Model individualization for artificial pancreas

•Two approaches are proposed for identifying tailored linear models describing the dynamics of patients with type 1 diabetes.•The first method is a black box identification based on a novel kernel-based nonparametric approach.•The second is a grey box identification that relies on constrained optimi...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 171; pp. 133 - 140
Main Authors Messori, Mirko, Toffanin, Chiara, Del Favero, Simone, De Nicolao, Giuseppe, Cobelli, Claudio, Magni, Lalo
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Two approaches are proposed for identifying tailored linear models describing the dynamics of patients with type 1 diabetes.•The first method is a black box identification based on a novel kernel-based nonparametric approach.•The second is a grey box identification that relies on constrained optimization and requires a pre-defined model structure.•The individualized models are evaluated in simulation on the adult virtual population of the UVA/Padova simulator.•The resulting simulation performance is significantly improved with respect to a linear average model.•The proposed approaches can identify glucose-insulin models for designing individualized control laws for articial pancreas. The inter-subject variability characterizing the patients affected by type 1 diabetes mellitus makes automatic blood glucose control very challenging. Different patients have different insulin responses, and a control law based on a non-individualized model could be ineffective. The definition of an individualized control law in the context of artificial pancreas is currently an open research topic. In this work we consider two novel identification approaches that can be used for individualizing linear glucose–insulin models to a specific patient. The first approach belongs to the class of black-box identification and is based on a novel kernel-based nonparametric approach, whereas the second is a gray-box identification technique which relies on a constrained optimization and requires to postulate a model structure as prior knowledge. The latter is derived from the linearization of the average nonlinear adult virtual patient of the UVA/Padova simulator. Model identification and validation are based on in silico data collected during simulations of clinical protocols designed to produce a sufficient signal excitation without compromising patient safety. The identified models are evaluated in terms of prediction performance by means of the coefficient of determination, fit, positive and negative max errors, and root mean square error. Both identification approaches were used to identify a linear individualized glucose–insulin model for each adult virtual patient of the UVA/Padova simulator. The resulting model simulation performance is significantly improved with respect to the performance achieved by a linear average model. The approaches proposed in this work have shown a good potential to identify glucose–insulin models for designing individualized control laws for artificial pancreas.
AbstractList •Two approaches are proposed for identifying tailored linear models describing the dynamics of patients with type 1 diabetes.•The first method is a black box identification based on a novel kernel-based nonparametric approach.•The second is a grey box identification that relies on constrained optimization and requires a pre-defined model structure.•The individualized models are evaluated in simulation on the adult virtual population of the UVA/Padova simulator.•The resulting simulation performance is significantly improved with respect to a linear average model.•The proposed approaches can identify glucose-insulin models for designing individualized control laws for articial pancreas. The inter-subject variability characterizing the patients affected by type 1 diabetes mellitus makes automatic blood glucose control very challenging. Different patients have different insulin responses, and a control law based on a non-individualized model could be ineffective. The definition of an individualized control law in the context of artificial pancreas is currently an open research topic. In this work we consider two novel identification approaches that can be used for individualizing linear glucose–insulin models to a specific patient. The first approach belongs to the class of black-box identification and is based on a novel kernel-based nonparametric approach, whereas the second is a gray-box identification technique which relies on a constrained optimization and requires to postulate a model structure as prior knowledge. The latter is derived from the linearization of the average nonlinear adult virtual patient of the UVA/Padova simulator. Model identification and validation are based on in silico data collected during simulations of clinical protocols designed to produce a sufficient signal excitation without compromising patient safety. The identified models are evaluated in terms of prediction performance by means of the coefficient of determination, fit, positive and negative max errors, and root mean square error. Both identification approaches were used to identify a linear individualized glucose–insulin model for each adult virtual patient of the UVA/Padova simulator. The resulting model simulation performance is significantly improved with respect to the performance achieved by a linear average model. The approaches proposed in this work have shown a good potential to identify glucose–insulin models for designing individualized control laws for artificial pancreas.
Highlights • Two novel identification approaches are proposed for identifying individualized linear glucose-insulin models that well describe the metabolic characteristics of patients affected by type 1 diabetes • The first identification method is a black box identification based on a novel kernel-based nonparametric approach • The second identification method is a grey box identification which relays on a constrained optimization and requires to postulate a model structure as prior knowledge • The prediction performance of the individualized model is evaluated in simulation on the adult virtual population of the UVA/Padova simulator • The resulting prediction performance is significantly improved with respect to the performance achieved by a linear average model • The proposed identification approaches show a good potential to identify glucose-insulin models for designing individualized control laws for artificial pancreas
BACKGROUND AND OBJECTIVEThe inter-subject variability characterizing the patients affected by type 1 diabetes mellitus makes automatic blood glucose control very challenging. Different patients have different insulin responses, and a control law based on a non-individualized model could be ineffective. The definition of an individualized control law in the context of artificial pancreas is currently an open research topic. In this work we consider two novel identification approaches that can be used for individualizing linear glucose-insulin models to a specific patient.METHODSThe first approach belongs to the class of black-box identification and is based on a novel kernel-based nonparametric approach, whereas the second is a gray-box identification technique which relies on a constrained optimization and requires to postulate a model structure as prior knowledge. The latter is derived from the linearization of the average nonlinear adult virtual patient of the UVA/Padova simulator. Model identification and validation are based on in silico data collected during simulations of clinical protocols designed to produce a sufficient signal excitation without compromising patient safety. The identified models are evaluated in terms of prediction performance by means of the coefficient of determination, fit, positive and negative max errors, and root mean square error.RESULTSBoth identification approaches were used to identify a linear individualized glucose-insulin model for each adult virtual patient of the UVA/Padova simulator. The resulting model simulation performance is significantly improved with respect to the performance achieved by a linear average model.CONCLUSIONSThe approaches proposed in this work have shown a good potential to identify glucose-insulin models for designing individualized control laws for artificial pancreas.
The inter-subject variability characterizing the patients affected by type 1 diabetes mellitus makes automatic blood glucose control very challenging. Different patients have different insulin responses, and a control law based on a non-individualized model could be ineffective. The definition of an individualized control law in the context of artificial pancreas is currently an open research topic. In this work we consider two novel identification approaches that can be used for individualizing linear glucose-insulin models to a specific patient. The first approach belongs to the class of black-box identification and is based on a novel kernel-based nonparametric approach, whereas the second is a gray-box identification technique which relies on a constrained optimization and requires to postulate a model structure as prior knowledge. The latter is derived from the linearization of the average nonlinear adult virtual patient of the UVA/Padova simulator. Model identification and validation are based on in silico data collected during simulations of clinical protocols designed to produce a sufficient signal excitation without compromising patient safety. The identified models are evaluated in terms of prediction performance by means of the coefficient of determination, fit, positive and negative max errors, and root mean square error. Both identification approaches were used to identify a linear individualized glucose-insulin model for each adult virtual patient of the UVA/Padova simulator. The resulting model simulation performance is significantly improved with respect to the performance achieved by a linear average model. The approaches proposed in this work have shown a good potential to identify glucose-insulin models for designing individualized control laws for artificial pancreas.
Author Magni, Lalo
Messori, Mirko
Del Favero, Simone
Toffanin, Chiara
De Nicolao, Giuseppe
Cobelli, Claudio
Author_xml – sequence: 1
  givenname: Mirko
  orcidid: 0000-0001-9211-3042
  surname: Messori
  fullname: Messori, Mirko
  email: mirko.messori01@ateneopv.it
  organization: Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
– sequence: 2
  givenname: Chiara
  surname: Toffanin
  fullname: Toffanin, Chiara
  organization: Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
– sequence: 3
  givenname: Simone
  surname: Del Favero
  fullname: Del Favero, Simone
  organization: Department of Information Engineering, University of Padova, Padova, Italy
– sequence: 4
  givenname: Giuseppe
  orcidid: 0000-0002-3712-9911
  surname: De Nicolao
  fullname: De Nicolao, Giuseppe
  organization: Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy
– sequence: 5
  givenname: Claudio
  surname: Cobelli
  fullname: Cobelli, Claudio
  organization: Department of Information Engineering, University of Padova, Padova, Italy
– sequence: 6
  givenname: Lalo
  orcidid: 0000-0002-5895-3520
  surname: Magni
  fullname: Magni, Lalo
  organization: Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27424482$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9rFDEUxYO02G31C_gg--jLbJNM_syICKVoK7T4oD6HTHIH7ppN1mSmUD-9Gbd9KVjhQhJyfudyzz0lRzFFIOQNoxtGmTrfbtxuP2x4vW9oLapekBXrNG-0VPKIrOpH33BF9Qk5LWVLKeVSqpfkhGvBhej4ipzfJg9hjdHjHfrZBvxtJ0xxPaa8tnnCER3asN7b6DLY8oocjzYUeP1wnpEfnz99v7xubr5efbm8uGmcUHxqOgusF2BHLQbrFbTUM8qdBg31wYfeeyGl6K3wzI8S3OCcGttBMtH22vftGXl38N3n9GuGMpkdFgch2AhpLoZ1XGnOO7FI3z5I52EH3uwz7my-N49DVkF3ELicSskwGofT3ymnbDEYRs2Sp9maJU-z5GloLaoqyp-gj-7PQh8OENSA7hCyKQ4hOvCYwU3GJ3we__gEdwEjOht-wj2UbZpzrNEbZgo31HxbtrwsmcmWCtHSavD-3wb_6_4Hsom2jA
CitedBy_id crossref_primary_10_1080_03091902_2022_2095049
crossref_primary_10_1016_j_bbe_2022_10_003
crossref_primary_10_3389_fendo_2023_1115436
crossref_primary_10_1002_cnm_3826
crossref_primary_10_1109_TBME_2021_3101589
crossref_primary_10_1016_j_asoc_2021_107609
crossref_primary_10_1109_JBHI_2020_2969389
crossref_primary_10_1109_ACCESS_2020_2968440
crossref_primary_10_1016_j_cmpb_2020_105574
crossref_primary_10_1109_ACCESS_2022_3212435
crossref_primary_10_1177_19322968211015268
crossref_primary_10_1002_oca_2647
crossref_primary_10_1007_s12293_018_0265_6
crossref_primary_10_1016_j_egyai_2022_100175
crossref_primary_10_1016_j_engappai_2019_103255
crossref_primary_10_1016_j_ifacol_2020_12_616
crossref_primary_10_1080_01969722_2020_1758463
crossref_primary_10_1177_1932296819880864
crossref_primary_10_1177_0954411917702931
crossref_primary_10_1016_j_jprocont_2019_03_009
crossref_primary_10_1016_j_ifacol_2018_05_077
crossref_primary_10_1016_j_bbe_2024_03_003
crossref_primary_10_1109_ACCESS_2021_3076405
Cites_doi 10.1177/193229680900300106
10.1177/193229681300700607
10.1016/j.cmpb.2015.02.003
10.2337/dc12-1956
10.1016/S0140-6736(09)61998-X
10.1016/j.bspc.2009.04.003
10.2337/dc06-2115
10.2337/dc13-1631
10.1016/j.automatica.2010.11.004
10.1260/2040-2295.5.1.1
10.1016/j.ifacol.2015.10.143
10.1056/NEJMoa1314474
10.1089/dia.2014.0066
10.1016/j.arcontrol.2012.09.007
10.1109/RBME.2009.2036073
10.1177/193229681000400611
10.1177/193229680700100603
10.1126/science.220.4598.671
10.1177/1932296813514502
10.1109/TBME.2013.2293531
10.2337/dc13-2076
10.1109/TBME.2012.2192930
10.2337/db11-1445
10.2337/dc07-1967
10.1111/dom.12440
10.1016/j.arcontrol.2012.03.009
10.1016/S2213-8587(14)70114-7
10.1016/j.automatica.2009.10.031
10.1126/scitranslmed.3000619
10.1016/S2213-8587(15)00335-6
10.1177/193229680900300512
10.1089/dia.2014.0050
10.1109/TBME.2013.2291777
10.1002/rnc.1103
ContentType Journal Article
Copyright 2016 Elsevier Ireland Ltd
Elsevier Ireland Ltd
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Ireland Ltd
– notice: Elsevier Ireland Ltd
– notice: Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.cmpb.2016.06.006
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 140
ExternalDocumentID 27424482
10_1016_j_cmpb_2016_06_006
S0169260715304430
1_s2_0_S0169260715304430
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
AFCTW
AGRNS
RIG
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c462t-8ae194eaf74bad6e30d102c7e7e6e32b9dd45549a4d1df5ecbcc6f3b514397d93
IEDL.DBID .~1
ISSN 0169-2607
IngestDate Thu Jul 10 19:01:32 EDT 2025
Wed Feb 19 02:33:56 EST 2025
Tue Jul 01 02:40:46 EDT 2025
Thu Apr 24 23:10:01 EDT 2025
Fri Feb 23 02:26:00 EST 2024
Fri May 16 01:02:24 EDT 2025
Tue Aug 26 16:33:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Linear systems
Model predictive control
Type 1 diabetes
Nonparametric identification
Constrained optimization
model predictive control
nonparametric identification
type 1 diabetes
linear systems
Language English
License Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-8ae194eaf74bad6e30d102c7e7e6e32b9dd45549a4d1df5ecbcc6f3b514397d93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0001-9211-3042
0000-0002-5895-3520
0000-0002-3712-9911
PMID 27424482
PQID 1826722849
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1826722849
pubmed_primary_27424482
crossref_citationtrail_10_1016_j_cmpb_2016_06_006
crossref_primary_10_1016_j_cmpb_2016_06_006
elsevier_sciencedirect_doi_10_1016_j_cmpb_2016_06_006
elsevier_clinicalkeyesjournals_1_s2_0_S0169260715304430
elsevier_clinicalkey_doi_10_1016_j_cmpb_2016_06_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bequette (bib0010) 2012; 36
Patek, Magni, Dassau, Hughes-Karvetski, Toffanin, De Nicolao (bib0090) 2012; 59
Chase, Doyle, Zisser, Renard, Nimri, Cobelli (bib0125) 2014; 16
Toffanin, Sandri, Messori, Cobelli, Magni (bib0160) 2014
Dalla Man, Micheletto, Lv, Breton, Kovatchev, Cobelli (bib0065) 2014; 8
Kovatchev, Cobelli, Renard, Anderson, Breton, Patek (bib0110) 2010; 4
Pillonetto, De Nicolao (bib0195) 2010; 46
Russell, El-Khatib, Sinha, Magyar, McKeon, Goergen (bib0035) 2014; 371
Del Favero, Pillonetto, Cobelli, De Nicolao (bib0070) 2011
Turksoy, Cinar (bib0145) 2014; 5
Magni, Raimondo, Bossi, Dalla Man, De Nicolao, Kovatchev (bib0080) 2007; 1
Weinzimer, Steil, Swan, Dziura, Kurtz, Tamborlane (bib0030) 2008; 31
Kovatchev, Breton, Dalla Man, Cobelli (bib0060) 2009; 3
Magni, Forgione, Toffanin, Dalla Man, De Nicolao, Kovatchev (bib0185) 2009; 3
Kropff, Del Favero, Place, Toffanin, Visentin, Monaro (bib0050) 2015; 3
Thabit, Lubina-Solomon, Stadler, Leelarathna, Walkinshaw, Pernet (bib0045) 2014; 2
Del Favero, Bruttomesso, Di Palma, Lanzola, Visentin, Filippi (bib0130) 2014; 37
Toffanin, Messori, Di Palma, De Nicolao, Cobelli, Magni (bib0100) 2013; 7
Turksoy, Quinn, Littlejohn, Cinar (bib0155) 2014; 61
Palerm, Zisser, Jovanovic, Doyle (bib0170) 2007; 17
Soru, De Nicolao, Toffanin, Dalla Man, Cobelli, Magni (bib0095) 2012; 36
Herrero, Pesl, Reddy, Oliver, Georgiou, Toumazou (bib0175) 2015; 19
Kovatchev, Renard, Cobelli, Zisser, Keith-Hynes, Anderson (bib0135) 2014; 37
Del Favero, Place, Kropff, Messori, Keith-Hynes, Visentin (bib0040) 2015; 17
Messori, Fornasiero, Toffanin, Cobelli, Magni (bib0105) 2014
Del Favero, Facchinetti, Sparacino, Cobelli (bib0210) 2014; 61
Magni, Raimondo, Dalla Man, De Nicolao, Kovatchev, Cobelli (bib0085) 2009; 4
Hovorka, Allen, Elleri, Chassin, Harris, Xing (bib0025) 2010; 375
El-Khatib, Russell, Nathan, Sutherlin, Damiano (bib0020) 2010; 2
Messori, Ellis, Cobelli, Christofides, Magni (bib0075) 2015
Luijf, DeVries, Zwinderman, Leelarathna, Nodale, Caldwell (bib0120) 2013; 36
Turksoy, Bayrak, Quinn, Littlejohn, Cinar (bib0150) 2013
Cobelli, Dalla Man, Sparacino, Magni, De Nicolao, Kovatchev (bib0015) 2009; 2
Herrero, Pesl, Bondia, Reddy, Oliver, Georgiou (bib0180) 2015; 119
Kirkpatrick, Gelatt, Vecchi (bib0205) 1983; 220
Pillonetto, Chiuso, De Nicolao (bib0200) 2011; 47
Breton, Farret, Bruttomesso, Anderson, Magni, Patek (bib0115) 2012; 61
Palerm, Zisser, Bevier, Jovanovic, Doyle (bib0165) 2007; 30
Messori, Cobelli, Magni (bib0055) 2015
Zisser, Renard, Kovatchev, Cobelli, Avogaro, Nimri (bib0140) 2014; 16
Messori, Toffanin, Del Favero, De Nicolao, Cobelli, Magni (bib0190) 2015; 48
Kovatchev (10.1016/j.cmpb.2016.06.006_bib0135) 2014; 37
Del Favero (10.1016/j.cmpb.2016.06.006_bib0040) 2015; 17
Turksoy (10.1016/j.cmpb.2016.06.006_bib0155) 2014; 61
Chase (10.1016/j.cmpb.2016.06.006_bib0125) 2014; 16
El-Khatib (10.1016/j.cmpb.2016.06.006_bib0020) 2010; 2
Kropff (10.1016/j.cmpb.2016.06.006_bib0050) 2015; 3
Magni (10.1016/j.cmpb.2016.06.006_bib0085) 2009; 4
Hovorka (10.1016/j.cmpb.2016.06.006_bib0025) 2010; 375
Patek (10.1016/j.cmpb.2016.06.006_bib0090) 2012; 59
Soru (10.1016/j.cmpb.2016.06.006_bib0095) 2012; 36
Palerm (10.1016/j.cmpb.2016.06.006_bib0165) 2007; 30
Zisser (10.1016/j.cmpb.2016.06.006_bib0140) 2014; 16
Breton (10.1016/j.cmpb.2016.06.006_bib0115) 2012; 61
Toffanin (10.1016/j.cmpb.2016.06.006_bib0160) 2014
Magni (10.1016/j.cmpb.2016.06.006_bib0080) 2007; 1
Bequette (10.1016/j.cmpb.2016.06.006_bib0010) 2012; 36
Del Favero (10.1016/j.cmpb.2016.06.006_bib0070) 2011
Pillonetto (10.1016/j.cmpb.2016.06.006_bib0200) 2011; 47
Luijf (10.1016/j.cmpb.2016.06.006_bib0120) 2013; 36
Pillonetto (10.1016/j.cmpb.2016.06.006_bib0195) 2010; 46
Turksoy (10.1016/j.cmpb.2016.06.006_bib0145) 2014; 5
Kovatchev (10.1016/j.cmpb.2016.06.006_bib0060) 2009; 3
Kovatchev (10.1016/j.cmpb.2016.06.006_bib0110) 2010; 4
Thabit (10.1016/j.cmpb.2016.06.006_bib0045) 2014; 2
Herrero (10.1016/j.cmpb.2016.06.006_bib0180) 2015; 119
Magni (10.1016/j.cmpb.2016.06.006_bib0185) 2009; 3
Del Favero (10.1016/j.cmpb.2016.06.006_bib0210) 2014; 61
Kirkpatrick (10.1016/j.cmpb.2016.06.006_bib0205) 1983; 220
Dalla Man (10.1016/j.cmpb.2016.06.006_bib0065) 2014; 8
Del Favero (10.1016/j.cmpb.2016.06.006_bib0130) 2014; 37
Messori (10.1016/j.cmpb.2016.06.006_bib0105) 2014
Herrero (10.1016/j.cmpb.2016.06.006_bib0175) 2015; 19
Palerm (10.1016/j.cmpb.2016.06.006_bib0170) 2007; 17
Toffanin (10.1016/j.cmpb.2016.06.006_bib0100) 2013; 7
Cobelli (10.1016/j.cmpb.2016.06.006_bib0015) 2009; 2
Russell (10.1016/j.cmpb.2016.06.006_bib0035) 2014; 371
Turksoy (10.1016/j.cmpb.2016.06.006_bib0150) 2013
Messori (10.1016/j.cmpb.2016.06.006_bib0055) 2015
Messori (10.1016/j.cmpb.2016.06.006_bib0075) 2015
Weinzimer (10.1016/j.cmpb.2016.06.006_bib0030) 2008; 31
Messori (10.1016/j.cmpb.2016.06.006_bib0190) 2015; 48
References_xml – volume: 375
  start-page: 743
  year: 2010
  end-page: 751
  ident: bib0025
  article-title: Manual closed-loop insulin delivery in children and adolescent with type 1 diabetes: a phase 2 randomised crossover trial
  publication-title: Lancet
– volume: 37
  start-page: 1789
  year: 2014
  end-page: 1796
  ident: bib0135
  article-title: Safety of outpatient closed-loop control: first randomized crossover trials of a wearable artificial pancreas
  publication-title: Diabetes Care
– start-page: 2070
  year: 2014
  end-page: 2075
  ident: bib0160
  article-title: Automatic adaptation of basal therapy for type 1 diabetic patients: a run-to-run approach
  publication-title: 19th IFAC World Congress
– volume: 30
  start-page: 1131
  year: 2007
  end-page: 1136
  ident: bib0165
  article-title: Prandial insulin dosing using run-to-run control application of clinical data and medical expertise to define a suitable performance metric
  publication-title: Diabetes Care
– volume: 16
  start-page: 623
  year: 2014
  end-page: 632
  ident: bib0125
  article-title: Multicenter closed-loop/hybrid meal bolus insulin delivery with type 1 diabetes
  publication-title: Diabetes Technol. Ther
– volume: 16
  start-page: 613
  year: 2014
  end-page: 622
  ident: bib0140
  article-title: Multicenter closed-loop insulin delivery study points to challenges for keeping blood glucose in a safe range by a control algorithm in adults and adolescents with type 1 diabetes from various sites
  publication-title: Diabetes Technol. Ther
– volume: 119
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib0180
  article-title: Method for automatic adjustment of an insulin bolus calculator: in silico robustness evaluation under intra-day variability
  publication-title: Comput. Methods Programs Biomed
– volume: 2
  start-page: 27ra27
  year: 2010
  ident: bib0020
  article-title: A bihormonal closed-loop artificial pancreas for type 1 diabetes
  publication-title: Sci. Transl. Med
– volume: 48
  start-page: 225
  year: 2015
  end-page: 230
  ident: bib0190
  article-title: A nonparametric approach for model individualization in an artificial pancreas
  publication-title: IFAC-PapersOnLine
– volume: 2
  start-page: 701
  year: 2014
  end-page: 709
  ident: bib0045
  article-title: Home use of closed-loop insulin delivery for overnight glucose control in adults with type 1 diabetes: a 4-week, multicentre, randomised crossover study
  publication-title: Lancet Diabetes Endocrinol
– volume: 61
  start-page: 2230
  year: 2012
  end-page: 2237
  ident: bib0115
  article-title: Fully integrated artificial pancreas in type 1 diabetes: modular closed-loop glucose control maintains near normoglycemia
  publication-title: Diabetes
– volume: 59
  start-page: 2986
  year: 2012
  end-page: 2999
  ident: bib0090
  article-title: Modular closed-loop control of diabetes
  publication-title: IEEE Trans. Biomed. Eng
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: bib0205
  article-title: Optimization by simulated annealing
  publication-title: Science
– volume: 371
  start-page: 313
  year: 2014
  end-page: 325
  ident: bib0035
  article-title: Outpatient glycemic control with a bionic pancreas in type 1 diabetes
  publication-title: N. Engl. J. Med
– volume: 1
  start-page: 804
  year: 2007
  end-page: 812
  ident: bib0080
  article-title: Model predictive control of type 1 diabetes: an in silico trial
  publication-title: J. Diabetes Sci. Technol
– volume: 17
  start-page: 468
  year: 2015
  end-page: 476
  ident: bib0040
  article-title: Multicentre outpatient dinner/overnight reduction of hypoglycemia and increased time of glucose in target with a wearable artificial pancreas using multi-modular model predictive control algorithm in adults with type 1 diabetes
  publication-title: Diabetes Obes. Metab
– volume: 5
  start-page: 1
  year: 2014
  end-page: 22
  ident: bib0145
  article-title: Adaptive control of artificial pancreas systems—a review
  publication-title: J. Healthc. Eng
– volume: 36
  start-page: 255
  year: 2012
  end-page: 266
  ident: bib0010
  article-title: Challenges and recent progress in the development of a closed-loop artificial pancreas
  publication-title: Annu. Rev. Control
– volume: 17
  start-page: 1194
  year: 2007
  end-page: 1213
  ident: bib0170
  article-title: A run-to-run framework for prandial insulin dosing: handling real-life uncertainty
  publication-title: Int. J. Robust Nonlinear Control
– volume: 3
  start-page: 44
  year: 2009
  end-page: 55
  ident: bib0060
  article-title: In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes
  publication-title: J. Diabetes Sci. Technol
– volume: 47
  start-page: 291
  year: 2011
  end-page: 305
  ident: bib0200
  article-title: Prediction error identification of linear systems: a nonparametric Gaussian regression approach
  publication-title: Automatica
– start-page: 1301
  year: 2015
  end-page: 1309
  ident: bib0055
  article-title: Artificial pancreas: from in-silico to in-vivo
  publication-title: IFAC 9th International Symposium on Advanced Control of Chemical Processes
– volume: 46
  start-page: 81
  year: 2010
  end-page: 93
  ident: bib0195
  article-title: A new kernel-based approach for linear system identification
  publication-title: Automatica
– volume: 4
  start-page: 338
  year: 2009
  end-page: 346
  ident: bib0085
  article-title: Model predictive control of glucose concentration in type I diabetic patients: an in silico trial
  publication-title: Biomed. Signal Process. Control
– volume: 31
  start-page: 934
  year: 2008
  end-page: 939
  ident: bib0030
  article-title: Fully-automated closed-loop insulin delivery versus semi-automated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas
  publication-title: Diabetes Care
– start-page: 8340
  year: 2011
  end-page: 8346
  ident: bib0070
  article-title: A novel nonparametric approach for the identification of the glucose-insulin system in type 1 diabetic patients
  publication-title: 18th IFAC World Congress
– volume: 36
  start-page: 118
  year: 2012
  end-page: 128
  ident: bib0095
  article-title: MPC based artificial pancreas: strategies for individualization and meal compensation
  publication-title: Annu. Rev. Control
– volume: 61
  start-page: 1044
  year: 2014
  end-page: 1053
  ident: bib0210
  article-title: Improving accuracy and precision of glucose sensor profiles: retrospective fitting by constrained deconvolution
  publication-title: IEEE Trans. Biomed. Eng
– volume: 2
  start-page: 54
  year: 2009
  end-page: 96
  ident: bib0015
  article-title: Diabetes: models, signals, and control
  publication-title: IEEE Rev. Biomed. Eng
– volume: 3
  start-page: 939
  year: 2015
  end-page: 947
  ident: bib0050
  article-title: 2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial
  publication-title: Lancet Diabetes Endocrinol
– volume: 61
  start-page: 883
  year: 2014
  end-page: 891
  ident: bib0155
  article-title: Multivariable adaptive identification and control for artificial pancreas systems
  publication-title: IEEE Trans. Biomed. Eng
– start-page: 10144
  year: 2014
  end-page: 10149
  ident: bib0105
  article-title: A constrained model predictive controller for an artificial pancreas
  publication-title: 19th IFAC World Congress
– volume: 4
  start-page: 1374
  year: 2010
  end-page: 1381
  ident: bib0110
  article-title: Multinational study of subcutaneous model-predictive closed-loop control in type 1 diabetes mellitus: summary of the results
  publication-title: J. Diabetes Sci. Technol
– start-page: 5108
  year: 2015
  end-page: 5115
  ident: bib0075
  article-title: Improved postprandial glucose control with a customized model predictive controller
  publication-title: American Control Conference (ACC)
– volume: 7
  start-page: 1470
  year: 2013
  end-page: 1483
  ident: bib0100
  article-title: Artificial pancreas: model predictive control designfrom clinical experience
  publication-title: J. Diabetes Sci. Technol
– volume: 3
  start-page: 1091
  year: 2009
  end-page: 1098
  ident: bib0185
  article-title: Run-to-run tuning of model predictive control for type I diabetic subjects: an in silico trial
  publication-title: J. Diabetes Sci. Technol
– volume: 8
  start-page: 26
  year: 2014
  end-page: 34
  ident: bib0065
  article-title: The UVA/PADOVA type 1 diabetes simulator: new features
  publication-title: J. Diabetes Sci. Technol
– volume: 37
  start-page: 1212
  year: 2014
  end-page: 1215
  ident: bib0130
  article-title: First use of model predictive control in outpatient wearable artificial pancreas
  publication-title: Diabetes Care
– start-page: 2905
  year: 2013
  end-page: 2910
  ident: bib0150
  article-title: Adaptive multivariable closed-loop control of blood glucose concentration in patients with type 1 diabetes
  publication-title: American Control Conference (ACC)
– volume: 19
  start-page: 1087
  year: 2015
  end-page: 1096
  ident: bib0175
  article-title: Advanced insulin bolus advisor based on run-to-run control and case-based reasoning
  publication-title: IEEE J. Biomed. Health Inform
– volume: 36
  start-page: 3882
  year: 2013
  end-page: 3887
  ident: bib0120
  article-title: Day and night closed-loop control in adults with type 1 diabetes mellitus: a comparison of two closed-loop algorithms driving continuous subcutaneous insulin infusion versus patient self-management
  publication-title: Diabetes Care
– volume: 3
  start-page: 44
  issue: 1
  year: 2009
  ident: 10.1016/j.cmpb.2016.06.006_bib0060
  article-title: In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes
  publication-title: J. Diabetes Sci. Technol
  doi: 10.1177/193229680900300106
– start-page: 8340
  year: 2011
  ident: 10.1016/j.cmpb.2016.06.006_bib0070
  article-title: A novel nonparametric approach for the identification of the glucose-insulin system in type 1 diabetic patients
– volume: 7
  start-page: 1470
  issue: 6
  year: 2013
  ident: 10.1016/j.cmpb.2016.06.006_bib0100
  article-title: Artificial pancreas: model predictive control designfrom clinical experience
  publication-title: J. Diabetes Sci. Technol
  doi: 10.1177/193229681300700607
– volume: 119
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.cmpb.2016.06.006_bib0180
  article-title: Method for automatic adjustment of an insulin bolus calculator: in silico robustness evaluation under intra-day variability
  publication-title: Comput. Methods Programs Biomed
  doi: 10.1016/j.cmpb.2015.02.003
– volume: 36
  start-page: 3882
  issue: 12
  year: 2013
  ident: 10.1016/j.cmpb.2016.06.006_bib0120
  article-title: Day and night closed-loop control in adults with type 1 diabetes mellitus: a comparison of two closed-loop algorithms driving continuous subcutaneous insulin infusion versus patient self-management
  publication-title: Diabetes Care
  doi: 10.2337/dc12-1956
– volume: 375
  start-page: 743
  issue: 9716
  year: 2010
  ident: 10.1016/j.cmpb.2016.06.006_bib0025
  article-title: Manual closed-loop insulin delivery in children and adolescent with type 1 diabetes: a phase 2 randomised crossover trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(09)61998-X
– volume: 4
  start-page: 338
  issue: 4
  year: 2009
  ident: 10.1016/j.cmpb.2016.06.006_bib0085
  article-title: Model predictive control of glucose concentration in type I diabetic patients: an in silico trial
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2009.04.003
– volume: 30
  start-page: 1131
  issue: 5
  year: 2007
  ident: 10.1016/j.cmpb.2016.06.006_bib0165
  article-title: Prandial insulin dosing using run-to-run control application of clinical data and medical expertise to define a suitable performance metric
  publication-title: Diabetes Care
  doi: 10.2337/dc06-2115
– start-page: 1301
  year: 2015
  ident: 10.1016/j.cmpb.2016.06.006_bib0055
  article-title: Artificial pancreas: from in-silico to in-vivo
– volume: 37
  start-page: 1212
  issue: 5
  year: 2014
  ident: 10.1016/j.cmpb.2016.06.006_bib0130
  article-title: First use of model predictive control in outpatient wearable artificial pancreas
  publication-title: Diabetes Care
  doi: 10.2337/dc13-1631
– start-page: 2070
  year: 2014
  ident: 10.1016/j.cmpb.2016.06.006_bib0160
  article-title: Automatic adaptation of basal therapy for type 1 diabetic patients: a run-to-run approach
– volume: 47
  start-page: 291
  issue: 2
  year: 2011
  ident: 10.1016/j.cmpb.2016.06.006_bib0200
  article-title: Prediction error identification of linear systems: a nonparametric Gaussian regression approach
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.11.004
– volume: 5
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.cmpb.2016.06.006_bib0145
  article-title: Adaptive control of artificial pancreas systems—a review
  publication-title: J. Healthc. Eng
  doi: 10.1260/2040-2295.5.1.1
– volume: 48
  start-page: 225
  issue: 20
  year: 2015
  ident: 10.1016/j.cmpb.2016.06.006_bib0190
  article-title: A nonparametric approach for model individualization in an artificial pancreas
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2015.10.143
– volume: 371
  start-page: 313
  year: 2014
  ident: 10.1016/j.cmpb.2016.06.006_bib0035
  article-title: Outpatient glycemic control with a bionic pancreas in type 1 diabetes
  publication-title: N. Engl. J. Med
  doi: 10.1056/NEJMoa1314474
– volume: 19
  start-page: 1087
  issue: 3
  year: 2015
  ident: 10.1016/j.cmpb.2016.06.006_bib0175
  article-title: Advanced insulin bolus advisor based on run-to-run control and case-based reasoning
  publication-title: IEEE J. Biomed. Health Inform
– volume: 16
  start-page: 613
  issue: 10
  year: 2014
  ident: 10.1016/j.cmpb.2016.06.006_bib0140
  article-title: Multicenter closed-loop insulin delivery study points to challenges for keeping blood glucose in a safe range by a control algorithm in adults and adolescents with type 1 diabetes from various sites
  publication-title: Diabetes Technol. Ther
  doi: 10.1089/dia.2014.0066
– start-page: 2905
  year: 2013
  ident: 10.1016/j.cmpb.2016.06.006_bib0150
  article-title: Adaptive multivariable closed-loop control of blood glucose concentration in patients with type 1 diabetes
– volume: 36
  start-page: 255
  issue: 2
  year: 2012
  ident: 10.1016/j.cmpb.2016.06.006_bib0010
  article-title: Challenges and recent progress in the development of a closed-loop artificial pancreas
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2012.09.007
– volume: 2
  start-page: 54
  year: 2009
  ident: 10.1016/j.cmpb.2016.06.006_bib0015
  article-title: Diabetes: models, signals, and control
  publication-title: IEEE Rev. Biomed. Eng
  doi: 10.1109/RBME.2009.2036073
– volume: 4
  start-page: 1374
  issue: 6
  year: 2010
  ident: 10.1016/j.cmpb.2016.06.006_bib0110
  article-title: Multinational study of subcutaneous model-predictive closed-loop control in type 1 diabetes mellitus: summary of the results
  publication-title: J. Diabetes Sci. Technol
  doi: 10.1177/193229681000400611
– volume: 1
  start-page: 804
  issue: 6
  year: 2007
  ident: 10.1016/j.cmpb.2016.06.006_bib0080
  article-title: Model predictive control of type 1 diabetes: an in silico trial
  publication-title: J. Diabetes Sci. Technol
  doi: 10.1177/193229680700100603
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 10.1016/j.cmpb.2016.06.006_bib0205
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 8
  start-page: 26
  issue: 1
  year: 2014
  ident: 10.1016/j.cmpb.2016.06.006_bib0065
  article-title: The UVA/PADOVA type 1 diabetes simulator: new features
  publication-title: J. Diabetes Sci. Technol
  doi: 10.1177/1932296813514502
– volume: 61
  start-page: 1044
  issue: 4
  year: 2014
  ident: 10.1016/j.cmpb.2016.06.006_bib0210
  article-title: Improving accuracy and precision of glucose sensor profiles: retrospective fitting by constrained deconvolution
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2013.2293531
– volume: 37
  start-page: 1789
  issue: 7
  year: 2014
  ident: 10.1016/j.cmpb.2016.06.006_bib0135
  article-title: Safety of outpatient closed-loop control: first randomized crossover trials of a wearable artificial pancreas
  publication-title: Diabetes Care
  doi: 10.2337/dc13-2076
– volume: 59
  start-page: 2986
  issue: 11
  year: 2012
  ident: 10.1016/j.cmpb.2016.06.006_bib0090
  article-title: Modular closed-loop control of diabetes
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2012.2192930
– volume: 61
  start-page: 2230
  issue: 9
  year: 2012
  ident: 10.1016/j.cmpb.2016.06.006_bib0115
  article-title: Fully integrated artificial pancreas in type 1 diabetes: modular closed-loop glucose control maintains near normoglycemia
  publication-title: Diabetes
  doi: 10.2337/db11-1445
– start-page: 5108
  year: 2015
  ident: 10.1016/j.cmpb.2016.06.006_bib0075
  article-title: Improved postprandial glucose control with a customized model predictive controller
– start-page: 10144
  year: 2014
  ident: 10.1016/j.cmpb.2016.06.006_bib0105
  article-title: A constrained model predictive controller for an artificial pancreas
– volume: 31
  start-page: 934
  issue: 5
  year: 2008
  ident: 10.1016/j.cmpb.2016.06.006_bib0030
  article-title: Fully-automated closed-loop insulin delivery versus semi-automated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas
  publication-title: Diabetes Care
  doi: 10.2337/dc07-1967
– volume: 17
  start-page: 468
  issue: 5
  year: 2015
  ident: 10.1016/j.cmpb.2016.06.006_bib0040
  article-title: Multicentre outpatient dinner/overnight reduction of hypoglycemia and increased time of glucose in target with a wearable artificial pancreas using multi-modular model predictive control algorithm in adults with type 1 diabetes
  publication-title: Diabetes Obes. Metab
  doi: 10.1111/dom.12440
– volume: 36
  start-page: 118
  issue: 1
  year: 2012
  ident: 10.1016/j.cmpb.2016.06.006_bib0095
  article-title: MPC based artificial pancreas: strategies for individualization and meal compensation
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2012.03.009
– volume: 2
  start-page: 701
  issue: 9
  year: 2014
  ident: 10.1016/j.cmpb.2016.06.006_bib0045
  article-title: Home use of closed-loop insulin delivery for overnight glucose control in adults with type 1 diabetes: a 4-week, multicentre, randomised crossover study
  publication-title: Lancet Diabetes Endocrinol
  doi: 10.1016/S2213-8587(14)70114-7
– volume: 46
  start-page: 81
  issue: 1
  year: 2010
  ident: 10.1016/j.cmpb.2016.06.006_bib0195
  article-title: A new kernel-based approach for linear system identification
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.10.031
– volume: 2
  start-page: 27ra27
  issue: 27
  year: 2010
  ident: 10.1016/j.cmpb.2016.06.006_bib0020
  article-title: A bihormonal closed-loop artificial pancreas for type 1 diabetes
  publication-title: Sci. Transl. Med
  doi: 10.1126/scitranslmed.3000619
– volume: 3
  start-page: 939
  issue: 12
  year: 2015
  ident: 10.1016/j.cmpb.2016.06.006_bib0050
  article-title: 2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial
  publication-title: Lancet Diabetes Endocrinol
  doi: 10.1016/S2213-8587(15)00335-6
– volume: 3
  start-page: 1091
  issue: 5
  year: 2009
  ident: 10.1016/j.cmpb.2016.06.006_bib0185
  article-title: Run-to-run tuning of model predictive control for type I diabetic subjects: an in silico trial
  publication-title: J. Diabetes Sci. Technol
  doi: 10.1177/193229680900300512
– volume: 16
  start-page: 623
  issue: 10
  year: 2014
  ident: 10.1016/j.cmpb.2016.06.006_bib0125
  article-title: Multicenter closed-loop/hybrid meal bolus insulin delivery with type 1 diabetes
  publication-title: Diabetes Technol. Ther
  doi: 10.1089/dia.2014.0050
– volume: 61
  start-page: 883
  issue: 3
  year: 2014
  ident: 10.1016/j.cmpb.2016.06.006_bib0155
  article-title: Multivariable adaptive identification and control for artificial pancreas systems
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2013.2291777
– volume: 17
  start-page: 1194
  issue: 13
  year: 2007
  ident: 10.1016/j.cmpb.2016.06.006_bib0170
  article-title: A run-to-run framework for prandial insulin dosing: handling real-life uncertainty
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.1103
SSID ssj0002556
Score 2.3866808
Snippet •Two approaches are proposed for identifying tailored linear models describing the dynamics of patients with type 1 diabetes.•The first method is a black box...
Highlights • Two novel identification approaches are proposed for identifying individualized linear glucose-insulin models that well describe the metabolic...
The inter-subject variability characterizing the patients affected by type 1 diabetes mellitus makes automatic blood glucose control very challenging....
BACKGROUND AND OBJECTIVEThe inter-subject variability characterizing the patients affected by type 1 diabetes mellitus makes automatic blood glucose control...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 133
SubjectTerms Constrained optimization
Internal Medicine
Linear systems
Model predictive control
Nonparametric identification
Other
Type 1 diabetes
Title Model individualization for artificial pancreas
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260715304430
https://www.clinicalkey.es/playcontent/1-s2.0-S0169260715304430
https://dx.doi.org/10.1016/j.cmpb.2016.06.006
https://www.ncbi.nlm.nih.gov/pubmed/27424482
https://www.proquest.com/docview/1826722849
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kgngR38ZHieBNYvPYbLpHEUtV9KJCb0v2EajUttj26m93JtlERK3gccMOm53Mzn6TeQGcUde3uAh1YDlPA5bEKlAqMgFC0zAPtejq8n_H_QPvP7PbQTpYgas6F4bCKp3ur3R6qa3dk47jZmc6HHYeqY5ITOXRUjTJWUJ2O2MZSfnF-2eYB5XYqup7i4Bmu8SZKsZLv04VhXfxsoYndT36-XL6DXyWl1BvEzYcevQvqxfcghU73oa1e-cf34EOtTYb-cMmy8plWfoITX3aVlUvwkcVQGhxtgvPveunq37gWiIEmvF4HnRzGwlm8yJjKjfcJqFBhKAzm1kcxEoYwxAgiJyZyBSp1UprXiSKYJHIjEj2oDWejO0B-MIkecGQd1xzpnRXmVApQ35FtFmjqPAgqnkhtasXTm0rRrIODHuRxD9J_JNldBz34LyhmVbVMpbOTmoWyzoPFDWXRGW-lCr7icrO3OGbyUjOYhnKbwLiQdpQfpGxP1c8rb-_xMNHHpV8bCcLXAmNsyzGG154sF8JRrNv8oGj7Rsf_nPVI1jHkaiihI6hNX9b2BMEQHPVLiW8DauXN3f9hw8rGAJd
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kBfUivq3PCN4kNI_NpnssorTa9qIFb0v2EajUWmz9_84km4CoFTzmMWx2spn9JjPzDcAVdX2L8kD7lvPEZ3GkfKVC4yM0DbJAi44u_ncMR7w3ZvfPyfMa3FS1MJRW6Wx_adMLa-3OtJ022_PJpP1IPCIR0aMl6JKzGP32JrFTJQ1odvsPvVFtkIllq6T4Fj4JuNqZMs1Lv84VZXjxgsaTGh_9vD_9hj-LfehuG7YcgPS65TPuwJqd7cL60IXI96BN3c2m3qQutHKFlh6iU49mVlJGeGgFCDAu9mF8d_t00_NdVwRfMx4t_U5mQ8FslqdMZYbbODAIEnRqU4sHkRLGMMQIImMmNHlitdKa57EiZCRSI-IDaMzeZvYIPGHiLGeoPq45U7qjTKCUodAiuq1hmLcgrHQhtaMMp84VU1nlhr1I0p8k_ckiQY634LqWmZeEGSvvjisVy6oUFI2XRHu-Uir9Scou3Pe3kKFcRDKQ39ZIC5Ja8ssy-3PEy-r9S_z-KKiSzezbB46E_lka4SYvWnBYLox63hQGR_c3Ov7nqBew0XsaDuSgP3o4gU28IsqkoVNoLN8_7BnioaU6d-v9EwQFBQ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+individualization+for+artificial+pancreas&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Messori%2C+Mirko&rft.au=Toffanin%2C+Chiara&rft.au=Del+Favero%2C+Simone&rft.au=De+Nicolao%2C+Giuseppe&rft.date=2019-04-01&rft.eissn=1872-7565&rft.volume=171&rft.spage=133&rft.epage=140&rft_id=info:doi/10.1016%2Fj.cmpb.2016.06.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon