Crude oil price analysis and forecasting: A perspective of “new triangle”
In this paper, the new structural characteristics and core influencing factors of the crude oil prices are summarized based on previous representative research results. Firstly, a newly dynamic Bayesian structural time series model (DBSTS) is developed to investigate the oil prices. In particular, G...
Saved in:
Published in | Energy economics Vol. 87; p. 104721 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier B.V
01.03.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, the new structural characteristics and core influencing factors of the crude oil prices are summarized based on previous representative research results. Firstly, a newly dynamic Bayesian structural time series model (DBSTS) is developed to investigate the oil prices. In particular, Google trend is introduced as an indicator to reflect the impact of search data on the oil price. Secondly, the spike and slab method is employed to select core influence factors. Finally, the Bayesian model average (BMA) is utilized to predict the oil price. Experimental results confirm that the supply and demand of global crude oil and the financial market are still the main factors affecting the oil price. Furthermore, Google trend can reflect the changes in the crude oil price to a certain extent. Moreover, the impact of shale oil production on the oil price is gradually increasing, yet remains relatively small. In addition, the DBSTS model can identify turning points in historical data (such as the 2008 financial crisis). Finally, the findings suggest the DBSTS model has good predictive capabilities in short-term prediction, making it suitable for analyzing the crude oil prices.
•A novel dynamic Bayesian structural time series model is developed.•415 explanatory variables are included, especially, Google trend search data.•Spike-slab regression is used to extract core factors and analyze new structural characteristics.•The impact of shale oil production on oil price is small relatively.•Turning points of historical oil price are identified and analyzed. |
---|---|
AbstractList | In this paper, the new structural characteristics and core influencing factors of the crude oil prices are summarized based on previous representative research results. Firstly, a newly dynamic Bayesian structural time series model (DBSTS) is developed to investigate the oil prices. In particular, Google trend is introduced as an indicator to reflect the impact of search data on the oil price. Secondly, the spike and slab method is employed to select core influence factors. Finally, the Bayesian model average (BMA) is utilized to predict the oil price. Experimental results confirm that the supply and demand of global crude oil and the financial market are still the main factors affecting the oil price. Furthermore, Google trend can reflect the changes in the crude oil price to a certain extent. Moreover, the impact of shale oil production on the oil price is gradually increasing, yet remains relatively small. In addition, the DBSTS model can identify turning points in historical data (such as the 2008 financial crisis). Finally, the findings suggest the DBSTS model has good predictive capabilities in short-term prediction, making it suitable for analyzing the crude oil prices.
•A novel dynamic Bayesian structural time series model is developed.•415 explanatory variables are included, especially, Google trend search data.•Spike-slab regression is used to extract core factors and analyze new structural characteristics.•The impact of shale oil production on oil price is small relatively.•Turning points of historical oil price are identified and analyzed. In this paper, the new structural characteristics and core influencing factors of the crude oil prices are summarized based on previous representative research results. Firstly, a newly dynamic Bayesian structural time series model (DBSTS) is developed to investigate the oil prices. In particular, Google trend is introduced as an indicator to reflect the impact of search data on the oil price. Secondly, the spike and slab method is employed to select core influence factors. Finally, the Bayesian model average (BMA) is utilized to predict the oil price. Experimental results confirm that the supply and demand of global crude oil and the financial market are still the main factors affecting the oil price. Furthermore, Google trend can reflect the changes in the crude oil price to a certain extent. Moreover, the impact of shale oil production on the oil price is gradually increasing, yet remains relatively small. In addition, the DBSTS model can identify turning points in historical data (such as the 2008 financial crisis). Finally, the findings suggest the DBSTS model has good predictive capabilities in short-term prediction, making it suitable for analyzing the crude oil prices. |
ArticleNumber | 104721 |
Author | Lu, Quanying Li, Yuze Wang, Shouyang Chai, Jian |
Author_xml | – sequence: 1 givenname: Quanying surname: Lu fullname: Lu, Quanying email: luquanying0705@163.com organization: School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China – sequence: 2 givenname: Yuze surname: Li fullname: Li, Yuze email: richardyz.li@ucas.ac.cn organization: Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China – sequence: 3 givenname: Jian surname: Chai fullname: Chai, Jian email: chaijian0376@126.com organization: School of Economics and Management, Xidian University, Xi'an 710126, China – sequence: 4 givenname: Shouyang surname: Wang fullname: Wang, Shouyang email: sywang@amss.ac.cn organization: School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China |
BookMark | eNqFkL9OwzAQhy1UJNrCE7BEYk6xEydOkBiqin9SEQvMluNcKkfBLrZb1K0PAi_XJ8EhTAww3en0-0533wSNtNGA0DnBM4JJftnOQIM0swQn_YSyhByhMSlYGuekICM0xoTiuCyK9ARNnGsxxlmeFWP0uLCbGiKjumhtlYRIaNHtnHKhqaPGWJDCeaVXV9E8WoN1a5BebQPRRIf9h4b3yFsl9KqDw_7zFB03onNw9lOn6OX25nlxHy-f7h4W82UsaZ74uKSixLRkiWzqpgRWVWmViYqlAhe5qHBZp0wmrBFl3mSQ1rQIM4qzOqRYlpF0ii6GvWtr3jbgPG_NxobLHU8opXlBGO5T6ZCS1jhnoeHhxVdhd5xg3nvjLf_2xntvfPAWqPIXJZUXXhntrVDdP-z1wEJ4fqvAcicVaAm1CiI9r436k_8CGqaNRg |
CitedBy_id | crossref_primary_10_1016_j_energy_2021_122706 crossref_primary_10_1016_j_energy_2023_129740 crossref_primary_10_1016_j_gsf_2023_101670 crossref_primary_10_1016_j_renene_2022_10_086 crossref_primary_10_1108_IJDI_12_2021_0264 crossref_primary_10_1016_j_eneco_2024_107609 crossref_primary_10_1007_s10614_024_10550_3 crossref_primary_10_1016_j_eneco_2023_106956 crossref_primary_10_1016_j_resourpol_2021_102073 crossref_primary_10_1016_j_apenergy_2023_122102 crossref_primary_10_1016_j_tourman_2023_104759 crossref_primary_10_1016_j_eneco_2021_105189 crossref_primary_10_1016_j_petsci_2023_09_007 crossref_primary_10_1016_j_renene_2022_08_039 crossref_primary_10_1108_SEF_12_2023_0738 crossref_primary_10_1016_j_eneco_2025_108350 crossref_primary_10_1016_j_energy_2020_117520 crossref_primary_10_1016_j_renene_2022_08_082 crossref_primary_10_1016_j_resourpol_2024_104966 crossref_primary_10_1007_s00477_024_02674_7 crossref_primary_10_1016_j_esr_2024_101318 crossref_primary_10_1016_j_resourpol_2023_104622 crossref_primary_10_1016_j_resourpol_2022_102982 crossref_primary_10_1007_s11356_022_24186_z crossref_primary_10_1016_j_frl_2022_102919 crossref_primary_10_1016_j_engappai_2023_106266 crossref_primary_10_1002_for_3167 crossref_primary_10_1007_s10614_024_10762_7 crossref_primary_10_1016_j_eneco_2023_106736 crossref_primary_10_1142_S2737599424500130 crossref_primary_10_1016_j_eneco_2023_107187 crossref_primary_10_1016_j_eneco_2024_107466 crossref_primary_10_1016_j_eap_2022_09_006 crossref_primary_10_1016_j_energy_2023_129954 crossref_primary_10_1016_j_irfa_2025_104124 crossref_primary_10_3934_DSFE_2022008 crossref_primary_10_1016_j_eneco_2022_105937 crossref_primary_10_1016_j_irfa_2021_101953 crossref_primary_10_1007_s13369_020_05252_5 crossref_primary_10_1080_15427560_2021_1913160 crossref_primary_10_1016_j_engappai_2021_104217 crossref_primary_10_1016_j_eneco_2023_106603 crossref_primary_10_1016_j_apenergy_2024_123885 crossref_primary_10_1016_j_eneco_2024_107952 crossref_primary_10_1016_j_eswa_2022_119326 crossref_primary_10_1016_j_eneco_2022_106467 crossref_primary_10_1016_j_energy_2020_118881 crossref_primary_10_1016_j_apenergy_2021_117393 crossref_primary_10_1016_j_eap_2022_11_024 crossref_primary_10_1016_j_energy_2022_125407 |
Cites_doi | 10.1080/07350015.1995.10524599 10.1016/j.eneco.2007.02.012 10.1016/j.ijforecast.2010.06.001 10.1016/j.apenergy.2011.07.038 10.1016/j.eneco.2018.02.021 10.1257/aer.99.3.1053 10.1080/01621459.1994.10476894 10.1016/j.eneco.2017.09.002 10.1016/j.enpol.2011.09.057 10.1016/j.eneco.2010.08.006 10.1016/j.eneco.2017.05.023 10.1016/j.eneco.2018.02.004 10.2307/2527342 10.1016/j.apenergy.2015.01.005 10.1016/j.eneco.2016.02.017 10.1016/j.eneco.2017.08.009 10.1016/j.eneco.2015.02.014 10.1111/jmcb.12430 10.1016/j.apenergy.2015.07.025 10.1016/j.jbankfin.2014.05.026 10.1016/j.econmod.2015.04.005 10.1214/lnms/1215540964 10.1016/j.eneco.2015.02.018 10.1016/j.eneco.2013.07.028 10.1016/j.ijforecast.2017.11.005 10.1016/j.apenergy.2013.02.060 10.1016/j.jeconom.2005.01.027 10.1016/j.eneco.2016.09.020 10.1198/016214507000001337 10.1016/j.eneco.2017.09.010 10.1016/j.apenergy.2011.12.030 10.1016/j.eneco.2014.02.014 10.1016/j.eneco.2009.10.005 10.1016/j.eneco.2018.07.026 10.1016/j.eneco.2012.03.010 10.1016/j.ijforecast.2015.02.006 10.1016/j.eneco.2014.05.015 10.1016/j.eneco.2013.04.003 10.18637/jss.v027.i03 10.1002/1099-131X(200007)19:4<255::AID-FOR773>3.0.CO;2-G 10.1002/fut.21685 10.1016/j.eneco.2016.06.002 10.1016/j.eneco.2017.07.007 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier Science Ltd. Mar 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Mar 2020 |
DBID | AAYXX CITATION 7ST 7TA 7TQ 8BJ 8FD C1K DHY DON FQK JBE JG9 SOI |
DOI | 10.1016/j.eneco.2020.104721 |
DatabaseName | CrossRef Environment Abstracts Materials Business File PAIS Index International Bibliography of the Social Sciences (IBSS) Technology Research Database Environmental Sciences and Pollution Management PAIS International PAIS International (Ovid) International Bibliography of the Social Sciences International Bibliography of the Social Sciences Materials Research Database Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database International Bibliography of the Social Sciences (IBSS) Technology Research Database PAIS International Environment Abstracts Materials Business File Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics |
EISSN | 1873-6181 |
ExternalDocumentID | 10_1016_j_eneco_2020_104721 S0140988320300608 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFFL AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAQXK AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACHQT ACIWK ACRLP ACROA ADBBV ADEZE ADFHU ADIYS ADMUD AEBSH AEFWE AEKER AEYQN AFKWA AFODL AFRAH AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AHIDL AIEXJ AIIAU AIKHN AITUG AJBFU AJOXV AJWLA ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AXLSJ AZFZN BEHZQ BELTK BEZPJ BGSCR BKOJK BKOMP BLXMC BNTGB BPUDD BULVW BZJEE CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMB HVGLF HZ~ IHE IXIXF J1W JARJE KOM KZ1 LY5 LY6 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SAC SCC SDF SDG SDP SEB SEE SES SEW SPC SPCBC SSB SSF SSR SSZ T5K TN5 U5U WH7 WUQ YK3 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADMHG ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST 7TA 7TQ 8BJ 8FD C1K DHY DON EFKBS FQK JBE JG9 SOI |
ID | FETCH-LOGICAL-c462t-94a904972cfdf9e7bb3b5ab73a086ab09d37c27fa96f5e3d48b09405db5a75513 |
IEDL.DBID | .~1 |
ISSN | 0140-9883 |
IngestDate | Wed Aug 13 09:53:35 EDT 2025 Thu Apr 24 23:16:21 EDT 2025 Tue Jul 01 01:39:19 EDT 2025 Fri Feb 23 02:47:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Google trend C53 C11 C22 Q4 Crude oil Dynamic Bayesian structural time series model Bayesian model average C15 Spike and slab prior Kalman filtering C2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-94a904972cfdf9e7bb3b5ab73a086ab09d37c27fa96f5e3d48b09405db5a75513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2444681701 |
PQPubID | 32146 |
ParticipantIDs | proquest_journals_2444681701 crossref_primary_10_1016_j_eneco_2020_104721 crossref_citationtrail_10_1016_j_eneco_2020_104721 elsevier_sciencedirect_doi_10_1016_j_eneco_2020_104721 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Energy economics |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Silva, Legey, Silva (bb0205) 2010; 32 Chai, Xing, Zhou, Zhang, Li (bb0040) 2018; 71 Yu, Wang, Tang (bb0260) 2015; 156 Schmidl, Matthias., 2015. On the predictive performance of Bayesian structural time series-models. Scott (bb0190) 2014 Song, Li, Witt, Athanasopoulos (bb0210) 2011; 27 Scott, Varian (bb0195) 2012; 5(1/2) Bu (bb0025) 2014; 46 Castle, Qin, Reed (bb0030) 2009; 32 Madigan, Raftery (bb0145) 1994; 89 Clements, Smith (bb0060) 2000; 19 Naser (bb0160) 2016; 56 Tang, Yu, Wang, Li, Wang (bb0215) 2012; 93 Barsky, Kilian, Blanchard (bb0005) 2002; 16 Baumeister, Kilian (bb0010) 2016; 3 Kilian, Vigfusson (bb0125) 2017; 49 Wang, Wu, Yang (bb0240) 2016; 32 Wang, Liu, Wu (bb0245) 2017; 66 Ratti, Vespignani (bb0175) 2016; 59 Scott, Varian (bb0200) 2013 Chang, Lee (bb0045) 2015; 50 Chai, Guo, Meng, Wang (bb0035) 2011; 39 Drachal (bb0075) 2016; 60 Haugom, Langeland, Molnár, Westgaard (bb0100) 2014; 47 Charles, Darné (bb8000) 2017; 67 Zhang, Lai, Wang (bb0280) 2008; 30 Diebold, Tay, Gunther (bb0070) 1998; 39 Valadkhani, Smyth (bb0220) 2017; 67 Liang, Paulo, Molina, Clyde, Berger (bb0135) 2008; 103 Xiong, Bao, Hu (bb0255) 2013; 40 Zhang, Zhang (bb0290) 2015; 143 Zellner (bb0270) 1986; 6 Hamilton (bb0085) 2009 Sadorsky (bb0180) 2014; 43 Ratti, Vespignani (bb0170) 2013; 39 Wang, Tian, Zhou (bb0230) 2018; 71 Diebold, Mariano (bb0065) 1995; 13 Lizardo, Mollick (bb0140) 2010; 32 Yu, Zhao, Tang, Yang (bb0265) 2019; 35 Xiao, Zhou, Wen, Wen (bb0250) 2018; 74 Hyndman, Khandakar (bb0115) 2008; 26 Zhang (bb0285) 2013; 107 Li, Ma, Wang (bb0130) 2015; 49 Kilian (bb9005) 2009; 99 Chipman, George, Mcculloch, Clyde, Foster, Stine (bb0050) 2001; 38 Wang, Wu (bb0235) 2012; 34 Volinsky (bb0225) 2012 Miao, Ramchander, Wang, Yang (bb0150) 2017; 68 Baumeister, Kilian (bb0015) 2017; 2016 Boivin, Ng (bb0020) 2006; 132 Hyndman (bb0110) 2019 Hamilton, Herrera (bb0095) 2002; 35 Hoeting, Madigan, Raftery, Volinsky (bb0105) 1999 Narayan, Ahmed, Narayan (bb0155) 2015; 35 Zhang, Zhang, Zhang (bb0275) 2015; 49 Zhao, Li, Yu (bb0295) 2017; 66 George (bb0080) 1997; 7 Hamilton (bb0090) 2012; 30 Ji, Fan (bb0120) 2012; 89 Zhang (10.1016/j.eneco.2020.104721_bb0290) 2015; 143 Barsky (10.1016/j.eneco.2020.104721_bb0005) 2002; 16 Wang (10.1016/j.eneco.2020.104721_bb0230) 2018; 71 Charles (10.1016/j.eneco.2020.104721_bb8000) 2017; 67 Silva (10.1016/j.eneco.2020.104721_bb0205) 2010; 32 Zellner (10.1016/j.eneco.2020.104721_bb0270) 1986; 6 Diebold (10.1016/j.eneco.2020.104721_bb0065) 1995; 13 Li (10.1016/j.eneco.2020.104721_bb0130) 2015; 49 Valadkhani (10.1016/j.eneco.2020.104721_bb0220) 2017; 67 Wang (10.1016/j.eneco.2020.104721_bb0245) 2017; 66 Zhang (10.1016/j.eneco.2020.104721_bb0285) 2013; 107 Diebold (10.1016/j.eneco.2020.104721_bb0070) 1998; 39 Drachal (10.1016/j.eneco.2020.104721_bb0075) 2016; 60 Chipman (10.1016/j.eneco.2020.104721_bb0050) 2001; 38 Hyndman (10.1016/j.eneco.2020.104721_bb0110) Castle (10.1016/j.eneco.2020.104721_bb0030) 2009; 32 Sadorsky (10.1016/j.eneco.2020.104721_bb0180) 2014; 43 Yu (10.1016/j.eneco.2020.104721_bb0265) 2019; 35 Ratti (10.1016/j.eneco.2020.104721_bb0175) 2016; 59 Hoeting (10.1016/j.eneco.2020.104721_bb0105) 1999 Tang (10.1016/j.eneco.2020.104721_bb0215) 2012; 93 Hyndman (10.1016/j.eneco.2020.104721_bb0115) 2008; 26 Ji (10.1016/j.eneco.2020.104721_bb0120) 2012; 89 Hamilton (10.1016/j.eneco.2020.104721_bb0090) 2012; 30 Haugom (10.1016/j.eneco.2020.104721_bb0100) 2014; 47 Scott (10.1016/j.eneco.2020.104721_bb0200) 2013 10.1016/j.eneco.2020.104721_bb0185 Scott (10.1016/j.eneco.2020.104721_bb0190) Liang (10.1016/j.eneco.2020.104721_bb0135) 2008; 103 Baumeister (10.1016/j.eneco.2020.104721_bb0015) 2017; 2016 Kilian (10.1016/j.eneco.2020.104721_bb0125) 2017; 49 Zhang (10.1016/j.eneco.2020.104721_bb0280) 2008; 30 Zhang (10.1016/j.eneco.2020.104721_bb0275) 2015; 49 Madigan (10.1016/j.eneco.2020.104721_bb0145) 1994; 89 Xiong (10.1016/j.eneco.2020.104721_bb0255) 2013; 40 Hamilton (10.1016/j.eneco.2020.104721_bb0085) 2009 Hamilton (10.1016/j.eneco.2020.104721_bb0095) 2002; 35 Ratti (10.1016/j.eneco.2020.104721_bb0170) 2013; 39 George (10.1016/j.eneco.2020.104721_bb0080) 1997; 7 Scott (10.1016/j.eneco.2020.104721_bb0195) 2012; 5(1/2) Chang (10.1016/j.eneco.2020.104721_bb0045) 2015; 50 Wang (10.1016/j.eneco.2020.104721_bb0240) 2016; 32 Xiao (10.1016/j.eneco.2020.104721_bb0250) 2018; 74 Chai (10.1016/j.eneco.2020.104721_bb0040) 2018; 71 Baumeister (10.1016/j.eneco.2020.104721_bb0010) 2016; 3 Narayan (10.1016/j.eneco.2020.104721_bb0155) 2015; 35 Lizardo (10.1016/j.eneco.2020.104721_bb0140) 2010; 32 Bu (10.1016/j.eneco.2020.104721_bb0025) 2014; 46 Volinsky (10.1016/j.eneco.2020.104721_bb0225) 2012 Zhao (10.1016/j.eneco.2020.104721_bb0295) 2017; 66 Miao (10.1016/j.eneco.2020.104721_bb0150) 2017; 68 Naser (10.1016/j.eneco.2020.104721_bb0160) 2016; 56 Wang (10.1016/j.eneco.2020.104721_bb0235) 2012; 34 Yu (10.1016/j.eneco.2020.104721_bb0260) 2015; 156 Clements (10.1016/j.eneco.2020.104721_bb0060) 2000; 19 Kilian (10.1016/j.eneco.2020.104721_bb9005) 2009; 99 Boivin (10.1016/j.eneco.2020.104721_bb0020) 2006; 132 Song (10.1016/j.eneco.2020.104721_bb0210) 2011; 27 Chai (10.1016/j.eneco.2020.104721_bb0035) 2011; 39 |
References_xml | – volume: 6 start-page: 233 year: 1986 end-page: 243 ident: bb0270 article-title: On assessing prior distributions and bayesian regression analysis with g-prior distributions publication-title: Bayesian Inference and Decision Techniques – volume: 46 start-page: 485 year: 2014 end-page: 494 ident: bb0025 article-title: Effect of inventory announcements on crude oil price volatility publication-title: Energy Econ. – volume: 49 start-page: 1747 year: 2017 end-page: 1776 ident: bb0125 article-title: The role of oil price shocks in causing U.S. recessions publication-title: J. Money, Credit, Bank. – volume: 16 start-page: 183 year: 2002 end-page: 192 ident: bb0005 article-title: Comments on do we really know that oil caused the great stagnation? A monetary alternative publication-title: NBER Macroecon. Annu. – volume: 7 start-page: 339 year: 1997 end-page: 373 ident: bb0080 article-title: Approaches for bayesian variable selection publication-title: Stat. Sin. – volume: 60 start-page: 35 year: 2016 end-page: 46 ident: bb0075 article-title: Forecasting spot oil price in a dynamic model averaging framework — have the determinants changed over time? publication-title: Energy Econ. – volume: 13 start-page: 253 year: 1995 end-page: 263 ident: bb0065 article-title: Comparing predictive accuracy publication-title: J. Bus. Econ. Stat. – volume: 66 year: 2017 ident: bb0245 article-title: Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models publication-title: Energy Econ. – volume: 39 start-page: 8022 year: 2011 end-page: 8036 ident: bb0035 article-title: Exploring the core factors and its dynamic effects on oil price: an application on path analysis and BVAR-TVP model publication-title: Energy Policy – volume: 67 start-page: 508 year: 2017 end-page: 519 ident: bb8000 article-title: Forecasting crude-oil market volatility: Further evidence with jumps publication-title: Energy Econ. – volume: 132 start-page: 169 year: 2006 end-page: 194 ident: bb0020 article-title: Are more data always better for factor analysis? publication-title: J. Econ. – volume: 99 start-page: 1053 year: 2009 end-page: 1069 ident: bb9005 article-title: Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market publication-title: Am. Econ. Rev. – year: 2013 ident: bb0200 article-title: Bayesian Variable Selection for Nowcasting Economic Time Series – volume: 74 start-page: 777 year: 2018 end-page: 786 ident: bb0250 article-title: Asymmetric impacts of oil price uncertainty on Chinese stock returns under different market conditions: evidence from oil volatility index publication-title: Energy Econ. – volume: 56 start-page: 75 year: 2016 end-page: 87 ident: bb0160 article-title: Estimating and forecasting the real prices of crude oil: a data rich model using a dynamic model averaging (DMA) approach publication-title: Energy Econ. – volume: 67 start-page: 83 year: 2017 end-page: 90 ident: bb0220 article-title: How do daily changes in oil prices affect us monthly industrial output? publication-title: Energy Econ. – volume: 32 start-page: 1 year: 2016 end-page: 9 ident: bb0240 article-title: Forecasting crude oil market volatility: a markov switching multifractal volatility approach publication-title: Int. J. Forecast. – volume: 40 start-page: 405 year: 2013 end-page: 415 ident: bb0255 article-title: Beyond one-step-ahead forecasting: evaluation of alternative multi-step-ahead forecasting models for crude oil prices publication-title: Energy Econ. – volume: 71 start-page: 114 year: 2018 end-page: 127 ident: bb0040 article-title: Forecasting the WTI crude oil price by a hybrid-refined method publication-title: Energy Econ. – volume: 156 start-page: 251 year: 2015 end-page: 267 ident: bb0260 article-title: A decomposition-ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting publication-title: Appl. Energy – volume: 39 start-page: 863 year: 1998 end-page: 883 ident: bb0070 article-title: Evaluating density forecasts with applications to financial risk management publication-title: Int. Econ. Rev. – start-page: 382 year: 1999 end-page: 401 ident: bb0105 article-title: Bayesian model averaging: a tutorial publication-title: Stat. Sci. – volume: 26 year: 2008 ident: bb0115 article-title: Automatic time series forecasting: the forecast package for R publication-title: J. Stat. Softw. – year: 2019 ident: bb0110 article-title: Forecast: forecasting functions for time series and linear models. R package version 8.7 – year: 2014 ident: bb0190 article-title: bsts: Bayesian structural time series. R package version 0.8.0 – volume: 32 start-page: 1507 year: 2010 end-page: 1519 ident: bb0205 article-title: Forecasting oil price trends using wavelets and hidden Markov models publication-title: Energy Econ. – volume: 59 start-page: 198 year: 2016 end-page: 212 ident: bb0175 article-title: Oil prices and global factor macroeconomic variables publication-title: Energy Econ. – volume: 19 start-page: 255 year: 2000 end-page: 276 ident: bb0060 article-title: Evaluating the forecast densities of linear and non-linear models: applications to output growth and unemployment publication-title: J. Forecast. – volume: 49 start-page: 649 year: 2015 end-page: 659 ident: bb0275 article-title: A novel hybrid method for crude oil price forecasting publication-title: Energy Econ. – volume: 66 start-page: 9 year: 2017 end-page: 16 ident: bb0295 article-title: A deep learning ensemble approach for crude oil price forecasting publication-title: Energy Econ. – volume: 38 start-page: 65 year: 2001 end-page: 134 ident: bb0050 article-title: The practical implementation of Bayesian model selection publication-title: Lecture Notes-Monograph Series – volume: 89 start-page: 273 year: 2012 end-page: 280 ident: bb0120 article-title: How does oil price volatility affect non-energy commodity markets? publication-title: Appl. Energy – volume: 89 start-page: 1535 year: 1994 end-page: 1546 ident: bb0145 article-title: Model selection and accounting for model uncertainty in graphical models using Occam’s window publication-title: Publ. Am. Stat. Assoc. – volume: 2016 start-page: 287 year: 2017 end-page: 357 ident: bb0015 article-title: Lower oil prices and the U.S. economy: is this time different? publication-title: Social Science Electronic Publishing – volume: 47 start-page: 1 year: 2014 end-page: 14 ident: bb0100 article-title: Forecasting volatility of the US oil market publication-title: J. Bank. Financ. – volume: 107 start-page: 394 year: 2013 end-page: 402 ident: bb0285 article-title: Speculative trading and WTI crude oil futures price movement: an empirical analysis publication-title: Appl. Energy – volume: 93 start-page: 432 year: 2012 end-page: 443 ident: bb0215 article-title: A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting publication-title: Appl. Energy – volume: 35 start-page: 213 year: 2019 end-page: 223 ident: bb0265 article-title: Online big data-driven oil consumption forecasting with Google trends publication-title: Int. J. Forecast. – year: 2012 ident: bb0225 article-title: Bayesian Model Averaging Home Page. Technical Report – volume: 32 start-page: 399 year: 2010 end-page: 408 ident: bb0140 article-title: Oil price fluctuations and U.S. dollar exchange rates publication-title: Energy Econ. – volume: 143 start-page: 96 year: 2015 end-page: 109 ident: bb0290 article-title: Interpreting the crude oil price movements: evidence from the Markov regime switching model publication-title: Appl. Energy – volume: 34 start-page: 2167 year: 2012 end-page: 2181 ident: bb0235 article-title: Forecasting energy market volatility using GARCH models: can multivariate models beat univariate models? publication-title: Energy Econ. – year: 2009 ident: bb0085 article-title: Causes and consequences of the oil shock of 2007-08 publication-title: no. w15002 – volume: 43 start-page: 72 year: 2014 end-page: 81 ident: bb0180 article-title: Modeling volatility and correlations between emerging market stock prices and the prices of copper, oil and wheat publication-title: Energy Econ. – volume: 68 year: 2017 ident: bb0150 article-title: Influential factors in crude oil price forecasting publication-title: Energy Econ. – volume: 71 year: 2018 ident: bb0230 article-title: A novel approach for oil price forecasting based on data fluctuation network publication-title: Energy Econ. – volume: 30 start-page: 179 year: 2012 end-page: 206 ident: bb0090 article-title: Understanding crude oil prices publication-title: NBER Working Papers – reference: Schmidl, Matthias., 2015. On the predictive performance of Bayesian structural time series-models. – volume: 3 start-page: 131 year: 2016 end-page: 158 ident: bb0010 article-title: Understanding the decline in the price of oil since June 2014 publication-title: J. Assoc. Environ. Resour. Econ. – volume: 50 start-page: 379 year: 2015 end-page: 390 ident: bb0045 article-title: Do oil spot and futures prices move together? publication-title: Energy Econ. – volume: 35 start-page: 265 year: 2002 end-page: 286 ident: bb0095 article-title: Oil shocks and aggregate macroeconomic behaviour publication-title: J. Money, Credit, Bank. – volume: 27 start-page: 855 year: 2011 end-page: 869 ident: bb0210 article-title: Forecasting tourist arrivals using time-varying parameter structural time series models publication-title: Int. J. Forecast. – volume: 39 start-page: 28 year: 2013 end-page: 38 ident: bb0170 article-title: Crude oil prices and liquidity, the BRIC and G3 countries publication-title: Energy Econ. – volume: 30 start-page: 905 year: 2008 end-page: 918 ident: bb0280 article-title: A new approach for crude oil price analysis based on empirical mode decomposition publication-title: Energy Econ. – volume: 5(1/2) start-page: 4 year: 2012 end-page: 23 ident: bb0195 article-title: Predicting the Present with Bayesian Structural Time Series – volume: 35 start-page: 868 year: 2015 end-page: 891 ident: bb0155 article-title: Do momentum-based trading strategies work in the commodity futures markets? publication-title: J. Futur. Mark. – volume: 32 start-page: 979 year: 2009 end-page: 986 ident: bb0030 article-title: How to pick the best regression equation: a review and comparison of model selection algorithms publication-title: Working Papers in Economics – volume: 103 start-page: 410 year: 2008 end-page: 423 ident: bb0135 article-title: Mixtures of g-priors for Bayesian variable selection publication-title: J. Am. Stat. Assoc. – volume: 49 start-page: 162 year: 2015 end-page: 171 ident: bb0130 article-title: How does Google search affect trader positions and crude oil prices? publication-title: Econ. Model. – volume: 13 start-page: 253 issue: 3 year: 1995 ident: 10.1016/j.eneco.2020.104721_bb0065 article-title: Comparing predictive accuracy publication-title: J. Bus. Econ. Stat. doi: 10.1080/07350015.1995.10524599 – volume: 30 start-page: 905 issue: 3 year: 2008 ident: 10.1016/j.eneco.2020.104721_bb0280 article-title: A new approach for crude oil price analysis based on empirical mode decomposition publication-title: Energy Econ. doi: 10.1016/j.eneco.2007.02.012 – year: 2013 ident: 10.1016/j.eneco.2020.104721_bb0200 – volume: 27 start-page: 855 issue: 3 year: 2011 ident: 10.1016/j.eneco.2020.104721_bb0210 article-title: Forecasting tourist arrivals using time-varying parameter structural time series models publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2010.06.001 – year: 2009 ident: 10.1016/j.eneco.2020.104721_bb0085 article-title: Causes and consequences of the oil shock of 2007-08 – volume: 89 start-page: 273 issue: 1 year: 2012 ident: 10.1016/j.eneco.2020.104721_bb0120 article-title: How does oil price volatility affect non-energy commodity markets? publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.07.038 – volume: 2016 start-page: 287 issue: 2 year: 2017 ident: 10.1016/j.eneco.2020.104721_bb0015 article-title: Lower oil prices and the U.S. economy: is this time different? publication-title: Social Science Electronic Publishing – volume: 71 year: 2018 ident: 10.1016/j.eneco.2020.104721_bb0230 article-title: A novel approach for oil price forecasting based on data fluctuation network publication-title: Energy Econ. doi: 10.1016/j.eneco.2018.02.021 – volume: 99 start-page: 1053 issue: 3 year: 2009 ident: 10.1016/j.eneco.2020.104721_bb9005 article-title: Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market publication-title: Am. Econ. Rev. doi: 10.1257/aer.99.3.1053 – ident: 10.1016/j.eneco.2020.104721_bb0185 – volume: 89 start-page: 1535 issue: 428 year: 1994 ident: 10.1016/j.eneco.2020.104721_bb0145 article-title: Model selection and accounting for model uncertainty in graphical models using Occam’s window publication-title: Publ. Am. Stat. Assoc. doi: 10.1080/01621459.1994.10476894 – volume: 32 start-page: 979 issue: 5 year: 2009 ident: 10.1016/j.eneco.2020.104721_bb0030 article-title: How to pick the best regression equation: a review and comparison of model selection algorithms publication-title: Working Papers in Economics – volume: 67 start-page: 508 year: 2017 ident: 10.1016/j.eneco.2020.104721_bb8000 article-title: Forecasting crude-oil market volatility: Further evidence with jumps publication-title: Energy Econ. doi: 10.1016/j.eneco.2017.09.002 – volume: 39 start-page: 8022 issue: 12 year: 2011 ident: 10.1016/j.eneco.2020.104721_bb0035 article-title: Exploring the core factors and its dynamic effects on oil price: an application on path analysis and BVAR-TVP model publication-title: Energy Policy doi: 10.1016/j.enpol.2011.09.057 – volume: 32 start-page: 1507 issue: 6 year: 2010 ident: 10.1016/j.eneco.2020.104721_bb0205 article-title: Forecasting oil price trends using wavelets and hidden Markov models publication-title: Energy Econ. doi: 10.1016/j.eneco.2010.08.006 – volume: 66 start-page: 9 year: 2017 ident: 10.1016/j.eneco.2020.104721_bb0295 article-title: A deep learning ensemble approach for crude oil price forecasting publication-title: Energy Econ. doi: 10.1016/j.eneco.2017.05.023 – volume: 71 start-page: 114 year: 2018 ident: 10.1016/j.eneco.2020.104721_bb0040 article-title: Forecasting the WTI crude oil price by a hybrid-refined method publication-title: Energy Econ. doi: 10.1016/j.eneco.2018.02.004 – volume: 39 start-page: 863 issue: 4 year: 1998 ident: 10.1016/j.eneco.2020.104721_bb0070 article-title: Evaluating density forecasts with applications to financial risk management publication-title: Int. Econ. Rev. doi: 10.2307/2527342 – volume: 143 start-page: 96 year: 2015 ident: 10.1016/j.eneco.2020.104721_bb0290 article-title: Interpreting the crude oil price movements: evidence from the Markov regime switching model publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.01.005 – volume: 6 start-page: 233 year: 1986 ident: 10.1016/j.eneco.2020.104721_bb0270 article-title: On assessing prior distributions and bayesian regression analysis with g-prior distributions publication-title: Bayesian Inference and Decision Techniques – volume: 56 start-page: 75 year: 2016 ident: 10.1016/j.eneco.2020.104721_bb0160 article-title: Estimating and forecasting the real prices of crude oil: a data rich model using a dynamic model averaging (DMA) approach publication-title: Energy Econ. doi: 10.1016/j.eneco.2016.02.017 – volume: 67 start-page: 83 year: 2017 ident: 10.1016/j.eneco.2020.104721_bb0220 article-title: How do daily changes in oil prices affect us monthly industrial output? publication-title: Energy Econ. doi: 10.1016/j.eneco.2017.08.009 – volume: 35 start-page: 265 year: 2002 ident: 10.1016/j.eneco.2020.104721_bb0095 article-title: Oil shocks and aggregate macroeconomic behaviour publication-title: J. Money, Credit, Bank. – volume: 50 start-page: 379 year: 2015 ident: 10.1016/j.eneco.2020.104721_bb0045 article-title: Do oil spot and futures prices move together? publication-title: Energy Econ. doi: 10.1016/j.eneco.2015.02.014 – year: 2012 ident: 10.1016/j.eneco.2020.104721_bb0225 – volume: 49 start-page: 1747 issue: 8 year: 2017 ident: 10.1016/j.eneco.2020.104721_bb0125 article-title: The role of oil price shocks in causing U.S. recessions publication-title: J. Money, Credit, Bank. doi: 10.1111/jmcb.12430 – volume: 3 start-page: 131 issue: 1 year: 2016 ident: 10.1016/j.eneco.2020.104721_bb0010 article-title: Understanding the decline in the price of oil since June 2014 publication-title: J. Assoc. Environ. Resour. Econ. – start-page: 382 year: 1999 ident: 10.1016/j.eneco.2020.104721_bb0105 article-title: Bayesian model averaging: a tutorial publication-title: Stat. Sci. – volume: 156 start-page: 251 year: 2015 ident: 10.1016/j.eneco.2020.104721_bb0260 article-title: A decomposition-ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.07.025 – volume: 47 start-page: 1 year: 2014 ident: 10.1016/j.eneco.2020.104721_bb0100 article-title: Forecasting volatility of the US oil market publication-title: J. Bank. Financ. doi: 10.1016/j.jbankfin.2014.05.026 – volume: 49 start-page: 162 year: 2015 ident: 10.1016/j.eneco.2020.104721_bb0130 article-title: How does Google search affect trader positions and crude oil prices? publication-title: Econ. Model. doi: 10.1016/j.econmod.2015.04.005 – ident: 10.1016/j.eneco.2020.104721_bb0190 – volume: 38 start-page: 65 issue: 262 year: 2001 ident: 10.1016/j.eneco.2020.104721_bb0050 article-title: The practical implementation of Bayesian model selection publication-title: Lecture Notes-Monograph Series doi: 10.1214/lnms/1215540964 – ident: 10.1016/j.eneco.2020.104721_bb0110 – volume: 49 start-page: 649 year: 2015 ident: 10.1016/j.eneco.2020.104721_bb0275 article-title: A novel hybrid method for crude oil price forecasting publication-title: Energy Econ. doi: 10.1016/j.eneco.2015.02.018 – volume: 16 start-page: 183 year: 2002 ident: 10.1016/j.eneco.2020.104721_bb0005 article-title: Comments on do we really know that oil caused the great stagnation? A monetary alternative publication-title: NBER Macroecon. Annu. – volume: 40 start-page: 405 issue: 2 year: 2013 ident: 10.1016/j.eneco.2020.104721_bb0255 article-title: Beyond one-step-ahead forecasting: evaluation of alternative multi-step-ahead forecasting models for crude oil prices publication-title: Energy Econ. doi: 10.1016/j.eneco.2013.07.028 – volume: 35 start-page: 213 issue: 1 year: 2019 ident: 10.1016/j.eneco.2020.104721_bb0265 article-title: Online big data-driven oil consumption forecasting with Google trends publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2017.11.005 – volume: 7 start-page: 339 issue: 2 year: 1997 ident: 10.1016/j.eneco.2020.104721_bb0080 article-title: Approaches for bayesian variable selection publication-title: Stat. Sin. – volume: 107 start-page: 394 issue: 4 year: 2013 ident: 10.1016/j.eneco.2020.104721_bb0285 article-title: Speculative trading and WTI crude oil futures price movement: an empirical analysis publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.02.060 – volume: 132 start-page: 169 issue: 1 year: 2006 ident: 10.1016/j.eneco.2020.104721_bb0020 article-title: Are more data always better for factor analysis? publication-title: J. Econ. doi: 10.1016/j.jeconom.2005.01.027 – volume: 60 start-page: 35 year: 2016 ident: 10.1016/j.eneco.2020.104721_bb0075 article-title: Forecasting spot oil price in a dynamic model averaging framework — have the determinants changed over time? publication-title: Energy Econ. doi: 10.1016/j.eneco.2016.09.020 – volume: 103 start-page: 410 year: 2008 ident: 10.1016/j.eneco.2020.104721_bb0135 article-title: Mixtures of g-priors for Bayesian variable selection publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214507000001337 – volume: 68 year: 2017 ident: 10.1016/j.eneco.2020.104721_bb0150 article-title: Influential factors in crude oil price forecasting publication-title: Energy Econ. doi: 10.1016/j.eneco.2017.09.010 – volume: 93 start-page: 432 issue: 1 year: 2012 ident: 10.1016/j.eneco.2020.104721_bb0215 article-title: A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.12.030 – volume: 43 start-page: 72 issue: 2 year: 2014 ident: 10.1016/j.eneco.2020.104721_bb0180 article-title: Modeling volatility and correlations between emerging market stock prices and the prices of copper, oil and wheat publication-title: Energy Econ. doi: 10.1016/j.eneco.2014.02.014 – volume: 32 start-page: 399 issue: 2 year: 2010 ident: 10.1016/j.eneco.2020.104721_bb0140 article-title: Oil price fluctuations and U.S. dollar exchange rates publication-title: Energy Econ. doi: 10.1016/j.eneco.2009.10.005 – volume: 74 start-page: 777 year: 2018 ident: 10.1016/j.eneco.2020.104721_bb0250 article-title: Asymmetric impacts of oil price uncertainty on Chinese stock returns under different market conditions: evidence from oil volatility index publication-title: Energy Econ. doi: 10.1016/j.eneco.2018.07.026 – volume: 34 start-page: 2167 issue: 6 year: 2012 ident: 10.1016/j.eneco.2020.104721_bb0235 article-title: Forecasting energy market volatility using GARCH models: can multivariate models beat univariate models? publication-title: Energy Econ. doi: 10.1016/j.eneco.2012.03.010 – volume: 32 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.eneco.2020.104721_bb0240 article-title: Forecasting crude oil market volatility: a markov switching multifractal volatility approach publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2015.02.006 – volume: 46 start-page: 485 year: 2014 ident: 10.1016/j.eneco.2020.104721_bb0025 article-title: Effect of inventory announcements on crude oil price volatility publication-title: Energy Econ. doi: 10.1016/j.eneco.2014.05.015 – volume: 39 start-page: 28 issue: 3 year: 2013 ident: 10.1016/j.eneco.2020.104721_bb0170 article-title: Crude oil prices and liquidity, the BRIC and G3 countries publication-title: Energy Econ. doi: 10.1016/j.eneco.2013.04.003 – volume: 26 issue: 3 year: 2008 ident: 10.1016/j.eneco.2020.104721_bb0115 article-title: Automatic time series forecasting: the forecast package for R publication-title: J. Stat. Softw. doi: 10.18637/jss.v027.i03 – volume: 19 start-page: 255 issue: 4 year: 2000 ident: 10.1016/j.eneco.2020.104721_bb0060 article-title: Evaluating the forecast densities of linear and non-linear models: applications to output growth and unemployment publication-title: J. Forecast. doi: 10.1002/1099-131X(200007)19:4<255::AID-FOR773>3.0.CO;2-G – volume: 5(1/2) start-page: 4 year: 2012 ident: 10.1016/j.eneco.2020.104721_bb0195 – volume: 30 start-page: 179 issue: 2 year: 2012 ident: 10.1016/j.eneco.2020.104721_bb0090 article-title: Understanding crude oil prices publication-title: NBER Working Papers – volume: 35 start-page: 868 issue: 9 year: 2015 ident: 10.1016/j.eneco.2020.104721_bb0155 article-title: Do momentum-based trading strategies work in the commodity futures markets? publication-title: J. Futur. Mark. doi: 10.1002/fut.21685 – volume: 59 start-page: 198 year: 2016 ident: 10.1016/j.eneco.2020.104721_bb0175 article-title: Oil prices and global factor macroeconomic variables publication-title: Energy Econ. doi: 10.1016/j.eneco.2016.06.002 – volume: 66 year: 2017 ident: 10.1016/j.eneco.2020.104721_bb0245 article-title: Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models publication-title: Energy Econ. doi: 10.1016/j.eneco.2017.07.007 |
SSID | ssj0005658 |
Score | 2.5057597 |
Snippet | In this paper, the new structural characteristics and core influencing factors of the crude oil prices are summarized based on previous representative research... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104721 |
SubjectTerms | Bayesian analysis Bayesian model average Crude oil Crude oil prices Data Data search Dynamic Bayesian structural time series model Economic crisis Energy economics Financial market Google trend Kalman filtering Oil Petroleum Predictions Shale Shale oil Spike and slab prior Supply & demand Time series Turning points |
Title | Crude oil price analysis and forecasting: A perspective of “new triangle” |
URI | https://dx.doi.org/10.1016/j.eneco.2020.104721 https://www.proquest.com/docview/2444681701 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcoALYhWFUvnAkdAmceyYW1VRFRA9Uak3yysqqtKoyxX1Q-Dn-iXYTsImwYFbEo2jaDKZeZHfvAHgIkXKVcE0SGMeB0gbEgiFUCCkQiEVJpEFQXaIByN0N07GNdCremEcrbLM_UVO99m6vNIuvdnOJ5O2pyXR1EakjdMO9g2_CBEX5VcvX2ge2M_o9DRGZ10pD3mOl00n0nUARn6vk0Thb9XpR572xae_B3ZL1Ai7xYPtg5rODsB21VS8OAQPvflKaTibTGHuZIIgL8VG7IGCFphqyReO4XwNuzD_bLCEMwM361eLraGb35E9TfVm_XYERv2bx94gKCclBBLhaBlQxKmF-iSSRhmqiRCxSLggMbd_LFx0qIqJjIjhFJtExwqlwunmJcpaETfi5RjUs1mmTwDUiUAilTh1ynoGJYKGPBSYCqEtOiC4AaLKQ0yWMuJumsWUVXyxZ-bdypxbWeHWBrj8WJQXKhp_m-PK9exbMDCb5_9e2KxeFCu_xQWzAAZhp0MYnv73vmdgx50V3LMmqC_nK31uwchStHy0tcBW9_Z-MHwH9Uvelg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbsIwELUQHOil6qoutPWhx0aQxLHj3hAqgrKcQOJmeUtFhSBiufMh7c_xJbUTp6iVyqG3KPFE0WQy8yK_eQPAY4yUrYKxF4c89JBOiCcUQp6QCvlUJJHMCbJD3Bmj10k0KYFW0QtjaZUu9-c5PcvW7kzdebOeTqf1jJZEYxORJk4b2Db8Vqw6VVQGlWa31xnumR44G9OZMRmtQSE-lNG8TEaRtgkwyLY7SeD_VaB-peqs_rRPwLEDjrCZP9spKOn5GagWfcWrczBoLTdKw8V0BlOrFAS50xsxBwoabKolX1mS8zNswnTfYwkXCdxtPwy8hnaEx_xtpnfbzwswbr-MWh3PDUvwJMLB2qOIU4P2SSATlVBNhAhFxAUJuflp4aJBVUhkQBJOcRLpUKFYWOm8SJlVxE55uQTl-WKurwDUkUAilji24noJigT1uS8wFUIbgEDwNQgKDzHplMTtQIsZKyhj7yxzK7NuZblbr8HTt1GaC2kcXo4L17Mf8cBMqj9sWCteFHOf44oZDIOwlSL0b_573wdQ7YwGfdbvDnu34MheyaloNVBeLzf6zmCTtbh3sfcFoJbhRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crude+oil+price+analysis+and+forecasting%3A+A+perspective+of+%22new+triangle%22&rft.jtitle=Energy+economics&rft.au=Lu%2C+Quanying&rft.au=Li%2C+Yuze&rft.au=Chai%2C+Jian&rft.au=Wang%2C+Shouyang&rft.date=2020-03-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0140-9883&rft.eissn=1873-6181&rft.volume=87&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eneco.2020.104721&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-9883&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-9883&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-9883&client=summon |