A Cortical Thickness Mapping Method for the Coxal Bone Using Morphing

As human body finite element models become more integrated with the design of safety countermeasures and regulations, novel models need to be developed that reflect the variation in the population's anthropometry. However, these new models may be missing information which will need to be transl...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in bioengineering and biotechnology Vol. 6; p. 149
Main Authors Giudice, J Sebastian, Poulard, David, Nie, Bingbing, Wu, Taotao, Panzer, Matthew B
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 18.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As human body finite element models become more integrated with the design of safety countermeasures and regulations, novel models need to be developed that reflect the variation in the population's anthropometry. However, these new models may be missing information which will need to be translated from existing models. During the development of a 5th percentile female occupant model (F05), cortical thickness information of the coxal bone was unavailable due to resolution limits in the computed tomography (CT) scans. In this study, a method for transferring cortical thickness information from a source to a target model with entirely different geometry and architecture is presented. The source and target models were the Global Human Body Models Consortium (GHBMC) 50th percentile male (M50) and F05 coxal bones, respectively. To project the coxal bone cortical thickness from the M50 to the F05, the M50 model was first morphed using a Kriging method with 132 optimized control points to the F05 anthropometry. This technique was found to be accurate with a mean nodal discrepancy of 1.27 mm between the F05 and morphed M50 (mM50) coxal bones. Cortical thickness at each F05 node was determined by taking the average cortical thickness of every mM50 node, non-linearly weighted by its distance to the F05 nodes. The non-linear weighting coefficient, β, had a large effect on the accuracy and smoothness of the projected cortical bone thickness. The optimal projection had β = 4 and was defined when the tradeoff between projection accuracy and smoothness was equal. Finally, a quasi-static pelvis compression was simulated to examine to effect of β. As β, increased from 0 to 4, the failure force decreased by ~100 N, whereas the failure displacement increased by 0.9 mm. Results from quasi-static compression tests of the F05 pelvis were comparable to experimental results. This method could be applied to other anatomical regions where cortical thickness variation is important, such as the femur and ribs and is not limited to GHBMC-family models. Furthermore, this process will aid the development of subject-specific finite element models where accurate cortical bone thickness measurements cannot be obtained.
AbstractList As human body finite element models become more integrated with the design of safety countermeasures and regulations, novel models need to be developed that reflect the variation in the population's anthropometry. However, these new models may be missing information which will need to be translated from existing models. During the development of a 5th percentile female occupant model (F05), cortical thickness information of the coxal bone was unavailable due to resolution limits in the computed tomography (CT) scans. In this study, a method for transferring cortical thickness information from a source to a target model with entirely different geometry and architecture is presented. The source and target models were the Global Human Body Models Consortium (GHBMC) 50th percentile male (M50) and F05 coxal bones, respectively. To project the coxal bone cortical thickness from the M50 to the F05, the M50 model was first morphed using a Kriging method with 132 optimized control points to the F05 anthropometry. This technique was found to be accurate with a mean nodal discrepancy of 1.27 mm between the F05 and morphed M50 (mM50) coxal bones. Cortical thickness at each F05 node was determined by taking the average cortical thickness of every mM50 node, non-linearly weighted by its distance to the F05 nodes. The non-linear weighting coefficient, β, had a large effect on the accuracy and smoothness of the projected cortical bone thickness. The optimal projection had β = 4 and was defined when the tradeoff between projection accuracy and smoothness was equal. Finally, a quasi-static pelvis compression was simulated to examine to effect of β. As β, increased from 0 to 4, the failure force decreased by ~100 N, whereas the failure displacement increased by 0.9 mm. Results from quasi-static compression tests of the F05 pelvis were comparable to experimental results. This method could be applied to other anatomical regions where cortical thickness variation is important, such as the femur and ribs and is not limited to GHBMC-family models. Furthermore, this process will aid the development of subject-specific finite element models where accurate cortical bone thickness measurements cannot be obtained.
Author Giudice, J Sebastian
Panzer, Matthew B
Wu, Taotao
Poulard, David
Nie, Bingbing
AuthorAffiliation Department of Mechanical and Aerospace Engineering, Center for Applied Biomechanics, University of Virginia , Charlottesville, VA , United States
AuthorAffiliation_xml – name: Department of Mechanical and Aerospace Engineering, Center for Applied Biomechanics, University of Virginia , Charlottesville, VA , United States
Author_xml – sequence: 1
  givenname: J Sebastian
  surname: Giudice
  fullname: Giudice, J Sebastian
  organization: Department of Mechanical and Aerospace Engineering, Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, United States
– sequence: 2
  givenname: David
  surname: Poulard
  fullname: Poulard, David
  organization: Department of Mechanical and Aerospace Engineering, Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, United States
– sequence: 3
  givenname: Bingbing
  surname: Nie
  fullname: Nie, Bingbing
  organization: Department of Mechanical and Aerospace Engineering, Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, United States
– sequence: 4
  givenname: Taotao
  surname: Wu
  fullname: Wu, Taotao
  organization: Department of Mechanical and Aerospace Engineering, Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, United States
– sequence: 5
  givenname: Matthew B
  surname: Panzer
  fullname: Panzer, Matthew B
  organization: Department of Mechanical and Aerospace Engineering, Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30406094$$D View this record in MEDLINE/PubMed
BookMark eNpVUctOwzAQtBCI950TypFLi19J7AsSVOUhUXEpZ8ux100gjYOdIvh73BYQnDzyzszOao7Qbuc7QOiM4DFjQl66qvEwppiIMcaEyx10SKksRpyIfPcPPkCnMb7gxKF5mQu6jw4Y5rjAkh-i6XU28WFojG6zed2Y1w5izGa675tukc1gqL3NnA_ZUENifiTaTYqRPcfN3Ie-TuAE7TndRjj9fo_R8-10PrkfPT7dPUyuH0eGF3QYycLS0sqSYFsYV3GeO8qgACME1cAJTxBbKwUWnErraCk4K6V0paxYyTU7Rg9bX-v1i-pDs9ThU3ndqM2HDwul18e0oIytkggbKpjkIIrKOWk5VCXl3Am99rraevWragnWQDcE3f4z_T_pmlot_LsqKE758mRw8W0Q_NsK4qCWTTTQtroDv4qKEkZouoOIRMVbqgk-xgDudw3Bal2m2pSp1mWqTZlJcv433q_gpzr2BdwSnKU
CitedBy_id crossref_primary_10_1227_ons_0000000000001159
crossref_primary_10_3390_app11010365
crossref_primary_10_23736_S0394_9508_23_05601_2
crossref_primary_10_1016_j_compbiomed_2024_107986
Cites_doi 10.4271/2006-01-2324
10.1080/15389588.2016.1219728
10.1016/S0020-1383(03)00308-5
10.1115/1.1894148
10.1002/ajpa.1330310202
10.1080/10255842.2012.731594
10.1080/15389588.2018.1450979
10.1109/TMI.2007.904691
10.1097/00005373-199406000-00007
10.1016/j.jbiomech.2007.01.023
10.1080/15389588.2017.1318435
10.1088/0031-9155/44/3/017
10.1016/j.jbiomech.2009.06.006
10.1007/BF01206346
10.1115/1.2953472
10.1080/15389588.2014.950370
10.1080/13588265.2018.1484576
10.1016/j.jbiomech.2009.06.010
10.1002/cnm.2468
10.1080/10255842.2017.1340459
10.4271/983147
10.1080/10255842.2012.713669
ContentType Journal Article
Copyright Copyright © 2018 Giudice, Poulard, Nie, Wu and Panzer. 2018 Giudice, Poulard, Nie, Wu and Panzer
Copyright_xml – notice: Copyright © 2018 Giudice, Poulard, Nie, Wu and Panzer. 2018 Giudice, Poulard, Nie, Wu and Panzer
DBID NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fbioe.2018.00149
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-4185
EndPage 149
ExternalDocumentID oai_doaj_org_article_cdb9b30c28394e86bff9d4eb7244f8aa
10_3389_fbioe_2018_00149
30406094
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
ACGFS
ACXDI
ADBBV
ADRAZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
DIK
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IHR
IPNFZ
ISR
KQ8
M48
M~E
NPM
OK1
PGMZT
RIG
RPM
AAYXX
AFPKN
CITATION
7X8
5PM
ID FETCH-LOGICAL-c462t-96d27d9710d6cfb445f23e6ec882ae4146ec0dd9808429df27843799f79b374a3
IEDL.DBID RPM
ISSN 2296-4185
IngestDate Tue Oct 22 15:12:40 EDT 2024
Tue Sep 17 21:26:54 EDT 2024
Sat Oct 26 01:16:57 EDT 2024
Thu Sep 26 16:04:25 EDT 2024
Wed Oct 16 00:59:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords finite element modeling
pelvis
human body modeling
GHBMC
Kriging
cortical bone
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-96d27d9710d6cfb445f23e6ec882ae4146ec0dd9808429df27843799f79b374a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Pascal Buenzli, School of Mathematical Sciences, Queensland University of Technology, Australia; Enrico Dall'Ara, University of Sheffield, United Kingdom
This article was submitted to Biomechanics, a section of the journal Frontiers in Bioengineering and Biotechnology
Edited by: Stefan Scheiner, Technische Universität Wien, Austria
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6200845/
PMID 30406094
PQID 2131242918
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_cdb9b30c28394e86bff9d4eb7244f8aa
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6200845
proquest_miscellaneous_2131242918
crossref_primary_10_3389_fbioe_2018_00149
pubmed_primary_30406094
PublicationCentury 2000
PublicationDate 2018-10-18
PublicationDateYYYYMMDD 2018-10-18
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-18
  day: 18
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in bioengineering and biotechnology
PublicationTitleAlternate Front Bioeng Biotechnol
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Holden (B13) 2008; 27
Trochu (B28) 1993; 9
Anderson (B1) 2008; 130
Kim (B16) 2009; 42
Song (B27) 2005
Prevrhal (B24) 1999; 44
Ma (B19) 2015; 16
Anderson (B2) 2005; 127
Jolivet (B15) 2015; 59
Inaba (B14) 2004; 35
Hallquist (B12) 2007; 970
Besnault (B3) 1998
Serre (B26) 2006
Gayzik (B8) 2011
Gokcen (B9) 1994; 36
Hallquist (B11) 2006; 3
Vezin (B29) 2009; 53
Wang (B30) 2004; 48
Wu (B31) 2017; 18
Kim (B17) 2014; 17
Li (B18) 2007; 40
Nie (B20) 2017; 18
Salo (B25) 2012; 28
Chen (B4) 2018; 19
Guillemot (B10) 1998
Nie (B21) 2018
B6
Poulard (B23) 2012; 15
Coleman (B5) 1969; 31
Dumas (B7) 2009; 42
Park (B22) 2017; 20
References_xml – volume-title: SAE Technical Paper
  year: 2006
  ident: B26
  article-title: HUMOS (Human Model for Safety) geometry: from one specimen to the 5th and 95th percentile
  doi: 10.4271/2006-01-2324
  contributor:
    fullname: Serre
– volume: 18
  start-page: 207
  year: 2017
  ident: B20
  article-title: Computational investigation of the effects of knee airbag design on the interaction with occupant lower extremity in frontal and oblique impacts
  publication-title: Traffic Inj. Prev
  doi: 10.1080/15389588.2016.1219728
  contributor:
    fullname: Nie
– start-page: 39
  volume-title: Injury Biomechanics Research Proceedings of the Thirty-Ninth International Workshop
  year: 2011
  ident: B8
  article-title: Development of the global human body models consortium mid-sized male full body model
  contributor:
    fullname: Gayzik
– volume: 59
  start-page: 337
  year: 2015
  ident: B15
  article-title: Comparison of kriging and moving least square methods to change the geometry of human body models
  publication-title: Stapp Car Crash J.
  contributor:
    fullname: Jolivet
– volume: 48
  start-page: 287
  year: 2004
  ident: B30
  article-title: Gender differences in hip anatomy: possible implications for injury tolerance in frontal collisions
  publication-title: Annu Proc Assoc Adv Automot Med
  contributor:
    fullname: Wang
– volume: 35
  start-page: 759
  year: 2004
  ident: B14
  article-title: The increasing incidence of severe pelvic injury in motor vehicle collisions
  publication-title: Injury
  doi: 10.1016/S0020-1383(03)00308-5
  contributor:
    fullname: Inaba
– volume: 3
  start-page: 25
  year: 2006
  ident: B11
  article-title: LS-DYNA theory manual
  publication-title: Livermore Softw. Technol. Corp
  contributor:
    fullname: Hallquist
– volume: 53
  start-page: 93
  year: 2009
  ident: B29
  article-title: Structural characterization of human rib cage behavior under dynamic loading
  publication-title: Stapp Car Crash J.
  contributor:
    fullname: Vezin
– volume: 127
  start-page: 364
  year: 2005
  ident: B2
  article-title: Subject-specific finite element model of the pelvis: development, validation and sensitivity studies
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1894148
  contributor:
    fullname: Anderson
– volume: 31
  start-page: 125
  year: 1969
  ident: B5
  article-title: Sex differences in the growth of the human bony pelvis
  publication-title: Am. J. Phys. Anthropol
  doi: 10.1002/ajpa.1330310202
  contributor:
    fullname: Coleman
– volume: 17
  start-page: 997
  year: 2014
  ident: B17
  article-title: A new cortical thickness mapping method with application to an in vivo finite element model
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2012.731594
  contributor:
    fullname: Kim
– volume: 19
  start-page: 542
  year: 2018
  ident: B4
  article-title: Evaluation of geometrically personalized THUMS pedestrian model response against sedan-pedestrian PMHS impact test data
  publication-title: Traffic Inj. Prev
  doi: 10.1080/15389588.2018.1450979
  contributor:
    fullname: Chen
– volume: 970
  start-page: 299
  year: 2007
  ident: B12
  article-title: LS-DYNA keyword user's manual. livermore Softw. Technol
  publication-title: Corp
  contributor:
    fullname: Hallquist
– volume: 27
  start-page: 111
  year: 2008
  ident: B13
  article-title: A review of geometric transformations for nonrigid body registration
  publication-title: Med. Imaging IEEE Trans.
  doi: 10.1109/TMI.2007.904691
  contributor:
    fullname: Holden
– volume: 36
  start-page: 789
  year: 1994
  ident: B9
  article-title: Pelvic fracture mechanism of injury in vehicular trauma patients
  publication-title: J. Trauma Inj. Infect. Crit. Care
  doi: 10.1097/00005373-199406000-00007
  contributor:
    fullname: Gokcen
– volume: 40
  start-page: 2758
  year: 2007
  ident: B18
  article-title: Biomechanical response of the pubic symphysis in lateral pelvic impacts: a finite element study
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2007.01.023
  contributor:
    fullname: Li
– volume: 18
  start-page: S148
  year: 2017
  ident: B31
  article-title: Evaluation of biofidelity of THUMS pedestrian model under a whole-body impact conditions with a generic sedan buck
  publication-title: Traffic Inj. Prev
  doi: 10.1080/15389588.2017.1318435
  contributor:
    fullname: Wu
– volume: 44
  start-page: 751
  year: 1999
  ident: B24
  article-title: Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters
  publication-title: Phys. Med. Biol
  doi: 10.1088/0031-9155/44/3/017
  contributor:
    fullname: Prevrhal
– volume: 42
  start-page: 2214
  year: 2009
  ident: B7
  article-title: Soft tissue artifact compensation by linear 3D interpolation and approximation methods
  publication-title: J. Biomech
  doi: 10.1016/j.jbiomech.2009.06.006
  contributor:
    fullname: Dumas
– volume: 9
  start-page: 160
  year: 1993
  ident: B28
  article-title: A contouring program based on dual kriging interpolation
  publication-title: Eng. Comput
  doi: 10.1007/BF01206346
  contributor:
    fullname: Trochu
– start-page: 1412
  volume-title: Proceedings of the 16th International Technical Conference of the Enhanced Safety of Vehicles
  year: 1998
  ident: B10
  article-title: Pelvic behavior in side collisions: static and dynamic tests on isolated pelvic bones
  contributor:
    fullname: Guillemot
– volume: 130
  start-page: 051008
  year: 2008
  ident: B1
  article-title: Validation of finite element predictions of cartilage contact pressure in the human hip joint
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2953472
  contributor:
    fullname: Anderson
– volume: 16
  start-page: 409
  year: 2015
  ident: B19
  article-title: Finite element study of human pelvis model in side impact for chinese adult occupants
  publication-title: Traffic Inj. Prev
  doi: 10.1080/15389588.2014.950370
  contributor:
    fullname: Ma
– ident: B6
– year: 2018
  ident: B21
  article-title: Evaluation and injury investion of a finite element foot and ankle model for small female occupants
  publication-title: Int. J. Crashworthiness
  doi: 10.1080/13588265.2018.1484576
  contributor:
    fullname: Nie
– volume: 42
  start-page: 2191
  year: 2009
  ident: B16
  article-title: Finite element model development of a child pelvis with optimization-based material identification
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.06.010
  contributor:
    fullname: Kim
– volume: 28
  start-page: 904
  year: 2012
  ident: B25
  article-title: Evaluation of mesh morphing and mapping techniques in patient specific modelling of the human pelvis
  publication-title: Int. J. Numer. Methods Biomed. Eng
  doi: 10.1002/cnm.2468
  contributor:
    fullname: Salo
– volume: 20
  start-page: 1151
  year: 2017
  ident: B22
  article-title: Prediction of the structural response of the femoral shaft under dynamic loading using subject-specific finite element models
  publication-title: Comput. Methods Biomech. Biomed. Eng
  doi: 10.1080/10255842.2017.1340459
  contributor:
    fullname: Park
– year: 1998
  ident: B3
  article-title: A parametric finite element model of the human pelvis
  publication-title: SAE Technical Paper 983147
  doi: 10.4271/983147
  contributor:
    fullname: Besnault
– volume-title: Proceedings: International Technical Conference on the Enhanced Safety of Vehicles, National Highway Traffic Safety Administration
  year: 2005
  ident: B27
  article-title: Pelvis bone fracture modeling in lateral impact
  contributor:
    fullname: Song
– volume: 15
  start-page: 298
  year: 2012
  ident: B23
  article-title: Geometrical personalisation of human FE model using palpable markers on volunteers
  publication-title: Comput. Methods Biomech. Biomed. Eng
  doi: 10.1080/10255842.2012.713669
  contributor:
    fullname: Poulard
SSID ssj0001257582
Score 2.1360242
Snippet As human body finite element models become more integrated with the design of safety countermeasures and regulations, novel models need to be developed that...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 149
SubjectTerms Bioengineering and Biotechnology
cortical bone
finite element modeling
GHBMC
human body modeling
Kriging
pelvis
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7Et-uLCF48LO4jm90cW2kpQj210FvI0xZhV2oL_nwnSVu2InjxsiybQMI32ZlvkuELQg8FcHhmiImFYjqGfCOPpdE5_HhO7ia1CdO-yveVDifkZVpMW1d9uZqwIA8cgHtSWjKZJwrCICOmotJapomRJcQlW4lAjRLWSqbC7grQkCoL55KQhbEnK-eNk8VMXe1k6qQzW3HIy_X_xjF_lkq2Ys_gCB2uSSPuhskeoz1Tn6CDlpTgKep38XOz8BvTeDybq3fnwvBIOPmFNzzy90RjIKgYCB_0_IJuvaY22JcM4FEDcMPLGZoM-uPnYby-IiFWhGbLmFGdlZoBTdBUWUlIYbPcUKOAOAtDwA0alWjNqqSCwKOtO2bMS8ZsCaCWROTnqFPDaJcIE1Eym0hRKKNJmkKSrWXGhDXwMOCeI_S4AYx_BCUMDhmEA5d7cLkDl3twI9RziG77OQ1r_wEsy9eW5X9ZNkL3G3twWPPuIEPUpll98izNgZZkLK0idBHssx0qB69EIWeNULljuZ257LbU85nX1aauFoQUV_8x-Wu07-BwUS6tblBnuViZW6AvS3nnV-o3YoXwFg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEC5WF0QPsuqq7bqSBS8e2u1H-pHDIiqKCOPJAW8hTx2Ubh1H0H9vVbrHdZY57aVpuhM6fJWkvkqqvwDsF8jhheMuVkbYGOONPNbO5jjwSO4m9YmwIcv3qrwY8sub4ubv79E9gM9zQzs6T2o4fjh8fXo7wgH_hyJO9Le_vR61pHiZUlokMv4F-JpxjNMpka8n-92KC1KTOuv2KudWXIYljO6TMhF8xk0FNf95FPTfTMpPrun8G6z2nJIdd51gDb64Zh1WPikNbsDZMTttx2Hdml3fjcw9zXBsoEid4ZYNwjHSDPkrQz6IJV-x2EnbOBYyCtigRWvgzXcYnp9dn17E_QkKseFlNolFabPKCmQRtjRec174LHelM8irleM4SzqTWCvqpEa_ZD3tQuaVEL4SOq-4yjdhscGvbQPjqhI-0aowzvI0xRjc6kwo7_DicPaO4GAKmHzshDIkBhiEsww4S8JZBpwjOCFEP8qRxHV40I5vZT9ipLEaG5EY5D-Cu7rU3gvLna6QkPhaqQh-Te0hcUjQPodqXPvyLLM0R9aSibSOYKuzz8enpvaNoJqx3ExbZt80o7sgu11Sqggvdv675g9YJgzI86X1LixOxi_uJ1Kaid4LPfUdu7f3Gg
  priority: 102
  providerName: Scholars Portal
Title A Cortical Thickness Mapping Method for the Coxal Bone Using Morphing
URI https://www.ncbi.nlm.nih.gov/pubmed/30406094
https://search.proquest.com/docview/2131242918
https://pubmed.ncbi.nlm.nih.gov/PMC6200845
https://doaj.org/article/cdb9b30c28394e86bff9d4eb7244f8aa
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BHip6QNCWNkCRkbj0EDYP5zHHZQVCSKl6AImb5SesgARtF4mfz9jZoN2KUy9WlDiy9c3E_j57MgY4KYjDo-U2lhpNTHojj5U1OX14Pt1N6hI0Icr3d3l5w69ui9sNKIZ_YULQvlaz0_bx6bSd3YfYyucnPR7ixMZ_mmnpN-15Md6ETXLQFYneL6wQA6mzfkuSBBiOnZp1PiNm6sMmSRFswScS8UmZIF-bjULS_o-Y5r8Bkysz0MUObC-pI5v0XdyFDdt-gc8rCQW_wvmETbt5WJ5m1_cz_eAHMtZIn4ThjjXhtGhGNJUR7aOar1TtrGstC4EDrOkIdLr4BjcX59fTy3h5UEKseZktYixNVhkksmBK7RTnhctyW1pN9FlaToOh1YkxWBNqGRrnNxvzCtFVqPKKy3wPRi219gMYlxW6RMlCW8PTlKS2URlKZ6mwNEhH8GsATDz3-TAE6QiPswg4C4-zCDhHcOYRfa_nM1mHG938TiztKbRR1IlEE81BbutSOYeGW1UR73C1lBEcD_YQ5Pl-O0O2tnv5K7I0J3KSYVpH8L23z3tTg30jqNYst9aX9SfkbCG79tK59v_7zQPY8hj4CS6tD2G0mL_Yn8RcFuooKH4qG14fBa99AyEN8PI
link.rule.ids 230,315,730,783,787,867,888,2109,24330,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT9wwFH6iVKL0QBcoTWmpkXrhkJkszuIjjEBTShCHAXGzvMKIkqBhRqr66_vsTNAM4kIvURQ78os_L9-zXz4D_MiQwzNDTSgU0yH6G2kojU6x4zm5m9hGTPso37N8eEFPrrKrFci6f2F80L6S4179-65Xj298bOX9nep3cWL982qQu017mvVfwWvsrxFdcNLbpRXkIGXSbkqiC8b6Vo4bp4kZu8BJ9AnWYQ3d-CiPGF2aj7xs_3Nc82nI5MIcdPwOLjvr29CT295sKnvq7xNhxxd_3nvYmLNSctAmf4AVU3-EtwtahZtwdEAGzcSvfJPRzVjdujGSVMLpO1yTyh9ETZABE2SUmPMPZjtsakN8TAKpGsQTb7bg4vhoNBiG8zMYQkXzZBqyXCeFZshDdK6spDSzSWpyo5CZC0NxnDUq0pqVaHHCtHX7mGnBmC2YTAsq0k-wWmNpn4FQUTAbSZEpo2kcoxevZcKENXgxOP4HsN8hwe9bqQ2OLooDkHsAuQOQewADOHRQPeZzItn-QTO55vO65EpLNCJSyKAYNWUurWWaGlkgpbGlEAHsdUBz7FRup0TUppk98CROkfckLC4D2G6BfyyqazgBFEtNYsmW5RQE2gt3z4H98t9vfoc3w1F1yk9_nv3agXVXH24ejcuvsDqdzMw3JEhTueu7wz_xzBEh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61VEL0UPqipNDWlXrpIZuX48RHWFjRxyIOIKFeLD9hBSSr7a5U9dd37GzQLuqJSxQlE8X257G_sUefAb6UyOG5pTaWmpsY440iVtYU6Hhe7iZzKTchy_eUnVzQ75fl5cpRXyFpX6vJoLm9GzST65BbOb3TSZ8nlpyNh8xv2tMymRqXPIVn6LMpWwnUu-UV5CF13m1MYhjGE6cmrdfFzHzyJMYFW7CJoXzKUk7X5qQg3f8_vvkwbXJlHhptw6--Bl36yc1gMVcD_feBuOOjqvgSXizZKTnoTF7BE9u8hucrmoVv4PiADNtZWAEn59cTfePHSjKWXufhiozDgdQEmTBBZomWf9DssG0sCbkJZNwirnjzFi5Gx-fDk3h5FkOsKcvnMWcmrwxHPmKYdorS0uWFZVYjQ5eW4nhrdWoMr7HUOTfO72cWFeeu4qqoqCx2YKPBv-0CobLiLlWy1NbQLMNo3qicS2fxYnEeiOBrj4aYdpIbAkMVD6IIIAoPogggRnDo4bq382LZ4UE7uxLL9hTaKCxEqpFJcWprppzjhlpVIbVxtZQRfO7BFuhcfsdENrZd_BZ5ViD_yXlWR_CuA__-V33niaBa6xZrZVl_g2AHAe8luO8f_eUn2Dw7Gomf305_7MGWbw4_nWb1PmzMZwv7AXnSXH0MHvEPeXMToQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Cortical+Thickness+Mapping+Method+for+the+Coxal+Bone+Using+Morphing&rft.jtitle=Frontiers+in+bioengineering+and+biotechnology&rft.au=Giudice%2C+J.+Sebastian&rft.au=Poulard%2C+David&rft.au=Nie%2C+Bingbing&rft.au=Wu%2C+Taotao&rft.date=2018-10-18&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-4185&rft.volume=6&rft_id=info:doi/10.3389%2Ffbioe.2018.00149&rft_id=info%3Apmid%2F30406094&rft.externalDBID=PMC6200845
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-4185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-4185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-4185&client=summon