10_1063_1674_0068_cjcp2112286 crossref_primary_10_1016_j_jcat_2020_04_025 crossref_primary_10_1016_j_ijhydene_2020_12_147 crossref_primary_10_1021_jacs_3c06402 crossref_primary_10_1016_j_apsusc_2022_155521 crossref_primary_10_1016_j_checat_2024_101157 crossref_primary_10_1016_j_isci_2020_101757 crossref_primary_10_1039_D3TA02403B crossref_primary_10_1021_acssuschemeng_4c05149 crossref_primary_10_1093_nsr_nwaa142 crossref_primary_10_1038_s41467_023_44131_z crossref_primary_10_1021_acs_inorgchem_0c01596 crossref_primary_10_1007_s40843_024_2798_5 crossref_primary_10_1039_D3CC01428B crossref_primary_10_1002_smll_202307315 crossref_primary_10_1039_D2TA08928A crossref_primary_10_1039_D4DT02817A crossref_primary_10_1002_eem2_12552 crossref_primary_10_1002_ange_202402678 crossref_primary_10_1016_j_cej_2022_138320 crossref_primary_10_1002_aenm_202101670 crossref_primary_10_1016_j_chempr_2020_07_006 crossref_primary_10_1039_D3TA01883K crossref_primary_10_1002_ange_202007998 crossref_primary_10_1021_acssuschemeng_0c04091 crossref_primary_10_1039_D4CC05220J crossref_primary_10_1016_j_trechm_2021_11_007 crossref_primary_10_1039_D1QI00258A |
Cites_doi | 10.1016/j.nanoen.2018.03.059 10.1021/acs.jpclett.8b02188 10.1038/s41467-018-04213-9 10.1021/acssuschemeng.8b06163 10.1002/chem.201800535 10.1038/srep01145 10.1016/j.electacta.2017.11.105 10.1002/advs.201802109 10.1038/s41929-018-0092-7 10.1021/acssuschemeng.7b02890 10.1149/2.0071802jes 10.1016/j.chempr.2018.10.010 10.1126/sciadv.aar3208 10.1021/acscatal.8b02585 10.1149/2.0741614jes 10.1021/acs.accounts.7b00616 10.1038/s41929-019-0241-7 10.1126/science.aar6611 10.1021/acscatal.6b00183 10.1021/jacs.8b08379 10.1002/smtd.201800332 10.1021/acs.chemmater.6b02796 10.1149/2.0231607jes 10.1126/sciadv.1700336 10.1021/acscatal.8b02120 10.1016/j.joule.2018.04.017 10.1021/jacs.7b12101 10.1021/acs.accounts.8b00010 10.1039/C1CP22271F 10.1038/ngeo325 10.1021/acscatal.5b01918 10.1002/aenm.201800369 10.1039/C7EE02220D 10.1002/smtd.201800337 10.1016/j.joule.2019.02.003 10.1021/acscatal.9b00366 10.1039/C7EE02716H 10.1002/cssc.201500322 10.1063/1.555713 10.1021/acscatal.6b03035 10.1016/j.coche.2018.05.003 10.1002/anie.201813174 10.1021/acscatal.8b01340 10.1002/smtd.201800331 10.1021/acscatal.8b00905 10.1021/jacs.7b04393 10.1142/8199 10.1038/s41929-019-0252-4 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/c9cs00280d |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 318 |
ExternalDocumentID | 31107485 10_1039_C9CS00280D c9cs00280d |
Genre | Journal Article |
GroupedDBID | - 0-7 02 0R 29B 4.4 53G 5GY 70 705 70J 7~J 85S AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX COF CS3 DU5 DZ EBS ECGLT EE0 EF- EJD F5P GNO H13 HZ H~N IDZ IPNFZ J3I JG M4U N9A O9- OK1 P2P R7B R7D RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 X XFK --- -DZ -~X 0R~ 2WC 6J9 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP HZ~ R56 RAOCF ~02 NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c462t-978960a3d632d242ba83477cc618fbfe820423e8c3bafb3264bca5ad149d6f383 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Thu Jul 10 17:54:35 EDT 2025 Fri Jul 11 05:50:19 EDT 2025 Mon Jun 30 06:07:48 EDT 2025 Thu Apr 03 07:00:24 EDT 2025 Thu Apr 24 23:00:21 EDT 2025 Tue Jul 01 04:18:42 EDT 2025 Sat Jan 08 11:09:30 EST 2022 Wed Nov 11 00:29:03 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c462t-978960a3d632d242ba83477cc618fbfe820423e8c3bafb3264bca5ad149d6f383 |
Notes | Shi-Zhang Qiao is currently a Chair Professor and Australian Laureate Fellow at the School of Chemical Engineering of The University of Adelaide, Australia. Dr Qiao received his PhD in chemical engineering from the Hong Kong University of Science and Technology in 2000. His research expertise is in nanomaterials for electrocatalysis, photocatalysis and energy storage and conversion technologies. Dr Qiao is also a Thomson Reuters/Clarivate Analytics Highly Cited Researcher (Chemistry, Materials Science). In recognition of his achievements in research, he was honored with the prestigious ExxonMobil Award (2016), ARC Discovery Outstanding Researcher Award (2013), the Emerging Researcher Award (2013, ENFL Division of the American Chemical Society) and the ARC, ARF and APD Fellowships. Cheng Tang received his BEng and PhD from the Department of Chemical Engineering, Tsinghua University, in 2013 and 2018, respectively, under the supervision of Prof. Qiang Zhang and Prof. Fei Wei. Currently, he is a postdoctoral researcher at The University of Adelaide working with Prof. Shi-Zhang Qiao. His research focuses on nanomaterials and energy electrocatalysis, including 3D graphene, hierarchical nanomaterials, oxygen reduction/evolution, hydrogen evolution, nitrogen reduction, etc. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4568-8422 0000-0002-5167-1192 |
PMID | 31107485 |
PQID | 2241344102 |
PQPubID | 2047503 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1039_C9CS00280D proquest_miscellaneous_2286856143 proquest_miscellaneous_2232080357 rsc_primary_c9cs00280d crossref_citationtrail_10_1039_C9CS00280D proquest_journals_2241344102 pubmed_primary_31107485 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190617 |
PublicationDateYYYYMMDD | 2019-06-17 |
PublicationDate_xml | – month: 6 year: 2019 text: 20190617 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Choi (C9CS00280D-(cit47)/*[position()=1]) 2018; 8 Wang (C9CS00280D-(cit31)/*[position()=1]) 2018; 9 Zhang (C9CS00280D-(cit42)/*[position()=1]) 2019; 58 Singh (C9CS00280D-(cit9)/*[position()=1]) 2017; 7 Yao (C9CS00280D-(cit40)/*[position()=1]) 2018; 140 Weekes (C9CS00280D-(cit50)/*[position()=1]) 2018; 51 Bligaard (C9CS00280D-(cit13)/*[position()=1]) 2016; 6 Lu (C9CS00280D-(cit48)/*[position()=1]) 2018; 2 Kim (C9CS00280D-(cit37)/*[position()=1]) 2016; 163 Battino (C9CS00280D-(cit22)/*[position()=1]) 1984; 13 Wang (C9CS00280D-(cit5)/*[position()=1]) 2018; 2 Nash (C9CS00280D-(cit39)/*[position()=1]) 2017; 164 Stevens (C9CS00280D-(cit14)/*[position()=1]) 2017; 29 Yan (C9CS00280D-(cit11)/*[position()=1]) 2018; 2 Yang (C9CS00280D-(cit20)/*[position()=1]) 2018; 140 Lee (C9CS00280D-(cit26)/*[position()=1]) 2018; 4 Dunwell (C9CS00280D-(cit34)/*[position()=1]) 2018; 20 Chen (C9CS00280D-(cit17)/*[position()=1]) 2018; 2 C9CS00280D-(cit8)/*[position()=1] Suryanto (C9CS00280D-(cit7)/*[position()=1]) 2019; 2 Kim (C9CS00280D-(cit36)/*[position()=1]) 2016; 163 Chen (C9CS00280D-(cit35)/*[position()=1]) 2017; 139 Abghoui (C9CS00280D-(cit46)/*[position()=1]) 2016; 6 Chen (C9CS00280D-(cit4)/*[position()=1]) 2018; 360 Philibert (C9CS00280D-(cit2)/*[position()=1]) Lan (C9CS00280D-(cit19)/*[position()=1]) 2013; 3 Song (C9CS00280D-(cit30)/*[position()=1]) 2018; 4 Tang (C9CS00280D-(cit49)/*[position()=1]) 2018; 51 Erisman (C9CS00280D-(cit1)/*[position()=1]) 2008; 1 Li (C9CS00280D-(cit25)/*[position()=1]) 2019; 9 Liu (C9CS00280D-(cit3)/*[position()=1]) 2013 Martín (C9CS00280D-(cit21)/*[position()=1]) 2019; 5 Hu (C9CS00280D-(cit29)/*[position()=1]) 2018; 8 Hao (C9CS00280D-(cit32)/*[position()=1]) 2019; 2 Greenlee (C9CS00280D-(cit16)/*[position()=1]) 2018; 8 Montoya (C9CS00280D-(cit44)/*[position()=1]) 2015; 8 Clark (C9CS00280D-(cit15)/*[position()=1]) 2018; 8 Shipman (C9CS00280D-(cit23)/*[position()=1]) 2017; 258 Mukherjee (C9CS00280D-(cit33)/*[position()=1]) 2018; 48 Cui (C9CS00280D-(cit12)/*[position()=1]) 2018; 8 Guo (C9CS00280D-(cit10)/*[position()=1]) 2018; 11 Du (C9CS00280D-(cit24)/*[position()=1]) 2019; 7 Nazemi (C9CS00280D-(cit27)/*[position()=1]) 2018; 9 Zhou (C9CS00280D-(cit28)/*[position()=1]) 2017; 10 Foster (C9CS00280D-(cit6)/*[position()=1]) 2018; 1 Zhao (C9CS00280D-(cit43)/*[position()=1]) 2019; 6 Skulason (C9CS00280D-(cit45)/*[position()=1]) 2012; 14 Lazouski (C9CS00280D-(cit38)/*[position()=1]) 2019; 3 Cui (C9CS00280D-(cit18)/*[position()=1]) 2018; 24 Kong (C9CS00280D-(cit41)/*[position()=1]) 2017; 5 |
References_xml | – doi: Philibert – issn: 2013 publication-title: Ammonia Synthesis Catalysts doi: Liu – volume: 48 start-page: 217 year: 2018 ident: C9CS00280D-(cit33)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.059 – volume: 9 start-page: 5160 year: 2018 ident: C9CS00280D-(cit27)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b02188 – ident: C9CS00280D-(cit8)/*[position()=1] – volume: 9 start-page: 1795 year: 2018 ident: C9CS00280D-(cit31)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-04213-9 – volume: 7 start-page: 6839 year: 2019 ident: C9CS00280D-(cit24)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b06163 – volume: 24 start-page: 18494 year: 2018 ident: C9CS00280D-(cit18)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201800535 – volume: 3 start-page: 1145 year: 2013 ident: C9CS00280D-(cit19)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep01145 – volume: 258 start-page: 618 year: 2017 ident: C9CS00280D-(cit23)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.11.105 – volume: 6 start-page: 1802109 year: 2019 ident: C9CS00280D-(cit43)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201802109 – volume: 1 start-page: 490 year: 2018 ident: C9CS00280D-(cit6)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-018-0092-7 – volume: 5 start-page: 10986 year: 2017 ident: C9CS00280D-(cit41)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b02890 – volume: 164 start-page: F1712 year: 2017 ident: C9CS00280D-(cit39)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/2.0071802jes – volume: 5 start-page: 263 year: 2019 ident: C9CS00280D-(cit21)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2018.10.010 – volume: 4 start-page: eaar3208 year: 2018 ident: C9CS00280D-(cit26)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.aar3208 – volume: 8 start-page: 9312 year: 2018 ident: C9CS00280D-(cit29)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b02585 – volume: 163 start-page: F1523 year: 2016 ident: C9CS00280D-(cit37)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/2.0741614jes – volume: 51 start-page: 881 year: 2018 ident: C9CS00280D-(cit49)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00616 – volume: 2 start-page: 448 year: 2019 ident: C9CS00280D-(cit32)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-019-0241-7 – volume: 360 start-page: eaar6611 year: 2018 ident: C9CS00280D-(cit4)/*[position()=1] publication-title: Science doi: 10.1126/science.aar6611 – volume: 6 start-page: 2590 year: 2016 ident: C9CS00280D-(cit13)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b00183 – volume: 140 start-page: 13387 year: 2018 ident: C9CS00280D-(cit20)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08379 – volume: 2 start-page: 1800332 year: 2018 ident: C9CS00280D-(cit48)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.201800332 – volume: 29 start-page: 120 year: 2017 ident: C9CS00280D-(cit14)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02796 – volume: 163 start-page: F610 year: 2016 ident: C9CS00280D-(cit36)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/2.0231607jes – volume: 4 start-page: e1700336 year: 2018 ident: C9CS00280D-(cit30)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1700336 – volume: 8 start-page: 7820 year: 2018 ident: C9CS00280D-(cit16)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b02120 – volume: 2 start-page: 1055 year: 2018 ident: C9CS00280D-(cit5)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2018.04.017 – volume: 140 start-page: 1496 year: 2018 ident: C9CS00280D-(cit40)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12101 – volume: 51 start-page: 910 year: 2018 ident: C9CS00280D-(cit50)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00010 – volume: 14 start-page: 1235 year: 2012 ident: C9CS00280D-(cit45)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP22271F – volume: 1 start-page: 636 year: 2008 ident: C9CS00280D-(cit1)/*[position()=1] publication-title: Nat. Geosci. doi: 10.1038/ngeo325 – volume: 6 start-page: 635 year: 2016 ident: C9CS00280D-(cit46)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b01918 – volume: 8 start-page: 1800369 year: 2018 ident: C9CS00280D-(cit12)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800369 – volume: 11 start-page: 45 year: 2018 ident: C9CS00280D-(cit10)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02220D – volume: 2 start-page: 1800337 year: 2018 ident: C9CS00280D-(cit17)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.201800337 – volume: 3 start-page: 1127 year: 2019 ident: C9CS00280D-(cit38)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2019.02.003 – volume: 9 start-page: 2902 year: 2019 ident: C9CS00280D-(cit25)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b00366 – volume: 10 start-page: 2516 year: 2017 ident: C9CS00280D-(cit28)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02716H – volume: 8 start-page: 2180 year: 2015 ident: C9CS00280D-(cit44)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201500322 – volume: 13 start-page: 563 year: 1984 ident: C9CS00280D-(cit22)/*[position()=1] publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555713 – volume: 7 start-page: 706 year: 2017 ident: C9CS00280D-(cit9)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b03035 – volume: 20 start-page: 151 year: 2018 ident: C9CS00280D-(cit34)/*[position()=1] publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2018.05.003 – volume: 58 start-page: 2612 year: 2019 ident: C9CS00280D-(cit42)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201813174 – volume: 8 start-page: 6560 year: 2018 ident: C9CS00280D-(cit15)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b01340 – volume: 2 start-page: 1800331 year: 2018 ident: C9CS00280D-(cit11)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.201800331 – volume: 8 start-page: 7517 year: 2018 ident: C9CS00280D-(cit47)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b00905 – volume: 139 start-page: 9771 year: 2017 ident: C9CS00280D-(cit35)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04393 – volume-title: Ammonia Synthesis Catalysts year: 2013 ident: C9CS00280D-(cit3)/*[position()=1] doi: 10.1142/8199 – ident: C9CS00280D-(cit2)/*[position()=1] – volume: 2 start-page: 290 year: 2019 ident: C9CS00280D-(cit7)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-019-0252-4 |
SSID | ssj0011762 |
Score | 2.7095315 |
SecondaryResourceType | review_article |
Snippet | The efficient activation of dinitrogen for the production of ammonia plays a crucial role in our modern society, considering the significant impact of ammonia... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3166 |
SubjectTerms | Ammonia carbon dioxide Chemical reduction Contaminants energy Energy consumption greenhouse gas emissions hydrogen Hydrogen evolution hydrogen production Nitrogen Organic chemistry plague Selectivity |
Title | How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31107485 https://www.proquest.com/docview/2241344102 https://www.proquest.com/docview/2232080357 https://www.proquest.com/docview/2286856143 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagO8AF8WuQMZARXFAVSPMSJzlOpdNAZRyWSr1FduJolUpTpdmB_fV7duwkYxUaXKLKttzIn3-87znve4R8BCXlwzi4vIDIDSa8dONQ-C6IxBMRFEmo0739OGdni-D7Mlz2GQV1dEkjPufXe-NK_gdVLENcVZTsPyDbdYoF-BvxxScijM97YazzwVVKpR9ZtxzzX0JFN45NahvtmfmtBFlx2dYV9jKulVCrRryW6xUXa6u-tFMcXbnib93ydmoC9ttOo13a0_12p8B25gBULtQV1-7Xi8uVq93RQ8eCimVibhtHafbCgHluELXyjHazDOLhpPDHWyT9jKkYbG-wDaqywZFqa-9s1x4otdM8yXf6irfoDyV7EX_-MztdzOdZOlumD8mBj2TAH5GDk1n6bd7dFk0inTi2e2ErQwvJl77v24bHHTaBtkVtc75o2yJ9Sp4YUkBPWoSfkQdy85w8mtpcfC9IikjTpqIGaWqQpn8iTS3StEOaWqQpIk2HSL8ki9NZOj1zTT4MNw-Y37hI-JFvcigY-AWaVoLHEERRnrNJXIpSojGHxrGMcxC8FGiXByLnIS-QBBeshBgOyWhTbeRrQgFZrpAcSphA4Em0CiNl7SvxQ5ZInzvkkx2sLDdi8SpnyTrTHy1Akk2T6YUe2K8O-dC13bYSKXtbHdsxz8wS2mX6VhcNcs93yPuuGsdW3VrxjayuVBvwkdZAGP2tTcxipWkLDnnV4tm9CigPRxCHDjlEgLvifmI45Gh_RbYtyqN7_Ocb8rhfP8dk1NRX8i2aqo14Z2bqDTLYlCg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+to+explore+ambient+electrocatalytic+nitrogen+reduction+reliably+and+insightfully&rft.jtitle=Chemical+Society+reviews&rft.au=Tang%2C+Cheng&rft.au=Qiao%2C+Shi-Zhang&rft.date=2019-06-17&rft.issn=1460-4744&rft.volume=48&rft.issue=12+p.3166-3180&rft.spage=3166&rft.epage=3180&rft_id=info:doi/10.1039%2Fc9cs00280d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |