Multi-Task Heterogeneous Ensemble Learning-Based Cross-Subject EEG Classification Under Stroke Patients

Robot-assisted motor training is applied for neurorehabilitation in stroke patients, using motor imagery (MI) as a representative paradigm of brain-computer interfaces to offer real-life assistance to individuals facing movement challenges. However, the effectiveness of training with MI may vary dep...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 1767 - 1778
Main Authors Lee, Minji, Park, Hyeong-Yeong, Park, Wanjoo, Kim, Keun-Tae, Kim, Yun-Hee, Jeong, Ji-Hoon
Format Journal Article
LanguageEnglish
Published United States IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Robot-assisted motor training is applied for neurorehabilitation in stroke patients, using motor imagery (MI) as a representative paradigm of brain-computer interfaces to offer real-life assistance to individuals facing movement challenges. However, the effectiveness of training with MI may vary depending on the location of the stroke lesion, which should be considered. This paper introduces a multi-task electroencephalogram-based heterogeneous ensemble learning (MEEG-HEL) specifically designed for cross-subject training. In the proposed framework, common spatial patterns were used for feature extraction, and the features according to stroke lesions are shared and selected through sequential forward floating selection. The heterogeneous ensembles were used as classifiers. Nine patients with chronic ischemic stroke participated, engaging in MI and motor execution (ME) paradigms involving finger tapping. The classification criteria for the multi-task were established in two ways, taking into account the characteristics of stroke patients. In the cross-subject session, the first involved a direction recognition task for two-handed classification, achieving a performance of 0.7419 (±0.0811) in MI and 0.7061 (±0.1270) in ME. The second task focused on motor assessment for lesion location, resulting in a performance of 0.7457 (±0.1317) in MI and 0.6791 (±0.1253) in ME. Comparing the specific-subject session, except for ME on the motor assessment task, performance on both tasks was significantly higher than the cross-subject session. Furthermore, classification performance was similar to or statistically higher in cross-subject sessions compared to baseline models. The proposed MEEG-HEL holds promise in improving the practicality of neurorehabilitation in clinical settings and facilitating the detection of lesions.
AbstractList Robot-assisted motor training is applied for neurorehabilitation in stroke patients, using motor imagery (MI) as a representative paradigm of brain-computer interfaces to offer real-life assistance to individuals facing movement challenges. However, the effectiveness of training with MI may vary depending on the location of the stroke lesion, which should be considered. This paper introduces a multi-task electroencephalogram-based heterogeneous ensemble learning (MEEG-HEL) specifically designed for cross-subject training. In the proposed framework, common spatial patterns were used for feature extraction, and the features according to stroke lesions are shared and selected through sequential forward floating selection. The heterogeneous ensembles were used as classifiers. Nine patients with chronic ischemic stroke participated, engaging in MI and motor execution (ME) paradigms involving finger tapping. The classification criteria for the multi-task were established in two ways, taking into account the characteristics of stroke patients. In the cross-subject session, the first involved a direction recognition task for two-handed classification, achieving a performance of 0.7419 (±0.0811) in MI and 0.7061 (±0.1270) in ME. The second task focused on motor assessment for lesion location, resulting in a performance of 0.7457 (±0.1317) in MI and 0.6791 (±0.1253) in ME. Comparing the specific-subject session, except for ME on the motor assessment task, performance on both tasks was significantly higher than the cross-subject session. Furthermore, classification performance was similar to or statistically higher in cross-subject sessions compared to baseline models. The proposed MEEG-HEL holds promise in improving the practicality of neurorehabilitation in clinical settings and facilitating the detection of lesions.
Robot-assisted motor training is applied for neurorehabilitation in stroke patients, using motor imagery (MI) as a representative paradigm of brain-computer interfaces to offer real-life assistance to individuals facing movement challenges. However, the effectiveness of training with MI may vary depending on the location of the stroke lesion, which should be considered. This paper introduces a multi-task electroencephalogram-based heterogeneous ensemble learning (MEEG-HEL) specifically designed for cross-subject training. In the proposed framework, common spatial patterns were used for feature extraction, and the features according to stroke lesions are shared and selected through sequential forward floating selection. The heterogeneous ensembles were used as classifiers. Nine patients with chronic ischemic stroke participated, engaging in MI and motor execution (ME) paradigms involving finger tapping. The classification criteria for the multi-task were established in two ways, taking into account the characteristics of stroke patients. In the cross-subject session, the first involved a direction recognition task for two-handed classification, achieving a performance of 0.7419 (±0.0811) in MI and 0.7061 (±0.1270) in ME. The second task focused on motor assessment for lesion location, resulting in a performance of 0.7457 (±0.1317) in MI and 0.6791 (±0.1253) in ME. Comparing the specific-subject session, except for ME on the motor assessment task, performance on both tasks was significantly higher than the cross-subject session. Furthermore, classification performance was similar to or statistically higher in cross-subject sessions compared to baseline models. The proposed MEEG-HEL holds promise in improving the practicality of neurorehabilitation in clinical settings and facilitating the detection of lesions.Robot-assisted motor training is applied for neurorehabilitation in stroke patients, using motor imagery (MI) as a representative paradigm of brain-computer interfaces to offer real-life assistance to individuals facing movement challenges. However, the effectiveness of training with MI may vary depending on the location of the stroke lesion, which should be considered. This paper introduces a multi-task electroencephalogram-based heterogeneous ensemble learning (MEEG-HEL) specifically designed for cross-subject training. In the proposed framework, common spatial patterns were used for feature extraction, and the features according to stroke lesions are shared and selected through sequential forward floating selection. The heterogeneous ensembles were used as classifiers. Nine patients with chronic ischemic stroke participated, engaging in MI and motor execution (ME) paradigms involving finger tapping. The classification criteria for the multi-task were established in two ways, taking into account the characteristics of stroke patients. In the cross-subject session, the first involved a direction recognition task for two-handed classification, achieving a performance of 0.7419 (±0.0811) in MI and 0.7061 (±0.1270) in ME. The second task focused on motor assessment for lesion location, resulting in a performance of 0.7457 (±0.1317) in MI and 0.6791 (±0.1253) in ME. Comparing the specific-subject session, except for ME on the motor assessment task, performance on both tasks was significantly higher than the cross-subject session. Furthermore, classification performance was similar to or statistically higher in cross-subject sessions compared to baseline models. The proposed MEEG-HEL holds promise in improving the practicality of neurorehabilitation in clinical settings and facilitating the detection of lesions.
Author Park, Wanjoo
Kim, Yun-Hee
Park, Hyeong-Yeong
Kim, Keun-Tae
Jeong, Ji-Hoon
Lee, Minji
Author_xml – sequence: 1
  givenname: Minji
  orcidid: 0000-0003-4261-875X
  surname: Lee
  fullname: Lee, Minji
  email: minjilee@catholic.ac.kr
  organization: Department of Biomedical Software Engineering, The Catholic University of Korea, Bucheon, Gyeonggi, South Korea
– sequence: 2
  givenname: Hyeong-Yeong
  orcidid: 0000-0001-6943-4171
  surname: Park
  fullname: Park, Hyeong-Yeong
  email: hyeong.y.park@chungbuk.ac.kr
  organization: Department of Computer Science, Chungbuk National University, Cheongju, Chungbuk, South Korea
– sequence: 3
  givenname: Wanjoo
  orcidid: 0000-0003-1467-4156
  surname: Park
  fullname: Park, Wanjoo
  email: wanjoo@nyu.edu
  organization: Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
– sequence: 4
  givenname: Keun-Tae
  orcidid: 0000-0003-2731-3915
  surname: Kim
  fullname: Kim, Keun-Tae
  email: ktkim@hallym.ac.kr
  organization: College of Information Science, Hallym University, Chuncheon, Gangwon, South Korea
– sequence: 5
  givenname: Yun-Hee
  orcidid: 0000-0001-6101-8851
  surname: Kim
  fullname: Kim, Yun-Hee
  email: yunkim@skku.edu
  organization: Department of Physical and Rehabilitation Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi, South Korea
– sequence: 6
  givenname: Ji-Hoon
  orcidid: 0000-0001-6940-2700
  surname: Jeong
  fullname: Jeong, Ji-Hoon
  email: jh.jeong@chungbuk.ac.kr
  organization: Department of Computer Science, Chungbuk National University, Cheongju, Chungcheongbuk, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38683717$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVJaR7tHyilGLrpxlO9LS_bwU0C0wedyVpI1vWgicdKJHnRf197ZhpKFgWBxOU7517dc4nOhjAAQm8JXhCC60-b7-tfzYJiyheM1YIw9gJdECFUiSnBZ_Ob8ZIzis_RZUo7jEklRfUKnTMlFatIdYG238Y--3Jj0n1xAxli2MIAYUxFMyTY2x6KFZg4-GFbfjEJXLGMIaVyPdodtLlomuti2ZuUfOdbk30YirvBQSzWOYZ7KH5ONRhyeo1edqZP8OZ0X6G7r81meVOuflzfLj-vypZLmkslJWOEWepAdZQYp5xtpapF65yqutqQyhlgVhhVSaqAGmMJ553tOKkYCHaFbo--Lpidfoh-b-JvHYzXh0KIW21i9m0PWlrJrSIAHeOci66WLa8oYw4ENxbY5PXx6PUQw-MIKeu9Ty30vTlsSDPM60lA8dz2wzN0F8Y4TD-dKEGJopLN1PsTNdo9uKfx_sYxAfQItPOSI3RPCMF6zlwfMtdz5vqU-SRSz0Stz4cocjS-_7_03VHqAeCfXoJgNp0_Thu4yw
CODEN ITNSB3
CitedBy_id crossref_primary_10_3390_biomedicines13030599
Cites_doi 10.1109/TNSRE.2017.2692520
10.1109/TMI.2023.3294967
10.1109/TNSRE.2017.2778178
10.1109/MSP.2008.4408441
10.1109/TBME.2021.3137184
10.1016/j.bspc.2022.104456
10.1016/0167-8655(94)90127-9
10.1109/TNSRE.2022.3186442
10.1088/1741-2552/ac3044
10.1109/IJCNN48605.2020.9206884
10.3389/fnins.2012.00039
10.1016/j.jneumeth.2014.04.007
10.1109/TNSRE.2020.2966826
10.1093/gigascience/giaa098
10.1109/TCYB.2019.2946914
10.3389/fnhum.2020.00321
10.3233/RNN-150534
10.1016/j.cortex.2017.12.019
10.1109/TCYB.2022.3211694
10.1007/978-3-319-47653-7
10.3389/fneur.2022.904145
10.1109/TNSRE.2021.3089613
10.3389/fncom.2017.00103
10.1088/1741-2552/aab2f2
10.3389/fnhum.2021.645952
10.3389/fnhum.2020.00231
10.1109/TSMC.2019.2955478
10.1109/TKDE.2021.3070203
10.1016/j.jneumeth.2003.10.009
10.1016/j.bandc.2021.105705
10.1002/hbm.23730
10.1109/TNNLS.2021.3053576
10.1109/TBME.2022.3151742
10.1016/j.neucom.2016.05.035
10.1038/nrneurol.2010.200
10.1007/s10994-017-5686-9
10.1016/j.ins.2019.06.008
10.1088/1741-2552/aaf3f6
10.3390/e24050705
10.1088/1741-2552/abd82b
10.1088/1741-2552/aace8c
10.1088/1741-2552/abaa9d
10.1109/TNSRE.2020.3039331
10.3389/fnhum.2020.00236
10.1088/1741-2552/ab0ab5
10.1109/TNSRE.2021.3087506
10.1109/TNSRE.2019.2924742
10.1109/TNSRE.2021.3125386
10.1186/s12984-016-0120-2
10.1017/S1041610297004754
10.1016/j.neuroimage.2017.02.076
10.1088/1741-2552/aba162
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2024.3395133
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1778
ExternalDocumentID oai_doaj_org_article_6b64b81eef34445f96c47233de54abe3
38683717
10_1109_TNSRE_2024_3395133
10510310
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Chungbuk National University BrainKorea21 Chungbuk Information Technology Education and Research Center (BK21) Program (2023)
– fundername: National Research Foundation of Korea (NRF) Grant
– fundername: Korea Government [Ministry of Science and ICT (MSIT)]
  grantid: RS-2023-00252624
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c462t-8663313b2de8f21ad8dbc6895cdd87f9a17dae3b5a87628e2aab144fbf4173e53
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:31:24 EDT 2025
Fri Jul 11 11:38:02 EDT 2025
Fri Jul 25 06:33:24 EDT 2025
Wed Feb 19 01:58:15 EST 2025
Thu Apr 24 22:58:14 EDT 2025
Tue Jul 01 00:43:30 EDT 2025
Wed Aug 27 02:02:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-8663313b2de8f21ad8dbc6895cdd87f9a17dae3b5a87628e2aab144fbf4173e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6940-2700
0000-0003-4261-875X
0000-0003-2731-3915
0000-0001-6943-4171
0000-0001-6101-8851
0000-0003-1467-4156
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10510310
PMID 38683717
PQID 3052182635
PQPubID 85423
PageCount 12
ParticipantIDs proquest_journals_3052182635
doaj_primary_oai_doaj_org_article_6b64b81eef34445f96c47233de54abe3
pubmed_primary_38683717
ieee_primary_10510310
crossref_citationtrail_10_1109_TNSRE_2024_3395133
proquest_miscellaneous_3049723205
crossref_primary_10_1109_TNSRE_2024_3395133
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Ferri (ref37) 1994; 16
Keng Ang (ref34)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref13
  doi: 10.1109/TNSRE.2017.2692520
– ident: ref12
  doi: 10.1109/TMI.2023.3294967
– ident: ref21
  doi: 10.1109/TNSRE.2017.2778178
– ident: ref36
  doi: 10.1109/MSP.2008.4408441
– ident: ref25
  doi: 10.1109/TBME.2021.3137184
– ident: ref26
  doi: 10.1016/j.bspc.2022.104456
– ident: ref38
  doi: 10.1016/0167-8655(94)90127-9
– ident: ref24
  doi: 10.1109/TNSRE.2022.3186442
– ident: ref3
  doi: 10.1088/1741-2552/ac3044
– ident: ref27
  doi: 10.1109/IJCNN48605.2020.9206884
– ident: ref35
  doi: 10.3389/fnins.2012.00039
– ident: ref46
  doi: 10.1016/j.jneumeth.2014.04.007
– ident: ref19
  doi: 10.1109/TNSRE.2020.2966826
– ident: ref29
  doi: 10.1093/gigascience/giaa098
– ident: ref18
  doi: 10.1109/TCYB.2019.2946914
– ident: ref23
  doi: 10.3389/fnhum.2020.00321
– ident: ref30
  doi: 10.3233/RNN-150534
– ident: ref53
  doi: 10.1016/j.cortex.2017.12.019
– ident: ref2
  doi: 10.1109/TCYB.2022.3211694
– ident: ref49
  doi: 10.1007/978-3-319-47653-7
– ident: ref52
  doi: 10.3389/fneur.2022.904145
– ident: ref32
  doi: 10.1109/TNSRE.2021.3089613
– ident: ref43
  doi: 10.3389/fncom.2017.00103
– ident: ref44
  doi: 10.1088/1741-2552/aab2f2
– ident: ref54
  doi: 10.3389/fnhum.2021.645952
– ident: ref10
  doi: 10.3389/fnhum.2020.00231
– ident: ref41
  doi: 10.1109/TSMC.2019.2955478
– ident: ref15
  doi: 10.1109/TKDE.2021.3070203
– ident: ref33
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref4
  doi: 10.1016/j.bandc.2021.105705
– ident: ref51
  doi: 10.1002/hbm.23730
– start-page: 2390
  volume-title: Proc. IEEE Int. Joint Conf. Neural Netw.
  ident: ref34
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
– ident: ref16
  doi: 10.1109/TNNLS.2021.3053576
– ident: ref7
  doi: 10.1109/TBME.2022.3151742
– ident: ref39
  doi: 10.1016/j.neucom.2016.05.035
– ident: ref14
  doi: 10.1038/nrneurol.2010.200
– ident: ref48
  doi: 10.1007/s10994-017-5686-9
– ident: ref20
  doi: 10.1016/j.ins.2019.06.008
– ident: ref50
  doi: 10.1088/1741-2552/aaf3f6
– volume: 16
  start-page: 403
  volume-title: Machine Intelligence and Pattern Recognition
  year: 1994
  ident: ref37
  article-title: Comparative study of techniques for large-scale feature selection
– ident: ref40
  doi: 10.3390/e24050705
– ident: ref17
  doi: 10.1088/1741-2552/abd82b
– ident: ref28
  doi: 10.1088/1741-2552/aace8c
– ident: ref45
  doi: 10.1088/1741-2552/abaa9d
– ident: ref9
  doi: 10.1109/TNSRE.2020.3039331
– ident: ref47
  doi: 10.3389/fnhum.2020.00236
– ident: ref42
  doi: 10.1088/1741-2552/ab0ab5
– ident: ref1
  doi: 10.1109/TNSRE.2021.3087506
– ident: ref8
  doi: 10.1109/TNSRE.2019.2924742
– ident: ref11
  doi: 10.1109/TNSRE.2021.3125386
– ident: ref6
  doi: 10.1186/s12984-016-0120-2
– ident: ref31
  doi: 10.1017/S1041610297004754
– ident: ref22
  doi: 10.1016/j.neuroimage.2017.02.076
– ident: ref5
  doi: 10.1088/1741-2552/aba162
SSID ssj0017657
Score 2.4476433
Snippet Robot-assisted motor training is applied for neurorehabilitation in stroke patients, using motor imagery (MI) as a representative paradigm of brain-computer...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1767
SubjectTerms Adult
Aged
Algorithms
Brain-Computer Interfaces
Classification
cross-subject training
EEG
Electroencephalography
Electroencephalography - methods
Engines
Ensemble learning
Feature extraction
Female
Human-computer interface
Humans
Imagery, Psychotherapy - methods
Imagination - physiology
Interfaces
Ischemia
Ischemic Stroke - physiopathology
Ischemic Stroke - rehabilitation
Lesions
Machine Learning
Male
Mental task performance
Middle Aged
motor imagery
Motor task performance
Motors
multi-task heterogeneous ensemble learning
Multitasking
Neurology
Psychomotor Performance
Rehabilitation
Robotics
Statistical analysis
Stroke
Stroke (medical condition)
Stroke - complications
Stroke - physiopathology
Stroke Rehabilitation - methods
Task analysis
Training
SummonAdditionalLinks – databaseName: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQjwKBgowEXFBo4rET-0irlBUSFWq3Um-WHU96aLuLusv_Z8bJrrYH4MI1cWxnHp4Zj_2NEO-DM0OqAUsLfSo1DFBaHbjWC6TeGYNV5Izu99NmdqG_XZrLnVJffCZshAceCXfYxEZHWyMOoLU2g2t63SqAhEaHiBnnk2zeJpia8gdtkzE-SZ01TUBVm-sylTucn56fdRQYKv0ZwHF5k3smKSP3T6VW_ux1Zutz8lg8mtxG-WWc7hPxABdPxYddiGA5H_EB5Ed5dg99-5m4yrdsy3lYXcsZH39ZktQghfyyW6zwNt6gnGBWr8ojsmpJHvNES1pUeJdGdt1XmYtn8rGi3KfM5ZLk-fpueY3yx4jNutoXFyfd_HhWTgUWyl43al1acjeghqgS2kHVIdkU-8Y606dk28GFuk0BIZrAa6ZFFUKkAGyIg65bQAPPxd5iucCXQqKLsQbbBGR4GkOrAuO8x6gqaGNrm0LUGxr7fvp_LoJx43MUUjmf-eKZL37iSyE-bb_5OWJv_LX1EbNu25Jxs_MDkiY_SZP_lzQVYp8ZvzMcIw7WVSEONpLgJyVfeeCLz5bRfArxbvua1JNzLiHz0XMWkwZQFbV5MUrQtnMilwUKp1_9j5m_Fg-ZGuPu0IHYW9_9wjfkL63j26wavwHg3w2r
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-Task Heterogeneous Ensemble Learning-Based Cross-Subject EEG Classification Under Stroke Patients
URI https://ieeexplore.ieee.org/document/10510310
https://www.ncbi.nlm.nih.gov/pubmed/38683717
https://www.proquest.com/docview/3052182635
https://www.proquest.com/docview/3049723205
https://doaj.org/article/6b64b81eef34445f96c47233de54abe3
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagB9QL5VHollIZCbigLElsJ86RVikrJFao3Uq9WXY86WHLBjXZC7-eGedBQSriFm28dqxvxvbMeL5h7K0tVO0TAZEWlY-kqEWkpaVaL8JXhVIQO4rofl1mi0v55UpdDcnqIRcGAMLlM5jTY4jl-6bakqsMNZz43yih6iFabn2y1hQyyLNA64kaLHHMNB4zZOLi42p5cV6iLZjKuRAFVTTZZY-EztA4C4XKfm9Igbd_KLRy_5kz7D1ne2w5fnV_5WQ933ZuXv38i9Dxv6f1hD0eTqH8Uy82T9kD2Dxj7-4yDvNVTzfA3_PzP8i8n7PrkLQbrWy75gu6TdOgEEKzbXm5aeG7uwE-sLZeRye4SXp-SjOPcI0ipw8vy8881OKkW0qhTx6qL_GL7rZZA__WU722--zyrFydLqKhXkNUySztIo2nF5EIl3rQdZpYr72rMl2oynud14VNcm9BOGVpCdaQWuvQnqtdLZNcgBIv2M6m2cAB41A4lyBCFojtRuEiQ7TxzqWxyF2usxlLRtBMNcyfamrcmGDUxIUJmBvC3AyYz9iH6T8_eiqPf7Y-IVmYWhINd_gBoTODVpvMZdLpBKAWUkpVF1kl81QID0paB9jJPsF9Z7ge6Rk7GkXLDGtGawTlUWsiB5qxN9Nr1HYK4diAo6GgKA6QxtjmZS-SU-ejQB_eM-grtksT7P1HR2ynu93CazxRde44eCKOgz79AjASGgo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQkaAXngUWChgJuKBsk9hOnCOtUhZoV6hNpd4sPyY9bNmgJnvh1-NxHhSkIm7RxmvH-uZhezzfEPJWF6J2CYNIMusizmoWSa6x1gtzthACYoMR3eNltjjjX87F-ZCsHnJhACBcPoM5PoZYvmvsBo_KvIYj_xsmVN32jl8kfbrWFDTIs0Ds6XWY-1HTeMyRiYu9anl6UvrdYMrnjBVY02Sb3GEy89uzUKrst0sKzP1DqZWbV53B-xzeJ8vxu_tLJ6v5pjNz-_MvSsf_ntgDcm9Yh9KPveA8JLdg_Yi8u845TKuecIC-pyd_0Hk_JhchbTeqdLuiC7xP03gxhGbT0nLdwndzCXTgbb2I9r2bdPQAZx55K4XHPrQsP9FQjRPvKYU-aai_RE-7q2YF9FtP9trukLPDsjpYREPFhsjyLO0i6dcvLGEmdSDrNNFOOmMzWQjrnMzrQie508CM0GiEJaRaG7-jq03Nk5yBYE_I1rpZwzNCoTAm8QhpQL4b4c0MEscbk8YsN7nMZiQZQVN2mD9W1bhUYVsTFypgrhBzNWA-Ix-m__zoyTz-2XofZWFqiUTc4QcPnRr0WmUm40YmADXjnIu6yCzPU8YcCK4N-E52EO5rw_VIz8juKFpqsBqtYphJLZEeaEbeTK-9vmMQRwccFYZF_QBp7Ns87UVy6nwU6Oc3DPqa3F1Ux0fq6PPy6wuyjZPtT5N2yVZ3tYGXfn3VmVdBq34BXyMcXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Task+Heterogeneous+Ensemble+Learning-Based+Cross-Subject+EEG+Classification+Under+Stroke+Patients&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Lee%2C+Minji&rft.au=Park%2C+Hyeong-Yeong&rft.au=Park%2C+Wanjoo&rft.au=Kim%2C+Keun-Tae&rft.date=2024&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=32&rft.spage=1767&rft.epage=1778&rft_id=info:doi/10.1109%2FTNSRE.2024.3395133&rft_id=info%3Apmid%2F38683717&rft.externalDocID=10510310
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon