Multi-Task Heterogeneous Ensemble Learning-Based Cross-Subject EEG Classification Under Stroke Patients
Robot-assisted motor training is applied for neurorehabilitation in stroke patients, using motor imagery (MI) as a representative paradigm of brain-computer interfaces to offer real-life assistance to individuals facing movement challenges. However, the effectiveness of training with MI may vary dep...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 1767 - 1778 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Robot-assisted motor training is applied for neurorehabilitation in stroke patients, using motor imagery (MI) as a representative paradigm of brain-computer interfaces to offer real-life assistance to individuals facing movement challenges. However, the effectiveness of training with MI may vary depending on the location of the stroke lesion, which should be considered. This paper introduces a multi-task electroencephalogram-based heterogeneous ensemble learning (MEEG-HEL) specifically designed for cross-subject training. In the proposed framework, common spatial patterns were used for feature extraction, and the features according to stroke lesions are shared and selected through sequential forward floating selection. The heterogeneous ensembles were used as classifiers. Nine patients with chronic ischemic stroke participated, engaging in MI and motor execution (ME) paradigms involving finger tapping. The classification criteria for the multi-task were established in two ways, taking into account the characteristics of stroke patients. In the cross-subject session, the first involved a direction recognition task for two-handed classification, achieving a performance of 0.7419 (±0.0811) in MI and 0.7061 (±0.1270) in ME. The second task focused on motor assessment for lesion location, resulting in a performance of 0.7457 (±0.1317) in MI and 0.6791 (±0.1253) in ME. Comparing the specific-subject session, except for ME on the motor assessment task, performance on both tasks was significantly higher than the cross-subject session. Furthermore, classification performance was similar to or statistically higher in cross-subject sessions compared to baseline models. The proposed MEEG-HEL holds promise in improving the practicality of neurorehabilitation in clinical settings and facilitating the detection of lesions. |
---|---|
AbstractList | Robot-assisted motor training is applied for neurorehabilitation in stroke patients, using motor imagery (MI) as a representative paradigm of brain-computer interfaces to offer real-life assistance to individuals facing movement challenges. However, the effectiveness of training with MI may vary depending on the location of the stroke lesion, which should be considered. This paper introduces a multi-task electroencephalogram-based heterogeneous ensemble learning (MEEG-HEL) specifically designed for cross-subject training. In the proposed framework, common spatial patterns were used for feature extraction, and the features according to stroke lesions are shared and selected through sequential forward floating selection. The heterogeneous ensembles were used as classifiers. Nine patients with chronic ischemic stroke participated, engaging in MI and motor execution (ME) paradigms involving finger tapping. The classification criteria for the multi-task were established in two ways, taking into account the characteristics of stroke patients. In the cross-subject session, the first involved a direction recognition task for two-handed classification, achieving a performance of 0.7419 (±0.0811) in MI and 0.7061 (±0.1270) in ME. The second task focused on motor assessment for lesion location, resulting in a performance of 0.7457 (±0.1317) in MI and 0.6791 (±0.1253) in ME. Comparing the specific-subject session, except for ME on the motor assessment task, performance on both tasks was significantly higher than the cross-subject session. Furthermore, classification performance was similar to or statistically higher in cross-subject sessions compared to baseline models. The proposed MEEG-HEL holds promise in improving the practicality of neurorehabilitation in clinical settings and facilitating the detection of lesions. Robot-assisted motor training is applied for neurorehabilitation in stroke patients, using motor imagery (MI) as a representative paradigm of brain-computer interfaces to offer real-life assistance to individuals facing movement challenges. However, the effectiveness of training with MI may vary depending on the location of the stroke lesion, which should be considered. This paper introduces a multi-task electroencephalogram-based heterogeneous ensemble learning (MEEG-HEL) specifically designed for cross-subject training. In the proposed framework, common spatial patterns were used for feature extraction, and the features according to stroke lesions are shared and selected through sequential forward floating selection. The heterogeneous ensembles were used as classifiers. Nine patients with chronic ischemic stroke participated, engaging in MI and motor execution (ME) paradigms involving finger tapping. The classification criteria for the multi-task were established in two ways, taking into account the characteristics of stroke patients. In the cross-subject session, the first involved a direction recognition task for two-handed classification, achieving a performance of 0.7419 (±0.0811) in MI and 0.7061 (±0.1270) in ME. The second task focused on motor assessment for lesion location, resulting in a performance of 0.7457 (±0.1317) in MI and 0.6791 (±0.1253) in ME. Comparing the specific-subject session, except for ME on the motor assessment task, performance on both tasks was significantly higher than the cross-subject session. Furthermore, classification performance was similar to or statistically higher in cross-subject sessions compared to baseline models. The proposed MEEG-HEL holds promise in improving the practicality of neurorehabilitation in clinical settings and facilitating the detection of lesions.Robot-assisted motor training is applied for neurorehabilitation in stroke patients, using motor imagery (MI) as a representative paradigm of brain-computer interfaces to offer real-life assistance to individuals facing movement challenges. However, the effectiveness of training with MI may vary depending on the location of the stroke lesion, which should be considered. This paper introduces a multi-task electroencephalogram-based heterogeneous ensemble learning (MEEG-HEL) specifically designed for cross-subject training. In the proposed framework, common spatial patterns were used for feature extraction, and the features according to stroke lesions are shared and selected through sequential forward floating selection. The heterogeneous ensembles were used as classifiers. Nine patients with chronic ischemic stroke participated, engaging in MI and motor execution (ME) paradigms involving finger tapping. The classification criteria for the multi-task were established in two ways, taking into account the characteristics of stroke patients. In the cross-subject session, the first involved a direction recognition task for two-handed classification, achieving a performance of 0.7419 (±0.0811) in MI and 0.7061 (±0.1270) in ME. The second task focused on motor assessment for lesion location, resulting in a performance of 0.7457 (±0.1317) in MI and 0.6791 (±0.1253) in ME. Comparing the specific-subject session, except for ME on the motor assessment task, performance on both tasks was significantly higher than the cross-subject session. Furthermore, classification performance was similar to or statistically higher in cross-subject sessions compared to baseline models. The proposed MEEG-HEL holds promise in improving the practicality of neurorehabilitation in clinical settings and facilitating the detection of lesions. |
Author | Park, Wanjoo Kim, Yun-Hee Park, Hyeong-Yeong Kim, Keun-Tae Jeong, Ji-Hoon Lee, Minji |
Author_xml | – sequence: 1 givenname: Minji orcidid: 0000-0003-4261-875X surname: Lee fullname: Lee, Minji email: minjilee@catholic.ac.kr organization: Department of Biomedical Software Engineering, The Catholic University of Korea, Bucheon, Gyeonggi, South Korea – sequence: 2 givenname: Hyeong-Yeong orcidid: 0000-0001-6943-4171 surname: Park fullname: Park, Hyeong-Yeong email: hyeong.y.park@chungbuk.ac.kr organization: Department of Computer Science, Chungbuk National University, Cheongju, Chungbuk, South Korea – sequence: 3 givenname: Wanjoo orcidid: 0000-0003-1467-4156 surname: Park fullname: Park, Wanjoo email: wanjoo@nyu.edu organization: Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates – sequence: 4 givenname: Keun-Tae orcidid: 0000-0003-2731-3915 surname: Kim fullname: Kim, Keun-Tae email: ktkim@hallym.ac.kr organization: College of Information Science, Hallym University, Chuncheon, Gangwon, South Korea – sequence: 5 givenname: Yun-Hee orcidid: 0000-0001-6101-8851 surname: Kim fullname: Kim, Yun-Hee email: yunkim@skku.edu organization: Department of Physical and Rehabilitation Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi, South Korea – sequence: 6 givenname: Ji-Hoon orcidid: 0000-0001-6940-2700 surname: Jeong fullname: Jeong, Ji-Hoon email: jh.jeong@chungbuk.ac.kr organization: Department of Computer Science, Chungbuk National University, Cheongju, Chungcheongbuk, South Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38683717$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3DAUhUVJaR7tHyilGLrpxlO9LS_bwU0C0wedyVpI1vWgicdKJHnRf197ZhpKFgWBxOU7517dc4nOhjAAQm8JXhCC60-b7-tfzYJiyheM1YIw9gJdECFUiSnBZ_Ob8ZIzis_RZUo7jEklRfUKnTMlFatIdYG238Y--3Jj0n1xAxli2MIAYUxFMyTY2x6KFZg4-GFbfjEJXLGMIaVyPdodtLlomuti2ZuUfOdbk30YirvBQSzWOYZ7KH5ONRhyeo1edqZP8OZ0X6G7r81meVOuflzfLj-vypZLmkslJWOEWepAdZQYp5xtpapF65yqutqQyhlgVhhVSaqAGmMJ553tOKkYCHaFbo--Lpidfoh-b-JvHYzXh0KIW21i9m0PWlrJrSIAHeOci66WLa8oYw4ENxbY5PXx6PUQw-MIKeu9Ty30vTlsSDPM60lA8dz2wzN0F8Y4TD-dKEGJopLN1PsTNdo9uKfx_sYxAfQItPOSI3RPCMF6zlwfMtdz5vqU-SRSz0Stz4cocjS-_7_03VHqAeCfXoJgNp0_Thu4yw |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_3390_biomedicines13030599 |
Cites_doi | 10.1109/TNSRE.2017.2692520 10.1109/TMI.2023.3294967 10.1109/TNSRE.2017.2778178 10.1109/MSP.2008.4408441 10.1109/TBME.2021.3137184 10.1016/j.bspc.2022.104456 10.1016/0167-8655(94)90127-9 10.1109/TNSRE.2022.3186442 10.1088/1741-2552/ac3044 10.1109/IJCNN48605.2020.9206884 10.3389/fnins.2012.00039 10.1016/j.jneumeth.2014.04.007 10.1109/TNSRE.2020.2966826 10.1093/gigascience/giaa098 10.1109/TCYB.2019.2946914 10.3389/fnhum.2020.00321 10.3233/RNN-150534 10.1016/j.cortex.2017.12.019 10.1109/TCYB.2022.3211694 10.1007/978-3-319-47653-7 10.3389/fneur.2022.904145 10.1109/TNSRE.2021.3089613 10.3389/fncom.2017.00103 10.1088/1741-2552/aab2f2 10.3389/fnhum.2021.645952 10.3389/fnhum.2020.00231 10.1109/TSMC.2019.2955478 10.1109/TKDE.2021.3070203 10.1016/j.jneumeth.2003.10.009 10.1016/j.bandc.2021.105705 10.1002/hbm.23730 10.1109/TNNLS.2021.3053576 10.1109/TBME.2022.3151742 10.1016/j.neucom.2016.05.035 10.1038/nrneurol.2010.200 10.1007/s10994-017-5686-9 10.1016/j.ins.2019.06.008 10.1088/1741-2552/aaf3f6 10.3390/e24050705 10.1088/1741-2552/abd82b 10.1088/1741-2552/aace8c 10.1088/1741-2552/abaa9d 10.1109/TNSRE.2020.3039331 10.3389/fnhum.2020.00236 10.1088/1741-2552/ab0ab5 10.1109/TNSRE.2021.3087506 10.1109/TNSRE.2019.2924742 10.1109/TNSRE.2021.3125386 10.1186/s12984-016-0120-2 10.1017/S1041610297004754 10.1016/j.neuroimage.2017.02.076 10.1088/1741-2552/aba162 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 DOA |
DOI | 10.1109/TNSRE.2024.3395133 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access (Activated by CARLI) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1778 |
ExternalDocumentID | oai_doaj_org_article_6b64b81eef34445f96c47233de54abe3 38683717 10_1109_TNSRE_2024_3395133 10510310 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Chungbuk National University BrainKorea21 Chungbuk Information Technology Education and Research Center (BK21) Program (2023) – fundername: National Research Foundation of Korea (NRF) Grant – fundername: Korea Government [Ministry of Science and ICT (MSIT)] grantid: RS-2023-00252624 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c462t-8663313b2de8f21ad8dbc6895cdd87f9a17dae3b5a87628e2aab144fbf4173e53 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:31:24 EDT 2025 Fri Jul 11 11:38:02 EDT 2025 Fri Jul 25 06:33:24 EDT 2025 Wed Feb 19 01:58:15 EST 2025 Thu Apr 24 22:58:14 EDT 2025 Tue Jul 01 00:43:30 EDT 2025 Wed Aug 27 02:02:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-8663313b2de8f21ad8dbc6895cdd87f9a17dae3b5a87628e2aab144fbf4173e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6940-2700 0000-0003-4261-875X 0000-0003-2731-3915 0000-0001-6943-4171 0000-0001-6101-8851 0000-0003-1467-4156 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10510310 |
PMID | 38683717 |
PQID | 3052182635 |
PQPubID | 85423 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3052182635 doaj_primary_oai_doaj_org_article_6b64b81eef34445f96c47233de54abe3 pubmed_primary_38683717 ieee_primary_10510310 crossref_citationtrail_10_1109_TNSRE_2024_3395133 proquest_miscellaneous_3049723205 crossref_primary_10_1109_TNSRE_2024_3395133 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Ferri (ref37) 1994; 16 Keng Ang (ref34) ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref13 doi: 10.1109/TNSRE.2017.2692520 – ident: ref12 doi: 10.1109/TMI.2023.3294967 – ident: ref21 doi: 10.1109/TNSRE.2017.2778178 – ident: ref36 doi: 10.1109/MSP.2008.4408441 – ident: ref25 doi: 10.1109/TBME.2021.3137184 – ident: ref26 doi: 10.1016/j.bspc.2022.104456 – ident: ref38 doi: 10.1016/0167-8655(94)90127-9 – ident: ref24 doi: 10.1109/TNSRE.2022.3186442 – ident: ref3 doi: 10.1088/1741-2552/ac3044 – ident: ref27 doi: 10.1109/IJCNN48605.2020.9206884 – ident: ref35 doi: 10.3389/fnins.2012.00039 – ident: ref46 doi: 10.1016/j.jneumeth.2014.04.007 – ident: ref19 doi: 10.1109/TNSRE.2020.2966826 – ident: ref29 doi: 10.1093/gigascience/giaa098 – ident: ref18 doi: 10.1109/TCYB.2019.2946914 – ident: ref23 doi: 10.3389/fnhum.2020.00321 – ident: ref30 doi: 10.3233/RNN-150534 – ident: ref53 doi: 10.1016/j.cortex.2017.12.019 – ident: ref2 doi: 10.1109/TCYB.2022.3211694 – ident: ref49 doi: 10.1007/978-3-319-47653-7 – ident: ref52 doi: 10.3389/fneur.2022.904145 – ident: ref32 doi: 10.1109/TNSRE.2021.3089613 – ident: ref43 doi: 10.3389/fncom.2017.00103 – ident: ref44 doi: 10.1088/1741-2552/aab2f2 – ident: ref54 doi: 10.3389/fnhum.2021.645952 – ident: ref10 doi: 10.3389/fnhum.2020.00231 – ident: ref41 doi: 10.1109/TSMC.2019.2955478 – ident: ref15 doi: 10.1109/TKDE.2021.3070203 – ident: ref33 doi: 10.1016/j.jneumeth.2003.10.009 – ident: ref4 doi: 10.1016/j.bandc.2021.105705 – ident: ref51 doi: 10.1002/hbm.23730 – start-page: 2390 volume-title: Proc. IEEE Int. Joint Conf. Neural Netw. ident: ref34 article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface – ident: ref16 doi: 10.1109/TNNLS.2021.3053576 – ident: ref7 doi: 10.1109/TBME.2022.3151742 – ident: ref39 doi: 10.1016/j.neucom.2016.05.035 – ident: ref14 doi: 10.1038/nrneurol.2010.200 – ident: ref48 doi: 10.1007/s10994-017-5686-9 – ident: ref20 doi: 10.1016/j.ins.2019.06.008 – ident: ref50 doi: 10.1088/1741-2552/aaf3f6 – volume: 16 start-page: 403 volume-title: Machine Intelligence and Pattern Recognition year: 1994 ident: ref37 article-title: Comparative study of techniques for large-scale feature selection – ident: ref40 doi: 10.3390/e24050705 – ident: ref17 doi: 10.1088/1741-2552/abd82b – ident: ref28 doi: 10.1088/1741-2552/aace8c – ident: ref45 doi: 10.1088/1741-2552/abaa9d – ident: ref9 doi: 10.1109/TNSRE.2020.3039331 – ident: ref47 doi: 10.3389/fnhum.2020.00236 – ident: ref42 doi: 10.1088/1741-2552/ab0ab5 – ident: ref1 doi: 10.1109/TNSRE.2021.3087506 – ident: ref8 doi: 10.1109/TNSRE.2019.2924742 – ident: ref11 doi: 10.1109/TNSRE.2021.3125386 – ident: ref6 doi: 10.1186/s12984-016-0120-2 – ident: ref31 doi: 10.1017/S1041610297004754 – ident: ref22 doi: 10.1016/j.neuroimage.2017.02.076 – ident: ref5 doi: 10.1088/1741-2552/aba162 |
SSID | ssj0017657 |
Score | 2.4476433 |
Snippet | Robot-assisted motor training is applied for neurorehabilitation in stroke patients, using motor imagery (MI) as a representative paradigm of brain-computer... |
SourceID | doaj proquest pubmed crossref ieee |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1767 |
SubjectTerms | Adult Aged Algorithms Brain-Computer Interfaces Classification cross-subject training EEG Electroencephalography Electroencephalography - methods Engines Ensemble learning Feature extraction Female Human-computer interface Humans Imagery, Psychotherapy - methods Imagination - physiology Interfaces Ischemia Ischemic Stroke - physiopathology Ischemic Stroke - rehabilitation Lesions Machine Learning Male Mental task performance Middle Aged motor imagery Motor task performance Motors multi-task heterogeneous ensemble learning Multitasking Neurology Psychomotor Performance Rehabilitation Robotics Statistical analysis Stroke Stroke (medical condition) Stroke - complications Stroke - physiopathology Stroke Rehabilitation - methods Task analysis Training |
SummonAdditionalLinks | – databaseName: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQjwKBgowEXFBo4rET-0irlBUSFWq3Um-WHU96aLuLusv_Z8bJrrYH4MI1cWxnHp4Zj_2NEO-DM0OqAUsLfSo1DFBaHbjWC6TeGYNV5Izu99NmdqG_XZrLnVJffCZshAceCXfYxEZHWyMOoLU2g2t63SqAhEaHiBnnk2zeJpia8gdtkzE-SZ01TUBVm-sylTucn56fdRQYKv0ZwHF5k3smKSP3T6VW_ux1Zutz8lg8mtxG-WWc7hPxABdPxYddiGA5H_EB5Ed5dg99-5m4yrdsy3lYXcsZH39ZktQghfyyW6zwNt6gnGBWr8ojsmpJHvNES1pUeJdGdt1XmYtn8rGi3KfM5ZLk-fpueY3yx4jNutoXFyfd_HhWTgUWyl43al1acjeghqgS2kHVIdkU-8Y606dk28GFuk0BIZrAa6ZFFUKkAGyIg65bQAPPxd5iucCXQqKLsQbbBGR4GkOrAuO8x6gqaGNrm0LUGxr7fvp_LoJx43MUUjmf-eKZL37iSyE-bb_5OWJv_LX1EbNu25Jxs_MDkiY_SZP_lzQVYp8ZvzMcIw7WVSEONpLgJyVfeeCLz5bRfArxbvua1JNzLiHz0XMWkwZQFbV5MUrQtnMilwUKp1_9j5m_Fg-ZGuPu0IHYW9_9wjfkL63j26wavwHg3w2r priority: 102 providerName: Directory of Open Access Journals |
Title | Multi-Task Heterogeneous Ensemble Learning-Based Cross-Subject EEG Classification Under Stroke Patients |
URI | https://ieeexplore.ieee.org/document/10510310 https://www.ncbi.nlm.nih.gov/pubmed/38683717 https://www.proquest.com/docview/3052182635 https://www.proquest.com/docview/3049723205 https://doaj.org/article/6b64b81eef34445f96c47233de54abe3 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagB9QL5VHollIZCbigLElsJ86RVikrJFao3Uq9WXY86WHLBjXZC7-eGedBQSriFm28dqxvxvbMeL5h7K0tVO0TAZEWlY-kqEWkpaVaL8JXhVIQO4rofl1mi0v55UpdDcnqIRcGAMLlM5jTY4jl-6bakqsMNZz43yih6iFabn2y1hQyyLNA64kaLHHMNB4zZOLi42p5cV6iLZjKuRAFVTTZZY-EztA4C4XKfm9Igbd_KLRy_5kz7D1ne2w5fnV_5WQ933ZuXv38i9Dxv6f1hD0eTqH8Uy82T9kD2Dxj7-4yDvNVTzfA3_PzP8i8n7PrkLQbrWy75gu6TdOgEEKzbXm5aeG7uwE-sLZeRye4SXp-SjOPcI0ipw8vy8881OKkW0qhTx6qL_GL7rZZA__WU722--zyrFydLqKhXkNUySztIo2nF5EIl3rQdZpYr72rMl2oynud14VNcm9BOGVpCdaQWuvQnqtdLZNcgBIv2M6m2cAB41A4lyBCFojtRuEiQ7TxzqWxyF2usxlLRtBMNcyfamrcmGDUxIUJmBvC3AyYz9iH6T8_eiqPf7Y-IVmYWhINd_gBoTODVpvMZdLpBKAWUkpVF1kl81QID0paB9jJPsF9Z7ge6Rk7GkXLDGtGawTlUWsiB5qxN9Nr1HYK4diAo6GgKA6QxtjmZS-SU-ejQB_eM-grtksT7P1HR2ynu93CazxRde44eCKOgz79AjASGgo |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQkaAXngUWChgJuKBsk9hOnCOtUhZoV6hNpd4sPyY9bNmgJnvh1-NxHhSkIm7RxmvH-uZhezzfEPJWF6J2CYNIMusizmoWSa6x1gtzthACYoMR3eNltjjjX87F-ZCsHnJhACBcPoM5PoZYvmvsBo_KvIYj_xsmVN32jl8kfbrWFDTIs0Ds6XWY-1HTeMyRiYu9anl6UvrdYMrnjBVY02Sb3GEy89uzUKrst0sKzP1DqZWbV53B-xzeJ8vxu_tLJ6v5pjNz-_MvSsf_ntgDcm9Yh9KPveA8JLdg_Yi8u845TKuecIC-pyd_0Hk_JhchbTeqdLuiC7xP03gxhGbT0nLdwndzCXTgbb2I9r2bdPQAZx55K4XHPrQsP9FQjRPvKYU-aai_RE-7q2YF9FtP9trukLPDsjpYREPFhsjyLO0i6dcvLGEmdSDrNNFOOmMzWQjrnMzrQie508CM0GiEJaRaG7-jq03Nk5yBYE_I1rpZwzNCoTAm8QhpQL4b4c0MEscbk8YsN7nMZiQZQVN2mD9W1bhUYVsTFypgrhBzNWA-Ix-m__zoyTz-2XofZWFqiUTc4QcPnRr0WmUm40YmADXjnIu6yCzPU8YcCK4N-E52EO5rw_VIz8juKFpqsBqtYphJLZEeaEbeTK-9vmMQRwccFYZF_QBp7Ns87UVy6nwU6Oc3DPqa3F1Ux0fq6PPy6wuyjZPtT5N2yVZ3tYGXfn3VmVdBq34BXyMcXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Task+Heterogeneous+Ensemble+Learning-Based+Cross-Subject+EEG+Classification+Under+Stroke+Patients&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Lee%2C+Minji&rft.au=Park%2C+Hyeong-Yeong&rft.au=Park%2C+Wanjoo&rft.au=Kim%2C+Keun-Tae&rft.date=2024&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=32&rft.spage=1767&rft.epage=1778&rft_id=info:doi/10.1109%2FTNSRE.2024.3395133&rft_id=info%3Apmid%2F38683717&rft.externalDocID=10510310 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |