Distinct Types of Cell Death and the Implication in Diabetic Cardiomyopathy
Diabetic cardiomyopathy (DCM) is a chronic complication of diabetes mellitus, characterized by abnormalities of myocardial structure and function. Researches on the models of type 1 and type 2 diabetes mellitus as well as the application of genetic engineering technology help in understanding the mo...
Saved in:
Published in | Frontiers in pharmacology Vol. 11; p. 42 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
07.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diabetic cardiomyopathy (DCM) is a chronic complication of diabetes mellitus, characterized by abnormalities of myocardial structure and function. Researches on the models of type 1 and type 2 diabetes mellitus as well as the application of genetic engineering technology help in understanding the molecular mechanism of DCM. DCM has multiple hallmarks, including hyperglycemia, insulin resistance, increased free radical production, lipid peroxidation, mitochondrial dysfunction, endothelial dysfunction, and cell death. Essentially, cell death is considered to be the terminal pathway of cardiomyocytes during DCM. Morphologically, cell death can be classified into four different forms: apoptosis, autophagy, necrosis, and entosis. Apoptosis, as type I cell death, is the fastest form of cell death and mainly occurs depending on the caspase proteolytic cascade. Autophagy, as type II cell death, is a degradation process to remove damaged proteins, dysfunctional organelles and commences by the formation of autophagosome. Necrosis is type III cell death, which contains a great diversity of cell death processes, such as necroptosis and pyroptosis. Entosis is type IV cell death, displaying "cell-in-cell" cytological features and requires the engulfing cells to execute. There are also some other types of cell death such as ferroptosis, parthanatos, netotic cell death, lysosomal dependent cell death, alkaliptosis or oxeiptosis, which are possibly involved in DCM. Drugs or compounds targeting the signals involved in cell death have been used in clinics or experiments to treat DCM. This review briefly summarizes the mechanisms and implications of cell death in DCM, which is beneficial to improve the understanding of cell death in DCM and may propose novel and ideal strategies in future. |
---|---|
AbstractList | Diabetic cardiomyopathy (DCM) is a chronic complication of diabetes mellitus, characterized by abnormalities of myocardial structure and function. Researches on the models of type 1 and type 2 diabetes mellitus as well as the application of genetic engineering technology help in understanding the molecular mechanism of DCM. DCM has multiple hallmarks, including hyperglycemia, insulin resistance, increased free radical production, lipid peroxidation, mitochondrial dysfunction, endothelial dysfunction, and cell death. Essentially, cell death is considered to be the terminal pathway of cardiomyocytes during DCM. Morphologically, cell death can be classified into four different forms: apoptosis, autophagy, necrosis, and entosis. Apoptosis, as type I cell death, is the fastest form of cell death and mainly occurs depending on the caspase proteolytic cascade. Autophagy, as type II cell death, is a degradation process to remove damaged proteins, dysfunctional organelles and commences by the formation of autophagosome. Necrosis is type III cell death, which contains a great diversity of cell death processes, such as necroptosis and pyroptosis. Entosis is type IV cell death, displaying "cell-in-cell" cytological features and requires the engulfing cells to execute. There are also some other types of cell death such as ferroptosis, parthanatos, netotic cell death, lysosomal dependent cell death, alkaliptosis or oxeiptosis, which are possibly involved in DCM. Drugs or compounds targeting the signals involved in cell death have been used in clinics or experiments to treat DCM. This review briefly summarizes the mechanisms and implications of cell death in DCM, which is beneficial to improve the understanding of cell death in DCM and may propose novel and ideal strategies in future. Diabetic cardiomyopathy (DCM) is a chronic complication of diabetes mellitus, characterized by abnormalities of myocardial structure and function. Researches on the models of type 1 and type 2 diabetes mellitus as well as the application of genetic engineering technology help in understanding the molecular mechanism of DCM. DCM has multiple hallmarks, including hyperglycemia, insulin resistance, increased free radical production, lipid peroxidation, mitochondrial dysfunction, endothelial dysfunction, and cell death. Essentially, cell death is considered to be the terminal pathway of cardiomyocytes during DCM. Morphologically, cell death can be classified into four different forms: apoptosis, autophagy, necrosis, and entosis. Apoptosis, as type I cell death, is the fastest form of cell death and mainly occurs depending on the caspase proteolytic cascade. Autophagy, as type II cell death, is a degradation process to remove damaged proteins, dysfunctional organelles and commences by the formation of autophagosome. Necrosis is type III cell death, which contains a great diversity of cell death processes, such as necroptosis and pyroptosis. Entosis is type IV cell death, displaying "cell-in-cell" cytological features and requires the engulfing cells to execute. There are also some other types of cell death such as ferroptosis, parthanatos, netotic cell death, lysosomal dependent cell death, alkaliptosis or oxeiptosis, which are possibly involved in DCM. Drugs or compounds targeting the signals involved in cell death have been used in clinics or experiments to treat DCM. This review briefly summarizes the mechanisms and implications of cell death in DCM, which is beneficial to improve the understanding of cell death in DCM and may propose novel and ideal strategies in future.Diabetic cardiomyopathy (DCM) is a chronic complication of diabetes mellitus, characterized by abnormalities of myocardial structure and function. Researches on the models of type 1 and type 2 diabetes mellitus as well as the application of genetic engineering technology help in understanding the molecular mechanism of DCM. DCM has multiple hallmarks, including hyperglycemia, insulin resistance, increased free radical production, lipid peroxidation, mitochondrial dysfunction, endothelial dysfunction, and cell death. Essentially, cell death is considered to be the terminal pathway of cardiomyocytes during DCM. Morphologically, cell death can be classified into four different forms: apoptosis, autophagy, necrosis, and entosis. Apoptosis, as type I cell death, is the fastest form of cell death and mainly occurs depending on the caspase proteolytic cascade. Autophagy, as type II cell death, is a degradation process to remove damaged proteins, dysfunctional organelles and commences by the formation of autophagosome. Necrosis is type III cell death, which contains a great diversity of cell death processes, such as necroptosis and pyroptosis. Entosis is type IV cell death, displaying "cell-in-cell" cytological features and requires the engulfing cells to execute. There are also some other types of cell death such as ferroptosis, parthanatos, netotic cell death, lysosomal dependent cell death, alkaliptosis or oxeiptosis, which are possibly involved in DCM. Drugs or compounds targeting the signals involved in cell death have been used in clinics or experiments to treat DCM. This review briefly summarizes the mechanisms and implications of cell death in DCM, which is beneficial to improve the understanding of cell death in DCM and may propose novel and ideal strategies in future. |
Author | Arslan, Ishfaq Muhammad Chen, Yun Hua, Yuyun Li, Xinshuai Zhang, Wei Meng, Guoliang |
AuthorAffiliation | 2 School of Medicine, Nantong University , Nantong , China 1 Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province , Nantong , China |
AuthorAffiliation_xml | – name: 1 Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province , Nantong , China – name: 2 School of Medicine, Nantong University , Nantong , China |
Author_xml | – sequence: 1 givenname: Yun surname: Chen fullname: Chen, Yun – sequence: 2 givenname: Yuyun surname: Hua fullname: Hua, Yuyun – sequence: 3 givenname: Xinshuai surname: Li fullname: Li, Xinshuai – sequence: 4 givenname: Ishfaq Muhammad surname: Arslan fullname: Arslan, Ishfaq Muhammad – sequence: 5 givenname: Wei surname: Zhang fullname: Zhang, Wei – sequence: 6 givenname: Guoliang surname: Meng fullname: Meng, Guoliang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32116717$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtrGzEUhUVJaVI3-67KLLuxq9fosSkUuw_TQDfpWtyRNLHCzGgqyQX_-yp2GpJAVhLSd8493PMWnU1x8gi9J3jFmNKf-nkHaUUxxSuMMaev0AURgi21IvTs0f0cXeZ8WxHMtGaCv0HnjBIiJJEX6Ocm5BImW5rrw-xzE_tm7Yeh2XgouwYm15Sdb7bjPAQLJcSpCVOzCdD5EmyzhuRCHA9xrvThHXrdw5D95f25QL-_fb1e_1he_fq-XX-5WlouaFkqZjHuVc874FSyDoBb5jyx1itBGQGhWuVaLbFTNaSzpO0d1bwVIDSVLVug7cnXRbg1cwojpIOJEMzxIaYbA6nGG7zpHKXOkdarvufe8s6DhZ4DYE07qWX1-nzymvfd6J31U0kwPDF9-jOFnbmJf43ERIm64gX6eG-Q4p-9z8WMIdu6Qph83GdDmdBKSSlxRT88nvUw5H8bFcAnwKaYc_L9A0KwuevcHDs3d52bY-dVIp5JbCjHomraMLws_Af9s7Id |
CitedBy_id | crossref_primary_10_1177_09731296231220433 crossref_primary_10_1016_j_freeradbiomed_2022_09_013 crossref_primary_10_3390_toxics12120908 crossref_primary_10_1038_s41401_020_0490_7 crossref_primary_10_2147_JIR_S291453 crossref_primary_10_3390_antiox12010200 crossref_primary_10_3390_biomedicines11071907 crossref_primary_10_3390_ijms241512188 crossref_primary_10_1155_2022_3182931 crossref_primary_10_1016_j_jdiacomp_2024_108744 crossref_primary_10_3389_fcvm_2021_707336 crossref_primary_10_3389_fcell_2021_733908 crossref_primary_10_1186_s13098_024_01466_x crossref_primary_10_3390_ijms222413228 crossref_primary_10_3389_fendo_2022_986565 crossref_primary_10_12688_f1000research_125945_2 crossref_primary_10_1016_j_arr_2021_101338 crossref_primary_10_12688_f1000research_125945_1 crossref_primary_10_3892_ijmm_2023_5301 crossref_primary_10_1186_s43094_025_00781_y crossref_primary_10_1016_j_tins_2022_03_007 crossref_primary_10_1113_EP091309 crossref_primary_10_3390_ijms231810632 crossref_primary_10_3389_fphar_2024_1368835 crossref_primary_10_3390_biomedicines10010127 crossref_primary_10_3389_fimmu_2021_617251 crossref_primary_10_3389_fphar_2022_841410 crossref_primary_10_1016_j_lfs_2023_121971 crossref_primary_10_29328_journal_apps_1001057 crossref_primary_10_3389_fendo_2023_1322907 crossref_primary_10_3389_fendo_2023_1140644 crossref_primary_10_3390_medicina59101830 crossref_primary_10_3390_ijms22105094 crossref_primary_10_1186_s12935_024_03346_w crossref_primary_10_3390_nu14102039 crossref_primary_10_1016_j_acthis_2022_151872 crossref_primary_10_3389_fendo_2024_1451100 crossref_primary_10_1039_D3FO04039A crossref_primary_10_1007_s00580_024_03607_0 crossref_primary_10_1002_ptr_7798 crossref_primary_10_1007_s11033_023_09131_8 crossref_primary_10_3389_fimmu_2021_618577 crossref_primary_10_1038_s41419_024_06771_x crossref_primary_10_3389_fimmu_2021_616394 crossref_primary_10_3390_nu13072476 crossref_primary_10_3389_fimmu_2022_843712 crossref_primary_10_1186_s12872_024_04010_x crossref_primary_10_3390_molecules28145305 crossref_primary_10_1155_2021_5590623 crossref_primary_10_3389_fcell_2021_742483 crossref_primary_10_1007_s11010_023_04873_2 crossref_primary_10_1111_exd_14972 crossref_primary_10_3390_ph15111344 crossref_primary_10_1016_j_domaniend_2024_106881 crossref_primary_10_3389_fendo_2024_1421838 crossref_primary_10_2174_0125899775243787231103075804 crossref_primary_10_1016_j_biopha_2022_113517 crossref_primary_10_3389_fcvm_2022_791700 crossref_primary_10_3389_fcvm_2022_951597 crossref_primary_10_1016_j_tcm_2022_01_004 crossref_primary_10_1007_s10741_023_10336_z crossref_primary_10_1097_MD_0000000000036299 crossref_primary_10_1159_000529995 crossref_primary_10_1007_s12079_022_00680_4 crossref_primary_10_1111_jdi_14192 crossref_primary_10_3390_ijms242116008 crossref_primary_10_1002_jcp_30627 crossref_primary_10_1016_j_biopha_2024_117732 crossref_primary_10_1016_j_canlet_2022_215752 crossref_primary_10_1016_j_intimp_2024_111990 crossref_primary_10_1155_2022_5382263 crossref_primary_10_1016_j_heliyon_2024_e35219 crossref_primary_10_3389_fcell_2021_649045 crossref_primary_10_1177_09603271251322186 crossref_primary_10_1016_j_cellsig_2023_111006 crossref_primary_10_1016_j_heliyon_2023_e14479 crossref_primary_10_1080_21655979_2021_2024688 crossref_primary_10_3389_fcell_2024_1428250 crossref_primary_10_4239_wjd_v15_i10_2002 crossref_primary_10_13005_bpj_2401 crossref_primary_10_1016_j_neubiorev_2022_104642 crossref_primary_10_1016_j_phrs_2022_106086 crossref_primary_10_3389_fphar_2022_963672 crossref_primary_10_3390_ijms24108495 crossref_primary_10_31083_j_jin2101030 crossref_primary_10_3390_cells10010079 crossref_primary_10_1080_03602532_2022_2051045 crossref_primary_10_3389_fendo_2021_682145 crossref_primary_10_3389_fmolb_2021_698698 crossref_primary_10_3389_fphar_2023_1146651 crossref_primary_10_1007_s40610_021_00146_3 crossref_primary_10_2174_1573399819666230502110511 crossref_primary_10_3389_fragi_2023_1113200 crossref_primary_10_3389_fphar_2023_1290023 crossref_primary_10_3390_molecules29122852 crossref_primary_10_1155_2022_5418376 crossref_primary_10_1016_j_apsb_2021_10_005 crossref_primary_10_1186_s12872_023_03649_2 crossref_primary_10_1007_s12012_024_09836_7 crossref_primary_10_1186_s13019_023_02300_7 crossref_primary_10_1007_s00253_023_12915_4 crossref_primary_10_1016_j_tox_2022_153252 crossref_primary_10_3390_ijms222111893 crossref_primary_10_1002_cbf_3843 crossref_primary_10_1002_jat_4465 crossref_primary_10_1016_j_apsb_2021_08_026 crossref_primary_10_1016_j_lfs_2023_122223 crossref_primary_10_1016_j_bcp_2023_115591 crossref_primary_10_1016_j_biopha_2022_113279 crossref_primary_10_1016_j_ygeno_2024_110879 crossref_primary_10_1002_ptr_7992 crossref_primary_10_1016_j_bbrc_2022_10_001 crossref_primary_10_37349_emed_2023_00162 crossref_primary_10_3390_cells11091430 crossref_primary_10_3389_fphys_2021_791848 crossref_primary_10_3390_cells11091553 crossref_primary_10_1007_s10142_024_01386_z crossref_primary_10_1016_j_jdiacomp_2024_108848 crossref_primary_10_1016_j_omtn_2022_09_019 crossref_primary_10_1038_s41401_024_01450_1 crossref_primary_10_1186_s13098_023_01061_6 crossref_primary_10_3390_ijms23147863 crossref_primary_10_3389_fcvm_2021_710963 crossref_primary_10_1111_1753_0407_13511 crossref_primary_10_1038_s12276_023_01081_2 crossref_primary_10_5115_acb_22_098 crossref_primary_10_3390_ijms25179481 crossref_primary_10_3389_fcvm_2022_870999 crossref_primary_10_3389_fimmu_2024_1348043 crossref_primary_10_1155_2022_4342755 crossref_primary_10_1186_s12967_024_05881_6 crossref_primary_10_1371_journal_pone_0280464 crossref_primary_10_1016_j_freeradbiomed_2023_11_032 crossref_primary_10_3390_ijms22179430 crossref_primary_10_1016_j_lfs_2023_122087 crossref_primary_10_1038_s41598_024_57818_0 crossref_primary_10_17802_2306_1278_2023_12_4S_162_172 |
Cites_doi | 10.1053/j.gastro.2017.12.004 10.1186/s12906-017-1828-7 10.5009/gnl18486 10.1002/cphy.c160021 10.1155/2017/1249614 10.1161/01.RES.87.12.1123 10.1016/j.phymed.2018.11.024 10.1002/cbin.11137 10.1016/j.bbrc.2019.09.092 10.1038/nm.4017 10.1007/s10741-018-9749-1 10.3389/fphar.2018.01292 10.1016/j.dnarep.2019.102651 10.1016/j.bbrc.2019.05.147 10.1016/j.cbi.2019.108754 10.1093/cvr/cvp144 10.1038/s41418-017-0012-4 10.1074/jbc.M113.474650 10.1021/acschembio.5b00245 10.1186/s12933-019-0820-6 10.1152/ajpheart.00452.2017 10.1016/j.jphs.2019.01.016 10.1248/bpb.b15-00288 10.1111/j.1745-7254.2005.00235.x 10.1016/j.bbadis.2016.10.021 10.1016/j.celrep.2015.03.035 10.1016/j.freeradbiomed.2018.11.033 10.3389/fphar.2019.01219 10.1002/jcb.28632 10.1159/000489442 10.1016/j.lfs.2019.116593 10.3390/md12063292 10.1016/j.numecd.2018.06.005 10.17179/excli2018-1353 10.26355/eurrev_201801_14202 10.1111/jpi.12503 10.1016/j.ejphar.2017.12.025 10.1016/j.bbrc.2019.04.110 10.1016/j.lfs.2019.02.035 10.1155/2017/3764370 10.1111/cpr.12563 10.1016/j.cellsig.2019.06.004 10.1016/j.yjmcc.2018.03.003 10.1155/2019/6392763 10.7150/ijbs.33568 10.1016/j.jep.2019.111857 10.3109/10715762.2014.920955 10.1042/BSR20170982 10.1371/journal.pone.0166740 10.1002/jcb.28229 10.1007/s00592-018-1225-9 10.1385/CT:3:3:219 10.1042/CS20190585 10.1038/cdd.2015.95 10.1016/j.redox.2019.101239 10.1038/s41418-018-0134-3 10.1016/j.yjmcc.2018.10.004 10.1371/journal.pone.0029318 10.3892/ijmm.2016.2467 10.2147/DMSO.S228351 10.1111/jcmm.14413 10.1016/j.bcp.2019.02.022 10.1016/j.yjmcc.2016.12.007 10.1159/000489241 10.2174/0929867321666140912155738 10.1016/j.kint.2015.10.008 10.1016/j.jsbmb.2017.02.007 10.1016/j.cell.2013.12.010 10.1038/s41422-019-0164-5 10.1038/nchembio.2239 10.7150/ijbs.29680 10.1038/srep36340 10.3892/mmr.2018.9269 10.1016/j.bbrc.2016.11.091 10.1126/science.aat8407 10.3389/fphar.2018.01227 10.1016/j.diabet.2018.07.003 10.3892/etm.2019.8036 10.1016/j.hfc.2019.02.003 10.1007/s10557-018-6831-9 10.1016/j.bbadis.2014.05.017 10.1159/000461391 10.1016/j.bj.2017.05.001 10.1158/0008-5472.CAN-13-1283 10.1016/j.bbrc.2016.02.065 10.1016/j.ceca.2017.08.005 10.1111/tra.12613 10.1016/j.ejphar.2018.10.010 10.2337/db18-1231 10.1038/s41556-019-0305-6 10.1371/journal.pone.0022043 10.1016/j.biochi.2019.05.005 10.15698/cst2019.05.186 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Chen, Hua, Li, Arslan, Zhang and Meng. Copyright © 2020 Chen, Hua, Li, Arslan, Zhang and Meng 2020 Chen, Hua, Li, Arslan, Zhang and Meng |
Copyright_xml | – notice: Copyright © 2020 Chen, Hua, Li, Arslan, Zhang and Meng. – notice: Copyright © 2020 Chen, Hua, Li, Arslan, Zhang and Meng 2020 Chen, Hua, Li, Arslan, Zhang and Meng |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fphar.2020.00042 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1663-9812 |
ExternalDocumentID | oai_doaj_org_article_bd22dd15e8ff4ec4beacaf4aa092b797 PMC7018666 32116717 10_3389_fphar_2020_00042 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Jiangsu Planned Projects for Postdoctoral Research Funds grantid: 1701050A – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20151276 – fundername: China Postdoctoral Science Foundation grantid: 2017M610342, 2019T120449 – fundername: Graduate Research and Innovation Projects of Jiangsu Province – fundername: National Natural Science Foundation of China grantid: 81770279, 81670243, 81873470 – fundername: Six Talent Peaks Project in Jiangsu Province grantid: 2018-WSN-062 – fundername: Natural Science Research of Jiangsu Higher Education Institutions of China |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 P2P PGMZT RNS RPM IAO IEA IHR IHW IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c462t-83c00f8f4ba4273baa4c3de1cce86231a6858d5970d8671dc15fd29456a692753 |
IEDL.DBID | M48 |
ISSN | 1663-9812 |
IngestDate | Wed Aug 27 01:27:39 EDT 2025 Thu Aug 21 18:16:14 EDT 2025 Fri Jul 11 09:56:57 EDT 2025 Thu Jan 02 22:59:13 EST 2025 Tue Jul 01 03:27:30 EDT 2025 Thu Apr 24 23:03:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | entosis apoptosis autophagy diabetic cardiomyopathy cell death necrosis |
Language | English |
License | Copyright © 2020 Chen, Hua, Li, Arslan, Zhang and Meng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-83c00f8f4ba4273baa4c3de1cce86231a6858d5970d8671dc15fd29456a692753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 This article was submitted to Cardiovascular and Smooth Muscle Pharmacology, a section of the journal Frontiers in Pharmacology These authors have contributed equally to this work Reviewed by: Shizuka Uchida, University of Louisville, United States; Shusheng Wang, Tulane University, United States Edited by: Issy Laher, University of British Columbia, Canada |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphar.2020.00042 |
PMID | 32116717 |
PQID | 2369887770 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bd22dd15e8ff4ec4beacaf4aa092b797 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7018666 proquest_miscellaneous_2369887770 pubmed_primary_32116717 crossref_primary_10_3389_fphar_2020_00042 crossref_citationtrail_10_3389_fphar_2020_00042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-07 |
PublicationDateYYYYMMDD | 2020-02-07 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in pharmacology |
PublicationTitleAlternate | Front Pharmacol |
PublicationYear | 2020 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Liang (B40) 2016; 37 Xiao (B77) 2019; 515 Bootman (B7) 2018; 70 Meng (B48) 2019; 3 Wu (B74) 2017; 2017 Frustaci (B18) 2000; 87 Tang (B64) 2019; 139 Wu (B75) 2018; 9 Oh (B51) 2019; 56 Zeng (B87) 2019; 15 Lee (B30) 2019; 231 Barany (B4) 2017; 2017 Wang (B69) 2019; 23 Bhattacharya (B6) 2018; 17 Wang (B66) 2018; 19 Wang (B68) 2019; 58 Wang (B72) 2019; 11 Paolillo (B52) 2019; 15 Xu (B80) 2018; 46 Wang (B70) 2019; 221 Li (B31) 2015; 11 Huang (B26) 2019; 2019 Guan (B20) 2019; 62 Tan (B62) 2019; 68 Feidantsis (B16) 2018; 28 Wang (B67) 2019; 842 Yao (B85) 2018; 124 Jeyabal (B27) 2016; 471 Hou (B24) 2019; 120 Baba (B3) 2018; 314 Sun (B61) 2019; 238 Adingupu (B1) 2019; 18 Sun (B59) 2019; 163 Galluzzi (B19) 2018; 25 Zhang (B89) 2018; 9 Tang (B63) 2019; 29 Yang (B82) 2005; 26 Zhou (B91) 2018; 65 Joubert (B28) 2019; 45 Hu (B25) 2017; 7 Martins (B46) 2017; 40 Fang (B15) 2018; 18 Gupta (B22) 2018; 118 Song (B57) 2018; 154 Dixon (B13) 2015; 10 Linkermann (B43) 2016; 89 Mitroulis (B49) 2011; 6 Li (B32) 2016; 6 Wang (B65) 2014; 12 Cai (B8) 2003; 3 Hemmers (B23) 2011; 6 Xing (B78) 2019; 520 Doll (B14) 2017; 13 Cao (B9) 2015; 22 Xue (B81) 2019; 133 Nomura (B50) 2014; 74 Xu (B79) 2013; 288 Sun (B60) 2019; 12 Zhao (B90) 2019; 52 Zou (B93) 2019; 10 Kam (B29) 2018; 362 Li (B39) 2019; 131 Zhang (B88) 2016; 22 Yu (B86) 2017; 1863 Li (B33) 2017; 24 Li (B38) 2019; 514 Chu (B11) 2019; 21 Liu (B44) 2014; 48 Yang (B83) 2014; 156 Aizawa (B2) 2019; 14 Bartha (B5) 2009; 83 Li (B34) 2018; 22 Li (B35) 2018; 38 Wei (B73) 2017; 168 Liang (B41) 2017; 41 Liu (B45) 2019; 120 Robinson (B55) 2019; 26 Sun (B58) 2017; 17 Zhou (B92) 2018; 32 Yang (B84) 2019; 15 Lin (B42) 2017; 482 Wu (B76) 2018; 46 Parim (B53) 2019; 24 Ren (B54) 2016; 11 D'Arcy (B12) 2019; 43 Scaturro (B56) 2018; 25 Wang (B71) 2019; 81 Guo (B21) 2015; 1852 Li (B36) 2019; 310 Chen (B10) 2018; 819 Feng (B17) 2017; 103 Li (B37) 2019; 18 Zou (B94) 2019; 165 Marunouchi (B47) 2015; 38 |
References_xml | – volume: 154 start-page: 1480 year: 2018 ident: B57 article-title: JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice publication-title: Gastroenterology doi: 10.1053/j.gastro.2017.12.004 – volume: 17 start-page: 310 year: 2017 ident: B58 article-title: The effect of Astragalus polysaccharides on attenuation of diabetic cardiomyopathy through inhibiting the extrinsic and intrinsic apoptotic pathways in high glucose -stimulated H9C2 cells publication-title: BMC Complement. Altern. Med. doi: 10.1186/s12906-017-1828-7 – volume: 14 start-page: 20 year: 2019 ident: B2 article-title: Cell death and liver disease publication-title: Gut. Liver. doi: 10.5009/gnl18486 – volume: 7 start-page: 693 year: 2017 ident: B25 article-title: Pathophysiological fundamentals of diabetic cardiomyopathy publication-title: Compr. Physiol. doi: 10.1002/cphy.c160021 – volume: 2017 year: 2017 ident: B4 article-title: Oxidative stress-related parthanatos of circulating mononuclear leukocytes in heart failure publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2017/1249614 – volume: 87 start-page: 1123 year: 2000 ident: B18 article-title: Myocardial cell death in human diabetes publication-title: Circ. Res. doi: 10.1161/01.RES.87.12.1123 – volume: 58 start-page: 152764 year: 2019 ident: B68 article-title: Chikusetsu saponin IVa attenuates isoprenaline-induced myocardial fibrosis in mice through activation autophagy mediated by AMPK/mTOR/ULK1 signaling publication-title: Phytomedicine doi: 10.1016/j.phymed.2018.11.024 – volume: 43 start-page: 582 year: 2019 ident: B12 article-title: Cell death: a review of the major forms of apoptosis, necrosis and autophagy publication-title: Cell Biol. Int. doi: 10.1002/cbin.11137 – volume: 520 start-page: 27 year: 2019 ident: B78 article-title: MiR-207 inhibits autophagy and promotes apoptosis of cardiomyocytes by directly targeting LAMP2 in type 2 diabetic cardiomyopathy publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.09.092 – volume: 22 start-page: 175 year: 2016 ident: B88 article-title: CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis publication-title: Nat. Med. doi: 10.1038/nm.4017 – volume: 24 start-page: 279 year: 2019 ident: B53 article-title: Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy publication-title: Heart Fail. Rev. doi: 10.1007/s10741-018-9749-1 – volume: 9 year: 2018 ident: B75 article-title: Activating Cannabinoid receptor 2 protects against diabetic cardiomyopathy through autophagy induction publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.01292 – volume: 81 year: 2019 ident: B71 article-title: PARP-1 and its associated nucleases in DNA damage response publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2019.102651 – volume: 515 start-page: 448 year: 2019 ident: B77 article-title: miRNA-17-92 protects endothelial cells from erastin-induced ferroptosis through targeting the A20-ACSL4 axis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.05.147 – volume: 310 year: 2019 ident: B36 article-title: Piceatannol alleviates inflammation and oxidative stress via modulation of the Nrf2/HO-1 and NF-kappaB pathways in diabetic cardiomyopathy publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2019.108754 – volume: 83 start-page: 501 year: 2009 ident: B5 article-title: PARP inhibition delays transition of hypertensive cardiopathy to heart failure in spontaneously hypertensive rats publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvp144 – volume: 25 start-page: 486 year: 2018 ident: B19 article-title: Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018 publication-title: Cell Death Differ. doi: 10.1038/s41418-017-0012-4 – volume: 288 start-page: 18077 year: 2013 ident: B79 article-title: Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.474650 – volume: 10 start-page: 1604 year: 2015 ident: B13 article-title: Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.5b00245 – volume: 18 start-page: 16 year: 2019 ident: B1 article-title: SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob(-/-) mice publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-019-0820-6 – volume: 314 start-page: H659 year: 2018 ident: B3 article-title: Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00452.2017 – volume: 139 start-page: 311 year: 2019 ident: B64 article-title: Trimetazidine prevents diabetic cardiomyopathy by inhibiting Nox2/TRPC3-induced oxidative stress publication-title: J. Pharmacol. Sci. doi: 10.1016/j.jphs.2019.01.016 – volume: 38 start-page: 1094 year: 2015 ident: B47 article-title: Cell death in the cardiac myocyte publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.b15-00288 – volume: 26 start-page: 1421 year: 2005 ident: B82 article-title: Molecular mechanism and regulation of autophagy publication-title: Acta Pharmacol. Sin. doi: 10.1111/j.1745-7254.2005.00235.x – volume: 1863 start-page: 1973 year: 2017 ident: B86 article-title: Sirt3 deficiency exacerbates diabetic cardiac dysfunction: role of Foxo3A-Parkin-mediated mitophagy publication-title: Biochim. Biophys. Acta Mol. Basis. Dis. doi: 10.1016/j.bbadis.2016.10.021 – volume: 11 start-page: 358 year: 2015 ident: B31 article-title: Entosis allows timely elimination of the luminal epithelial barrier for embryo implantation publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.03.035 – volume: 131 start-page: 251 year: 2019 ident: B39 article-title: Astragaloside IV reduces neuronal apoptosis and parthanatos in ischemic injury by preserving mitochondrial hexokinase-II publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.11.033 – volume: 10 year: 2019 ident: B93 article-title: Sophocarpine suppresses NF-kappaB-mediated inflammation both in vitro and in vivo and inhibits diabetic cardiomyopathy publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.01219 – volume: 120 start-page: 13573 year: 2019 ident: B24 article-title: Matrine improves diabetic cardiomyopathy through TGF-beta-induced protein kinase RNA-like endoplasmic reticulum kinase signaling pathway publication-title: J. Cell. Biochem. doi: 10.1002/jcb.28632 – volume: 46 start-page: 2031 year: 2018 ident: B80 article-title: Resveratrol modulates apoptosis and autophagy induced by high glucose and palmitate in cardiac cells publication-title: Cell Physiol. Biochem. doi: 10.1159/000489442 – volume: 231 year: 2019 ident: B30 article-title: Inflammasome as a promising therapeutic target for cancer publication-title: Life Sci. doi: 10.1016/j.lfs.2019.116593 – volume: 12 start-page: 3292 year: 2014 ident: B65 article-title: The protective effect of fucoidan in rats with streptozotocin-induced diabetic nephropathy publication-title: Mar. Drugs doi: 10.3390/md12063292 – volume: 28 start-page: 952 year: 2018 ident: B16 article-title: Treatment with crocin improves cardiac dysfunction by normalizing autophagy and inhibiting apoptosis in STZ-induced diabetic cardiomyopathy publication-title: Nutr. Metab. Cardiovasc. Dis. doi: 10.1016/j.numecd.2018.06.005 – volume: 17 start-page: 709 year: 2018 ident: B6 article-title: Is autophagy associated with diabetes mellitus and its complications? A review publication-title: EXCLI. J. doi: 10.17179/excli2018-1353 – volume: 22 start-page: 506 year: 2018 ident: B34 article-title: Correlations between blood uric acid and the incidence and progression of type 2 diabetes nephropathy publication-title: Eur. Rev. Med. Pharmacol. Sci. doi: 10.26355/eurrev_201801_14202 – volume: 65 year: 2018 ident: B91 article-title: Inhibitory effect of melatonin on necroptosis via repressing the Ripk3-PGAM5-CypD-mPTP pathway attenuates cardiac microvascular ischemia-reperfusion injury publication-title: J. Pineal. Res. doi: 10.1111/jpi.12503 – volume: 819 start-page: 281 year: 2018 ident: B10 article-title: Osteoprotective effects of salidroside in ovariectomized mice and diabetic mice publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2017.12.025 – volume: 514 start-page: 1 year: 2019 ident: B38 article-title: Vaspin prevents myocardial injury in rats model of diabetic cardiomyopathy by enhancing autophagy and inhibiting inflammation publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.04.110 – volume: 221 start-page: 249 year: 2019 ident: B70 article-title: AIM2 gene silencing attenuates diabetic cardiomyopathy in type 2 diabetic rat model publication-title: Life Sci. doi: 10.1016/j.lfs.2019.02.035 – volume: 2017 year: 2017 ident: B74 article-title: Dihydromyricetin protects against diabetic cardiomyopathy in streptozotocin-induced diabetic mice publication-title: Biomed. Res. Int. doi: 10.1155/2017/3764370 – volume: 52 year: 2019 ident: B90 article-title: Role of pyroptosis in cardiovascular disease publication-title: Cell Prolif. doi: 10.1111/cpr.12563 – volume: 62 start-page: 109339 year: 2019 ident: B20 article-title: Effects of PP2A/Nrf2 on experimental diabetes mellitus-related cardiomyopathy by regulation of autophagy and apoptosis through ROS dependent pathway publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2019.06.004 – volume: 118 start-page: 26 year: 2018 ident: B22 article-title: Necroptosis in cardiovascular disease - a new therapeutic target publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2018.03.003 – volume: 2019 year: 2019 ident: B26 article-title: The role of the antioxidant response in mitochondrial dysfunction in degenerative diseases: cross-talk between antioxidant defense, autophagy, and apoptosis publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2019/6392763 – volume: 15 start-page: 1345 year: 2019 ident: B87 article-title: Role of pyroptosis in cardiovascular diseases and its therapeutic implications publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.33568 – volume: 238 year: 2019 ident: B61 article-title: Astragalus polysaccharides inhibits cardiomyocyte apoptosis during diabetic cardiomyopathy via the endoplasmic reticulum stress pathway publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2019.111857 – volume: 48 start-page: 898 year: 2014 ident: B44 article-title: (-)-Epigallocatechin-3-gallate attenuated myocardial mitochondrial dysfunction and autophagy in diabetic Goto-Kakizaki rats publication-title: Free Radic. Res. doi: 10.3109/10715762.2014.920955 – volume: 38 year: 2018 ident: B35 article-title: AMPK blunts chronic heart failure by inhibiting autophagy publication-title: Biosci. Rep. doi: 10.1042/BSR20170982 – volume: 11 year: 2016 ident: B54 article-title: Atorvastatin alleviates experimental diabetic cardiomyopathy by regulating the GSK-3beta-PP2Ac-NF-kappaB signaling axis publication-title: PloS One doi: 10.1371/journal.pone.0166740 – volume: 120 start-page: 9532 year: 2019 ident: B45 article-title: Low expression of miR-186-5p regulates cell apoptosis by targeting toll-like receptor 3 in high glucose-induced cardiomyocytes publication-title: J. Cell. Biochem. doi: 10.1002/jcb.28229 – volume: 56 start-page: 105 year: 2019 ident: B51 article-title: Dexmedetomidine restores autophagy and cardiac dysfunction in rats with streptozotocin-induced diabetes mellitus publication-title: Acta Diabetol. doi: 10.1007/s00592-018-1225-9 – volume: 3 start-page: 219 year: 2003 ident: B8 article-title: Cell death and diabetic cardiomyopathy publication-title: Cardiovasc. Toxicol. doi: 10.1385/CT:3:3:219 – volume: 133 start-page: 1705 year: 2019 ident: B81 article-title: Empagliflozin prevents cardiomyopathy via sGC-cGMP-PKG pathway in type 2 diabetes mice publication-title: Clin. Sci. (Lond) doi: 10.1042/CS20190585 – volume: 24 start-page: 1205 year: 2017 ident: B33 article-title: miR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation publication-title: Cell Death Differ. doi: 10.1038/cdd.2015.95 – volume: 26 year: 2019 ident: B55 article-title: Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos publication-title: Redox Biol. doi: 10.1016/j.redox.2019.101239 – volume: 25 start-page: 1191 year: 2018 ident: B56 article-title: Oxeiptosis-a cell death pathway to mitigate damage caused by radicals publication-title: Cell Death Differ. doi: 10.1038/s41418-018-0134-3 – volume: 124 start-page: 26 year: 2018 ident: B85 article-title: Curcumin protects against diabetic cardiomyopathy by promoting autophagy and alleviating apoptosis publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2018.10.004 – volume: 6 year: 2011 ident: B49 article-title: Neutrophil extracellular trap formation is associated with IL-1beta and autophagy-related signaling in gout publication-title: PloS One doi: 10.1371/journal.pone.0029318 – volume: 37 start-page: 763 year: 2016 ident: B40 article-title: ATP-sensitive K(+) channels contribute to the protective effects of exogenous hydrogen sulfide against high glucose-induced injury in H9c2 cardiac cells publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2016.2467 – volume: 12 start-page: 2209 year: 2019 ident: B60 article-title: Protective effects of astragalus polysaccharides on oxidative stress in high glucose-induced Or SOD2-Silenced H9C2 cells based On PCR Array Analysis publication-title: Diabetes Metab. Syndr. Obes. doi: 10.2147/DMSO.S228351 – volume: 23 start-page: 5349 year: 2019 ident: B69 article-title: Nicorandil alleviates apoptosis in diabetic cardiomyopathy through PI3K/Akt pathway publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.14413 – volume: 163 start-page: 194 year: 2019 ident: B59 article-title: Ca(2+)/calmodulin-dependent protein kinase II regulation by inhibitor 1 of protein phosphatase 1 alleviates necroptosis in high glucose-induced cardiomyocytes injury publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2019.02.022 – volume: 103 start-page: 102 year: 2017 ident: B17 article-title: CaMKII is a nodal signal for multiple programmed cell death pathways in heart publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2016.12.007 – volume: 46 start-page: 1650 year: 2018 ident: B76 article-title: Current mechanistic concepts in ischemia and reperfusion injury publication-title: Cell Physiol. Biochem. doi: 10.1159/000489241 – volume: 22 start-page: 4 year: 2015 ident: B9 article-title: Glycation of human serum albumin in diabetes: impacts on the structure and function publication-title: Curr. Med. Chem. doi: 10.2174/0929867321666140912155738 – volume: 89 start-page: 46 year: 2016 ident: B43 article-title: Nonapoptotic cell death in acute kidney injury and transplantation publication-title: Kidney Int. doi: 10.1016/j.kint.2015.10.008 – volume: 168 start-page: 71 year: 2017 ident: B73 article-title: 1,25-Dihydroxyvitamin-D3 prevents the development of diabetic cardiomyopathy in type 1 diabetic rats by enhancing autophagy via inhibiting the beta-catenin/TCF4/GSK-3beta/mTOR pathway publication-title: J. Steroid. Biochem. Mol. Biol. doi: 10.1016/j.jsbmb.2017.02.007 – volume: 156 start-page: 317 year: 2014 ident: B83 article-title: Regulation of ferroptotic cancer cell death by GPX4 publication-title: Cell doi: 10.1016/j.cell.2013.12.010 – volume: 29 start-page: 347 year: 2019 ident: B63 article-title: The molecular machinery of regulated cell death publication-title: Cell Res. doi: 10.1038/s41422-019-0164-5 – volume: 13 start-page: 91 year: 2017 ident: B14 article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2239 – volume: 15 start-page: 1010 year: 2019 ident: B84 article-title: Metformin inhibits the NLRP3 Inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.29680 – volume: 6 year: 2016 ident: B32 article-title: lncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy publication-title: Sci. Rep. doi: 10.1038/srep36340 – volume: 18 start-page: 2807 year: 2018 ident: B15 article-title: Alterations in necroptosis during ALDH2mediated protection against high glucoseinduced H9c2 cardiac cell injury publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2018.9269 – volume: 482 start-page: 665 year: 2017 ident: B42 article-title: Helix B surface peptide attenuates diabetic cardiomyopathy via AMPK-dependent autophagy publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.11.091 – volume: 362 year: 2018 ident: B29 article-title: Poly(ADP-ribose) drives pathologic alpha-synuclein neurodegeneration in Parkinson's disease publication-title: Science doi: 10.1126/science.aat8407 – volume: 9 year: 2018 ident: B89 article-title: Notoginsenoside R1 protects against diabetic cardiomyopathy through activating estrogen receptor alpha and its downstream signaling publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.01227 – volume: 45 start-page: 238 year: 2019 ident: B28 article-title: Diabetes-related cardiomyopathy: the sweet story of glucose overload from epidemiology to cellular pathways publication-title: Diabetes Metab. doi: 10.1016/j.diabet.2018.07.003 – volume: 18 start-page: 3948 year: 2019 ident: B37 article-title: Exogenous hydrogen sulfide protects against high glucose-induced apoptosis and oxidative stress by inhibiting the STAT3/HIF-1alpha pathway in H9c2 cardiomyocytes publication-title: Exp. Ther. Med. doi: 10.3892/etm.2019.8036 – volume: 15 start-page: 341 year: 2019 ident: B52 article-title: Diabetic cardiomyopathy: definition, diagnosis, and therapeutic implications publication-title: Heart Fail. Clin. doi: 10.1016/j.hfc.2019.02.003 – volume: 32 start-page: 541 year: 2018 ident: B92 article-title: Sitagliptin protects cardiac function by reducing nitroxidative stress and promoting autophagy in Zucker Diabetic Fatty (ZDF) rats publication-title: Cardiovasc. Drugs Ther. doi: 10.1007/s10557-018-6831-9 – volume: 1852 start-page: 319 year: 2015 ident: B21 article-title: A novel protective mechanism for mitochondrial aldehyde dehydrogenase (ALDH2) in type i diabetes-induced cardiac dysfunction: role of AMPK-regulated autophagy publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2014.05.017 – volume: 41 start-page: 1020 year: 2017 ident: B41 article-title: The opening of ATP-Sensitive K+ channels protects H9c2 cardiac cells against the high glucose-induced injury and inflammation by Inhibiting the ROS-TLR4-necroptosis pathway publication-title: Cell. Physiol. Biochem. doi: 10.1159/000461391 – volume: 40 start-page: 133 year: 2017 ident: B46 article-title: Entosis: The emerging face of non-cell-autonomous type IV programmed death publication-title: Biomed. J. doi: 10.1016/j.bj.2017.05.001 – volume: 74 start-page: 1056 year: 2014 ident: B50 article-title: Accumulation of cytosolic calcium induces necroptotic cell death in human neuroblastoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-1283 – volume: 471 start-page: 423 year: 2016 ident: B27 article-title: MicroRNA-9 inhibits hyperglycemia-induced pyroptosis in human ventricular cardiomyocytes by targeting ELAVL1 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.02.065 – volume: 70 start-page: 32 year: 2018 ident: B7 article-title: The regulation of autophagy by calcium signals: Do we have a consensus publication-title: Cell Calcium. doi: 10.1016/j.ceca.2017.08.005 – volume: 19 start-page: 918 year: 2018 ident: B66 article-title: Lysosomal membrane permeabilization and cell death publication-title: Traffic doi: 10.1111/tra.12613 – volume: 842 start-page: 118 year: 2019 ident: B67 article-title: Matrine alleviates AGEs- induced cardiac dysfunctions by attenuating calcium overload via reducing ryanodine receptor 2 activity publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2018.10.010 – volume: 11 start-page: 3481 year: 2019 ident: B72 article-title: Palbociclib improves cardiac dysfunction in diabetic cardiomyopathy by regulating Rb phosphorylation publication-title: Am. J. Transl. Res. – volume: 68 start-page: 2063 year: 2019 ident: B62 article-title: Role of CCR2 in the development of streptozotocin-treated diabetic cardiomyopathy publication-title: Diabetes doi: 10.2337/db18-1231 – volume: 21 start-page: 579 year: 2019 ident: B11 article-title: ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0305-6 – volume: 6 year: 2011 ident: B23 article-title: PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection publication-title: PloS One doi: 10.1371/journal.pone.0022043 – volume: 165 start-page: 90 year: 2019 ident: B94 article-title: Catalpol attenuates cardiomyocyte apoptosis in diabetic cardiomyopathy via Neat1/miR-140-5p/HDAC4 axis publication-title: Biochimie doi: 10.1016/j.biochi.2019.05.005 – volume: 3 start-page: 141 year: 2019 ident: B48 article-title: Recent progress in the role of autophagy in neurological diseases publication-title: Cell Stress doi: 10.15698/cst2019.05.186 |
SSID | ssj0000399364 |
Score | 2.5740182 |
SecondaryResourceType | review_article |
Snippet | Diabetic cardiomyopathy (DCM) is a chronic complication of diabetes mellitus, characterized by abnormalities of myocardial structure and function. Researches... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 42 |
SubjectTerms | apoptosis autophagy cell death diabetic cardiomyopathy entosis necrosis Pharmacology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYlp1xK33VfKFAChSxePazVHlsnIW1pySGB3MToRQzOOtTOwf--M1rHj1KaS6-7EhL6Rpr50Ogbxj62YKwNSVcClKq0lVB5A6ZSSWlAj9MYT6-Rf_w0Z5f629XoaqvUF-WE9fLA_cINfZQyRjFKNmedgvZ4UkDWAHUrfdOWd-To87bIVDmDye8a3d9LIgtrh_n2Gkj_U9ZFoFPu-KEi1_-3GPPPVMkt33P6hD1eBY38cz_Zp-xR6p6xw_NedXp5xC82j6jmR_yQn2_0qJfP2fdj2sddWHAinXM-y3ycplN-TNEfhy5yDAL5101qOZ90vM-UmQQ-LgmrN8sZ1S5evmCXpycX47NqVUOhCtrIRWVVqOtss_agMVLxADqomEQICbmMEkD68xFZRR1J6S4GMcpRthhWgWklcpmXbK-bdek141ELYaTOCK_R2QibWisgN74JtUYWM2DD-xV1YSUwTnUupg6JBmHgCgaOMHAFgwH7tO5x24tr_KPtFwJp3Y5kscsHNBa3Mhb3kLEM2ME9xA63Ed2NQJdmd3MnlWktaSPWA_aqh3w9lJJ0WSWwd7NjDDtz2f3TTa6LVHdTk6CgefM_Jv-W7dNylJTx5h3bW_y6S-8xIlr4D8X4fwOaaAyp priority: 102 providerName: Directory of Open Access Journals |
Title | Distinct Types of Cell Death and the Implication in Diabetic Cardiomyopathy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32116717 https://www.proquest.com/docview/2369887770 https://pubmed.ncbi.nlm.nih.gov/PMC7018666 https://doaj.org/article/bd22dd15e8ff4ec4beacaf4aa092b797 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFB6kgvRFvBurZQQpCI1NJrMzyYOIbi1VqfShC30b5moX1qTd3YL5954zyW5cWX3NZZKcy3znZM58h5A3lRZlaT1Pc10UKS-ZTo3QIi18wTUgjhQGdyOffRenE_71cnQ5bI_uBbjYmtphP6nJfPbu1037ARz-PWacgLdH4fpKI7UnyyL3JkzIdwGXJLrpWR_sx3kZsTjySeUAs2kF0NatW24dZJfcKxguUsRWZgNkRWb_beHo31WVf8DUyQNyv48v6cfOIB6SO75-RA7OO4Lq9pBeDPutFof0gJ4P1NXtY_LtGF2-tkuK-emCNoGO_WxGjzFQpLp2FOJF-mWoQqfTmnZFNVNLx7G29WfbYJvj9gmZnHy-GJ-mfbuF1HLBlmlZ2CwLZeBGcwhqjNbcFs7n1npIe4pcI1W9gwQkc0iK52w-Co5VEIFpUTFIe56Snbqp_XNCHQfJMR7AEgQPIi89SFsHaaTNOCQ8CTlaSVTZnoscW2LMFOQkqA4V1aFQHSqqIyFv13dcdzwc_7n2EyppfR0yaMcDzfyH6h1SGceYc_nIlyFwb7kBBNKBa51VzMhKJuT1SsUKPA6XUXTtm9uFYoWoSqRRzBLyrFP5-lErk0mI3DCGjXfZPFNPryKrt8yQe1C8-OeYe2QXvzGWjMuXZGc5v_WvICJamv34J2E_mvtv9W8ICg |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinct+Types+of+Cell+Death+and+the+Implication+in+Diabetic+Cardiomyopathy&rft.jtitle=Frontiers+in+pharmacology&rft.au=Chen%2C+Yun&rft.au=Hua%2C+Yuyun&rft.au=Li%2C+Xinshuai&rft.au=Arslan%2C+Ishfaq+Muhammad&rft.date=2020-02-07&rft.issn=1663-9812&rft.eissn=1663-9812&rft.volume=11&rft.spage=42&rft_id=info:doi/10.3389%2Ffphar.2020.00042&rft_id=info%3Apmid%2F32116717&rft.externalDocID=32116717 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-9812&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-9812&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-9812&client=summon |