Simple, standardized incorporation of genetic risk into non-genetic risk prediction tools for complex traits: coronary heart disease as an example

Genetic risk assessment is becoming an important component of clinical decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of genetic risk in complex traits. A technically and clinically pertinent question is how to most easily and effectively combine a GRS with an assessment...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in genetics Vol. 5; p. 254
Main Authors Goldstein, Benjamin A., Knowles, Joshua W., Salfati, Elias, Ioannidis, John P. A., Assimes, Themistocles L.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 01.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Genetic risk assessment is becoming an important component of clinical decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of genetic risk in complex traits. A technically and clinically pertinent question is how to most easily and effectively combine a GRS with an assessment of clinical risk derived from established non-genetic risk factors as well as to clearly present this information to patient and health care providers. We illustrate a means to combine a GRS with an independent assessment of clinical risk using a log-link function. We apply the method to the prediction of coronary heart disease (CHD) in the Atherosclerosis Risk in Communities (ARIC) cohort. We evaluate different constructions based on metrics of effect change, discrimination, and calibration. The addition of a GRS to a clinical risk score (CRS) improves both discrimination and calibration for CHD in ARIC. RESULTS are similar regardless of whether external vs. internal coefficients are used for the CRS, risk factor single nucleotide polymorphisms (SNPs) are included in the GRS, or subjects with diabetes at baseline are excluded. We outline how to report the construction and the performance of a GRS using our method and illustrate a means to present genetic risk information to subjects and/or their health care provider. The proposed method facilitates the standardized incorporation of a GRS in risk assessment.
AbstractList Genetic risk assessment is becoming an important component of clinical decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of genetic risk in complex traits. A technically and clinically pertinent question is how to most easily and effectively combine a GRS with an assessment of clinical risk derived from established non-genetic risk factors as well as to clearly present this information to patient and health care providers.PURPOSEGenetic risk assessment is becoming an important component of clinical decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of genetic risk in complex traits. A technically and clinically pertinent question is how to most easily and effectively combine a GRS with an assessment of clinical risk derived from established non-genetic risk factors as well as to clearly present this information to patient and health care providers.We illustrate a means to combine a GRS with an independent assessment of clinical risk using a log-link function. We apply the method to the prediction of coronary heart disease (CHD) in the Atherosclerosis Risk in Communities (ARIC) cohort. We evaluate different constructions based on metrics of effect change, discrimination, and calibration.MATERIALS AND METHODSWe illustrate a means to combine a GRS with an independent assessment of clinical risk using a log-link function. We apply the method to the prediction of coronary heart disease (CHD) in the Atherosclerosis Risk in Communities (ARIC) cohort. We evaluate different constructions based on metrics of effect change, discrimination, and calibration.The addition of a GRS to a clinical risk score (CRS) improves both discrimination and calibration for CHD in ARIC. RESULTS are similar regardless of whether external vs. internal coefficients are used for the CRS, risk factor single nucleotide polymorphisms (SNPs) are included in the GRS, or subjects with diabetes at baseline are excluded. We outline how to report the construction and the performance of a GRS using our method and illustrate a means to present genetic risk information to subjects and/or their health care provider.RESULTSThe addition of a GRS to a clinical risk score (CRS) improves both discrimination and calibration for CHD in ARIC. RESULTS are similar regardless of whether external vs. internal coefficients are used for the CRS, risk factor single nucleotide polymorphisms (SNPs) are included in the GRS, or subjects with diabetes at baseline are excluded. We outline how to report the construction and the performance of a GRS using our method and illustrate a means to present genetic risk information to subjects and/or their health care provider.The proposed method facilitates the standardized incorporation of a GRS in risk assessment.CONCLUSIONThe proposed method facilitates the standardized incorporation of a GRS in risk assessment.
Genetic risk assessment is becoming an important component of clinical decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of genetic risk in complex traits. A technically and clinically pertinent question is how to most easily and effectively combine a GRS with an assessment of clinical risk derived from established non-genetic risk factors as well as to clearly present this information to patient and health care providers. We illustrate a means to combine a GRS with an independent assessment of clinical risk using a log-link function. We apply the method to the prediction of coronary heart disease (CHD) in the Atherosclerosis Risk in Communities (ARIC) cohort. We evaluate different constructions based on metrics of effect change, discrimination, and calibration. The addition of a GRS to a clinical risk score (CRS) improves both discrimination and calibration for CHD in ARIC. RESULTS are similar regardless of whether external vs. internal coefficients are used for the CRS, risk factor single nucleotide polymorphisms (SNPs) are included in the GRS, or subjects with diabetes at baseline are excluded. We outline how to report the construction and the performance of a GRS using our method and illustrate a means to present genetic risk information to subjects and/or their health care provider. The proposed method facilitates the standardized incorporation of a GRS in risk assessment.
Purpose: Genetic risk assessment is becoming an important component of clinical decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of genetic risk in complex traits. A technically and clinically pertinent question is how to most easily and effectively combine a GRS with an assessment of clinical risk derived from established non-genetic risk factors as well as to clearly present this information to patient and health care providers. Materials and Methods: We illustrate a means to combine a GRS with an independent assessment of clinical risk using a log-link function. We apply the method to the prediction of coronary heart disease (CHD) in the Atherosclerosis Risk in Communities (ARIC) cohort. We evaluate different constructions based on metrics of effect change, discrimination, and calibration. Results: The addition of a GRS to a clinical risk score (CRS) improves both discrimination and calibration for CHD in ARIC. Results are similar regardless of whether external vs. internal coefficients are used for the CRS, risk factor single nucleotide polymorphisms (SNPs) are included in the GRS, or subjects with diabetes at baseline are excluded. We outline how to report the construction and the performance of a GRS using our method and illustrate a means to present genetic risk information to subjects and/or their health care provider. Conclusion: The proposed method facilitates the standardized incorporation of a GRS in risk assessment.
Purpose: Genetic risk assessment is becoming an important component of clinical decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of genetic risk in complex traits. A technically and clinically pertinent question is how to most easily and effectively combine a GRS with an assessment of clinical risk derived from established non-genetic risk factors as well as to clearly present this information to patient and health care providers. Materials & Methods: We illustrate a means to combine a GRS with an independent assessment of clinical risk using a log-link function. We apply the method to the prediction of coronary heart disease (CHD) in the Atherosclerosis Risk in Communities (ARIC) cohort. We evaluate different constructions based on metrics of effect change, discrimination, and calibration.Results: The addition of a GRS to a clinical risk score (CRS) improves both discrimination and calibration for CHD in ARIC. Results are similar regardless of whether external vs. internal coefficients are used for the CRS, risk factor SNPs are included in the GRS, or subjects with diabetes at baseline are excluded. We outline how to report the construction and the performance of a GRS using our method and illustrate a means to present genetic risk information to subjects and/or their health care provider. Conclusion: The proposed method facilitates the standardized incorporation of a GRS in risk assessment.
Author Ioannidis, John P. A.
Assimes, Themistocles L.
Goldstein, Benjamin A.
Salfati, Elias
Knowles, Joshua W.
AuthorAffiliation 1 Department of Medicine, Stanford University School of Medicine Stanford, CA, USA
2 Department of Health Research and Policy, Stanford University School of Medicine Stanford, CA, USA
3 Department of Statistics, Stanford University School of Humanities and Sciences Stanford, CA, USA
AuthorAffiliation_xml – name: 3 Department of Statistics, Stanford University School of Humanities and Sciences Stanford, CA, USA
– name: 2 Department of Health Research and Policy, Stanford University School of Medicine Stanford, CA, USA
– name: 1 Department of Medicine, Stanford University School of Medicine Stanford, CA, USA
Author_xml – sequence: 1
  givenname: Benjamin A.
  surname: Goldstein
  fullname: Goldstein, Benjamin A.
– sequence: 2
  givenname: Joshua W.
  surname: Knowles
  fullname: Knowles, Joshua W.
– sequence: 3
  givenname: Elias
  surname: Salfati
  fullname: Salfati, Elias
– sequence: 4
  givenname: John P. A.
  surname: Ioannidis
  fullname: Ioannidis, John P. A.
– sequence: 5
  givenname: Themistocles L.
  surname: Assimes
  fullname: Assimes, Themistocles L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25136350$$D View this record in MEDLINE/PubMed
BookMark eNp1UkFvFCEYJabG1rV3T4ajB2eFgRlmPJg0TdUmTTyoZ_ItfLOlzsIKrKn-jP5imdnWdE3kAnx8732PvPecHPngkZCXnC2F6Pq3wxo9LmvG5ZKxupFPyAlvW1l1rOZHj87H5DSlG1aW7IUQ8hk5rhsuWtGwE3L3xW22I76hKYO3EK37jZY6b0LchgjZBU_DQKdR2RkaXfpeXnOgRUx1UN1GtM7MgBzCmOgQIjVhYr-lOYLL6V25x-Ah_qLXCDFT6xJCQgqJgqd4C1P3C_J0gDHh6f2-IN8-XHw9_1Rdff54eX52VRnZ1rnqaqMsMskE2F4ogA4Uct4rZttm1SnZ2Vr1amV7OVhsu1WPA6-FGhgIoYwUC3K557UBbvQ2uk0RpgM4PRdCXOui0ZkRtWj7oYC55UZIZRR0nYWOW2lZ03JRF673e67tbrVBa9CXH48HpIcv3l3rdfipJeeqqC8Er-8JYvixw5T1xiWD4wgewy5p3jTFvZ4XBxfk1eNZf4c8mFoa2n2DiSGliIM2Ls9WTjaMmjM9BUjPAdJTgPQcoAJk_wAfuP8L-QPnQMyI
CitedBy_id crossref_primary_10_1097_MOL_0000000000000400
crossref_primary_10_1093_eurheartj_ehw498
crossref_primary_10_3389_fcvm_2017_00053
crossref_primary_10_1016_j_atherosclerosis_2015_10_104
crossref_primary_10_1007_s11886_018_1079_3
crossref_primary_10_1093_jamia_ocw042
crossref_primary_10_2174_1389202921999200630145241
crossref_primary_10_1016_j_rec_2017_02_046
crossref_primary_10_1007_s11883_016_0628_8
crossref_primary_10_1016_j_ejim_2017_03_019
crossref_primary_10_1016_j_tcm_2019_08_006
crossref_primary_10_1097_HCO_0000000000000629
crossref_primary_10_1161_CIRCGENETICS_116_001522
crossref_primary_10_1038_s41569_021_00638_w
crossref_primary_10_1371_journal_pone_0166994
crossref_primary_10_1016_j_atherosclerosis_2015_02_008
crossref_primary_10_1161_CIRCOUTCOMES_117_004171
crossref_primary_10_1016_j_gendis_2020_11_003
crossref_primary_10_1093_cvr_cvae161
crossref_primary_10_1016_j_cjco_2019_01_003
crossref_primary_10_1093_bib_bbz119
crossref_primary_10_1016_j_jacc_2016_10_039
crossref_primary_10_1128_microbiolspec_TBTB2_0011_2016
crossref_primary_10_1007_s10897_017_0092_9
crossref_primary_10_3389_fgene_2015_00104
crossref_primary_10_1002_gepi_21912
crossref_primary_10_1007_s12041_021_01342_x
crossref_primary_10_1016_j_gheart_2017_04_001
crossref_primary_10_31083_j_rcm2301008
crossref_primary_10_1097_HCO_0000000000000501
crossref_primary_10_1007_s12170_018_0591_8
crossref_primary_10_1016_j_carrev_2019_04_006
crossref_primary_10_1152_physiolgenomics_00109_2015
crossref_primary_10_1016_j_jjcc_2018_04_007
crossref_primary_10_1161_CIRCGENETICS_114_001071
crossref_primary_10_1161_CIR_0000000000001077
crossref_primary_10_1007_s11883_018_0748_4
crossref_primary_10_1371_journal_pmed_1002546
crossref_primary_10_1016_j_recesp_2017_02_033
Cites_doi 10.1161/ATVBAHA.113.301218
10.1038/nature11632
10.1016/j.ygeno.2011.04.005
10.1097/01.CCM.0000275267.64078.B0
10.1038/gim.2013.131
10.1038/gim.2012.45
10.1161/circulationaha.113.007680
10.1161/01.cir.0000437741.48606.98
10.1038/ng.2480
10.1161/circ.106.25.3143
10.1038/gim.2013.88
10.1001/jama.2013.284657
10.1016/j.atherosclerosis.2012.05.035
10.1371/journal.pone.0040922
10.1001/jama.2010.503
10.1161/CIRCGENETICS.112.962746
10.1177/0962280213497434
10.2337/dc12-0884
10.1038/ng.2354
10.1161/CIRCULATIONAHA.113.007648
10.1016/j.ygeno.2011.08.007
10.1038/gim.2013.72
10.1161/circulationaha.106.672402
10.1016/S1474-4422(09)70275-3
10.1097/EDE.0000000000000018
ContentType Journal Article
Copyright Copyright © 2014 Goldstein, Knowles, Salfati, Ioannidis and Assimes. 2014
Copyright_xml – notice: Copyright © 2014 Goldstein, Knowles, Salfati, Ioannidis and Assimes. 2014
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fgene.2014.00254
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-8021
ExternalDocumentID oai_doaj_org_article_369ff121d1c347c7a88da81d4d056132
PMC4117937
25136350
10_3389_fgene_2014_00254
Genre Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: K25 DK097279
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
IPNFZ
KQ8
M48
M~E
OK1
PGMZT
RIG
RNS
RPM
NPM
7X8
5PM
ID FETCH-LOGICAL-c462t-82c7de0403ad937aa8a7e11970d65b8748d2797bd94fde68b9ef1237f0a337c43
IEDL.DBID M48
ISSN 1664-8021
IngestDate Wed Aug 27 00:54:43 EDT 2025
Thu Aug 21 18:20:44 EDT 2025
Fri Jul 11 00:34:30 EDT 2025
Thu Apr 03 07:01:23 EDT 2025
Thu Apr 24 22:56:57 EDT 2025
Tue Jul 01 00:46:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords coronary heart disease
genetic risk scores
electronic health records
personalized medicine
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-82c7de0403ad937aa8a7e11970d65b8748d2797bd94fde68b9ef1237f0a337c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Applied Genetic Epidemiology, a section of the journal Frontiers in Genetics.
Edited by: Helena Kuivaniemi, Geisinger Health System, USA
Reviewed by: Qing Lu, Michigan State University, USA; Braxton D. Mitchell, University of Maryland School of Medicine, USA
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fgene.2014.00254
PMID 25136350
PQID 1554939193
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_369ff121d1c347c7a88da81d4d056132
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4117937
proquest_miscellaneous_1554939193
pubmed_primary_25136350
crossref_citationtrail_10_3389_fgene_2014_00254
crossref_primary_10_3389_fgene_2014_00254
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in genetics
PublicationTitleAlternate Front Genet
PublicationYear 2014
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Kaufman (B20) 2012; 14
Kerr (B21) 2014; 25
Ganna (B10) 2013; 33
Goff (B11) 2014; 129
(B2) 2002; 106
Brautbar (B4) 2012; 223
Kramer (B24) 2007; 35
Ioannidis (B19) 2010; 303
Crowson (B8) 2014
Hoffmann (B14) 2011a; 98
Abecasis (B3) 2012; 491
Consortium (B5) 2013; 45
Knowles (B23) 2012; 5
Muntner (B26) 2014; 129
Ioannidis (B18) 2014; 311
Cook (B6) 2007; 115
Grant (B13) 2013; 36
Howie (B16) 2012; 44
Marsolo (B25) 2013; 15
De Jager (B9) 2009; 8
Cook (B7) 2013; 129
Gottesman (B12) 2013; 15
Hughes (B17) 2012; 7
Kho (B22) 2013; 15
Hoffmann (B15) 2011b; 98
8606324 - J Clin Epidemiol. 1996 Feb;49(2):223-33
24268611 - Lancet. 2013 Nov 30;382(9907):1762-5
22789513 - Atherosclerosis. 2012 Aug;223(2):421-6
12270005 - J Intern Med. 2002 Sep;252(3):247-54
9603539 - Circulation. 1998 May 12;97(18):1837-47
24296612 - JAMA. 2014 Feb 5;311(5):463-4
21903159 - Genomics. 2011 Dec;98(6):422-30
24240655 - Epidemiology. 2014 Jan;25(1):114-21
24334112 - Circulation. 2014 Jan 14;129(2):268-9
24222018 - Circulation. 2014 Jun 24;129(25 Suppl 2):S49-73
19879194 - Lancet Neurol. 2009 Dec;8(12):1111-9
23042826 - Med Decis Making. 2013 Feb;33(2):154-62
22029572 - BMC Med Genet. 2011 Oct 26;12:146
24334111 - Circulation. 2014 Jan 14;129(2):266-7
22538255 - Genet Med. 2012 Sep;14(9):787-94
12485966 - Circulation. 2002 Dec 17;106(25):3143-421
24071798 - Genet Med. 2013 Oct;15(10):772-8
23907781 - Stat Methods Med Res. 2016 Aug;25(4):1692-706
23128226 - Nature. 2012 Nov 1;491(7422):56-65
24239923 - J Am Coll Cardiol. 2014 Jul 1;63(25 Pt B):2889-934
21726217 - Eur J Clin Invest. 2012 Feb;42(2):216-28
23846403 - Genet Med. 2013 Oct;15(10):786-91
23946465 - Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2049-50
22933432 - Diabetes Care. 2013 Jan;36(1):13-9
22183176 - Hum Genet. 2012 Jul;131(7):1057-71
22820512 - Nat Genet. 2012 Jul 22;44(8):955-9
23202125 - Nat Genet. 2013 Jan;45(1):25-33
20424257 - JAMA. 2010 Apr 28;303(16):1646-7
19571811 - Nature. 2009 Aug 6;460(7256):748-52
24917882 - Front Genet. 2014 Jun 02;5:162
16125711 - Atherosclerosis. 2006 May;186(1):74-9
23599444 - Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2261-6
23743551 - Genet Med. 2013 Oct;15(10):761-71
17574079 - Lancet. 2007 Jun 16;369(9578):1980-2
26217377 - Front Genet. 2015;6:231
23949573 - Genet Med. 2013 Oct;15(10):779-85
23217325 - Am J Hum Genet. 2012 Dec 7;91(6):1011-21
17568333 - Crit Care Med. 2007 Sep;35(9):2052-6
16862161 - Nat Genet. 2006 Aug;38(8):904-9
21565264 - Genomics. 2011 Aug;98(2):79-89
22848412 - PLoS One. 2012;7(7):e40922
17309939 - Circulation. 2007 Feb 20;115(7):928-35
2646917 - Am J Epidemiol. 1989 Apr;129(4):687-702
23685553 - Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2267-72
22715281 - Circ Cardiovasc Genet. 2012 Jun;5(3):368-76
22235037 - Circ Cardiovasc Genet. 2012 Feb 1;5(1):113-21
16143003 - Pharmacogenomics. 2005 Sep;6(6):639-46
References_xml – volume: 33
  start-page: 2267
  year: 2013
  ident: B10
  article-title: Multilocus genetic risk scores for coronary heart disease prediction
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.113.301218
– volume: 491
  start-page: 56
  year: 2012
  ident: B3
  article-title: An integrated map of genetic variation from 1,092 human genomes
  publication-title: Nature
  doi: 10.1038/nature11632
– volume: 98
  start-page: 79
  year: 2011a
  ident: B14
  article-title: Next generation genome-wide association tool: design and coverage of a high-throughput European-optimized SNP array
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2011.04.005
– volume: 35
  start-page: 2052
  year: 2007
  ident: B24
  article-title: Assessing the calibration of mortality benchmarks in critical care: The Hosmer-Lemeshow test revisited
  publication-title: Crit. Care Med
  doi: 10.1097/01.CCM.0000275267.64078.B0
– volume: 15
  start-page: 772
  year: 2013
  ident: B22
  article-title: Practical challenges in integrating genomic data into the electronic health record
  publication-title: Genet. Med
  doi: 10.1038/gim.2013.131
– volume: 14
  start-page: 787
  year: 2012
  ident: B20
  article-title: Preferences for opt-in and opt-out enrollment and consent models in biobank research: a national survey of Veterans Administration patients
  publication-title: Genet. Med
  doi: 10.1038/gim.2012.45
– volume: 129
  start-page: 268
  year: 2013
  ident: B7
  article-title: Response to comment on the reports of over-estimation of ASCVD risk using the 2013 AHA/ACC risk equation
  publication-title: Circulation
  doi: 10.1161/circulationaha.113.007680
– volume: 129
  start-page: S49
  year: 2014
  ident: B11
  article-title: 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
  publication-title: Circulation
  doi: 10.1161/01.cir.0000437741.48606.98
– volume: 45
  start-page: 25
  year: 2013
  ident: B5
  article-title: Large-scale association analysis identifies new risk loci for coronary artery disease
  publication-title: Nat. Genet
  doi: 10.1038/ng.2480
– volume: 106
  start-page: 3143
  year: 2002
  ident: B2
  article-title: Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report
  publication-title: Circulation
  doi: 10.1161/circ.106.25.3143
– volume: 15
  start-page: 786
  year: 2013
  ident: B25
  article-title: Clinical genomics in the world of the electronic health record
  publication-title: Genet. Med
  doi: 10.1038/gim.2013.88
– volume: 311
  start-page: 463
  year: 2014
  ident: B18
  article-title: More than a billion people taking statins?: Potential implications of the new cardiovascular guidelines
  publication-title: JAMA
  doi: 10.1001/jama.2013.284657
– volume: 223
  start-page: 421
  year: 2012
  ident: B4
  article-title: A genetic risk score based on direct associations with coronary heart disease improves coronary heart disease risk prediction in the Atherosclerosis Risk in Communities (ARIC), but not in the Rotterdam and Framingham Offspring, Studies
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2012.05.035
– volume: 7
  start-page: e40922
  year: 2012
  ident: B17
  article-title: Genetic markers enhance coronary risk prediction in men: the MORGAM prospective cohorts
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0040922
– volume: 303
  start-page: 1646
  year: 2010
  ident: B19
  article-title: What makes a good predictor?: the evidence applied to coronary artery calcium score
  publication-title: JAMA
  doi: 10.1001/jama.2010.503
– volume: 5
  start-page: 368
  year: 2012
  ident: B23
  article-title: Randomized trial of personal genomics for preventive cardiology: design and challenges
  publication-title: Circ. Cardiovasc Genet
  doi: 10.1161/CIRCGENETICS.112.962746
– year: 2014
  ident: B8
  article-title: Assessing calibration of prognostic risk scores
  publication-title: Stat. Methods Med. Res
  doi: 10.1177/0962280213497434
– volume: 36
  start-page: 13
  year: 2013
  ident: B13
  article-title: Personalized genetic risk counseling to motivate diabetes prevention: a randomized trial
  publication-title: Diabetes Care
  doi: 10.2337/dc12-0884
– volume: 44
  start-page: 955
  year: 2012
  ident: B16
  article-title: Fast and accurate genotype imputation in genome-wide association studies through pre-phasing
  publication-title: Nat. Genet
  doi: 10.1038/ng.2354
– volume: 129
  start-page: 266
  year: 2014
  ident: B26
  article-title: Comment on the reports of over-estimation of ASCVD risk using the 2013 AHA/ACC risk equation
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.113.007648
– volume: 98
  start-page: 422
  year: 2011b
  ident: B15
  article-title: Design and coverage of high throughput genotyping arrays optimized for individuals of East Asian, African American, and Latino race/ethnicity using imputation and a novel hybrid SNP selection algorithm
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2011.08.007
– volume: 15
  start-page: 761
  year: 2013
  ident: B12
  article-title: The Electronic Medical Records and Genomics (eMERGE) network: past, present, and future
  publication-title: Genet. Med
  doi: 10.1038/gim.2013.72
– volume: 115
  start-page: 928
  year: 2007
  ident: B6
  article-title: Use and misuse of the receiver operating characteristic curve in risk prediction
  publication-title: Circulation
  doi: 10.1161/circulationaha.106.672402
– volume: 8
  start-page: 1111
  year: 2009
  ident: B9
  article-title: Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: a weighted genetic risk score
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(09)70275-3
– volume: 25
  start-page: 114
  year: 2014
  ident: B21
  article-title: Net reclassification indices for evaluating risk prediction instruments: a critical review
  publication-title: Epidemiology
  doi: 10.1097/EDE.0000000000000018
– reference: 22848412 - PLoS One. 2012;7(7):e40922
– reference: 19879194 - Lancet Neurol. 2009 Dec;8(12):1111-9
– reference: 23907781 - Stat Methods Med Res. 2016 Aug;25(4):1692-706
– reference: 17574079 - Lancet. 2007 Jun 16;369(9578):1980-2
– reference: 22715281 - Circ Cardiovasc Genet. 2012 Jun;5(3):368-76
– reference: 24917882 - Front Genet. 2014 Jun 02;5:162
– reference: 22789513 - Atherosclerosis. 2012 Aug;223(2):421-6
– reference: 23128226 - Nature. 2012 Nov 1;491(7422):56-65
– reference: 23042826 - Med Decis Making. 2013 Feb;33(2):154-62
– reference: 22820512 - Nat Genet. 2012 Jul 22;44(8):955-9
– reference: 12270005 - J Intern Med. 2002 Sep;252(3):247-54
– reference: 21903159 - Genomics. 2011 Dec;98(6):422-30
– reference: 21726217 - Eur J Clin Invest. 2012 Feb;42(2):216-28
– reference: 16143003 - Pharmacogenomics. 2005 Sep;6(6):639-46
– reference: 23202125 - Nat Genet. 2013 Jan;45(1):25-33
– reference: 17309939 - Circulation. 2007 Feb 20;115(7):928-35
– reference: 24071798 - Genet Med. 2013 Oct;15(10):772-8
– reference: 19571811 - Nature. 2009 Aug 6;460(7256):748-52
– reference: 23949573 - Genet Med. 2013 Oct;15(10):779-85
– reference: 24222018 - Circulation. 2014 Jun 24;129(25 Suppl 2):S49-73
– reference: 24240655 - Epidemiology. 2014 Jan;25(1):114-21
– reference: 2646917 - Am J Epidemiol. 1989 Apr;129(4):687-702
– reference: 22235037 - Circ Cardiovasc Genet. 2012 Feb 1;5(1):113-21
– reference: 24334112 - Circulation. 2014 Jan 14;129(2):268-9
– reference: 17568333 - Crit Care Med. 2007 Sep;35(9):2052-6
– reference: 22029572 - BMC Med Genet. 2011 Oct 26;12:146
– reference: 21565264 - Genomics. 2011 Aug;98(2):79-89
– reference: 24239923 - J Am Coll Cardiol. 2014 Jul 1;63(25 Pt B):2889-934
– reference: 23743551 - Genet Med. 2013 Oct;15(10):761-71
– reference: 26217377 - Front Genet. 2015;6:231
– reference: 24334111 - Circulation. 2014 Jan 14;129(2):266-7
– reference: 9603539 - Circulation. 1998 May 12;97(18):1837-47
– reference: 23217325 - Am J Hum Genet. 2012 Dec 7;91(6):1011-21
– reference: 23946465 - Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2049-50
– reference: 22183176 - Hum Genet. 2012 Jul;131(7):1057-71
– reference: 16125711 - Atherosclerosis. 2006 May;186(1):74-9
– reference: 8606324 - J Clin Epidemiol. 1996 Feb;49(2):223-33
– reference: 23846403 - Genet Med. 2013 Oct;15(10):786-91
– reference: 20424257 - JAMA. 2010 Apr 28;303(16):1646-7
– reference: 12485966 - Circulation. 2002 Dec 17;106(25):3143-421
– reference: 23599444 - Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2261-6
– reference: 24296612 - JAMA. 2014 Feb 5;311(5):463-4
– reference: 16862161 - Nat Genet. 2006 Aug;38(8):904-9
– reference: 22933432 - Diabetes Care. 2013 Jan;36(1):13-9
– reference: 23685553 - Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2267-72
– reference: 22538255 - Genet Med. 2012 Sep;14(9):787-94
– reference: 24268611 - Lancet. 2013 Nov 30;382(9907):1762-5
SSID ssj0000493334
Score 2.2234375
Snippet Genetic risk assessment is becoming an important component of clinical decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of genetic...
Purpose: Genetic risk assessment is becoming an important component of clinical decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of...
Purpose: Genetic risk assessment is becoming an important component of clinical decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 254
SubjectTerms biomarkers
Cardiovascular Diseases
Coronary Disease
Electronic Health Records
genetic risk score (GRS)
Genetics
risk prediction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhEOiltE0f7iOokEuhZm1LsqzcktAQCs0lDeQm9KRbwjrsOpD2Z_QXd0byLutSmksvBluyPdaMrG88428IOawCeLJO8dKJypScdbbE4BFsoo_eemEcRnS_XLTnV_zztbjeKvWFOWGZHjgP3Iy1Ksa6qX3tGJdOmq7zBkAW9wn7prcvrHlbztT3jHsZYzzHJcELU7MI-kBazBrZshvBJ-tQouv_G8b8M1Vya-05e0Iej6CRHmdhn5KdsHhG9nIZyR_75NflHDl-P9L1d4H5z-Ap0i5klmIYetpHiqLBBShmk0Pr0FNw_cvJ0dslxm3SCUPf36woQFqass7DPcVqEsPqCPaXPf7ES7EY9kDHEA81K2oWNNwb7P2cXJ19-np6Xo61FkrH22You8ZJH2BGM-MBsRjTGRkwxFj5VthO8s43UknrFY8-tJ1VAbTCZKwMY9Jx9oLsgtDhFaF1jALmeZBtEJyF2gphbRNiY3wVVGQFma1HXruRiByf4EaDQ4K60klXGnWlk64K8mFzxm0m4fhH3xNU5qYf0menA2BUejQq_ZBRFeT92hQ0TDeMoZhF6O9WGuGXYgpgb0FeZtPY3AqgIgP8VhVEToxmIsu0ZTH_lii9OTLzMfn6fwj_hjzC4chZim_J7rC8C-8AOQ32IE2S37fJGlk
  priority: 102
  providerName: Directory of Open Access Journals
Title Simple, standardized incorporation of genetic risk into non-genetic risk prediction tools for complex traits: coronary heart disease as an example
URI https://www.ncbi.nlm.nih.gov/pubmed/25136350
https://www.proquest.com/docview/1554939193
https://pubmed.ncbi.nlm.nih.gov/PMC4117937
https://doaj.org/article/369ff121d1c347c7a88da81d4d056132
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA96Ivginp89vSOCL4L12iZtWuE4VDwP4XzRhX0LSZOcK0t71_Zgzz_Dv9iZpLtaWcSXQtu0-ZhM5zed5DeEvEgseLJ1xeM6T1TMWaljDB7BwRlntMlVjRHds8_F6Yx_mufz39ujxwHst7p2mE9q1i1fry6vj0Hhj9DjBHt76GCokfEyRSJscHhukltglwSq6dkI9r8HLMxYCDMXBYdPc5aGuOXWl0zslKfz34ZB_15K-YdtOrlH7o6gkr4Ns2CX3LDNfXI7pJm8fkB-flkgB_Aruv5vsPhhDUVahsBiDKKhraPYNHgBxdXmcHdoadM28eTqRYdxHf_A0LbLngLkpX5Vul1RzDYx9G_gvGtxky_FZNkDHUNAVPVUNdSuFJZ-SGYnH76-P43HXAxxzYtsiMusFsaCxjNlANEoVSphMQSZmCLXpeClyUQltKm4M7YodWUdGEXhEsWYqDl7RHag0fYJoalzOXwHrChszplNdZ5rnVmXKZPYyrGIHK5HXtYjUTn2YCnBYUFZSS8ribKSXlYRebl54iKQdPyj7DsU5qYc0mv7C213LkdtlayoHDQ_NWnNuKiFKkujANlz4x2uLCLP11NBgjpijEU1tr3qJcKzilUAiyPyOEyNTVUAJRnguyQiYjJpJm2Z3mkW3zzlN0fmPib2_qPep-QO9jYsUnxGdobuyu4DcBr0gf_hAMeP8_TA68Yvbe4b5A
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simple%2C+standardized+incorporation+of+genetic+risk+into+non-genetic+risk+prediction+tools+for+complex+traits%3A+coronary+heart+disease+as+an+example&rft.jtitle=Frontiers+in+genetics&rft.au=Goldstein%2C+Benjamin+A&rft.au=Knowles%2C+Joshua+W&rft.au=Salfati%2C+Elias&rft.au=Ioannidis%2C+John+P+A&rft.date=2014-08-01&rft.issn=1664-8021&rft.eissn=1664-8021&rft.volume=5&rft.spage=254&rft_id=info:doi/10.3389%2Ffgene.2014.00254&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon