State representation learning for control: An overview

Representation learning algorithms are designed to learn abstract features that characterize data. State representation learning (SRL) focuses on a particular kind of representation learning where learned features are in low dimension, evolve through time, and are influenced by actions of an agent....

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 108; pp. 379 - 392
Main Authors Lesort, Timothée, Díaz-Rodríguez, Natalia, Goudou, Jean-Frano̧is, Filliat, David
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.12.2018
Elsevier
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2018.07.006

Cover

Abstract Representation learning algorithms are designed to learn abstract features that characterize data. State representation learning (SRL) focuses on a particular kind of representation learning where learned features are in low dimension, evolve through time, and are influenced by actions of an agent. The representation is learned to capture the variation in the environment generated by the agent’s actions; this kind of representation is particularly suitable for robotics and control scenarios. In particular, the low dimension characteristic of the representation helps to overcome the curse of dimensionality, provides easier interpretation and utilization by humans and can help improve performance and speed in policy learning algorithms such as reinforcement learning. This survey aims at covering the state-of-the-art on state representation learning in the most recent years. It reviews different SRL methods that involve interaction with the environment, their implementations and their applications in robotics control tasks (simulated or real). In particular, it highlights how generic learning objectives are differently exploited in the reviewed algorithms. Finally, it discusses evaluation methods to assess the representation learned and summarizes current and future lines of research.
AbstractList Representation learning algorithms are designed to learn abstract features that characterize data. State representation learning (SRL) focuses on a particular kind of representation learning where learned features are in low dimension, evolve through time, and are influenced by actions of an agent. The representation is learned to capture the variation in the environment generated by the agent's actions; this kind of representation is particularly suitable for robotics and control scenarios. In particular, the low dimension characteristic of the representation helps to overcome the curse of dimensionality, provides easier interpretation and utilization by humans and can help improve performance and speed in policy learning algorithms such as reinforcement learning. This survey aims at covering the state-of-the-art on state representation learning in the most recent years. It reviews different SRL methods that involve interaction with the environment, their implementations and their applications in robotics control tasks (simulated or real). In particular, it highlights how generic learning objectives are differently exploited in the reviewed algorithms. Finally, it discusses evaluation methods to assess the representation learned and summarizes current and future lines of research.
Representation learning algorithms are designed to learn abstract features that characterize data. State representation learning (SRL) focuses on a particular kind of representation learning where learned features are in low dimension, evolve through time, and are influenced by actions of an agent. The representation is learned to capture the variation in the environment generated by the agent’s actions; this kind of representation is particularly suitable for robotics and control scenarios. In particular, the low dimension characteristic of the representation helps to overcome the curse of dimensionality, provides easier interpretation and utilization by humans and can help improve performance and speed in policy learning algorithms such as reinforcement learning. This survey aims at covering the state-of-the-art on state representation learning in the most recent years. It reviews different SRL methods that involve interaction with the environment, their implementations and their applications in robotics control tasks (simulated or real). In particular, it highlights how generic learning objectives are differently exploited in the reviewed algorithms. Finally, it discusses evaluation methods to assess the representation learned and summarizes current and future lines of research.
Representation learning algorithms are designed to learn abstract features that characterize data. State representation learning (SRL) focuses on a particular kind of representation learning where learned features are in low dimension, evolve through time, and are influenced by actions of an agent. The representation is learned to capture the variation in the environment generated by the agent's actions; this kind of representation is particularly suitable for robotics and control scenarios. In particular, the low dimension characteristic of the representation helps to overcome the curse of dimensionality, provides easier interpretation and utilization by humans and can help improve performance and speed in policy learning algorithms such as reinforcement learning. This survey aims at covering the state-of-the-art on state representation learning in the most recent years. It reviews different SRL methods that involve interaction with the environment, their implementations and their applications in robotics control tasks (simulated or real). In particular, it highlights how generic learning objectives are differently exploited in the reviewed algorithms. Finally, it discusses evaluation methods to assess the representation learned and summarizes current and future lines of research.Representation learning algorithms are designed to learn abstract features that characterize data. State representation learning (SRL) focuses on a particular kind of representation learning where learned features are in low dimension, evolve through time, and are influenced by actions of an agent. The representation is learned to capture the variation in the environment generated by the agent's actions; this kind of representation is particularly suitable for robotics and control scenarios. In particular, the low dimension characteristic of the representation helps to overcome the curse of dimensionality, provides easier interpretation and utilization by humans and can help improve performance and speed in policy learning algorithms such as reinforcement learning. This survey aims at covering the state-of-the-art on state representation learning in the most recent years. It reviews different SRL methods that involve interaction with the environment, their implementations and their applications in robotics control tasks (simulated or real). In particular, it highlights how generic learning objectives are differently exploited in the reviewed algorithms. Finally, it discusses evaluation methods to assess the representation learned and summarizes current and future lines of research.
Author Filliat, David
Goudou, Jean-Frano̧is
Díaz-Rodríguez, Natalia
Lesort, Timothée
Author_xml – sequence: 1
  givenname: Timothée
  surname: Lesort
  fullname: Lesort, Timothée
  email: timothee.lesort@thalesgroup.com
  organization: Vision Lab, Thales, Theresis, Palaiseau, France
– sequence: 2
  givenname: Natalia
  orcidid: 0000-0003-3362-9326
  surname: Díaz-Rodríguez
  fullname: Díaz-Rodríguez, Natalia
  email: natalia.diaz@ensta-paristech.fr
  organization: U2IS, ENSTA ParisTech, Inria FLOWERS team, Universite Paris Saclay, Palaiseau, France
– sequence: 3
  givenname: Jean-Frano̧is
  surname: Goudou
  fullname: Goudou, Jean-Frano̧is
  email: jean-francois.goudou@thalesgroup.com
  organization: Vision Lab, Thales, Theresis, Palaiseau, France
– sequence: 4
  givenname: David
  surname: Filliat
  fullname: Filliat, David
  email: david.filliat@ensta.fr
  organization: U2IS, ENSTA ParisTech, Inria FLOWERS team, Universite Paris Saclay, Palaiseau, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30268059$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01858558$$DView record in HAL
BookMark eNqFkU1v1DAURS1URKeFf4BQlrBI8FccuwukUQW00khdFNaW8_ICHmXswc4M6r_Ho7QsWNCVZevcK_ncC3IWYkBC3jLaMMrUx20T8BBwbjhluqFdQ6l6QVZMd6bmneZnZEW1EbWimp6Ti5y3tBBailfkXFCuNG3Niqj72c1YJdwnzBjKxcdQTehS8OFHNcZUQQxzitNVtQ5VPGI6evz9mrwc3ZTxzeN5Sb5_-fzt-qbe3H29vV5vapCKz7VhSiAXLfRGq4GzrgctoBsZAIwd00pKMwoJDKHXQjmJBjjTVIuh7TsuxSX5sPT-dJPdJ79z6cFG5-3NemNPb-XvrW5bfWSFfb-w-xR_HTDPducz4DS5gPGQLWdMKmOU4AV994ge-h0Of5ufvBTgagEgxZwTjhb84mZOzk-WUXsawW7tMoI9jWBpZ4viEpb_hJ_6n4l9WmJYhBbJyWbwGAAHnxBmO0T__4I_BHqg9w
CitedBy_id crossref_primary_10_1109_LRA_2022_3192209
crossref_primary_10_1016_j_inffus_2019_12_012
crossref_primary_10_1088_2632_2153_ac9ae8
crossref_primary_10_3390_a17020060
crossref_primary_10_1109_TRO_2019_2959445
crossref_primary_10_20965_jaciii_2022_p0562
crossref_primary_10_3390_math9212689
crossref_primary_10_1016_j_neubiorev_2019_02_008
crossref_primary_10_1109_TCSVT_2020_2987562
crossref_primary_10_2139_ssrn_3785547
crossref_primary_10_1016_j_neuron_2020_11_021
crossref_primary_10_3390_brainsci13101435
crossref_primary_10_1016_j_neucom_2019_10_124
crossref_primary_10_53759_9852_JRS202301013
crossref_primary_10_1109_TG_2023_3302694
crossref_primary_10_1016_j_neucom_2022_09_059
crossref_primary_10_1109_ACCESS_2021_3056625
crossref_primary_10_1109_LRA_2021_3068639
crossref_primary_10_1109_TCDS_2022_3152383
crossref_primary_10_1109_TCDS_2022_3156664
crossref_primary_10_1029_2021WR031041
crossref_primary_10_1016_j_ifacol_2021_04_227
crossref_primary_10_1016_j_neunet_2020_06_003
crossref_primary_10_1016_j_jclepro_2023_138472
crossref_primary_10_1016_j_autcon_2024_105396
crossref_primary_10_1016_j_ijggc_2024_104262
crossref_primary_10_1016_j_inffus_2019_12_004
crossref_primary_10_1029_2020WR029329
crossref_primary_10_1109_TIE_2024_3395770
crossref_primary_10_1103_PhysRevResearch_5_023023
crossref_primary_10_1111_exsy_13667
crossref_primary_10_3389_frobt_2019_00123
crossref_primary_10_1007_s11633_023_1464_2
crossref_primary_10_3390_make5040091
crossref_primary_10_3390_s22176504
crossref_primary_10_1016_j_datak_2019_06_004
crossref_primary_10_1109_ACCESS_2023_3274675
crossref_primary_10_1109_TITS_2021_3054625
crossref_primary_10_3390_app10175902
crossref_primary_10_7210_jrsj_39_575
crossref_primary_10_3390_app10249013
crossref_primary_10_1049_cth2_12761
crossref_primary_10_1109_TIM_2023_3246509
crossref_primary_10_1016_j_neunet_2024_106741
crossref_primary_10_1007_s10994_024_06547_6
crossref_primary_10_1016_j_neunet_2024_106347
crossref_primary_10_1109_TCDS_2022_3196179
crossref_primary_10_1016_j_inffus_2023_101805
crossref_primary_10_1007_s11042_023_15361_6
crossref_primary_10_1007_s40435_024_01407_6
crossref_primary_10_1109_TAI_2023_3283488
crossref_primary_10_1002_ece3_10747
crossref_primary_10_3389_fevo_2021_681704
crossref_primary_10_1080_01691864_2023_2221715
crossref_primary_10_1109_TPAMI_2025_3529264
crossref_primary_10_1109_TBME_2021_3054413
crossref_primary_10_1109_TCDS_2022_3187186
crossref_primary_10_1109_TRO_2019_2958211
crossref_primary_10_1063_5_0174128
crossref_primary_10_3389_frobt_2022_762051
crossref_primary_10_1080_01691864_2022_2029720
crossref_primary_10_1063_5_0177005
crossref_primary_10_1007_s13218_021_00703_z
crossref_primary_10_1016_j_artint_2024_104100
crossref_primary_10_1002_ese3_1304
crossref_primary_10_1061__ASCE_AS_1943_5525_0001335
crossref_primary_10_1109_LRA_2022_3150511
crossref_primary_10_1016_j_inffus_2020_01_005
crossref_primary_10_1109_TIM_2024_3470030
crossref_primary_10_1038_s41598_022_25362_4
crossref_primary_10_1109_ACCESS_2024_3425837
crossref_primary_10_1088_1742_5468_ab3455
crossref_primary_10_3390_math12020214
crossref_primary_10_1016_j_knosys_2024_112103
crossref_primary_10_1016_j_jcp_2019_05_041
crossref_primary_10_1080_01691864_2023_2244568
crossref_primary_10_1007_s12559_020_09784_8
crossref_primary_10_1007_s11227_021_03784_7
crossref_primary_10_1007_s11740_023_01209_3
crossref_primary_10_1016_j_tins_2024_10_005
crossref_primary_10_1109_LRA_2024_3371291
crossref_primary_10_1186_s42467_021_00014_x
crossref_primary_10_1016_j_knosys_2020_106685
crossref_primary_10_3390_app112110337
crossref_primary_10_1371_journal_pcbi_1012568
crossref_primary_10_1016_j_engappai_2024_109131
crossref_primary_10_1080_01691864_2023_2225232
crossref_primary_10_1016_j_engappai_2023_107496
crossref_primary_10_1088_1741_4326_ad5a1d
crossref_primary_10_1108_RIA_10_2023_0146
crossref_primary_10_1109_MRA_2020_2983649
crossref_primary_10_1038_s44222_024_00177_2
crossref_primary_10_1016_j_compchemeng_2024_108849
Cites_doi 10.1109/TEVC.2006.890271
10.1109/TRO.2017.2721939
10.1613/jair.3912
10.1016/j.neucom.2012.05.013
10.1109/TCIAIG.2012.2188528
10.1007/s10514-015-9459-7
10.1109/TNN.1998.712192
10.1162/089976602317318938
10.1038/nature14236
10.1162/neco.2006.18.7.1527
10.1109/IJCNN.2018.8489075
10.1016/j.neucom.2015.08.104
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
DOI 10.1016/j.neunet.2018.07.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 392
ExternalDocumentID oai_HAL_hal_01858558v1
30268059
10_1016_j_neunet_2018_07_006
S0893608018302053
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
EFKBS
1XC
VOOES
ID FETCH-LOGICAL-c462t-9163e235cb986d217bc83c7f1cccf7186449f34c1ecb836a4e9c218083d5b7243
IEDL.DBID AIKHN
ISSN 0893-6080
1879-2782
IngestDate Wed Jun 11 06:20:46 EDT 2025
Thu Sep 04 21:15:21 EDT 2025
Wed Feb 19 02:34:15 EST 2025
Tue Jul 01 01:24:32 EDT 2025
Thu Apr 24 23:02:20 EDT 2025
Fri Feb 23 02:46:10 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords State representation learning
Learning disentangled representations
Disentanglement of control factors
Robotics
Low dimensional embedding learning
Reinforcement learning
Reinforcement Learning
State Representation Learning
Low Dimensional Embedding Learning
Learning Disentangled Representations
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-9163e235cb986d217bc83c7f1cccf7186449f34c1ecb836a4e9c218083d5b7243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3362-9326
0000-0002-5739-1618
OpenAccessLink https://hal.science/hal-01858558
PMID 30268059
PQID 2114699632
PQPubID 23479
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_01858558v1
proquest_miscellaneous_2114699632
pubmed_primary_30268059
crossref_citationtrail_10_1016_j_neunet_2018_07_006
crossref_primary_10_1016_j_neunet_2018_07_006
elsevier_sciencedirect_doi_10_1016_j_neunet_2018_07_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2018
2018-12-00
2018-Dec
20181201
2018-12
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. ArXiv e-prints.
Mnih, V., Agapiou, J., Osindero, S., Graves, A., Vinyals, O., & Kavukcuoglu, K. et al. (2016). Strategic attentive writer for learning macro-actions. ArXiv Preprint
Pinto, L., Gandhi, D., Han, Y., Park, Y., & Gupta, A. (2016). The curious robot: Learning visual representations via physical interactions. CoRR abs/1604.01360. URL
Agrawal, P., Nair, A., Abbeel, P., Malik, J., & Levine, S. (2016). Learning to Poke by Poking: Experiential Learning of Intuitive Physics. CoRR abs/1606.07419.
Donahue, J., Krähenbühl, P., & Darrell, T. (2016). Adversarial feature learning. CoRR abs/1605.09782.
Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M., & Kalakrishnan, M. et al. (2017). Using simulation and domain adaptation to improve efficiency of deep robotic grasping. ArXiv Preprint
Jimenez Rezende, D., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. ArXiv e-prints
Assael, Wahlström, Schön, Deisenroth (b4) 2015
Bengio, Y., Courville, A. C., & Vincent, P. (2012). Unsupervised feature learning and deep learning: A review and new perspectives. CoRR abs/1206.5538. URL
Finn, C., Tan, X. Y., Duan, Y., Darrell, T., Levine, S., & Abbeel, P. (2015). Deep spatial autoencoders for visuomotor learning. CoRR abs/1509.06113. URL
Achille, A., & Soatto, S. (2017). A Separation Principle for Control in the Age of Deep Learning. ArXiv e-prints
Kompella, V. R., Luciw, M. D., & Schmidhuber, J. (2011). Incremental slow feature analysis: Adaptive and episodic learning from high-dimensional input streams. CoRR abs/1112.2113. URL
Parisi, Ramstedt, Peters (b55) 2017
Conti, E., Madhavan, V., Petroski Such, F., Lehman, J., Stanley, K. O., & Clune, J. (2017). Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents. ArXiv e-prints.
Péré, Forestier, Oudeyer, Sigaud (b58) 2018
Chen, Duan, Houthooft, Schulman, Sutskever, Abbeel (b12) 2016
Jonschkowski, R., Hafner, R., Scholz, J., & Riedmiller, M. A. (2017). PVEs: Position-velocity encoders for unsupervised learning of structured state representations. CoRR abs/1705.09805. URL
Hinton, Osindero, Teh (b31) 2006; 18
Krishnan, R. G., Shalit, U., & Sontag, D. (2015). Deep kalman filters. ArXiv e-prints.
Goodman, B., & Flaxman, S. (2016). European Union regulations on algorithmic decision-making and a” right to explanation”. arXiv preprint
Deisenroth, Rasmussen (b17) 2011
Oh, J., Singh, S., & Lee, H. (2017). Value prediction network. ArXiv e-prints.
Chopra, Hadsell, LeCun (b13) 2005
Munk, Kober, Babuska (b52) 2016
Lipton, Z. C. (2016). The mythos of model interpretability. ArXiv e-prints.
Watter, Springenberg, Boedecker, Riedmiller (b71) 2015
Yang, X., Ramesh, P., Chitta, R., Madhvanath, S., Bernal, E. A., & Luo, J. (2017). Deep multimodal representation learning from temporal data. CoRR abs/1704.03152.
Goroshin, R., Mathieu, M., & LeCun, Y. (2015). Learning to linearize under uncertainty. CoRR abs/1506.03011. URL
Indyk (b33) 2001
van Hoof, Chen, Karl, van der Smagt, Peters (b32) 2016
Pathak, Agrawal, Efros, Darrell (b56) 2017
Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., & Botvinick, M. et al. (2016). beta-vae: Learning basic visual concepts with a constrained variational framework.
Wang, He, Prokhorov (b69) 2012; vol. 13
Ha, D., & Schmidhuber, J. (2018). World models. ArXiv e-prints
Stulp, Sigaud (b62) 2013; 4
Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2016). Building machines that learn and think like people. ArXiv e-prints.
Wahlström, N., Schön, T. B., & Deisenroth, M. P. (2015). From pixels to torques: policy learning with deep dynamical models. ArXiv e-prints.
Vincent, Larochelle, Lajoie, Bengio, Manzagol (b67) 2010; 11
.
Lesort, T., Seurin, M., Li, X., Díaz-Rodríguez, N., & Filliat, D. (2017). Unsupervised state representation learning with robotic priors: a robustness benchmark. CoRR abs/1709.05185
Fodor, I. K. (2002). A survey of dimension reduction techniques, Tech. rep., Lawrence Livermore National Lab., CA (US).
Shelhamer, E., Mahmoudieh, P., Argus, M., & Darrell, T. (2017). Loss is its own Reward: Self-Supervision for Reinforcement Learning. arXiv preprint
Wiskott, Sejnowski (b72) 2002; 14
Curran, W., Brys, T., Aha, D., Taylor, M., & Smart, W. D. (2016). Dimensionality reduced reinforcement learning for assistive robots.
Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A., & Arjovsky, M. et al. (2016). Adversarially learned inference. arXiv preprint
Vincent, Larochelle, Bengio, Manzagol (b66) 2008
Zhang, Satija, Pineau (b75) 2018
Böhmer, Springenberg, Boedecker, Riedmiller, Obermayer (b10) 2015
Magrans de Abril, I., & Kanai, R. (2018) Curiosity-driven reinforcement learning with homeostatic regulation. ArXiv e-prints.
Curran, W., Brys, T., Taylor, M., & Smart, W. (2015). Using PCA to efficiently represent state spaces. ArXiv e-prints.
Mattner, Lange, Riedmiller (b48) 2012
Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., & Meger, D. (2017). Deep reinforcement learning that matters. CoRR abs/1709.06560.
Karl, M., Soelch, M., Bayer, J., & van der Smagt, P. (2016). Deep variational bayes filters: unsupervised learning of state space models from raw data. ArXiv e-prints.
Sermanet, P., Lynch, C., Hsu, J., & Levine, S. (2017). Time-contrastive networks: self-supervised learning from multi-view observation. CoRR abs/1704.06888. URL
URL
Higgins, I., Pal, A., Rusu, A. A., Matthey, L., Burgess, C. P., & Pritzel, A. et al. (2017). DARLA: Improving Zero-Shot Transfer in Reinforcement Learning. ArXiv e-prints.
Sutton, R. S. (1998).
Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The arcade learning environment: An evaluation platform for general agents.
Jonschkowski, Brock (b35) 2015; 39
Oudeyer, Kaplan, Hafner (b54) 2007; 11
Wang, Yao, Zhao (b70) 2016; 184
Thomas, V., Pondard, J., Bengio, E., Sarfati, M., Beaudoin, P., & Meurs, M. et al. (2017). Independently controllable factors. CoRR abs/1708.01289.
Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M., & Küttler, H. et al. (2016). DeepMind Lab. CoRR abs/1612.03801.
Klyubin, Polani, Nehaniv (b40) 2005
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare (b50) 2015; 518
Engel, Szabo, Volkinshtein (b21) 2006
Zhang, Ren, Zhang (b74) 2012; 97
Alvernaz, S., & Togelius, J. (2017). Autoencoder-augmented Neuroevolution for Visual Doom Playing. ArXiv e-prints
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., & Ozair, S. et al. (2014). Generative adversarial nets, pp. 26722680. URL
Mouret, J., Koos, S., & Doncieux, S. (2013). Crossing the reality gap: a short introduction to the transferability approach. CoRR abs/1307.1870.
Bohg, Hausman, Sankaran, Brock, Kragic, Schaal (b8) 2017; 33
Karakovskiy (b37) 2012; 4
Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., & Tassa, Y. et al. (2015). Continuous control with deep reinforcement learning. CoRR abs/1509.02971.
Duan, W. (2017). Learning state representations for robotic control (M. Thesis). URL
Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., & de Las Casas, D. et al. (2018). DeepMind control suite. ArXiv e-prints.
Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., & Tang, J. et al. (2016). OpenAI Gym. CoRR abs/1606.01540.
Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., & Kavukcuoglu, K. et al. (2016). Progressive neural networks CoRR abs/1606.04671. URL
10.1016/j.neunet.2018.07.006_b1
10.1016/j.neunet.2018.07.006_b3
10.1016/j.neunet.2018.07.006_b2
Engel (10.1016/j.neunet.2018.07.006_b21) 2006
10.1016/j.neunet.2018.07.006_b9
10.1016/j.neunet.2018.07.006_b47
10.1016/j.neunet.2018.07.006_b46
10.1016/j.neunet.2018.07.006_b45
10.1016/j.neunet.2018.07.006_b44
10.1016/j.neunet.2018.07.006_b5
10.1016/j.neunet.2018.07.006_b43
10.1016/j.neunet.2018.07.006_b42
10.1016/j.neunet.2018.07.006_b7
10.1016/j.neunet.2018.07.006_b41
10.1016/j.neunet.2018.07.006_b6
Chen (10.1016/j.neunet.2018.07.006_b12) 2016
Böhmer (10.1016/j.neunet.2018.07.006_b10) 2015
Wang (10.1016/j.neunet.2018.07.006_b69) 2012; vol. 13
10.1016/j.neunet.2018.07.006_b49
Hinton (10.1016/j.neunet.2018.07.006_b31) 2006; 18
Chopra (10.1016/j.neunet.2018.07.006_b13) 2005
Oudeyer (10.1016/j.neunet.2018.07.006_b54) 2007; 11
Wiskott (10.1016/j.neunet.2018.07.006_b72) 2002; 14
Jonschkowski (10.1016/j.neunet.2018.07.006_b35) 2015; 39
10.1016/j.neunet.2018.07.006_b14
10.1016/j.neunet.2018.07.006_b57
Deisenroth (10.1016/j.neunet.2018.07.006_b17) 2011
10.1016/j.neunet.2018.07.006_b11
10.1016/j.neunet.2018.07.006_b53
10.1016/j.neunet.2018.07.006_b51
Assael (10.1016/j.neunet.2018.07.006_b4) 2015
10.1016/j.neunet.2018.07.006_b19
10.1016/j.neunet.2018.07.006_b18
10.1016/j.neunet.2018.07.006_b16
Zhang (10.1016/j.neunet.2018.07.006_b74) 2012; 97
Bohg (10.1016/j.neunet.2018.07.006_b8) 2017; 33
10.1016/j.neunet.2018.07.006_b15
10.1016/j.neunet.2018.07.006_b59
Mnih (10.1016/j.neunet.2018.07.006_b50) 2015; 518
10.1016/j.neunet.2018.07.006_b61
10.1016/j.neunet.2018.07.006_b60
10.1016/j.neunet.2018.07.006_b25
10.1016/j.neunet.2018.07.006_b24
10.1016/j.neunet.2018.07.006_b68
10.1016/j.neunet.2018.07.006_b23
Péré (10.1016/j.neunet.2018.07.006_b58) 2018
10.1016/j.neunet.2018.07.006_b22
10.1016/j.neunet.2018.07.006_b65
10.1016/j.neunet.2018.07.006_b20
10.1016/j.neunet.2018.07.006_b64
10.1016/j.neunet.2018.07.006_b63
10.1016/j.neunet.2018.07.006_b29
10.1016/j.neunet.2018.07.006_b28
Wang (10.1016/j.neunet.2018.07.006_b70) 2016; 184
10.1016/j.neunet.2018.07.006_b27
Parisi (10.1016/j.neunet.2018.07.006_b55) 2017
10.1016/j.neunet.2018.07.006_b26
van Hoof (10.1016/j.neunet.2018.07.006_b32) 2016
Vincent (10.1016/j.neunet.2018.07.006_b66) 2008
Indyk (10.1016/j.neunet.2018.07.006_b33) 2001
Zhang (10.1016/j.neunet.2018.07.006_b75) 2018
Pathak (10.1016/j.neunet.2018.07.006_b56) 2017
Klyubin (10.1016/j.neunet.2018.07.006_b40) 2005
10.1016/j.neunet.2018.07.006_b36
10.1016/j.neunet.2018.07.006_b34
Stulp (10.1016/j.neunet.2018.07.006_b62) 2013; 4
Karakovskiy (10.1016/j.neunet.2018.07.006_b37) 2012; 4
10.1016/j.neunet.2018.07.006_b30
10.1016/j.neunet.2018.07.006_b73
Mattner (10.1016/j.neunet.2018.07.006_b48) 2012
Watter (10.1016/j.neunet.2018.07.006_b71) 2015
10.1016/j.neunet.2018.07.006_b39
10.1016/j.neunet.2018.07.006_b38
Munk (10.1016/j.neunet.2018.07.006_b52) 2016
Vincent (10.1016/j.neunet.2018.07.006_b67) 2010; 11
References_xml – year: 2017
  ident: b56
  article-title: Curiosity-driven exploration by self-supervised prediction
  publication-title: ICML
– reference: Yang, X., Ramesh, P., Chitta, R., Madhvanath, S., Bernal, E. A., & Luo, J. (2017). Deep multimodal representation learning from temporal data. CoRR abs/1704.03152.
– volume: 39
  start-page: 407
  year: 2015
  end-page: 428
  ident: b35
  article-title: Learning state representations with robotic priors
  publication-title: Autonomous Robots
– reference: Higgins, I., Pal, A., Rusu, A. A., Matthey, L., Burgess, C. P., & Pritzel, A. et al. (2017). DARLA: Improving Zero-Shot Transfer in Reinforcement Learning. ArXiv e-prints.
– reference: Fodor, I. K. (2002). A survey of dimension reduction techniques, Tech. rep., Lawrence Livermore National Lab., CA (US).
– reference: Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M., & Küttler, H. et al. (2016). DeepMind Lab. CoRR abs/1612.03801.
– start-page: 347
  year: 2006
  end-page: 354
  ident: b21
  article-title: Learning to control an octopus arm with Gaussian process temporal difference methods
  publication-title: Advances in neural information processing systems
– reference: Bengio, Y., Courville, A. C., & Vincent, P. (2012). Unsupervised feature learning and deep learning: A review and new perspectives. CoRR abs/1206.5538. URL
– volume: 14
  start-page: 715
  year: 2002
  end-page: 770
  ident: b72
  article-title: Slow feature analysis: Unsupervised learning of invariances
  publication-title: Neural Computation
– volume: 97
  start-page: 251
  year: 2012
  end-page: 266
  ident: b74
  article-title: A new embedding quality assessment method for manifold learning
  publication-title: Neurocomputing
– reference: . URL
– reference: Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. ArXiv e-prints.
– reference: Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., & Ozair, S. et al. (2014). Generative adversarial nets, pp. 26722680. URL
– start-page: 2746
  year: 2015
  end-page: 2754
  ident: b71
  article-title: Embed to control: A locally linear latent dynamics model for control from raw images
  publication-title: Advances in neural information processing systems 28
– reference: Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., & Tassa, Y. et al. (2015). Continuous control with deep reinforcement learning. CoRR abs/1509.02971.
– reference: Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., & Botvinick, M. et al. (2016). beta-vae: Learning basic visual concepts with a constrained variational framework.
– reference: Karl, M., Soelch, M., Bayer, J., & van der Smagt, P. (2016). Deep variational bayes filters: unsupervised learning of state space models from raw data. ArXiv e-prints.
– reference: Sermanet, P., Lynch, C., Hsu, J., & Levine, S. (2017). Time-contrastive networks: self-supervised learning from multi-view observation. CoRR abs/1704.06888. URL
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: b67
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research (JMLR)
– reference: Thomas, V., Pondard, J., Bengio, E., Sarfati, M., Beaudoin, P., & Meurs, M. et al. (2017). Independently controllable factors. CoRR abs/1708.01289.
– reference: Mnih, V., Agapiou, J., Osindero, S., Graves, A., Vinyals, O., & Kavukcuoglu, K. et al. (2016). Strategic attentive writer for learning macro-actions. ArXiv Preprint
– reference: Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., & Tang, J. et al. (2016). OpenAI Gym. CoRR abs/1606.01540.
– year: 2015
  ident: b4
  article-title: Data-efficient learning of feedback policies from image pixels using deep dynamical models
  publication-title: NIPS deep reinforcement learning workshop
– start-page: 539
  year: 2005
  end-page: 546
  ident: b13
  article-title: Learning a similarity metric discriminatively, with application to face verification
  publication-title: 2005 IEEE computer society conference on computer vision and pattern recognition, vol. 1
– reference: Oh, J., Singh, S., & Lee, H. (2017). Value prediction network. ArXiv e-prints.
– reference: Conti, E., Madhavan, V., Petroski Such, F., Lehman, J., Stanley, K. O., & Clune, J. (2017). Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents. ArXiv e-prints.
– volume: 4
  start-page: 49
  year: 2013
  end-page: 61
  ident: b62
  article-title: Robot skill learning: From reinforcement learning to evolution strategies
  publication-title: Paladyn
– reference: Alvernaz, S., & Togelius, J. (2017). Autoencoder-augmented Neuroevolution for Visual Doom Playing. ArXiv e-prints
– reference: Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A., & Arjovsky, M. et al. (2016). Adversarially learned inference. arXiv preprint
– start-page: 4667
  year: 2016
  end-page: 4673
  ident: b52
  article-title: Learning state representation for deep actor-critic control
  publication-title: Proceedings of the 55th conference on decision and control (CDC)
– start-page: 2172
  year: 2016
  end-page: 2180
  ident: b12
  article-title: Infogan: Interpretable representation learning by information maximizing generative adversarial nets
  publication-title: Advances in neural information processing systems
– reference: Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., & Meger, D. (2017). Deep reinforcement learning that matters. CoRR abs/1709.06560.
– reference: Lipton, Z. C. (2016). The mythos of model interpretability. ArXiv e-prints.
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: b66
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th international conference on machine learning
– reference: Jimenez Rezende, D., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. ArXiv e-prints
– reference: Donahue, J., Krähenbühl, P., & Darrell, T. (2016). Adversarial feature learning. CoRR abs/1605.09782.
– volume: 11
  start-page: 265
  year: 2007
  end-page: 286
  ident: b54
  article-title: Intrinsic motivation systems for autonomous mental development
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Curran, W., Brys, T., Aha, D., Taylor, M., & Smart, W. D. (2016). Dimensionality reduced reinforcement learning for assistive robots.
– reference: Finn, C., Tan, X. Y., Duan, Y., Darrell, T., Levine, S., & Abbeel, P. (2015). Deep spatial autoencoders for visuomotor learning. CoRR abs/1509.06113. URL
– reference: Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The arcade learning environment: An evaluation platform for general agents.
– reference: Krishnan, R. G., Shalit, U., & Sontag, D. (2015). Deep kalman filters. ArXiv e-prints.
– reference: Mouret, J., Koos, S., & Doncieux, S. (2013). Crossing the reality gap: a short introduction to the transferability approach. CoRR abs/1307.1870.
– reference: Sutton, R. S. (1998).
– volume: vol. 13
  start-page: 120
  year: 2012
  end-page: 127
  ident: b69
  article-title: A folded neural network autoencoder for dimensionality reduction.
  publication-title: INNS-WC
– year: 2018
  ident: b58
  article-title: Unsupervised learning of goal spaces for intrinsically motivated goal exploration
  publication-title: International conference on learning representations
– reference: Ha, D., & Schmidhuber, J. (2018). World models. ArXiv e-prints
– reference: Kompella, V. R., Luciw, M. D., & Schmidhuber, J. (2011). Incremental slow feature analysis: Adaptive and episodic learning from high-dimensional input streams. CoRR abs/1112.2113. URL
– reference: Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., & de Las Casas, D. et al. (2018). DeepMind control suite. ArXiv e-prints.
– reference: Curran, W., Brys, T., Taylor, M., & Smart, W. (2015). Using PCA to efficiently represent state spaces. ArXiv e-prints.
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: b50
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– reference: Shelhamer, E., Mahmoudieh, P., Argus, M., & Darrell, T. (2017). Loss is its own Reward: Self-Supervision for Reinforcement Learning. arXiv preprint
– start-page: 126
  year: 2012
  end-page: 133
  ident: b48
  article-title: Learn to swing up and balance a real pole based on raw visual input data
  publication-title: Neural information processing - 19th international conference, ICONIP 2012, Doha, Qatar, November 12-15, 2012, Proceedings, Part V
– reference: Pinto, L., Gandhi, D., Han, Y., Park, Y., & Gupta, A. (2016). The curious robot: Learning visual representations via physical interactions. CoRR abs/1604.01360. URL
– volume: 184
  start-page: 232
  year: 2016
  end-page: 242
  ident: b70
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomput
– reference: Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2016). Building machines that learn and think like people. ArXiv e-prints.
– reference: Achille, A., & Soatto, S. (2017). A Separation Principle for Control in the Age of Deep Learning. ArXiv e-prints
– start-page: 3928
  year: 2016
  end-page: 3934
  ident: b32
  article-title: Stable reinforcement learning with autoencoders for tactile and visual data
  publication-title: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS)
– reference: Agrawal, P., Nair, A., Abbeel, P., Malik, J., & Levine, S. (2016). Learning to Poke by Poking: Experiential Learning of Intuitive Physics. CoRR abs/1606.07419.
– start-page: 128
  year: 2005
  end-page: 135
  ident: b40
  article-title: Empowerment: A universal agent-centric measure of control
  publication-title: Evolutionary computation, 2005. The 2005 IEEE congress on, vol. 1
– volume: 4
  start-page: 55
  year: 2012
  end-page: 67
  ident: b37
  article-title: The mario AI benchmark and competitions
  publication-title: IEEE Transactions on Computational Intelligence and AI in Games
– reference: Lesort, T., Seurin, M., Li, X., Díaz-Rodríguez, N., & Filliat, D. (2017). Unsupervised state representation learning with robotic priors: a robustness benchmark. CoRR abs/1709.05185
– volume: 33
  start-page: 1273
  year: 2017
  end-page: 1291
  ident: b8
  article-title: Interactive perception: Leveraging action in perception and perception in action
  publication-title: IEEE Transactions on Robotics
– year: 2017
  ident: b55
  article-title: Goal-driven dimensionality reduction for reinforcement learning
  publication-title: Proceedings of the IEEE/RSJ conference on intelligent robots and systems (IROS)
– reference: Goroshin, R., Mathieu, M., & LeCun, Y. (2015). Learning to linearize under uncertainty. CoRR abs/1506.03011. URL
– reference: Jonschkowski, R., Hafner, R., Scholz, J., & Riedmiller, M. A. (2017). PVEs: Position-velocity encoders for unsupervised learning of structured state representations. CoRR abs/1705.09805. URL
– year: 2018
  ident: b75
  article-title: Decoupling dynamics and reward for transfer learning
  publication-title: Proceedings of the 6th international conference on learning representations (ICLR) workshops
– reference: .
– reference: Duan, W. (2017). Learning state representations for robotic control (M. Thesis). URL
– reference: Goodman, B., & Flaxman, S. (2016). European Union regulations on algorithmic decision-making and a” right to explanation”. arXiv preprint
– reference: Wahlström, N., Schön, T. B., & Deisenroth, M. P. (2015). From pixels to torques: policy learning with deep dynamical models. ArXiv e-prints.
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b31
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
– reference: Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., & Kavukcuoglu, K. et al. (2016). Progressive neural networks CoRR abs/1606.04671. URL
– start-page: 1
  year: 2015
  end-page: 10
  ident: b10
  article-title: Autonomous Learning of State Representations for Control: An Emerging Field Aims to Autonomously Learn State Representations for Reinforcement Learning Agents from Their Real-World Sensor Observations
  publication-title: KI - Küstliche Intelligenz
– start-page: 465
  year: 2011
  end-page: 472
  ident: b17
  article-title: PILCO: A model-based and data-efficient approach to policy search
  publication-title: Proceedings of the 28th international conference on international conference on machine learning
– start-page: 10
  year: 2001
  end-page: 33
  ident: b33
  article-title: Algorithmic applications of low-distortion geometric embeddings
  publication-title: Foundations of computer science, 2001. Proceedings. 42nd IEEE symposium on
– reference: Magrans de Abril, I., & Kanai, R. (2018) Curiosity-driven reinforcement learning with homeostatic regulation. ArXiv e-prints.
– reference: Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M., & Kalakrishnan, M. et al. (2017). Using simulation and domain adaptation to improve efficiency of deep robotic grasping. ArXiv Preprint
– year: 2018
  ident: 10.1016/j.neunet.2018.07.006_b58
  article-title: Unsupervised learning of goal spaces for intrinsically motivated goal exploration
– ident: 10.1016/j.neunet.2018.07.006_b49
– ident: 10.1016/j.neunet.2018.07.006_b26
– ident: 10.1016/j.neunet.2018.07.006_b51
– ident: 10.1016/j.neunet.2018.07.006_b68
– start-page: 2746
  year: 2015
  ident: 10.1016/j.neunet.2018.07.006_b71
  article-title: Embed to control: A locally linear latent dynamics model for control from raw images
– ident: 10.1016/j.neunet.2018.07.006_b39
– ident: 10.1016/j.neunet.2018.07.006_b16
– ident: 10.1016/j.neunet.2018.07.006_b65
– ident: 10.1016/j.neunet.2018.07.006_b7
– ident: 10.1016/j.neunet.2018.07.006_b42
– start-page: 10
  year: 2001
  ident: 10.1016/j.neunet.2018.07.006_b33
  article-title: Algorithmic applications of low-distortion geometric embeddings
– ident: 10.1016/j.neunet.2018.07.006_b61
– ident: 10.1016/j.neunet.2018.07.006_b3
– volume: 11
  start-page: 265
  issue: 2
  year: 2007
  ident: 10.1016/j.neunet.2018.07.006_b54
  article-title: Intrinsic motivation systems for autonomous mental development
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2006.890271
– start-page: 1096
  year: 2008
  ident: 10.1016/j.neunet.2018.07.006_b66
  article-title: Extracting and composing robust features with denoising autoencoders
– ident: 10.1016/j.neunet.2018.07.006_b23
– start-page: 539
  year: 2005
  ident: 10.1016/j.neunet.2018.07.006_b13
  article-title: Learning a similarity metric discriminatively, with application to face verification
– volume: 33
  start-page: 1273
  issue: 6
  year: 2017
  ident: 10.1016/j.neunet.2018.07.006_b8
  article-title: Interactive perception: Leveraging action in perception and perception in action
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2017.2721939
– start-page: 3928
  year: 2016
  ident: 10.1016/j.neunet.2018.07.006_b32
  article-title: Stable reinforcement learning with autoencoders for tactile and visual data
– start-page: 126
  year: 2012
  ident: 10.1016/j.neunet.2018.07.006_b48
  article-title: Learn to swing up and balance a real pole based on raw visual input data
– ident: 10.1016/j.neunet.2018.07.006_b25
– ident: 10.1016/j.neunet.2018.07.006_b6
  doi: 10.1613/jair.3912
– ident: 10.1016/j.neunet.2018.07.006_b29
– year: 2017
  ident: 10.1016/j.neunet.2018.07.006_b56
  article-title: Curiosity-driven exploration by self-supervised prediction
– ident: 10.1016/j.neunet.2018.07.006_b46
– volume: 97
  start-page: 251
  year: 2012
  ident: 10.1016/j.neunet.2018.07.006_b74
  article-title: A new embedding quality assessment method for manifold learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.05.013
– start-page: 128
  year: 2005
  ident: 10.1016/j.neunet.2018.07.006_b40
  article-title: Empowerment: A universal agent-centric measure of control
– ident: 10.1016/j.neunet.2018.07.006_b15
– ident: 10.1016/j.neunet.2018.07.006_b64
– start-page: 4667
  year: 2016
  ident: 10.1016/j.neunet.2018.07.006_b52
  article-title: Learning state representation for deep actor-critic control
– ident: 10.1016/j.neunet.2018.07.006_b43
– ident: 10.1016/j.neunet.2018.07.006_b60
– ident: 10.1016/j.neunet.2018.07.006_b19
– ident: 10.1016/j.neunet.2018.07.006_b36
– ident: 10.1016/j.neunet.2018.07.006_b22
– volume: 4
  start-page: 55
  issue: 1
  year: 2012
  ident: 10.1016/j.neunet.2018.07.006_b37
  article-title: The mario AI benchmark and competitions
  publication-title: IEEE Transactions on Computational Intelligence and AI in Games
  doi: 10.1109/TCIAIG.2012.2188528
– ident: 10.1016/j.neunet.2018.07.006_b57
– volume: 39
  start-page: 407
  issue: 3
  year: 2015
  ident: 10.1016/j.neunet.2018.07.006_b35
  article-title: Learning state representations with robotic priors
  publication-title: Autonomous Robots
  doi: 10.1007/s10514-015-9459-7
– ident: 10.1016/j.neunet.2018.07.006_b30
– ident: 10.1016/j.neunet.2018.07.006_b63
  doi: 10.1109/TNN.1998.712192
– ident: 10.1016/j.neunet.2018.07.006_b1
– ident: 10.1016/j.neunet.2018.07.006_b24
– ident: 10.1016/j.neunet.2018.07.006_b28
– ident: 10.1016/j.neunet.2018.07.006_b53
– ident: 10.1016/j.neunet.2018.07.006_b34
– volume: vol. 13
  start-page: 120
  year: 2012
  ident: 10.1016/j.neunet.2018.07.006_b69
  article-title: A folded neural network autoencoder for dimensionality reduction.
– ident: 10.1016/j.neunet.2018.07.006_b11
– start-page: 347
  year: 2006
  ident: 10.1016/j.neunet.2018.07.006_b21
  article-title: Learning to control an octopus arm with Gaussian process temporal difference methods
– volume: 14
  start-page: 715
  issue: 4
  year: 2002
  ident: 10.1016/j.neunet.2018.07.006_b72
  article-title: Slow feature analysis: Unsupervised learning of invariances
  publication-title: Neural Computation
  doi: 10.1162/089976602317318938
– ident: 10.1016/j.neunet.2018.07.006_b9
– ident: 10.1016/j.neunet.2018.07.006_b14
– ident: 10.1016/j.neunet.2018.07.006_b18
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 10.1016/j.neunet.2018.07.006_b50
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– year: 2017
  ident: 10.1016/j.neunet.2018.07.006_b55
  article-title: Goal-driven dimensionality reduction for reinforcement learning
– ident: 10.1016/j.neunet.2018.07.006_b44
– ident: 10.1016/j.neunet.2018.07.006_b5
– volume: 4
  start-page: 49
  issue: 1
  year: 2013
  ident: 10.1016/j.neunet.2018.07.006_b62
  article-title: Robot skill learning: From reinforcement learning to evolution strategies
  publication-title: Paladyn
– ident: 10.1016/j.neunet.2018.07.006_b27
– volume: 18
  start-page: 1527
  year: 2006
  ident: 10.1016/j.neunet.2018.07.006_b31
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
  doi: 10.1162/neco.2006.18.7.1527
– ident: 10.1016/j.neunet.2018.07.006_b47
  doi: 10.1109/IJCNN.2018.8489075
– year: 2015
  ident: 10.1016/j.neunet.2018.07.006_b4
  article-title: Data-efficient learning of feedback policies from image pixels using deep dynamical models
– start-page: 465
  year: 2011
  ident: 10.1016/j.neunet.2018.07.006_b17
  article-title: PILCO: A model-based and data-efficient approach to policy search
– ident: 10.1016/j.neunet.2018.07.006_b73
– ident: 10.1016/j.neunet.2018.07.006_b41
– volume: 11
  start-page: 3371
  issue: Dec
  year: 2010
  ident: 10.1016/j.neunet.2018.07.006_b67
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research (JMLR)
– volume: 184
  start-page: 232
  issue: C
  year: 2016
  ident: 10.1016/j.neunet.2018.07.006_b70
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomput
  doi: 10.1016/j.neucom.2015.08.104
– ident: 10.1016/j.neunet.2018.07.006_b38
– ident: 10.1016/j.neunet.2018.07.006_b45
– year: 2018
  ident: 10.1016/j.neunet.2018.07.006_b75
  article-title: Decoupling dynamics and reward for transfer learning
– ident: 10.1016/j.neunet.2018.07.006_b2
– ident: 10.1016/j.neunet.2018.07.006_b59
– ident: 10.1016/j.neunet.2018.07.006_b20
– start-page: 1
  year: 2015
  ident: 10.1016/j.neunet.2018.07.006_b10
  article-title: Autonomous Learning of State Representations for Control: An Emerging Field Aims to Autonomously Learn State Representations for Reinforcement Learning Agents from Their Real-World Sensor Observations
  publication-title: KI - Küstliche Intelligenz
– start-page: 2172
  year: 2016
  ident: 10.1016/j.neunet.2018.07.006_b12
  article-title: Infogan: Interpretable representation learning by information maximizing generative adversarial nets
SSID ssj0006843
Score 2.6570876
SecondaryResourceType review_article
Snippet Representation learning algorithms are designed to learn abstract features that characterize data. State representation learning (SRL) focuses on a particular...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 379
SubjectTerms Algorithms
Computer Science
Disentanglement of control factors
Humans
Learning disentangled representations
Low dimensional embedding learning
Machine Learning - trends
Reinforcement (Psychology)
Reinforcement learning
Robotics
Robotics - methods
Robotics - trends
State representation learning
Title State representation learning for control: An overview
URI https://dx.doi.org/10.1016/j.neunet.2018.07.006
https://www.ncbi.nlm.nih.gov/pubmed/30268059
https://www.proquest.com/docview/2114699632
https://hal.science/hal-01858558
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbYduHC-zEeU0Bcy9YmTVNu08Q0nheYtFvUpikMoYJg48hvx27TSUggJI6NkrZyHPuz8tkGOJGJDbIklF6uBAUovvKUzYynktyqXpznwqd855tbORqLy0k4WYJBnQtDtEpn-yubXlprN9J10uy-Tqfdux66WomAx6cSVqhLDWgFPJZhE1r9i6vR7cIgS1WR53C-RwvqDLqS5lXYeWGJVOmrsoontT762UM1Hokq-RsOLf3RcA1WHJBk_epf12HJFhuwWjdpYO7MboIs4SQri1fWiUYFc80iHhhiVubo6mesXzBidNJtwRaMh-f3g5HnmiV4RshghkZLchvw0KSxkhkGGqlR3ES5b4zJ0QEh7olzLoxvTaq4TISNDbp3RGBZmEaB4NvQLF4Kuwss4knIjSJCiRVRJuKEW5728lhECG8C3gZeC0gbV0mcGlo865oy9qQrsWoSq-7RFbdsg7dY9VpV0vhjflTLXn_TCI3G_o-Vx7hVi49QAe1R_1rTGE7C-ChUH34bjuqd1Hii6JokKezL_F0HlKiNYSAP2rBTbfHiXahpUiEi3fv3z-3DMj1VjJgDaM7e5vYQcc0s7UDj9NPvOO39Agms9X4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HODC-zGeAXEtW5s0TblNCDRgcIFJu0VtmsIQ6ibYOPLbsdt0CAmExLV12shx7C_KZxvgRCY2yJJQerkSdEDxladsZjyV5Fa14jwXPuU7397JTk9c98P-DJzXuTBEq3S-v_Lppbd2T5pOm83RYNC8b2GolQh4fCphhbY0C_Mi5BHx-k4_vngeUlXUOZT2SLzOnytJXoWdFJYolb4qa3hS46Of49PsExElf0OhZTS6XIElByNZu5rpKszYYg2W6xYNzO3YdZAlmGRl6co6zahgrlXEI0PEyhxZ_Yy1C0Z8Tror2IDe5cXDecdzrRI8I2QwRpcluQ14aNJYyQyPGalR3ES5b4zJMfwg6olzLoxvTaq4TISNDQZ3xF9ZmEaB4JswVwwLuw0s4knIjSI6iRVRJuKEW5628lhECG4C3gBeK0gbV0ec2lm86Jow9qwrtWpSq27RBbdsgDcdNarqaPwhH9W619_sQaOr_2PkMS7V9CdUPrvT7mp6hkJ4OgrVu9-Ao3olNe4nuiRJCjucvOmA0rTxEMiDBmxVSzz9FtqZVIhHd_49uUNY6DzcdnX36u5mFxbpTcWN2YO58evE7iPCGacHpQV_Ahl59kk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+representation+learning+for+control%3A+An+overview&rft.jtitle=Neural+networks&rft.au=Lesort%2C+Timoth%C3%A9e&rft.au=D%C3%ADaz-Rodr%C3%ADguez%2C+Natalia&rft.au=Goudou%2C+Jean-Frano%CC%A7is&rft.au=Filliat%2C+David&rft.date=2018-12-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=108&rft.spage=379&rft.epage=392&rft_id=info:doi/10.1016%2Fj.neunet.2018.07.006&rft.externalDocID=S0893608018302053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon