Model individualization for artificial pancreas
•Two approaches are proposed for identifying tailored linear models describing the dynamics of patients with type 1 diabetes.•The first method is a black box identification based on a novel kernel-based nonparametric approach.•The second is a grey box identification that relies on constrained optimi...
Saved in:
Published in | Computer methods and programs in biomedicine Vol. 171; pp. 133 - 140 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Two approaches are proposed for identifying tailored linear models describing the dynamics of patients with type 1 diabetes.•The first method is a black box identification based on a novel kernel-based nonparametric approach.•The second is a grey box identification that relies on constrained optimization and requires a pre-defined model structure.•The individualized models are evaluated in simulation on the adult virtual population of the UVA/Padova simulator.•The resulting simulation performance is significantly improved with respect to a linear average model.•The proposed approaches can identify glucose-insulin models for designing individualized control laws for articial pancreas.
The inter-subject variability characterizing the patients affected by type 1 diabetes mellitus makes automatic blood glucose control very challenging. Different patients have different insulin responses, and a control law based on a non-individualized model could be ineffective. The definition of an individualized control law in the context of artificial pancreas is currently an open research topic. In this work we consider two novel identification approaches that can be used for individualizing linear glucose–insulin models to a specific patient.
The first approach belongs to the class of black-box identification and is based on a novel kernel-based nonparametric approach, whereas the second is a gray-box identification technique which relies on a constrained optimization and requires to postulate a model structure as prior knowledge. The latter is derived from the linearization of the average nonlinear adult virtual patient of the UVA/Padova simulator. Model identification and validation are based on in silico data collected during simulations of clinical protocols designed to produce a sufficient signal excitation without compromising patient safety. The identified models are evaluated in terms of prediction performance by means of the coefficient of determination, fit, positive and negative max errors, and root mean square error.
Both identification approaches were used to identify a linear individualized glucose–insulin model for each adult virtual patient of the UVA/Padova simulator. The resulting model simulation performance is significantly improved with respect to the performance achieved by a linear average model.
The approaches proposed in this work have shown a good potential to identify glucose–insulin models for designing individualized control laws for artificial pancreas. |
---|---|
AbstractList | •Two approaches are proposed for identifying tailored linear models describing the dynamics of patients with type 1 diabetes.•The first method is a black box identification based on a novel kernel-based nonparametric approach.•The second is a grey box identification that relies on constrained optimization and requires a pre-defined model structure.•The individualized models are evaluated in simulation on the adult virtual population of the UVA/Padova simulator.•The resulting simulation performance is significantly improved with respect to a linear average model.•The proposed approaches can identify glucose-insulin models for designing individualized control laws for articial pancreas.
The inter-subject variability characterizing the patients affected by type 1 diabetes mellitus makes automatic blood glucose control very challenging. Different patients have different insulin responses, and a control law based on a non-individualized model could be ineffective. The definition of an individualized control law in the context of artificial pancreas is currently an open research topic. In this work we consider two novel identification approaches that can be used for individualizing linear glucose–insulin models to a specific patient.
The first approach belongs to the class of black-box identification and is based on a novel kernel-based nonparametric approach, whereas the second is a gray-box identification technique which relies on a constrained optimization and requires to postulate a model structure as prior knowledge. The latter is derived from the linearization of the average nonlinear adult virtual patient of the UVA/Padova simulator. Model identification and validation are based on in silico data collected during simulations of clinical protocols designed to produce a sufficient signal excitation without compromising patient safety. The identified models are evaluated in terms of prediction performance by means of the coefficient of determination, fit, positive and negative max errors, and root mean square error.
Both identification approaches were used to identify a linear individualized glucose–insulin model for each adult virtual patient of the UVA/Padova simulator. The resulting model simulation performance is significantly improved with respect to the performance achieved by a linear average model.
The approaches proposed in this work have shown a good potential to identify glucose–insulin models for designing individualized control laws for artificial pancreas. Highlights • Two novel identification approaches are proposed for identifying individualized linear glucose-insulin models that well describe the metabolic characteristics of patients affected by type 1 diabetes • The first identification method is a black box identification based on a novel kernel-based nonparametric approach • The second identification method is a grey box identification which relays on a constrained optimization and requires to postulate a model structure as prior knowledge • The prediction performance of the individualized model is evaluated in simulation on the adult virtual population of the UVA/Padova simulator • The resulting prediction performance is significantly improved with respect to the performance achieved by a linear average model • The proposed identification approaches show a good potential to identify glucose-insulin models for designing individualized control laws for artificial pancreas BACKGROUND AND OBJECTIVEThe inter-subject variability characterizing the patients affected by type 1 diabetes mellitus makes automatic blood glucose control very challenging. Different patients have different insulin responses, and a control law based on a non-individualized model could be ineffective. The definition of an individualized control law in the context of artificial pancreas is currently an open research topic. In this work we consider two novel identification approaches that can be used for individualizing linear glucose-insulin models to a specific patient.METHODSThe first approach belongs to the class of black-box identification and is based on a novel kernel-based nonparametric approach, whereas the second is a gray-box identification technique which relies on a constrained optimization and requires to postulate a model structure as prior knowledge. The latter is derived from the linearization of the average nonlinear adult virtual patient of the UVA/Padova simulator. Model identification and validation are based on in silico data collected during simulations of clinical protocols designed to produce a sufficient signal excitation without compromising patient safety. The identified models are evaluated in terms of prediction performance by means of the coefficient of determination, fit, positive and negative max errors, and root mean square error.RESULTSBoth identification approaches were used to identify a linear individualized glucose-insulin model for each adult virtual patient of the UVA/Padova simulator. The resulting model simulation performance is significantly improved with respect to the performance achieved by a linear average model.CONCLUSIONSThe approaches proposed in this work have shown a good potential to identify glucose-insulin models for designing individualized control laws for artificial pancreas. The inter-subject variability characterizing the patients affected by type 1 diabetes mellitus makes automatic blood glucose control very challenging. Different patients have different insulin responses, and a control law based on a non-individualized model could be ineffective. The definition of an individualized control law in the context of artificial pancreas is currently an open research topic. In this work we consider two novel identification approaches that can be used for individualizing linear glucose-insulin models to a specific patient. The first approach belongs to the class of black-box identification and is based on a novel kernel-based nonparametric approach, whereas the second is a gray-box identification technique which relies on a constrained optimization and requires to postulate a model structure as prior knowledge. The latter is derived from the linearization of the average nonlinear adult virtual patient of the UVA/Padova simulator. Model identification and validation are based on in silico data collected during simulations of clinical protocols designed to produce a sufficient signal excitation without compromising patient safety. The identified models are evaluated in terms of prediction performance by means of the coefficient of determination, fit, positive and negative max errors, and root mean square error. Both identification approaches were used to identify a linear individualized glucose-insulin model for each adult virtual patient of the UVA/Padova simulator. The resulting model simulation performance is significantly improved with respect to the performance achieved by a linear average model. The approaches proposed in this work have shown a good potential to identify glucose-insulin models for designing individualized control laws for artificial pancreas. |
Author | Magni, Lalo Messori, Mirko Del Favero, Simone Toffanin, Chiara De Nicolao, Giuseppe Cobelli, Claudio |
Author_xml | – sequence: 1 givenname: Mirko orcidid: 0000-0001-9211-3042 surname: Messori fullname: Messori, Mirko email: mirko.messori01@ateneopv.it organization: Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy – sequence: 2 givenname: Chiara surname: Toffanin fullname: Toffanin, Chiara organization: Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy – sequence: 3 givenname: Simone surname: Del Favero fullname: Del Favero, Simone organization: Department of Information Engineering, University of Padova, Padova, Italy – sequence: 4 givenname: Giuseppe orcidid: 0000-0002-3712-9911 surname: De Nicolao fullname: De Nicolao, Giuseppe organization: Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy – sequence: 5 givenname: Claudio surname: Cobelli fullname: Cobelli, Claudio organization: Department of Information Engineering, University of Padova, Padova, Italy – sequence: 6 givenname: Lalo orcidid: 0000-0002-5895-3520 surname: Magni fullname: Magni, Lalo organization: Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27424482$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV9rFDEUxYO02G31C_gg--jLbJNM_syICKVoK7T4oD6HTHIH7ppN1mSmUD-9Gbd9KVjhQhJyfudyzz0lRzFFIOQNoxtGmTrfbtxuP2x4vW9oLapekBXrNG-0VPKIrOpH33BF9Qk5LWVLKeVSqpfkhGvBhej4ipzfJg9hjdHjHfrZBvxtJ0xxPaa8tnnCER3asN7b6DLY8oocjzYUeP1wnpEfnz99v7xubr5efbm8uGmcUHxqOgusF2BHLQbrFbTUM8qdBg31wYfeeyGl6K3wzI8S3OCcGttBMtH22vftGXl38N3n9GuGMpkdFgch2AhpLoZ1XGnOO7FI3z5I52EH3uwz7my-N49DVkF3ELicSskwGofT3ymnbDEYRs2Sp9maJU-z5GloLaoqyp-gj-7PQh8OENSA7hCyKQ4hOvCYwU3GJ3we__gEdwEjOht-wj2UbZpzrNEbZgo31HxbtrwsmcmWCtHSavD-3wb_6_4Hsom2jA |
CitedBy_id | crossref_primary_10_1080_03091902_2022_2095049 crossref_primary_10_1016_j_bbe_2022_10_003 crossref_primary_10_3389_fendo_2023_1115436 crossref_primary_10_1002_cnm_3826 crossref_primary_10_1109_TBME_2021_3101589 crossref_primary_10_1016_j_asoc_2021_107609 crossref_primary_10_1109_JBHI_2020_2969389 crossref_primary_10_1109_ACCESS_2020_2968440 crossref_primary_10_1016_j_cmpb_2020_105574 crossref_primary_10_1109_ACCESS_2022_3212435 crossref_primary_10_1177_19322968211015268 crossref_primary_10_1002_oca_2647 crossref_primary_10_1007_s12293_018_0265_6 crossref_primary_10_1016_j_egyai_2022_100175 crossref_primary_10_1016_j_engappai_2019_103255 crossref_primary_10_1016_j_ifacol_2020_12_616 crossref_primary_10_1080_01969722_2020_1758463 crossref_primary_10_1177_1932296819880864 crossref_primary_10_1177_0954411917702931 crossref_primary_10_1016_j_jprocont_2019_03_009 crossref_primary_10_1016_j_ifacol_2018_05_077 crossref_primary_10_1016_j_bbe_2024_03_003 crossref_primary_10_1109_ACCESS_2021_3076405 |
Cites_doi | 10.1177/193229680900300106 10.1177/193229681300700607 10.1016/j.cmpb.2015.02.003 10.2337/dc12-1956 10.1016/S0140-6736(09)61998-X 10.1016/j.bspc.2009.04.003 10.2337/dc06-2115 10.2337/dc13-1631 10.1016/j.automatica.2010.11.004 10.1260/2040-2295.5.1.1 10.1016/j.ifacol.2015.10.143 10.1056/NEJMoa1314474 10.1089/dia.2014.0066 10.1016/j.arcontrol.2012.09.007 10.1109/RBME.2009.2036073 10.1177/193229681000400611 10.1177/193229680700100603 10.1126/science.220.4598.671 10.1177/1932296813514502 10.1109/TBME.2013.2293531 10.2337/dc13-2076 10.1109/TBME.2012.2192930 10.2337/db11-1445 10.2337/dc07-1967 10.1111/dom.12440 10.1016/j.arcontrol.2012.03.009 10.1016/S2213-8587(14)70114-7 10.1016/j.automatica.2009.10.031 10.1126/scitranslmed.3000619 10.1016/S2213-8587(15)00335-6 10.1177/193229680900300512 10.1089/dia.2014.0050 10.1109/TBME.2013.2291777 10.1002/rnc.1103 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ireland Ltd Elsevier Ireland Ltd Copyright © 2016 Elsevier Ireland Ltd. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Ireland Ltd – notice: Elsevier Ireland Ltd – notice: Copyright © 2016 Elsevier Ireland Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.cmpb.2016.06.006 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-7565 |
EndPage | 140 |
ExternalDocumentID | 27424482 10_1016_j_cmpb_2016_06_006 S0169260715304430 1_s2_0_S0169260715304430 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- AFCTW AGRNS RIG AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR AAYXX CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c462t-8ae194eaf74bad6e30d102c7e7e6e32b9dd45549a4d1df5ecbcc6f3b514397d93 |
IEDL.DBID | .~1 |
ISSN | 0169-2607 |
IngestDate | Thu Jul 10 19:01:32 EDT 2025 Wed Feb 19 02:33:56 EST 2025 Tue Jul 01 02:40:46 EDT 2025 Thu Apr 24 23:10:01 EDT 2025 Fri Feb 23 02:26:00 EST 2024 Fri May 16 01:02:24 EDT 2025 Tue Aug 26 16:33:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Linear systems Model predictive control Type 1 diabetes Nonparametric identification Constrained optimization model predictive control nonparametric identification type 1 diabetes linear systems |
Language | English |
License | Copyright © 2016 Elsevier Ireland Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-8ae194eaf74bad6e30d102c7e7e6e32b9dd45549a4d1df5ecbcc6f3b514397d93 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
ORCID | 0000-0001-9211-3042 0000-0002-5895-3520 0000-0002-3712-9911 |
PMID | 27424482 |
PQID | 1826722849 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1826722849 pubmed_primary_27424482 crossref_citationtrail_10_1016_j_cmpb_2016_06_006 crossref_primary_10_1016_j_cmpb_2016_06_006 elsevier_sciencedirect_doi_10_1016_j_cmpb_2016_06_006 elsevier_clinicalkeyesjournals_1_s2_0_S0169260715304430 elsevier_clinicalkey_doi_10_1016_j_cmpb_2016_06_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Computer methods and programs in biomedicine |
PublicationTitleAlternate | Comput Methods Programs Biomed |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bequette (bib0010) 2012; 36 Patek, Magni, Dassau, Hughes-Karvetski, Toffanin, De Nicolao (bib0090) 2012; 59 Chase, Doyle, Zisser, Renard, Nimri, Cobelli (bib0125) 2014; 16 Toffanin, Sandri, Messori, Cobelli, Magni (bib0160) 2014 Dalla Man, Micheletto, Lv, Breton, Kovatchev, Cobelli (bib0065) 2014; 8 Kovatchev, Cobelli, Renard, Anderson, Breton, Patek (bib0110) 2010; 4 Pillonetto, De Nicolao (bib0195) 2010; 46 Russell, El-Khatib, Sinha, Magyar, McKeon, Goergen (bib0035) 2014; 371 Del Favero, Pillonetto, Cobelli, De Nicolao (bib0070) 2011 Turksoy, Cinar (bib0145) 2014; 5 Magni, Raimondo, Bossi, Dalla Man, De Nicolao, Kovatchev (bib0080) 2007; 1 Weinzimer, Steil, Swan, Dziura, Kurtz, Tamborlane (bib0030) 2008; 31 Kovatchev, Breton, Dalla Man, Cobelli (bib0060) 2009; 3 Magni, Forgione, Toffanin, Dalla Man, De Nicolao, Kovatchev (bib0185) 2009; 3 Kropff, Del Favero, Place, Toffanin, Visentin, Monaro (bib0050) 2015; 3 Thabit, Lubina-Solomon, Stadler, Leelarathna, Walkinshaw, Pernet (bib0045) 2014; 2 Del Favero, Bruttomesso, Di Palma, Lanzola, Visentin, Filippi (bib0130) 2014; 37 Toffanin, Messori, Di Palma, De Nicolao, Cobelli, Magni (bib0100) 2013; 7 Turksoy, Quinn, Littlejohn, Cinar (bib0155) 2014; 61 Palerm, Zisser, Jovanovic, Doyle (bib0170) 2007; 17 Soru, De Nicolao, Toffanin, Dalla Man, Cobelli, Magni (bib0095) 2012; 36 Herrero, Pesl, Reddy, Oliver, Georgiou, Toumazou (bib0175) 2015; 19 Kovatchev, Renard, Cobelli, Zisser, Keith-Hynes, Anderson (bib0135) 2014; 37 Del Favero, Place, Kropff, Messori, Keith-Hynes, Visentin (bib0040) 2015; 17 Messori, Fornasiero, Toffanin, Cobelli, Magni (bib0105) 2014 Del Favero, Facchinetti, Sparacino, Cobelli (bib0210) 2014; 61 Magni, Raimondo, Dalla Man, De Nicolao, Kovatchev, Cobelli (bib0085) 2009; 4 Hovorka, Allen, Elleri, Chassin, Harris, Xing (bib0025) 2010; 375 El-Khatib, Russell, Nathan, Sutherlin, Damiano (bib0020) 2010; 2 Messori, Ellis, Cobelli, Christofides, Magni (bib0075) 2015 Luijf, DeVries, Zwinderman, Leelarathna, Nodale, Caldwell (bib0120) 2013; 36 Turksoy, Bayrak, Quinn, Littlejohn, Cinar (bib0150) 2013 Cobelli, Dalla Man, Sparacino, Magni, De Nicolao, Kovatchev (bib0015) 2009; 2 Herrero, Pesl, Bondia, Reddy, Oliver, Georgiou (bib0180) 2015; 119 Kirkpatrick, Gelatt, Vecchi (bib0205) 1983; 220 Pillonetto, Chiuso, De Nicolao (bib0200) 2011; 47 Breton, Farret, Bruttomesso, Anderson, Magni, Patek (bib0115) 2012; 61 Palerm, Zisser, Bevier, Jovanovic, Doyle (bib0165) 2007; 30 Messori, Cobelli, Magni (bib0055) 2015 Zisser, Renard, Kovatchev, Cobelli, Avogaro, Nimri (bib0140) 2014; 16 Messori, Toffanin, Del Favero, De Nicolao, Cobelli, Magni (bib0190) 2015; 48 Kovatchev (10.1016/j.cmpb.2016.06.006_bib0135) 2014; 37 Del Favero (10.1016/j.cmpb.2016.06.006_bib0040) 2015; 17 Turksoy (10.1016/j.cmpb.2016.06.006_bib0155) 2014; 61 Chase (10.1016/j.cmpb.2016.06.006_bib0125) 2014; 16 El-Khatib (10.1016/j.cmpb.2016.06.006_bib0020) 2010; 2 Kropff (10.1016/j.cmpb.2016.06.006_bib0050) 2015; 3 Magni (10.1016/j.cmpb.2016.06.006_bib0085) 2009; 4 Hovorka (10.1016/j.cmpb.2016.06.006_bib0025) 2010; 375 Patek (10.1016/j.cmpb.2016.06.006_bib0090) 2012; 59 Soru (10.1016/j.cmpb.2016.06.006_bib0095) 2012; 36 Palerm (10.1016/j.cmpb.2016.06.006_bib0165) 2007; 30 Zisser (10.1016/j.cmpb.2016.06.006_bib0140) 2014; 16 Breton (10.1016/j.cmpb.2016.06.006_bib0115) 2012; 61 Toffanin (10.1016/j.cmpb.2016.06.006_bib0160) 2014 Magni (10.1016/j.cmpb.2016.06.006_bib0080) 2007; 1 Bequette (10.1016/j.cmpb.2016.06.006_bib0010) 2012; 36 Del Favero (10.1016/j.cmpb.2016.06.006_bib0070) 2011 Pillonetto (10.1016/j.cmpb.2016.06.006_bib0200) 2011; 47 Luijf (10.1016/j.cmpb.2016.06.006_bib0120) 2013; 36 Pillonetto (10.1016/j.cmpb.2016.06.006_bib0195) 2010; 46 Turksoy (10.1016/j.cmpb.2016.06.006_bib0145) 2014; 5 Kovatchev (10.1016/j.cmpb.2016.06.006_bib0060) 2009; 3 Kovatchev (10.1016/j.cmpb.2016.06.006_bib0110) 2010; 4 Thabit (10.1016/j.cmpb.2016.06.006_bib0045) 2014; 2 Herrero (10.1016/j.cmpb.2016.06.006_bib0180) 2015; 119 Magni (10.1016/j.cmpb.2016.06.006_bib0185) 2009; 3 Del Favero (10.1016/j.cmpb.2016.06.006_bib0210) 2014; 61 Kirkpatrick (10.1016/j.cmpb.2016.06.006_bib0205) 1983; 220 Dalla Man (10.1016/j.cmpb.2016.06.006_bib0065) 2014; 8 Del Favero (10.1016/j.cmpb.2016.06.006_bib0130) 2014; 37 Messori (10.1016/j.cmpb.2016.06.006_bib0105) 2014 Herrero (10.1016/j.cmpb.2016.06.006_bib0175) 2015; 19 Palerm (10.1016/j.cmpb.2016.06.006_bib0170) 2007; 17 Toffanin (10.1016/j.cmpb.2016.06.006_bib0100) 2013; 7 Cobelli (10.1016/j.cmpb.2016.06.006_bib0015) 2009; 2 Russell (10.1016/j.cmpb.2016.06.006_bib0035) 2014; 371 Turksoy (10.1016/j.cmpb.2016.06.006_bib0150) 2013 Messori (10.1016/j.cmpb.2016.06.006_bib0055) 2015 Messori (10.1016/j.cmpb.2016.06.006_bib0075) 2015 Weinzimer (10.1016/j.cmpb.2016.06.006_bib0030) 2008; 31 Messori (10.1016/j.cmpb.2016.06.006_bib0190) 2015; 48 |
References_xml | – volume: 375 start-page: 743 year: 2010 end-page: 751 ident: bib0025 article-title: Manual closed-loop insulin delivery in children and adolescent with type 1 diabetes: a phase 2 randomised crossover trial publication-title: Lancet – volume: 37 start-page: 1789 year: 2014 end-page: 1796 ident: bib0135 article-title: Safety of outpatient closed-loop control: first randomized crossover trials of a wearable artificial pancreas publication-title: Diabetes Care – start-page: 2070 year: 2014 end-page: 2075 ident: bib0160 article-title: Automatic adaptation of basal therapy for type 1 diabetic patients: a run-to-run approach publication-title: 19th IFAC World Congress – volume: 30 start-page: 1131 year: 2007 end-page: 1136 ident: bib0165 article-title: Prandial insulin dosing using run-to-run control application of clinical data and medical expertise to define a suitable performance metric publication-title: Diabetes Care – volume: 16 start-page: 623 year: 2014 end-page: 632 ident: bib0125 article-title: Multicenter closed-loop/hybrid meal bolus insulin delivery with type 1 diabetes publication-title: Diabetes Technol. Ther – volume: 16 start-page: 613 year: 2014 end-page: 622 ident: bib0140 article-title: Multicenter closed-loop insulin delivery study points to challenges for keeping blood glucose in a safe range by a control algorithm in adults and adolescents with type 1 diabetes from various sites publication-title: Diabetes Technol. Ther – volume: 119 start-page: 1 year: 2015 end-page: 8 ident: bib0180 article-title: Method for automatic adjustment of an insulin bolus calculator: in silico robustness evaluation under intra-day variability publication-title: Comput. Methods Programs Biomed – volume: 2 start-page: 27ra27 year: 2010 ident: bib0020 article-title: A bihormonal closed-loop artificial pancreas for type 1 diabetes publication-title: Sci. Transl. Med – volume: 48 start-page: 225 year: 2015 end-page: 230 ident: bib0190 article-title: A nonparametric approach for model individualization in an artificial pancreas publication-title: IFAC-PapersOnLine – volume: 2 start-page: 701 year: 2014 end-page: 709 ident: bib0045 article-title: Home use of closed-loop insulin delivery for overnight glucose control in adults with type 1 diabetes: a 4-week, multicentre, randomised crossover study publication-title: Lancet Diabetes Endocrinol – volume: 61 start-page: 2230 year: 2012 end-page: 2237 ident: bib0115 article-title: Fully integrated artificial pancreas in type 1 diabetes: modular closed-loop glucose control maintains near normoglycemia publication-title: Diabetes – volume: 59 start-page: 2986 year: 2012 end-page: 2999 ident: bib0090 article-title: Modular closed-loop control of diabetes publication-title: IEEE Trans. Biomed. Eng – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: bib0205 article-title: Optimization by simulated annealing publication-title: Science – volume: 371 start-page: 313 year: 2014 end-page: 325 ident: bib0035 article-title: Outpatient glycemic control with a bionic pancreas in type 1 diabetes publication-title: N. Engl. J. Med – volume: 1 start-page: 804 year: 2007 end-page: 812 ident: bib0080 article-title: Model predictive control of type 1 diabetes: an in silico trial publication-title: J. Diabetes Sci. Technol – volume: 17 start-page: 468 year: 2015 end-page: 476 ident: bib0040 article-title: Multicentre outpatient dinner/overnight reduction of hypoglycemia and increased time of glucose in target with a wearable artificial pancreas using multi-modular model predictive control algorithm in adults with type 1 diabetes publication-title: Diabetes Obes. Metab – volume: 5 start-page: 1 year: 2014 end-page: 22 ident: bib0145 article-title: Adaptive control of artificial pancreas systems—a review publication-title: J. Healthc. Eng – volume: 36 start-page: 255 year: 2012 end-page: 266 ident: bib0010 article-title: Challenges and recent progress in the development of a closed-loop artificial pancreas publication-title: Annu. Rev. Control – volume: 17 start-page: 1194 year: 2007 end-page: 1213 ident: bib0170 article-title: A run-to-run framework for prandial insulin dosing: handling real-life uncertainty publication-title: Int. J. Robust Nonlinear Control – volume: 3 start-page: 44 year: 2009 end-page: 55 ident: bib0060 article-title: In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes publication-title: J. Diabetes Sci. Technol – volume: 47 start-page: 291 year: 2011 end-page: 305 ident: bib0200 article-title: Prediction error identification of linear systems: a nonparametric Gaussian regression approach publication-title: Automatica – start-page: 1301 year: 2015 end-page: 1309 ident: bib0055 article-title: Artificial pancreas: from in-silico to in-vivo publication-title: IFAC 9th International Symposium on Advanced Control of Chemical Processes – volume: 46 start-page: 81 year: 2010 end-page: 93 ident: bib0195 article-title: A new kernel-based approach for linear system identification publication-title: Automatica – volume: 4 start-page: 338 year: 2009 end-page: 346 ident: bib0085 article-title: Model predictive control of glucose concentration in type I diabetic patients: an in silico trial publication-title: Biomed. Signal Process. Control – volume: 31 start-page: 934 year: 2008 end-page: 939 ident: bib0030 article-title: Fully-automated closed-loop insulin delivery versus semi-automated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas publication-title: Diabetes Care – start-page: 8340 year: 2011 end-page: 8346 ident: bib0070 article-title: A novel nonparametric approach for the identification of the glucose-insulin system in type 1 diabetic patients publication-title: 18th IFAC World Congress – volume: 36 start-page: 118 year: 2012 end-page: 128 ident: bib0095 article-title: MPC based artificial pancreas: strategies for individualization and meal compensation publication-title: Annu. Rev. Control – volume: 61 start-page: 1044 year: 2014 end-page: 1053 ident: bib0210 article-title: Improving accuracy and precision of glucose sensor profiles: retrospective fitting by constrained deconvolution publication-title: IEEE Trans. Biomed. Eng – volume: 2 start-page: 54 year: 2009 end-page: 96 ident: bib0015 article-title: Diabetes: models, signals, and control publication-title: IEEE Rev. Biomed. Eng – volume: 3 start-page: 939 year: 2015 end-page: 947 ident: bib0050 article-title: 2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial publication-title: Lancet Diabetes Endocrinol – volume: 61 start-page: 883 year: 2014 end-page: 891 ident: bib0155 article-title: Multivariable adaptive identification and control for artificial pancreas systems publication-title: IEEE Trans. Biomed. Eng – start-page: 10144 year: 2014 end-page: 10149 ident: bib0105 article-title: A constrained model predictive controller for an artificial pancreas publication-title: 19th IFAC World Congress – volume: 4 start-page: 1374 year: 2010 end-page: 1381 ident: bib0110 article-title: Multinational study of subcutaneous model-predictive closed-loop control in type 1 diabetes mellitus: summary of the results publication-title: J. Diabetes Sci. Technol – start-page: 5108 year: 2015 end-page: 5115 ident: bib0075 article-title: Improved postprandial glucose control with a customized model predictive controller publication-title: American Control Conference (ACC) – volume: 7 start-page: 1470 year: 2013 end-page: 1483 ident: bib0100 article-title: Artificial pancreas: model predictive control designfrom clinical experience publication-title: J. Diabetes Sci. Technol – volume: 3 start-page: 1091 year: 2009 end-page: 1098 ident: bib0185 article-title: Run-to-run tuning of model predictive control for type I diabetic subjects: an in silico trial publication-title: J. Diabetes Sci. Technol – volume: 8 start-page: 26 year: 2014 end-page: 34 ident: bib0065 article-title: The UVA/PADOVA type 1 diabetes simulator: new features publication-title: J. Diabetes Sci. Technol – volume: 37 start-page: 1212 year: 2014 end-page: 1215 ident: bib0130 article-title: First use of model predictive control in outpatient wearable artificial pancreas publication-title: Diabetes Care – start-page: 2905 year: 2013 end-page: 2910 ident: bib0150 article-title: Adaptive multivariable closed-loop control of blood glucose concentration in patients with type 1 diabetes publication-title: American Control Conference (ACC) – volume: 19 start-page: 1087 year: 2015 end-page: 1096 ident: bib0175 article-title: Advanced insulin bolus advisor based on run-to-run control and case-based reasoning publication-title: IEEE J. Biomed. Health Inform – volume: 36 start-page: 3882 year: 2013 end-page: 3887 ident: bib0120 article-title: Day and night closed-loop control in adults with type 1 diabetes mellitus: a comparison of two closed-loop algorithms driving continuous subcutaneous insulin infusion versus patient self-management publication-title: Diabetes Care – volume: 3 start-page: 44 issue: 1 year: 2009 ident: 10.1016/j.cmpb.2016.06.006_bib0060 article-title: In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes publication-title: J. Diabetes Sci. Technol doi: 10.1177/193229680900300106 – start-page: 8340 year: 2011 ident: 10.1016/j.cmpb.2016.06.006_bib0070 article-title: A novel nonparametric approach for the identification of the glucose-insulin system in type 1 diabetic patients – volume: 7 start-page: 1470 issue: 6 year: 2013 ident: 10.1016/j.cmpb.2016.06.006_bib0100 article-title: Artificial pancreas: model predictive control designfrom clinical experience publication-title: J. Diabetes Sci. Technol doi: 10.1177/193229681300700607 – volume: 119 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.cmpb.2016.06.006_bib0180 article-title: Method for automatic adjustment of an insulin bolus calculator: in silico robustness evaluation under intra-day variability publication-title: Comput. Methods Programs Biomed doi: 10.1016/j.cmpb.2015.02.003 – volume: 36 start-page: 3882 issue: 12 year: 2013 ident: 10.1016/j.cmpb.2016.06.006_bib0120 article-title: Day and night closed-loop control in adults with type 1 diabetes mellitus: a comparison of two closed-loop algorithms driving continuous subcutaneous insulin infusion versus patient self-management publication-title: Diabetes Care doi: 10.2337/dc12-1956 – volume: 375 start-page: 743 issue: 9716 year: 2010 ident: 10.1016/j.cmpb.2016.06.006_bib0025 article-title: Manual closed-loop insulin delivery in children and adolescent with type 1 diabetes: a phase 2 randomised crossover trial publication-title: Lancet doi: 10.1016/S0140-6736(09)61998-X – volume: 4 start-page: 338 issue: 4 year: 2009 ident: 10.1016/j.cmpb.2016.06.006_bib0085 article-title: Model predictive control of glucose concentration in type I diabetic patients: an in silico trial publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2009.04.003 – volume: 30 start-page: 1131 issue: 5 year: 2007 ident: 10.1016/j.cmpb.2016.06.006_bib0165 article-title: Prandial insulin dosing using run-to-run control application of clinical data and medical expertise to define a suitable performance metric publication-title: Diabetes Care doi: 10.2337/dc06-2115 – start-page: 1301 year: 2015 ident: 10.1016/j.cmpb.2016.06.006_bib0055 article-title: Artificial pancreas: from in-silico to in-vivo – volume: 37 start-page: 1212 issue: 5 year: 2014 ident: 10.1016/j.cmpb.2016.06.006_bib0130 article-title: First use of model predictive control in outpatient wearable artificial pancreas publication-title: Diabetes Care doi: 10.2337/dc13-1631 – start-page: 2070 year: 2014 ident: 10.1016/j.cmpb.2016.06.006_bib0160 article-title: Automatic adaptation of basal therapy for type 1 diabetic patients: a run-to-run approach – volume: 47 start-page: 291 issue: 2 year: 2011 ident: 10.1016/j.cmpb.2016.06.006_bib0200 article-title: Prediction error identification of linear systems: a nonparametric Gaussian regression approach publication-title: Automatica doi: 10.1016/j.automatica.2010.11.004 – volume: 5 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.cmpb.2016.06.006_bib0145 article-title: Adaptive control of artificial pancreas systems—a review publication-title: J. Healthc. Eng doi: 10.1260/2040-2295.5.1.1 – volume: 48 start-page: 225 issue: 20 year: 2015 ident: 10.1016/j.cmpb.2016.06.006_bib0190 article-title: A nonparametric approach for model individualization in an artificial pancreas publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.10.143 – volume: 371 start-page: 313 year: 2014 ident: 10.1016/j.cmpb.2016.06.006_bib0035 article-title: Outpatient glycemic control with a bionic pancreas in type 1 diabetes publication-title: N. Engl. J. Med doi: 10.1056/NEJMoa1314474 – volume: 19 start-page: 1087 issue: 3 year: 2015 ident: 10.1016/j.cmpb.2016.06.006_bib0175 article-title: Advanced insulin bolus advisor based on run-to-run control and case-based reasoning publication-title: IEEE J. Biomed. Health Inform – volume: 16 start-page: 613 issue: 10 year: 2014 ident: 10.1016/j.cmpb.2016.06.006_bib0140 article-title: Multicenter closed-loop insulin delivery study points to challenges for keeping blood glucose in a safe range by a control algorithm in adults and adolescents with type 1 diabetes from various sites publication-title: Diabetes Technol. Ther doi: 10.1089/dia.2014.0066 – start-page: 2905 year: 2013 ident: 10.1016/j.cmpb.2016.06.006_bib0150 article-title: Adaptive multivariable closed-loop control of blood glucose concentration in patients with type 1 diabetes – volume: 36 start-page: 255 issue: 2 year: 2012 ident: 10.1016/j.cmpb.2016.06.006_bib0010 article-title: Challenges and recent progress in the development of a closed-loop artificial pancreas publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2012.09.007 – volume: 2 start-page: 54 year: 2009 ident: 10.1016/j.cmpb.2016.06.006_bib0015 article-title: Diabetes: models, signals, and control publication-title: IEEE Rev. Biomed. Eng doi: 10.1109/RBME.2009.2036073 – volume: 4 start-page: 1374 issue: 6 year: 2010 ident: 10.1016/j.cmpb.2016.06.006_bib0110 article-title: Multinational study of subcutaneous model-predictive closed-loop control in type 1 diabetes mellitus: summary of the results publication-title: J. Diabetes Sci. Technol doi: 10.1177/193229681000400611 – volume: 1 start-page: 804 issue: 6 year: 2007 ident: 10.1016/j.cmpb.2016.06.006_bib0080 article-title: Model predictive control of type 1 diabetes: an in silico trial publication-title: J. Diabetes Sci. Technol doi: 10.1177/193229680700100603 – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 10.1016/j.cmpb.2016.06.006_bib0205 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 8 start-page: 26 issue: 1 year: 2014 ident: 10.1016/j.cmpb.2016.06.006_bib0065 article-title: The UVA/PADOVA type 1 diabetes simulator: new features publication-title: J. Diabetes Sci. Technol doi: 10.1177/1932296813514502 – volume: 61 start-page: 1044 issue: 4 year: 2014 ident: 10.1016/j.cmpb.2016.06.006_bib0210 article-title: Improving accuracy and precision of glucose sensor profiles: retrospective fitting by constrained deconvolution publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2013.2293531 – volume: 37 start-page: 1789 issue: 7 year: 2014 ident: 10.1016/j.cmpb.2016.06.006_bib0135 article-title: Safety of outpatient closed-loop control: first randomized crossover trials of a wearable artificial pancreas publication-title: Diabetes Care doi: 10.2337/dc13-2076 – volume: 59 start-page: 2986 issue: 11 year: 2012 ident: 10.1016/j.cmpb.2016.06.006_bib0090 article-title: Modular closed-loop control of diabetes publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2012.2192930 – volume: 61 start-page: 2230 issue: 9 year: 2012 ident: 10.1016/j.cmpb.2016.06.006_bib0115 article-title: Fully integrated artificial pancreas in type 1 diabetes: modular closed-loop glucose control maintains near normoglycemia publication-title: Diabetes doi: 10.2337/db11-1445 – start-page: 5108 year: 2015 ident: 10.1016/j.cmpb.2016.06.006_bib0075 article-title: Improved postprandial glucose control with a customized model predictive controller – start-page: 10144 year: 2014 ident: 10.1016/j.cmpb.2016.06.006_bib0105 article-title: A constrained model predictive controller for an artificial pancreas – volume: 31 start-page: 934 issue: 5 year: 2008 ident: 10.1016/j.cmpb.2016.06.006_bib0030 article-title: Fully-automated closed-loop insulin delivery versus semi-automated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas publication-title: Diabetes Care doi: 10.2337/dc07-1967 – volume: 17 start-page: 468 issue: 5 year: 2015 ident: 10.1016/j.cmpb.2016.06.006_bib0040 article-title: Multicentre outpatient dinner/overnight reduction of hypoglycemia and increased time of glucose in target with a wearable artificial pancreas using multi-modular model predictive control algorithm in adults with type 1 diabetes publication-title: Diabetes Obes. Metab doi: 10.1111/dom.12440 – volume: 36 start-page: 118 issue: 1 year: 2012 ident: 10.1016/j.cmpb.2016.06.006_bib0095 article-title: MPC based artificial pancreas: strategies for individualization and meal compensation publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2012.03.009 – volume: 2 start-page: 701 issue: 9 year: 2014 ident: 10.1016/j.cmpb.2016.06.006_bib0045 article-title: Home use of closed-loop insulin delivery for overnight glucose control in adults with type 1 diabetes: a 4-week, multicentre, randomised crossover study publication-title: Lancet Diabetes Endocrinol doi: 10.1016/S2213-8587(14)70114-7 – volume: 46 start-page: 81 issue: 1 year: 2010 ident: 10.1016/j.cmpb.2016.06.006_bib0195 article-title: A new kernel-based approach for linear system identification publication-title: Automatica doi: 10.1016/j.automatica.2009.10.031 – volume: 2 start-page: 27ra27 issue: 27 year: 2010 ident: 10.1016/j.cmpb.2016.06.006_bib0020 article-title: A bihormonal closed-loop artificial pancreas for type 1 diabetes publication-title: Sci. Transl. Med doi: 10.1126/scitranslmed.3000619 – volume: 3 start-page: 939 issue: 12 year: 2015 ident: 10.1016/j.cmpb.2016.06.006_bib0050 article-title: 2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial publication-title: Lancet Diabetes Endocrinol doi: 10.1016/S2213-8587(15)00335-6 – volume: 3 start-page: 1091 issue: 5 year: 2009 ident: 10.1016/j.cmpb.2016.06.006_bib0185 article-title: Run-to-run tuning of model predictive control for type I diabetic subjects: an in silico trial publication-title: J. Diabetes Sci. Technol doi: 10.1177/193229680900300512 – volume: 16 start-page: 623 issue: 10 year: 2014 ident: 10.1016/j.cmpb.2016.06.006_bib0125 article-title: Multicenter closed-loop/hybrid meal bolus insulin delivery with type 1 diabetes publication-title: Diabetes Technol. Ther doi: 10.1089/dia.2014.0050 – volume: 61 start-page: 883 issue: 3 year: 2014 ident: 10.1016/j.cmpb.2016.06.006_bib0155 article-title: Multivariable adaptive identification and control for artificial pancreas systems publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2013.2291777 – volume: 17 start-page: 1194 issue: 13 year: 2007 ident: 10.1016/j.cmpb.2016.06.006_bib0170 article-title: A run-to-run framework for prandial insulin dosing: handling real-life uncertainty publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.1103 |
SSID | ssj0002556 |
Score | 2.3866808 |
Snippet | •Two approaches are proposed for identifying tailored linear models describing the dynamics of patients with type 1 diabetes.•The first method is a black box... Highlights • Two novel identification approaches are proposed for identifying individualized linear glucose-insulin models that well describe the metabolic... The inter-subject variability characterizing the patients affected by type 1 diabetes mellitus makes automatic blood glucose control very challenging.... BACKGROUND AND OBJECTIVEThe inter-subject variability characterizing the patients affected by type 1 diabetes mellitus makes automatic blood glucose control... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 133 |
SubjectTerms | Constrained optimization Internal Medicine Linear systems Model predictive control Nonparametric identification Other Type 1 diabetes |
Title | Model individualization for artificial pancreas |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260715304430 https://www.clinicalkey.es/playcontent/1-s2.0-S0169260715304430 https://dx.doi.org/10.1016/j.cmpb.2016.06.006 https://www.ncbi.nlm.nih.gov/pubmed/27424482 https://www.proquest.com/docview/1826722849 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kgngR38ZHieBNYvPYbLpHEUtV9KJCb0v2EajUttj26m93JtlERK3gccMOm53Mzn6TeQGcUde3uAh1YDlPA5bEKlAqMgFC0zAPtejq8n_H_QPvP7PbQTpYgas6F4bCKp3ur3R6qa3dk47jZmc6HHYeqY5ITOXRUjTJWUJ2O2MZSfnF-2eYB5XYqup7i4Bmu8SZKsZLv04VhXfxsoYndT36-XL6DXyWl1BvEzYcevQvqxfcghU73oa1e-cf34EOtTYb-cMmy8plWfoITX3aVlUvwkcVQGhxtgvPveunq37gWiIEmvF4HnRzGwlm8yJjKjfcJqFBhKAzm1kcxEoYwxAgiJyZyBSp1UprXiSKYJHIjEj2oDWejO0B-MIkecGQd1xzpnRXmVApQ35FtFmjqPAgqnkhtasXTm0rRrIODHuRxD9J_JNldBz34LyhmVbVMpbOTmoWyzoPFDWXRGW-lCr7icrO3OGbyUjOYhnKbwLiQdpQfpGxP1c8rb-_xMNHHpV8bCcLXAmNsyzGG154sF8JRrNv8oGj7Rsf_nPVI1jHkaiihI6hNX9b2BMEQHPVLiW8DauXN3f9hw8rGAJd |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kBfUivq3PCN4kNI_NpnssorTa9qIFb0v2EajUWmz9_84km4CoFTzmMWx2spn9JjPzDcAVdX2L8kD7lvPEZ3GkfKVC4yM0DbJAi44u_ncMR7w3ZvfPyfMa3FS1MJRW6Wx_adMLa-3OtJ022_PJpP1IPCIR0aMl6JKzGP32JrFTJQ1odvsPvVFtkIllq6T4Fj4JuNqZMs1Lv84VZXjxgsaTGh_9vD_9hj-LfehuG7YcgPS65TPuwJqd7cL60IXI96BN3c2m3qQutHKFlh6iU49mVlJGeGgFCDAu9mF8d_t00_NdVwRfMx4t_U5mQ8FslqdMZYbbODAIEnRqU4sHkRLGMMQIImMmNHlitdKa57EiZCRSI-IDaMzeZvYIPGHiLGeoPq45U7qjTKCUodAiuq1hmLcgrHQhtaMMp84VU1nlhr1I0p8k_ckiQY634LqWmZeEGSvvjisVy6oUFI2XRHu-Uir9Scou3Pe3kKFcRDKQ39ZIC5Ja8ssy-3PEy-r9S_z-KKiSzezbB46E_lka4SYvWnBYLox63hQGR_c3Ov7nqBew0XsaDuSgP3o4gU28IsqkoVNoLN8_7BnioaU6d-v9EwQFBQ4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+individualization+for+artificial+pancreas&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Messori%2C+Mirko&rft.au=Toffanin%2C+Chiara&rft.au=Del+Favero%2C+Simone&rft.au=De+Nicolao%2C+Giuseppe&rft.date=2019-04-01&rft.eissn=1872-7565&rft.volume=171&rft.spage=133&rft.epage=140&rft_id=info:doi/10.1016%2Fj.cmpb.2016.06.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |