Simple, standardized incorporation of genetic risk into non-genetic risk prediction tools for complex traits: coronary heart disease as an example
Genetic risk assessment is becoming an important component of clinical decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of genetic risk in complex traits. A technically and clinically pertinent question is how to most easily and effectively combine a GRS with an assessment...
Saved in:
Published in | Frontiers in genetics Vol. 5; p. 254 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
01.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Genetic risk assessment is becoming an important component of clinical decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of genetic risk in complex traits. A technically and clinically pertinent question is how to most easily and effectively combine a GRS with an assessment of clinical risk derived from established non-genetic risk factors as well as to clearly present this information to patient and health care providers.
We illustrate a means to combine a GRS with an independent assessment of clinical risk using a log-link function. We apply the method to the prediction of coronary heart disease (CHD) in the Atherosclerosis Risk in Communities (ARIC) cohort. We evaluate different constructions based on metrics of effect change, discrimination, and calibration.
The addition of a GRS to a clinical risk score (CRS) improves both discrimination and calibration for CHD in ARIC. RESULTS are similar regardless of whether external vs. internal coefficients are used for the CRS, risk factor single nucleotide polymorphisms (SNPs) are included in the GRS, or subjects with diabetes at baseline are excluded. We outline how to report the construction and the performance of a GRS using our method and illustrate a means to present genetic risk information to subjects and/or their health care provider.
The proposed method facilitates the standardized incorporation of a GRS in risk assessment. |
---|---|
AbstractList | Genetic risk assessment is becoming an important component of clinical decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of genetic risk in complex traits. A technically and clinically pertinent question is how to most easily and effectively combine a GRS with an assessment of clinical risk derived from established non-genetic risk factors as well as to clearly present this information to patient and health care providers.PURPOSEGenetic risk assessment is becoming an important component of clinical decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of genetic risk in complex traits. A technically and clinically pertinent question is how to most easily and effectively combine a GRS with an assessment of clinical risk derived from established non-genetic risk factors as well as to clearly present this information to patient and health care providers.We illustrate a means to combine a GRS with an independent assessment of clinical risk using a log-link function. We apply the method to the prediction of coronary heart disease (CHD) in the Atherosclerosis Risk in Communities (ARIC) cohort. We evaluate different constructions based on metrics of effect change, discrimination, and calibration.MATERIALS AND METHODSWe illustrate a means to combine a GRS with an independent assessment of clinical risk using a log-link function. We apply the method to the prediction of coronary heart disease (CHD) in the Atherosclerosis Risk in Communities (ARIC) cohort. We evaluate different constructions based on metrics of effect change, discrimination, and calibration.The addition of a GRS to a clinical risk score (CRS) improves both discrimination and calibration for CHD in ARIC. RESULTS are similar regardless of whether external vs. internal coefficients are used for the CRS, risk factor single nucleotide polymorphisms (SNPs) are included in the GRS, or subjects with diabetes at baseline are excluded. We outline how to report the construction and the performance of a GRS using our method and illustrate a means to present genetic risk information to subjects and/or their health care provider.RESULTSThe addition of a GRS to a clinical risk score (CRS) improves both discrimination and calibration for CHD in ARIC. RESULTS are similar regardless of whether external vs. internal coefficients are used for the CRS, risk factor single nucleotide polymorphisms (SNPs) are included in the GRS, or subjects with diabetes at baseline are excluded. We outline how to report the construction and the performance of a GRS using our method and illustrate a means to present genetic risk information to subjects and/or their health care provider.The proposed method facilitates the standardized incorporation of a GRS in risk assessment.CONCLUSIONThe proposed method facilitates the standardized incorporation of a GRS in risk assessment. Genetic risk assessment is becoming an important component of clinical decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of genetic risk in complex traits. A technically and clinically pertinent question is how to most easily and effectively combine a GRS with an assessment of clinical risk derived from established non-genetic risk factors as well as to clearly present this information to patient and health care providers. We illustrate a means to combine a GRS with an independent assessment of clinical risk using a log-link function. We apply the method to the prediction of coronary heart disease (CHD) in the Atherosclerosis Risk in Communities (ARIC) cohort. We evaluate different constructions based on metrics of effect change, discrimination, and calibration. The addition of a GRS to a clinical risk score (CRS) improves both discrimination and calibration for CHD in ARIC. RESULTS are similar regardless of whether external vs. internal coefficients are used for the CRS, risk factor single nucleotide polymorphisms (SNPs) are included in the GRS, or subjects with diabetes at baseline are excluded. We outline how to report the construction and the performance of a GRS using our method and illustrate a means to present genetic risk information to subjects and/or their health care provider. The proposed method facilitates the standardized incorporation of a GRS in risk assessment. Purpose: Genetic risk assessment is becoming an important component of clinical decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of genetic risk in complex traits. A technically and clinically pertinent question is how to most easily and effectively combine a GRS with an assessment of clinical risk derived from established non-genetic risk factors as well as to clearly present this information to patient and health care providers. Materials and Methods: We illustrate a means to combine a GRS with an independent assessment of clinical risk using a log-link function. We apply the method to the prediction of coronary heart disease (CHD) in the Atherosclerosis Risk in Communities (ARIC) cohort. We evaluate different constructions based on metrics of effect change, discrimination, and calibration. Results: The addition of a GRS to a clinical risk score (CRS) improves both discrimination and calibration for CHD in ARIC. Results are similar regardless of whether external vs. internal coefficients are used for the CRS, risk factor single nucleotide polymorphisms (SNPs) are included in the GRS, or subjects with diabetes at baseline are excluded. We outline how to report the construction and the performance of a GRS using our method and illustrate a means to present genetic risk information to subjects and/or their health care provider. Conclusion: The proposed method facilitates the standardized incorporation of a GRS in risk assessment. Purpose: Genetic risk assessment is becoming an important component of clinical decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of genetic risk in complex traits. A technically and clinically pertinent question is how to most easily and effectively combine a GRS with an assessment of clinical risk derived from established non-genetic risk factors as well as to clearly present this information to patient and health care providers. Materials & Methods: We illustrate a means to combine a GRS with an independent assessment of clinical risk using a log-link function. We apply the method to the prediction of coronary heart disease (CHD) in the Atherosclerosis Risk in Communities (ARIC) cohort. We evaluate different constructions based on metrics of effect change, discrimination, and calibration.Results: The addition of a GRS to a clinical risk score (CRS) improves both discrimination and calibration for CHD in ARIC. Results are similar regardless of whether external vs. internal coefficients are used for the CRS, risk factor SNPs are included in the GRS, or subjects with diabetes at baseline are excluded. We outline how to report the construction and the performance of a GRS using our method and illustrate a means to present genetic risk information to subjects and/or their health care provider. Conclusion: The proposed method facilitates the standardized incorporation of a GRS in risk assessment. |
Author | Ioannidis, John P. A. Assimes, Themistocles L. Goldstein, Benjamin A. Salfati, Elias Knowles, Joshua W. |
AuthorAffiliation | 1 Department of Medicine, Stanford University School of Medicine Stanford, CA, USA 2 Department of Health Research and Policy, Stanford University School of Medicine Stanford, CA, USA 3 Department of Statistics, Stanford University School of Humanities and Sciences Stanford, CA, USA |
AuthorAffiliation_xml | – name: 3 Department of Statistics, Stanford University School of Humanities and Sciences Stanford, CA, USA – name: 2 Department of Health Research and Policy, Stanford University School of Medicine Stanford, CA, USA – name: 1 Department of Medicine, Stanford University School of Medicine Stanford, CA, USA |
Author_xml | – sequence: 1 givenname: Benjamin A. surname: Goldstein fullname: Goldstein, Benjamin A. – sequence: 2 givenname: Joshua W. surname: Knowles fullname: Knowles, Joshua W. – sequence: 3 givenname: Elias surname: Salfati fullname: Salfati, Elias – sequence: 4 givenname: John P. A. surname: Ioannidis fullname: Ioannidis, John P. A. – sequence: 5 givenname: Themistocles L. surname: Assimes fullname: Assimes, Themistocles L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25136350$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UkFvFCEYJabG1rV3T4ajB2eFgRlmPJg0TdUmTTyoZ_ItfLOlzsIKrKn-jP5imdnWdE3kAnx8732PvPecHPngkZCXnC2F6Pq3wxo9LmvG5ZKxupFPyAlvW1l1rOZHj87H5DSlG1aW7IUQ8hk5rhsuWtGwE3L3xW22I76hKYO3EK37jZY6b0LchgjZBU_DQKdR2RkaXfpeXnOgRUx1UN1GtM7MgBzCmOgQIjVhYr-lOYLL6V25x-Ah_qLXCDFT6xJCQgqJgqd4C1P3C_J0gDHh6f2-IN8-XHw9_1Rdff54eX52VRnZ1rnqaqMsMskE2F4ogA4Uct4rZttm1SnZ2Vr1amV7OVhsu1WPA6-FGhgIoYwUC3K557UBbvQ2uk0RpgM4PRdCXOui0ZkRtWj7oYC55UZIZRR0nYWOW2lZ03JRF673e67tbrVBa9CXH48HpIcv3l3rdfipJeeqqC8Er-8JYvixw5T1xiWD4wgewy5p3jTFvZ4XBxfk1eNZf4c8mFoa2n2DiSGliIM2Ls9WTjaMmjM9BUjPAdJTgPQcoAJk_wAfuP8L-QPnQMyI |
CitedBy_id | crossref_primary_10_1097_MOL_0000000000000400 crossref_primary_10_1093_eurheartj_ehw498 crossref_primary_10_3389_fcvm_2017_00053 crossref_primary_10_1016_j_atherosclerosis_2015_10_104 crossref_primary_10_1007_s11886_018_1079_3 crossref_primary_10_1093_jamia_ocw042 crossref_primary_10_2174_1389202921999200630145241 crossref_primary_10_1016_j_rec_2017_02_046 crossref_primary_10_1007_s11883_016_0628_8 crossref_primary_10_1016_j_ejim_2017_03_019 crossref_primary_10_1016_j_tcm_2019_08_006 crossref_primary_10_1097_HCO_0000000000000629 crossref_primary_10_1161_CIRCGENETICS_116_001522 crossref_primary_10_1038_s41569_021_00638_w crossref_primary_10_1371_journal_pone_0166994 crossref_primary_10_1016_j_atherosclerosis_2015_02_008 crossref_primary_10_1161_CIRCOUTCOMES_117_004171 crossref_primary_10_1016_j_gendis_2020_11_003 crossref_primary_10_1093_cvr_cvae161 crossref_primary_10_1016_j_cjco_2019_01_003 crossref_primary_10_1093_bib_bbz119 crossref_primary_10_1016_j_jacc_2016_10_039 crossref_primary_10_1128_microbiolspec_TBTB2_0011_2016 crossref_primary_10_1007_s10897_017_0092_9 crossref_primary_10_3389_fgene_2015_00104 crossref_primary_10_1002_gepi_21912 crossref_primary_10_1007_s12041_021_01342_x crossref_primary_10_1016_j_gheart_2017_04_001 crossref_primary_10_31083_j_rcm2301008 crossref_primary_10_1097_HCO_0000000000000501 crossref_primary_10_1007_s12170_018_0591_8 crossref_primary_10_1016_j_carrev_2019_04_006 crossref_primary_10_1152_physiolgenomics_00109_2015 crossref_primary_10_1016_j_jjcc_2018_04_007 crossref_primary_10_1161_CIRCGENETICS_114_001071 crossref_primary_10_1161_CIR_0000000000001077 crossref_primary_10_1007_s11883_018_0748_4 crossref_primary_10_1371_journal_pmed_1002546 crossref_primary_10_1016_j_recesp_2017_02_033 |
Cites_doi | 10.1161/ATVBAHA.113.301218 10.1038/nature11632 10.1016/j.ygeno.2011.04.005 10.1097/01.CCM.0000275267.64078.B0 10.1038/gim.2013.131 10.1038/gim.2012.45 10.1161/circulationaha.113.007680 10.1161/01.cir.0000437741.48606.98 10.1038/ng.2480 10.1161/circ.106.25.3143 10.1038/gim.2013.88 10.1001/jama.2013.284657 10.1016/j.atherosclerosis.2012.05.035 10.1371/journal.pone.0040922 10.1001/jama.2010.503 10.1161/CIRCGENETICS.112.962746 10.1177/0962280213497434 10.2337/dc12-0884 10.1038/ng.2354 10.1161/CIRCULATIONAHA.113.007648 10.1016/j.ygeno.2011.08.007 10.1038/gim.2013.72 10.1161/circulationaha.106.672402 10.1016/S1474-4422(09)70275-3 10.1097/EDE.0000000000000018 |
ContentType | Journal Article |
Copyright | Copyright © 2014 Goldstein, Knowles, Salfati, Ioannidis and Assimes. 2014 |
Copyright_xml | – notice: Copyright © 2014 Goldstein, Knowles, Salfati, Ioannidis and Assimes. 2014 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fgene.2014.00254 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-8021 |
ExternalDocumentID | oai_doaj_org_article_369ff121d1c347c7a88da81d4d056132 PMC4117937 25136350 10_3389_fgene_2014_00254 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: K25 DK097279 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE IPNFZ KQ8 M48 M~E OK1 PGMZT RIG RNS RPM NPM 7X8 5PM |
ID | FETCH-LOGICAL-c462t-82c7de0403ad937aa8a7e11970d65b8748d2797bd94fde68b9ef1237f0a337c43 |
IEDL.DBID | M48 |
ISSN | 1664-8021 |
IngestDate | Wed Aug 27 00:54:43 EDT 2025 Thu Aug 21 18:20:44 EDT 2025 Fri Jul 11 00:34:30 EDT 2025 Thu Apr 03 07:01:23 EDT 2025 Thu Apr 24 22:56:57 EDT 2025 Tue Jul 01 00:46:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | coronary heart disease genetic risk scores electronic health records personalized medicine |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-82c7de0403ad937aa8a7e11970d65b8748d2797bd94fde68b9ef1237f0a337c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Applied Genetic Epidemiology, a section of the journal Frontiers in Genetics. Edited by: Helena Kuivaniemi, Geisinger Health System, USA Reviewed by: Qing Lu, Michigan State University, USA; Braxton D. Mitchell, University of Maryland School of Medicine, USA |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fgene.2014.00254 |
PMID | 25136350 |
PQID | 1554939193 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_369ff121d1c347c7a88da81d4d056132 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4117937 proquest_miscellaneous_1554939193 pubmed_primary_25136350 crossref_citationtrail_10_3389_fgene_2014_00254 crossref_primary_10_3389_fgene_2014_00254 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in genetics |
PublicationTitleAlternate | Front Genet |
PublicationYear | 2014 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Kaufman (B20) 2012; 14 Kerr (B21) 2014; 25 Ganna (B10) 2013; 33 Goff (B11) 2014; 129 (B2) 2002; 106 Brautbar (B4) 2012; 223 Kramer (B24) 2007; 35 Ioannidis (B19) 2010; 303 Crowson (B8) 2014 Hoffmann (B14) 2011a; 98 Abecasis (B3) 2012; 491 Consortium (B5) 2013; 45 Knowles (B23) 2012; 5 Muntner (B26) 2014; 129 Ioannidis (B18) 2014; 311 Cook (B6) 2007; 115 Grant (B13) 2013; 36 Howie (B16) 2012; 44 Marsolo (B25) 2013; 15 De Jager (B9) 2009; 8 Cook (B7) 2013; 129 Gottesman (B12) 2013; 15 Hughes (B17) 2012; 7 Kho (B22) 2013; 15 Hoffmann (B15) 2011b; 98 8606324 - J Clin Epidemiol. 1996 Feb;49(2):223-33 24268611 - Lancet. 2013 Nov 30;382(9907):1762-5 22789513 - Atherosclerosis. 2012 Aug;223(2):421-6 12270005 - J Intern Med. 2002 Sep;252(3):247-54 9603539 - Circulation. 1998 May 12;97(18):1837-47 24296612 - JAMA. 2014 Feb 5;311(5):463-4 21903159 - Genomics. 2011 Dec;98(6):422-30 24240655 - Epidemiology. 2014 Jan;25(1):114-21 24334112 - Circulation. 2014 Jan 14;129(2):268-9 24222018 - Circulation. 2014 Jun 24;129(25 Suppl 2):S49-73 19879194 - Lancet Neurol. 2009 Dec;8(12):1111-9 23042826 - Med Decis Making. 2013 Feb;33(2):154-62 22029572 - BMC Med Genet. 2011 Oct 26;12:146 24334111 - Circulation. 2014 Jan 14;129(2):266-7 22538255 - Genet Med. 2012 Sep;14(9):787-94 12485966 - Circulation. 2002 Dec 17;106(25):3143-421 24071798 - Genet Med. 2013 Oct;15(10):772-8 23907781 - Stat Methods Med Res. 2016 Aug;25(4):1692-706 23128226 - Nature. 2012 Nov 1;491(7422):56-65 24239923 - J Am Coll Cardiol. 2014 Jul 1;63(25 Pt B):2889-934 21726217 - Eur J Clin Invest. 2012 Feb;42(2):216-28 23846403 - Genet Med. 2013 Oct;15(10):786-91 23946465 - Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2049-50 22933432 - Diabetes Care. 2013 Jan;36(1):13-9 22183176 - Hum Genet. 2012 Jul;131(7):1057-71 22820512 - Nat Genet. 2012 Jul 22;44(8):955-9 23202125 - Nat Genet. 2013 Jan;45(1):25-33 20424257 - JAMA. 2010 Apr 28;303(16):1646-7 19571811 - Nature. 2009 Aug 6;460(7256):748-52 24917882 - Front Genet. 2014 Jun 02;5:162 16125711 - Atherosclerosis. 2006 May;186(1):74-9 23599444 - Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2261-6 23743551 - Genet Med. 2013 Oct;15(10):761-71 17574079 - Lancet. 2007 Jun 16;369(9578):1980-2 26217377 - Front Genet. 2015;6:231 23949573 - Genet Med. 2013 Oct;15(10):779-85 23217325 - Am J Hum Genet. 2012 Dec 7;91(6):1011-21 17568333 - Crit Care Med. 2007 Sep;35(9):2052-6 16862161 - Nat Genet. 2006 Aug;38(8):904-9 21565264 - Genomics. 2011 Aug;98(2):79-89 22848412 - PLoS One. 2012;7(7):e40922 17309939 - Circulation. 2007 Feb 20;115(7):928-35 2646917 - Am J Epidemiol. 1989 Apr;129(4):687-702 23685553 - Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2267-72 22715281 - Circ Cardiovasc Genet. 2012 Jun;5(3):368-76 22235037 - Circ Cardiovasc Genet. 2012 Feb 1;5(1):113-21 16143003 - Pharmacogenomics. 2005 Sep;6(6):639-46 |
References_xml | – volume: 33 start-page: 2267 year: 2013 ident: B10 article-title: Multilocus genetic risk scores for coronary heart disease prediction publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.113.301218 – volume: 491 start-page: 56 year: 2012 ident: B3 article-title: An integrated map of genetic variation from 1,092 human genomes publication-title: Nature doi: 10.1038/nature11632 – volume: 98 start-page: 79 year: 2011a ident: B14 article-title: Next generation genome-wide association tool: design and coverage of a high-throughput European-optimized SNP array publication-title: Genomics doi: 10.1016/j.ygeno.2011.04.005 – volume: 35 start-page: 2052 year: 2007 ident: B24 article-title: Assessing the calibration of mortality benchmarks in critical care: The Hosmer-Lemeshow test revisited publication-title: Crit. Care Med doi: 10.1097/01.CCM.0000275267.64078.B0 – volume: 15 start-page: 772 year: 2013 ident: B22 article-title: Practical challenges in integrating genomic data into the electronic health record publication-title: Genet. Med doi: 10.1038/gim.2013.131 – volume: 14 start-page: 787 year: 2012 ident: B20 article-title: Preferences for opt-in and opt-out enrollment and consent models in biobank research: a national survey of Veterans Administration patients publication-title: Genet. Med doi: 10.1038/gim.2012.45 – volume: 129 start-page: 268 year: 2013 ident: B7 article-title: Response to comment on the reports of over-estimation of ASCVD risk using the 2013 AHA/ACC risk equation publication-title: Circulation doi: 10.1161/circulationaha.113.007680 – volume: 129 start-page: S49 year: 2014 ident: B11 article-title: 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines publication-title: Circulation doi: 10.1161/01.cir.0000437741.48606.98 – volume: 45 start-page: 25 year: 2013 ident: B5 article-title: Large-scale association analysis identifies new risk loci for coronary artery disease publication-title: Nat. Genet doi: 10.1038/ng.2480 – volume: 106 start-page: 3143 year: 2002 ident: B2 article-title: Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report publication-title: Circulation doi: 10.1161/circ.106.25.3143 – volume: 15 start-page: 786 year: 2013 ident: B25 article-title: Clinical genomics in the world of the electronic health record publication-title: Genet. Med doi: 10.1038/gim.2013.88 – volume: 311 start-page: 463 year: 2014 ident: B18 article-title: More than a billion people taking statins?: Potential implications of the new cardiovascular guidelines publication-title: JAMA doi: 10.1001/jama.2013.284657 – volume: 223 start-page: 421 year: 2012 ident: B4 article-title: A genetic risk score based on direct associations with coronary heart disease improves coronary heart disease risk prediction in the Atherosclerosis Risk in Communities (ARIC), but not in the Rotterdam and Framingham Offspring, Studies publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2012.05.035 – volume: 7 start-page: e40922 year: 2012 ident: B17 article-title: Genetic markers enhance coronary risk prediction in men: the MORGAM prospective cohorts publication-title: PLoS ONE doi: 10.1371/journal.pone.0040922 – volume: 303 start-page: 1646 year: 2010 ident: B19 article-title: What makes a good predictor?: the evidence applied to coronary artery calcium score publication-title: JAMA doi: 10.1001/jama.2010.503 – volume: 5 start-page: 368 year: 2012 ident: B23 article-title: Randomized trial of personal genomics for preventive cardiology: design and challenges publication-title: Circ. Cardiovasc Genet doi: 10.1161/CIRCGENETICS.112.962746 – year: 2014 ident: B8 article-title: Assessing calibration of prognostic risk scores publication-title: Stat. Methods Med. Res doi: 10.1177/0962280213497434 – volume: 36 start-page: 13 year: 2013 ident: B13 article-title: Personalized genetic risk counseling to motivate diabetes prevention: a randomized trial publication-title: Diabetes Care doi: 10.2337/dc12-0884 – volume: 44 start-page: 955 year: 2012 ident: B16 article-title: Fast and accurate genotype imputation in genome-wide association studies through pre-phasing publication-title: Nat. Genet doi: 10.1038/ng.2354 – volume: 129 start-page: 266 year: 2014 ident: B26 article-title: Comment on the reports of over-estimation of ASCVD risk using the 2013 AHA/ACC risk equation publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.113.007648 – volume: 98 start-page: 422 year: 2011b ident: B15 article-title: Design and coverage of high throughput genotyping arrays optimized for individuals of East Asian, African American, and Latino race/ethnicity using imputation and a novel hybrid SNP selection algorithm publication-title: Genomics doi: 10.1016/j.ygeno.2011.08.007 – volume: 15 start-page: 761 year: 2013 ident: B12 article-title: The Electronic Medical Records and Genomics (eMERGE) network: past, present, and future publication-title: Genet. Med doi: 10.1038/gim.2013.72 – volume: 115 start-page: 928 year: 2007 ident: B6 article-title: Use and misuse of the receiver operating characteristic curve in risk prediction publication-title: Circulation doi: 10.1161/circulationaha.106.672402 – volume: 8 start-page: 1111 year: 2009 ident: B9 article-title: Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: a weighted genetic risk score publication-title: Lancet Neurol doi: 10.1016/S1474-4422(09)70275-3 – volume: 25 start-page: 114 year: 2014 ident: B21 article-title: Net reclassification indices for evaluating risk prediction instruments: a critical review publication-title: Epidemiology doi: 10.1097/EDE.0000000000000018 – reference: 22848412 - PLoS One. 2012;7(7):e40922 – reference: 19879194 - Lancet Neurol. 2009 Dec;8(12):1111-9 – reference: 23907781 - Stat Methods Med Res. 2016 Aug;25(4):1692-706 – reference: 17574079 - Lancet. 2007 Jun 16;369(9578):1980-2 – reference: 22715281 - Circ Cardiovasc Genet. 2012 Jun;5(3):368-76 – reference: 24917882 - Front Genet. 2014 Jun 02;5:162 – reference: 22789513 - Atherosclerosis. 2012 Aug;223(2):421-6 – reference: 23128226 - Nature. 2012 Nov 1;491(7422):56-65 – reference: 23042826 - Med Decis Making. 2013 Feb;33(2):154-62 – reference: 22820512 - Nat Genet. 2012 Jul 22;44(8):955-9 – reference: 12270005 - J Intern Med. 2002 Sep;252(3):247-54 – reference: 21903159 - Genomics. 2011 Dec;98(6):422-30 – reference: 21726217 - Eur J Clin Invest. 2012 Feb;42(2):216-28 – reference: 16143003 - Pharmacogenomics. 2005 Sep;6(6):639-46 – reference: 23202125 - Nat Genet. 2013 Jan;45(1):25-33 – reference: 17309939 - Circulation. 2007 Feb 20;115(7):928-35 – reference: 24071798 - Genet Med. 2013 Oct;15(10):772-8 – reference: 19571811 - Nature. 2009 Aug 6;460(7256):748-52 – reference: 23949573 - Genet Med. 2013 Oct;15(10):779-85 – reference: 24222018 - Circulation. 2014 Jun 24;129(25 Suppl 2):S49-73 – reference: 24240655 - Epidemiology. 2014 Jan;25(1):114-21 – reference: 2646917 - Am J Epidemiol. 1989 Apr;129(4):687-702 – reference: 22235037 - Circ Cardiovasc Genet. 2012 Feb 1;5(1):113-21 – reference: 24334112 - Circulation. 2014 Jan 14;129(2):268-9 – reference: 17568333 - Crit Care Med. 2007 Sep;35(9):2052-6 – reference: 22029572 - BMC Med Genet. 2011 Oct 26;12:146 – reference: 21565264 - Genomics. 2011 Aug;98(2):79-89 – reference: 24239923 - J Am Coll Cardiol. 2014 Jul 1;63(25 Pt B):2889-934 – reference: 23743551 - Genet Med. 2013 Oct;15(10):761-71 – reference: 26217377 - Front Genet. 2015;6:231 – reference: 24334111 - Circulation. 2014 Jan 14;129(2):266-7 – reference: 9603539 - Circulation. 1998 May 12;97(18):1837-47 – reference: 23217325 - Am J Hum Genet. 2012 Dec 7;91(6):1011-21 – reference: 23946465 - Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2049-50 – reference: 22183176 - Hum Genet. 2012 Jul;131(7):1057-71 – reference: 16125711 - Atherosclerosis. 2006 May;186(1):74-9 – reference: 8606324 - J Clin Epidemiol. 1996 Feb;49(2):223-33 – reference: 23846403 - Genet Med. 2013 Oct;15(10):786-91 – reference: 20424257 - JAMA. 2010 Apr 28;303(16):1646-7 – reference: 12485966 - Circulation. 2002 Dec 17;106(25):3143-421 – reference: 23599444 - Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2261-6 – reference: 24296612 - JAMA. 2014 Feb 5;311(5):463-4 – reference: 16862161 - Nat Genet. 2006 Aug;38(8):904-9 – reference: 22933432 - Diabetes Care. 2013 Jan;36(1):13-9 – reference: 23685553 - Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2267-72 – reference: 22538255 - Genet Med. 2012 Sep;14(9):787-94 – reference: 24268611 - Lancet. 2013 Nov 30;382(9907):1762-5 |
SSID | ssj0000493334 |
Score | 2.2234375 |
Snippet | Genetic risk assessment is becoming an important component of clinical decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of genetic... Purpose: Genetic risk assessment is becoming an important component of clinical decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of... Purpose: Genetic risk assessment is becoming an important component of clinical decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 254 |
SubjectTerms | biomarkers Cardiovascular Diseases Coronary Disease Electronic Health Records genetic risk score (GRS) Genetics risk prediction |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhEOiltE0f7iOokEuhZm1LsqzcktAQCs0lDeQm9KRbwjrsOpD2Z_QXd0byLutSmksvBluyPdaMrG88428IOawCeLJO8dKJypScdbbE4BFsoo_eemEcRnS_XLTnV_zztbjeKvWFOWGZHjgP3Iy1Ksa6qX3tGJdOmq7zBkAW9wn7prcvrHlbztT3jHsZYzzHJcELU7MI-kBazBrZshvBJ-tQouv_G8b8M1Vya-05e0Iej6CRHmdhn5KdsHhG9nIZyR_75NflHDl-P9L1d4H5z-Ap0i5klmIYetpHiqLBBShmk0Pr0FNw_cvJ0dslxm3SCUPf36woQFqass7DPcVqEsPqCPaXPf7ES7EY9kDHEA81K2oWNNwb7P2cXJ19-np6Xo61FkrH22You8ZJH2BGM-MBsRjTGRkwxFj5VthO8s43UknrFY8-tJ1VAbTCZKwMY9Jx9oLsgtDhFaF1jALmeZBtEJyF2gphbRNiY3wVVGQFma1HXruRiByf4EaDQ4K60klXGnWlk64K8mFzxm0m4fhH3xNU5qYf0menA2BUejQq_ZBRFeT92hQ0TDeMoZhF6O9WGuGXYgpgb0FeZtPY3AqgIgP8VhVEToxmIsu0ZTH_lii9OTLzMfn6fwj_hjzC4chZim_J7rC8C-8AOQ32IE2S37fJGlk priority: 102 providerName: Directory of Open Access Journals |
Title | Simple, standardized incorporation of genetic risk into non-genetic risk prediction tools for complex traits: coronary heart disease as an example |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25136350 https://www.proquest.com/docview/1554939193 https://pubmed.ncbi.nlm.nih.gov/PMC4117937 https://doaj.org/article/369ff121d1c347c7a88da81d4d056132 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA96Ivginp89vSOCL4L12iZtWuE4VDwP4XzRhX0LSZOcK0t71_Zgzz_Dv9iZpLtaWcSXQtu0-ZhM5zed5DeEvEgseLJ1xeM6T1TMWaljDB7BwRlntMlVjRHds8_F6Yx_mufz39ujxwHst7p2mE9q1i1fry6vj0Hhj9DjBHt76GCokfEyRSJscHhukltglwSq6dkI9r8HLMxYCDMXBYdPc5aGuOXWl0zslKfz34ZB_15K-YdtOrlH7o6gkr4Ns2CX3LDNfXI7pJm8fkB-flkgB_Aruv5vsPhhDUVahsBiDKKhraPYNHgBxdXmcHdoadM28eTqRYdxHf_A0LbLngLkpX5Vul1RzDYx9G_gvGtxky_FZNkDHUNAVPVUNdSuFJZ-SGYnH76-P43HXAxxzYtsiMusFsaCxjNlANEoVSphMQSZmCLXpeClyUQltKm4M7YodWUdGEXhEsWYqDl7RHag0fYJoalzOXwHrChszplNdZ5rnVmXKZPYyrGIHK5HXtYjUTn2YCnBYUFZSS8ribKSXlYRebl54iKQdPyj7DsU5qYc0mv7C213LkdtlayoHDQ_NWnNuKiFKkujANlz4x2uLCLP11NBgjpijEU1tr3qJcKzilUAiyPyOEyNTVUAJRnguyQiYjJpJm2Z3mkW3zzlN0fmPib2_qPep-QO9jYsUnxGdobuyu4DcBr0gf_hAMeP8_TA68Yvbe4b5A |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simple%2C+standardized+incorporation+of+genetic+risk+into+non-genetic+risk+prediction+tools+for+complex+traits%3A+coronary+heart+disease+as+an+example&rft.jtitle=Frontiers+in+genetics&rft.au=Goldstein%2C+Benjamin+A&rft.au=Knowles%2C+Joshua+W&rft.au=Salfati%2C+Elias&rft.au=Ioannidis%2C+John+P+A&rft.date=2014-08-01&rft.issn=1664-8021&rft.eissn=1664-8021&rft.volume=5&rft.spage=254&rft_id=info:doi/10.3389%2Ffgene.2014.00254&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon |