Induction and Suppression of Innate Antiviral Responses by Hepatitis A Virus
Hepatitis A virus (HAV) belongs to the family . It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are sensed by pathogen-associated pattern recognition receptors (PRRs) such as Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I), and melanoma...
Saved in:
Published in | Frontiers in microbiology Vol. 9; p. 1865 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
17.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hepatitis A virus (HAV) belongs to the family
. It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are sensed by pathogen-associated pattern recognition receptors (PRRs) such as Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated gene 5 (MDA5). PRR activation leads to production of type 1 interferon (IFN-α/β), serving as the first line of defense against viruses. However, HAV has developed various strategies to compromise the innate immune system and promote viral propagation within the host cells. The long coevolution of HAV in hosts has prompted the development of effective immune antagonism strategies that actively fight against host antiviral responses. Proteases encoded by HAV can cleave the mitochondrial antiviral signaling protein (MAVS, also known as IPS-1, VISA, or Cardif), TIR domain- containing adaptor inducing IFN-β (TRIF, also known as TICAM-1) and nuclear factor-κB (NF-κB) essential modulator (NEMO), which are key adaptor proteins in RIG-I-like receptor (RLR), TLR3 and NF-κB signaling, respectively. In this mini-review, we summarize all the recent progress on the interaction between HAV and the host, especially focusing on how HAV abrogates the antiviral effects of the innate immune system. |
---|---|
AbstractList | Hepatitis A virus (HAV) belongs to the family Picornaviridae. It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are sensed by pathogen-associated pattern recognition receptors (PRRs) such as Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated gene 5 (MDA5). PRR activation leads to production of type 1 interferon (IFN-α/β), serving as the first line of defense against viruses. However, HAV has developed various strategies to compromise the innate immune system and promote viral propagation within the host cells. The long coevolution of HAV in hosts has prompted the development of effective immune antagonism strategies that actively fight against host antiviral responses. Proteases encoded by HAV can cleave the mitochondrial antiviral signaling protein (MAVS, also known as IPS-1, VISA, or Cardif), TIR domain- containing adaptor inducing IFN-β (TRIF, also known as TICAM-1) and nuclear factor-κB (NF-κB) essential modulator (NEMO), which are key adaptor proteins in RIG-I-like receptor (RLR), TLR3 and NF-κB signaling, respectively. In this mini-review, we summarize all the recent progress on the interaction between HAV and the host, especially focusing on how HAV abrogates the antiviral effects of the innate immune system.Hepatitis A virus (HAV) belongs to the family Picornaviridae. It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are sensed by pathogen-associated pattern recognition receptors (PRRs) such as Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated gene 5 (MDA5). PRR activation leads to production of type 1 interferon (IFN-α/β), serving as the first line of defense against viruses. However, HAV has developed various strategies to compromise the innate immune system and promote viral propagation within the host cells. The long coevolution of HAV in hosts has prompted the development of effective immune antagonism strategies that actively fight against host antiviral responses. Proteases encoded by HAV can cleave the mitochondrial antiviral signaling protein (MAVS, also known as IPS-1, VISA, or Cardif), TIR domain- containing adaptor inducing IFN-β (TRIF, also known as TICAM-1) and nuclear factor-κB (NF-κB) essential modulator (NEMO), which are key adaptor proteins in RIG-I-like receptor (RLR), TLR3 and NF-κB signaling, respectively. In this mini-review, we summarize all the recent progress on the interaction between HAV and the host, especially focusing on how HAV abrogates the antiviral effects of the innate immune system. Hepatitis A virus (HAV) belongs to the family Picornaviridae . It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are sensed by pathogen-associated pattern recognition receptors (PRRs) such as Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated gene 5 (MDA5). PRR activation leads to production of type 1 interferon (IFN-α/β), serving as the first line of defense against viruses. However, HAV has developed various strategies to compromise the innate immune system and promote viral propagation within the host cells. The long coevolution of HAV in hosts has prompted the development of effective immune antagonism strategies that actively fight against host antiviral responses. Proteases encoded by HAV can cleave the mitochondrial antiviral signaling protein (MAVS, also known as IPS-1, VISA, or Cardif), TIR domain- containing adaptor inducing IFN-β (TRIF, also known as TICAM-1) and nuclear factor-κB (NF-κB) essential modulator (NEMO), which are key adaptor proteins in RIG-I-like receptor (RLR), TLR3 and NF-κB signaling, respectively. In this mini-review, we summarize all the recent progress on the interaction between HAV and the host, especially focusing on how HAV abrogates the antiviral effects of the innate immune system. Hepatitis A virus (HAV) belongs to the family . It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are sensed by pathogen-associated pattern recognition receptors (PRRs) such as Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated gene 5 (MDA5). PRR activation leads to production of type 1 interferon (IFN-α/β), serving as the first line of defense against viruses. However, HAV has developed various strategies to compromise the innate immune system and promote viral propagation within the host cells. The long coevolution of HAV in hosts has prompted the development of effective immune antagonism strategies that actively fight against host antiviral responses. Proteases encoded by HAV can cleave the mitochondrial antiviral signaling protein (MAVS, also known as IPS-1, VISA, or Cardif), TIR domain- containing adaptor inducing IFN-β (TRIF, also known as TICAM-1) and nuclear factor-κB (NF-κB) essential modulator (NEMO), which are key adaptor proteins in RIG-I-like receptor (RLR), TLR3 and NF-κB signaling, respectively. In this mini-review, we summarize all the recent progress on the interaction between HAV and the host, especially focusing on how HAV abrogates the antiviral effects of the innate immune system. Hepatitis A virus (HAV) belongs to the family Picornaviridae. It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are sensed by pathogen-associated pattern recognition receptors (PRRs) such as Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated gene 5 (MDA5). PRR activation leads to production of type 1 interferon (IFN-α/β), serving as the first line of defense against viruses. However, HAV has developed various strategies to compromise the innate immune system and promote viral propagation within the host cells. The long coevolution of HAV in hosts has prompted the development of effective immune antagonism strategies that actively fight against host antiviral responses. Proteases encoded by HAV can cleave the mitochondrial antiviral signaling protein (MAVS, also known as IPS-1, VISA, or Cardif), TIR domain- containing adaptor inducing IFN-β (TRIF, also known as TICAM-1) and nuclear factor-κB (NF-κB) essential modulator (NEMO), which are key adaptor proteins in RIG-I-like receptor (RLR), TLR3 and NF-κB signaling, respectively. In this mini-review, we summarize all the recent progress on the interaction between HAV and the host, especially focusing on how HAV abrogates the antiviral effects of the innate immune system. |
Author | Xue, Yu-jia Xu, Qiang Cai, Kui-zheng Liu, Jing Du, Jiang-long Yang, Xue-cai Wang, Hai-zhen Cao, Xin Wang, Bo-bo Ma, Zhong-ren Zeng, Yan |
AuthorAffiliation | 3 State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China 4 Hebi Precision Medical Research Institute, People's Hospital of Hebi , Hebi , China 5 Department of Medical Oncology People's Hospital of Hebi, Hebi, China 1 College of Life Science and Engineering, Northwest Minzu University, Engineering & Technology Research Center for Animal Cell , Lanzhou , China 2 Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission , Lanzhou , China |
AuthorAffiliation_xml | – name: 4 Hebi Precision Medical Research Institute, People's Hospital of Hebi , Hebi , China – name: 5 Department of Medical Oncology People's Hospital of Hebi, Hebi, China – name: 2 Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission , Lanzhou , China – name: 1 College of Life Science and Engineering, Northwest Minzu University, Engineering & Technology Research Center for Animal Cell , Lanzhou , China – name: 3 State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China |
Author_xml | – sequence: 1 givenname: Xin surname: Cao fullname: Cao, Xin – sequence: 2 givenname: Yu-jia surname: Xue fullname: Xue, Yu-jia – sequence: 3 givenname: Jiang-long surname: Du fullname: Du, Jiang-long – sequence: 4 givenname: Qiang surname: Xu fullname: Xu, Qiang – sequence: 5 givenname: Xue-cai surname: Yang fullname: Yang, Xue-cai – sequence: 6 givenname: Yan surname: Zeng fullname: Zeng, Yan – sequence: 7 givenname: Bo-bo surname: Wang fullname: Wang, Bo-bo – sequence: 8 givenname: Hai-zhen surname: Wang fullname: Wang, Hai-zhen – sequence: 9 givenname: Jing surname: Liu fullname: Liu, Jing – sequence: 10 givenname: Kui-zheng surname: Cai fullname: Cai, Kui-zheng – sequence: 11 givenname: Zhong-ren surname: Ma fullname: Ma, Zhong-ren |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30174659$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rHCEYxiWkJGmae05ljr3sVh3H0UthCW2zsFDoF72Jo6-JYVan6gTy39fdTUNSqOD38zyv8nuNjkMMgNAlwcu2FfK923ozLCkmYlk7747QGeGcLVpMfx0_W5-ii5zvcG0M0zqeoNMWk57xTp6hzTrY2RQfQ6ODbb7N05Qg590-umYdgi7QrELx9z7psfkKeYohQ26Gh-YaJl188blZNT99mvMb9MrpMcPF43yOfnz6-P3qerH58nl9tdosDOO0LHrrtOsos3LAlAoK3eDwwPrWtXJoQcpBONZZTQdiBXbCGdFLyrSVQCmxrD1H60OujfpOTclvdXpQUXu1P4jpRulUvBlBdYIQ3nNgTHYMqBbGOilB9Kzl0FtRsz4csqZ52II1EEr96IvQlzfB36qbeK84wb3ocA149xiQ4u8ZclFbnw2Mow4Q56wolhIz2pG-St8-r_VU5C-OKsAHgUkx5wTuSUKw2kFXe-hqB13toVcL_8difNE7oPW1fvy_8Q9p87JP |
CitedBy_id | crossref_primary_10_3390_v15040864 crossref_primary_10_1111_jvh_13379 crossref_primary_10_3390_v15030666 crossref_primary_10_3390_v14102129 crossref_primary_10_1016_j_vetmic_2025_110479 crossref_primary_10_1089_ars_2022_0114 |
Cites_doi | 10.1016/j.immuni.2013.07.001 10.1038/nrg2303 10.1126/science.1087262 10.1002/hep.21052 10.1002/cphy.c120026 10.1016/j.cell.2005.08.012 10.1371/journal.ppat.1005772 10.1038/ni.3647 10.1038/ni.3853 10.1101/cshperspect.a033464 10.1128/MCB.01368-10 10.1055/s-0030-1267534. 10.4049/jimmunol.1303322 10.1099/0022-1317-77-2-247 10.1002/j.1460-2075.1996.tb00803.x 10.1099/vir.0.83521-0 10.1172/JCI77527 10.1038/ni1465 10.1128/JVI.79.17.10968-10977.2005 10.4049/jimmunol.1101307 10.1038/ni.1824 10.1038/ni.1876 10.1371/journal.ppat.1005264 10.1038/nature10537 10.1126/scisignal.2004841 10.1128/JVI.01585-06 10.1128/JVI.76.23.11920-11930.2002 10.1016/j.immuni 10.1128/JVI.02744-14 10.1128/JVI.00510-12 10.1128/JVI.72.8.6621-6628.1998 10.1084/jem.20030162 10.1101/cshperspect.a033480 10.1146/annurev-immunol-042617-053309 10.1016/j.immuni.2017.11.025 10.1016/j.bbagrm.2009.06.005 10.1038/nature12029 10.1084/jem.20111906 10.1038/nature13806 10.1371/journal.ppat.1003256 10.1146/annurev-immunol-031210-101345 10.1073/pnas.1101939108 10.1016/j.molcel.2006.05.012 10.1074/jbc.M414139200 10.4049/jimmunol.178.10.6444 10.12703/P7-15 10.1038/nri2358 10.1038/nature06042 10.1006/viro.1994.1030 10.1002/med.21292 10.1261/rna.2244210 10.1126/science.1132505 10.1073/pnas.0611506104 10.1128/JVI.74.23.10950-10957.2000 10.1016/j.immuni.2011.03.027 10.1371/journal.pone.0087906 10.1074/jbc.M507163200 10.1111/j.1600-065X.2011.01052.x 10.1073/pnas.0710779105 10.1016/bs.apcsb.2016.10.001 10.1038/ni886 10.1126/science.1132998 10.1128/JVI.00869-14 10.1016/j.celrep.2015.04.047 10.1128/JVI.06405-11 10.1126/science.aaf8325 10.1073/pnas.0912986107 10.3892/ijmm.17.6.1093 10.1016/j.cell.2010.01.022 10.1016/j.cell.2011.09.023 10.1371/journal.ppat.1002169 10.1016/j.chom.2016.09.014 10.1021/acs.accounts.6b00151 10.1038/nsmb.1453 10.1016/S1471-4906(03)00242-4 10.1128/JVI.72.10.8013-8020.1998 10.1126/science.1155406 10.1126/sciimmunol.aag2045 10.1126/science.aab3145 10.1089/dna.2005.24.614 10.1038/ni.2915 |
ContentType | Journal Article |
Copyright | Copyright © 2018 Cao, Xue, Du, Xu, Yang, Zeng, Wang, Wang, Liu, Cai and Ma. 2018 Cao, Xue, Du, Xu, Yang, Zeng, Wang, Wang, Liu, Cai and Ma |
Copyright_xml | – notice: Copyright © 2018 Cao, Xue, Du, Xu, Yang, Zeng, Wang, Wang, Liu, Cai and Ma. 2018 Cao, Xue, Du, Xu, Yang, Zeng, Wang, Wang, Liu, Cai and Ma |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmicb.2018.01865 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_5811676e44954e2a8cdf99e87436e7d8 PMC6107850 30174659 10_3389_fmicb_2018_01865 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c462t-7dfaf524d9b02282e5bf0b473f39b3e99b8f45da2b1d80f8fc87924ad9e221d43 |
IEDL.DBID | DOA |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:24:45 EDT 2025 Thu Aug 21 14:26:12 EDT 2025 Fri Jul 11 04:40:19 EDT 2025 Thu Apr 03 07:04:54 EDT 2025 Tue Jul 01 00:55:19 EDT 2025 Thu Apr 24 22:57:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | type 1 interferon MAVS HAV TRIF NEMO |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-7dfaf524d9b02282e5bf0b473f39b3e99b8f45da2b1d80f8fc87924ad9e221d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Zhiyong Li, Lanzhou Veterinary Research Institute (CAAS), China These authors have contributed equally to this work This article was submitted to Virology, a section of the journal Frontiers in Microbiology Reviewed by: Koji Ishii, National Institute of Infectious Diseases (NIID), Japan; Long Yang, McGill University, Canada |
OpenAccessLink | https://doaj.org/article/5811676e44954e2a8cdf99e87436e7d8 |
PMID | 30174659 |
PQID | 2099042517 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5811676e44954e2a8cdf99e87436e7d8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6107850 proquest_miscellaneous_2099042517 pubmed_primary_30174659 crossref_primary_10_3389_fmicb_2018_01865 crossref_citationtrail_10_3389_fmicb_2018_01865 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-17 |
PublicationDateYYYYMMDD | 2018-08-17 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2018 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Fensterl (B16) 2005; 79 Gringhuis (B20) 2017; 18 Hermant (B21) 2014; 9 Gilliet (B18) 2008; 8 Hull (B24) 2016; 49 Zhang (B79); 187 Paulmann (B52) 2008; 89 Reizis (B60) 2011; 29 Hirai-Yuki (B22) 2016; 353 Leonard (B32) 2008; 105 Takeuchi (B65) 2010; 140 Feigelstock (B11) 1998; 72 Dotzauer (B10) 2000; 74 Kuriakose (B30) 2016; 1 Seth (B63) 2005; 122 Qu (B58) 2011; 7 Chow (B7) 2018; 36 Miyashita (B46) 2011; 31 Odendall (B48) 2014; 15 Lanford (B31) 2011; 108 Tami (B66) 2007; 81 Lu (B36) 2014; 193 McKnight (B43) 2018; 2 Probst (B57) 1998; 72 Martin (B42) 2006; 43 Mosallanejad (B47) 2014; 7 Childs (B6) 2012; 86 Feng (B13) 2013; 496 Leulier (B33) 2008; 9 Botos (B3) 2009; 1789 Oshiumi (B50) 2003; 4 Kato (B28) 2011; 243 Malathi (B39) 2007; 448 Zhang (B78); 34 Yang (B77) 2007; 104 Bell (B1) 2003; 24 Bouteiller (B4) 2005; 280 Malathi (B40) 2010; 16 Yamamoto (B75) 2003; 301 Zhou (B81) 2012; 209 Yang (B76) 2010; 11 Gosert (B19) 1996; 77 Jha (B25) 2015; 7 Ugrinova (B69) 2017; 107 Wang (B71) 2014; 88 Oshiumi (B51) 2015; 11 Qu (B59) 2010; 30 Kaplan (B27) 1996; 15 Wang (B72); 350 Pothlichet (B56) 2013; 9 Lund (B37) 2003; 198 Venkataraman (B70) 2007; 178 Wen (B74) 2013; 39 Mitoma (B45) 2013; 39 Satoh (B61) 2010; 107 Pirher (B54) 2008; 15 Luo (B38) 2011; 147 Wang (B73); 517 Bender (B2) 2015; 76 Poeck (B55) 2010; 11 Li (B34) 2005; 280 Liu (B35) 2008; 320 Schultheiss (B62) 1994; 198 Hornung (B23) 2006; 314 Jiang (B26) 2011; 479 Okahira (B49) 2005; 24 Tremblay (B68) 2017; 13 Feng (B14) 2018; 23 Meylan (B44) 2006; 22 Dixon (B9) 2013; 3 Kim (B29) 2018; 48 Feng (B15) 2015; 125 Thapa (B67) 2016; 20 Sui (B64) 2006; 17 Zhao (B80) 2007; 8 Fensterl (B17) 2015; 89 Feng (B12) 2017; 18 Pichlmair (B53) 2006; 314 Debing (B8) 2014; 34 Malur (B41) 2012; 86 Brack (B5) 2002; 76 |
References_xml | – volume: 39 start-page: 123 year: 2013 ident: B45 article-title: The dhx33 rna helicase senses cytosolic rna and activates the nlrp3 inflammasome publication-title: Immunity doi: 10.1016/j.immuni.2013.07.001 – volume: 9 start-page: 165 year: 2008 ident: B33 article-title: Toll-like receptors — taking an evolutionary approach publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2303 – volume: 301 start-page: 640 year: 2003 ident: B75 article-title: Role of adaptor TRIF in the MyD88- independent toll-like receptor signaling pathway publication-title: Science doi: 10.1126/science.1087262 – volume: 43 start-page: S164 year: 2006 ident: B42 article-title: Hepatitis a virus: from discovery to vaccines publication-title: Hepatology doi: 10.1002/hep.21052 – volume: 3 start-page: 785 year: 2013 ident: B9 article-title: Kupffer cells in the liver publication-title: Compr. Physiol. doi: 10.1002/cphy.c120026 – volume: 122 start-page: 669 year: 2005 ident: B63 article-title: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3 publication-title: Cell doi: 10.1016/j.cell.2005.08.012 – volume: 13 start-page: e1005772 year: 2017 ident: B68 article-title: Spliceosome snrnp200 promotes viral rna sensing and irf3 activation of antiviral response publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005772 – volume: 18 start-page: 225 year: 2017 ident: B20 article-title: Hiv-1 blocks the signaling adaptor mavs to evade antiviral host defense after sensing of abortive hiv-1 rna by the host helicase ddx3 publication-title: Nat. Immunol. doi: 10.1038/ni.3647 – volume: 18 start-page: 1299 year: 2017 ident: B12 article-title: NLRX1 promotes immediate IRF1-directed antiviral responses by limiting dsRNA-activated translational inhibition mediated by PKR publication-title: Nat. Immunol. doi: 10.1038/ni.3853 – volume: 23 start-page: a033464 year: 2018 ident: B14 article-title: Innate immunity to enteric hepatitis viruses publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a033464 – volume: 31 start-page: 3802 year: 2011 ident: B46 article-title: Ddx60, a dexd/h box helicase, is a novel antiviral factor promoting rig-i-like receptor-mediated signaling publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01368-10 – volume: 30 start-page: 319 year: 2010 ident: B59 article-title: Hepatitis A and Hepatitis C viruses: divergent infection outcomes marked by similarities in induction and evasion of interferon responses publication-title: Semin. Liver Dis. doi: 10.1055/s-0030-1267534. – volume: 193 start-page: 1364 year: 2014 ident: B36 article-title: Dhx15 senses double-stranded rna in myeloid dendritic cells publication-title: J. Immunol. doi: 10.4049/jimmunol.1303322 – volume: 77 start-page: 247 year: 1996 ident: B19 article-title: Identification of hepatitis A virus non-structural protein 2B and its release by the major virus protease 3C publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-77-2-247 – volume: 15 start-page: 4282 year: 1996 ident: B27 article-title: Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb00803.x – volume: 89 start-page: 1593 year: 2008 ident: B52 article-title: Hepatitis A virus protein 2B suppresses beta interferon (IFN) gene transcription by interfering with IFN regulatory factor 3 activation publication-title: J. Gen. Virol. doi: 10.1099/vir.0.83521-0 – volume: 125 start-page: 169 year: 2015 ident: B15 article-title: Human pDCs preferentially sense enveloped hepatitis A virions publication-title: J. Clin. Invest. doi: 10.1172/JCI77527 – volume: 8 start-page: 592 year: 2007 ident: B80 article-title: The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways publication-title: Nat. Immunol. doi: 10.1038/ni1465 – volume: 79 start-page: 10968 year: 2005 ident: B16 article-title: Hepatitis A virus suppresses RIG-I-mediated IRF-3 activation to block induction of beta interferon publication-title: J. Virol. doi: 10.1128/JVI.79.17.10968-10977.2005 – volume: 187 start-page: 4501 ident: B79 article-title: Dhx9 pairs with ips-1 to sense double-stranded rna in myeloid dendritic cells publication-title: J. Immunol doi: 10.4049/jimmunol.1101307 – volume: 11 start-page: 63 year: 2010 ident: B55 article-title: Recognition of rna virus by rig-i results in activation of card9 and inflammasome signaling for interleukin 1 beta production publication-title: Nat. Immunol. doi: 10.1038/ni.1824 – volume: 11 start-page: 487 year: 2010 ident: B76 article-title: The cytosolic nucleic acid sensor lrrfip1 mediates the production of type i interferon via a β-catenin-dependent pathway publication-title: Nat. Immunol. doi: 10.1038/ni.1876 – volume: 76 start-page: 85 year: 2015 ident: B2 article-title: Activation of type i and iii interferon response by mitochondrial and peroxisomal mavs and inhibition by hepatitis c virus publication-title: Cytokine doi: 10.1371/journal.ppat.1005264 – volume: 479 start-page: 423 year: 2011 ident: B26 article-title: Structural basis of RNA recognition and activation by innate immune receptor RIG-I publication-title: Nature doi: 10.1038/nature10537 – volume: 7 start-page: ra40 year: 2014 ident: B47 article-title: The deah-box rna helicase dhx15 activates nf-κb and mapk signaling downstream of mavs during antiviral responses publication-title: Sci. Signal doi: 10.1126/scisignal.2004841 – volume: 81 start-page: 3437 year: 2007 ident: B66 article-title: Immunoglobulin A (IgA) is a natural ligand of hepatitis A virus cellular receptor 1 (HAVCR1), and the association of IgA with HAVCR1 enhances virus-receptor interactions publication-title: J. Virol. doi: 10.1128/JVI.01585-06 – volume: 76 start-page: 11920 year: 2002 ident: B5 article-title: HepatitisAvirus inhibits cellular antiviral defense mechanisms induced by double-stranded RNA publication-title: J. Virol. doi: 10.1128/JVI.76.23.11920-11930.2002 – volume: 39 start-page: 432 year: 2013 ident: B74 article-title: New mechanisms of nod-like receptor-associated inflammasome activation publication-title: Immunity doi: 10.1016/j.immuni – volume: 89 start-page: 2462 year: 2015 ident: B17 article-title: Interferon-induced ifit proteins: their role in viral pathogenesis publication-title: J. Virol. doi: 10.1128/JVI.02744-14 – volume: 86 start-page: 10733 year: 2012 ident: B41 article-title: LGP2 downregulates interferon production during infection with seasonal human influenza A viruses that activate interferon regulatory factor 3 publication-title: J. Virol doi: 10.1128/JVI.00510-12 – volume: 72 start-page: 6621 year: 1998 ident: B11 publication-title: J. Virol. doi: 10.1128/JVI.72.8.6621-6628.1998 – volume: 198 start-page: 513 year: 2003 ident: B37 article-title: Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells publication-title: J. Exp. Med. doi: 10.1084/jem.20030162 – volume: 2 start-page: a033480 year: 2018 ident: B43 article-title: Hepatitis A virus genome organization and replication strategy publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a033480 – volume: 36 start-page: 667 year: 2018 ident: B7 article-title: RIG-I and Other RNA sensors in antiviral immunity publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-042617-053309 – volume: 48 start-page: e5 year: 2018 ident: B29 article-title: Innate-like Cytotoxic Function of Bystander-Activated CD8+ T cells is associated with liver injury in acute hepatitis A publication-title: Immunity doi: 10.1016/j.immuni.2017.11.025 – volume: 1789 start-page: 667 year: 2009 ident: B3 article-title: The toll-like receptor 3:dsRNA signaling complex publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2009.06.005 – volume: 496 start-page: 367 year: 2013 ident: B13 article-title: A pathogenic picornavirus acquires an envelope by hijacking cellular membranes publication-title: Nature doi: 10.1038/nature12029 – volume: 209 start-page: 1481 year: 2012 ident: B81 article-title: Dominance of the CD4+ T helper cell response during acute resolving hepatitis A virus infection publication-title: J Exp Med doi: 10.1084/jem.20111906 – volume: 517 start-page: 85 ident: B73 article-title: Hepatitis A virus and the origins of picornaviruses publication-title: Nature doi: 10.1038/nature13806 – volume: 9 start-page: e1003256 year: 2013 ident: B56 article-title: Type i ifn triggers rig-i/tlr3/nlrp3-dependent inflammasome activation in influenza a virus infected cells publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003256 – volume: 29 start-page: 163 year: 2011 ident: B60 article-title: Plasmacytoid dendritic cells: recent progress and open questions publication-title: Annu. Rev. Immunol doi: 10.1146/annurev-immunol-031210-101345 – volume: 108 start-page: 11223 year: 2011 ident: B31 article-title: Acute hepatitis Avirus infection is associated with a limited type I interferon response and persistence of intrahepatic viral RNA. Proc. Natl. Acad. Sci publication-title: U.S.A. doi: 10.1073/pnas.1101939108 – volume: 22 start-page: 561 year: 2006 ident: B44 article-title: Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.05.012 – volume: 280 start-page: 16739 year: 2005 ident: B34 article-title: Distinct poly-I:C and virus-activated interferon signaling pathways in hepatocytes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M414139200 – volume: 178 start-page: 6444 year: 2007 ident: B70 article-title: Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses publication-title: J. Immunol. doi: 10.4049/jimmunol.178.10.6444 – volume: 7 start-page: 15 year: 2015 ident: B25 article-title: Holding the inflammatory system in check: NLRs keep it cool publication-title: F1000prime Rep. doi: 10.12703/P7-15 – volume: 8 start-page: 594 year: 2008 ident: B18 article-title: Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases publication-title: Nat. Rev. Immunol doi: 10.1038/nri2358 – volume: 448 start-page: 816 year: 2007 ident: B39 article-title: Small self-rna generated by rnase l amplifies antiviral innate immunity publication-title: Nature doi: 10.1038/nature06042 – volume: 198 start-page: 275 year: 1994 ident: B62 article-title: Proteinase 3C of hepatitis A virus (HAV) cleaves the HAV polyprotein P2-P3 at all sites including VP1/2A and 2A/2B publication-title: Virology doi: 10.1006/viro.1994.1030 – volume: 34 start-page: 895 year: 2014 ident: B8 article-title: Molecular biology and inhibitors of hepatitis a virus publication-title: Med. Res. Rev. doi: 10.1002/med.21292 – volume: 16 start-page: 2108 year: 2010 ident: B40 article-title: Rnase l releases a small rna from hcv rna that refolds into a potent pamp publication-title: RNA Public. RNA Soc. doi: 10.1261/rna.2244210 – volume: 314 start-page: 994 year: 2006 ident: B23 article-title: 5′-Triphosphate RNA is the ligand for RIG-I publication-title: Science doi: 10.1126/science.1132505 – volume: 104 start-page: 7253 year: 2007 ident: B77 article-title: Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0611506104 – volume: 74 start-page: 10950 year: 2000 ident: B10 article-title: Hepatitis A virus-specific immunoglobulin A mediates infection of hepatocytes with hepatitis A virus via the asialoglycoprotein receptor publication-title: J. Virol. doi: 10.1128/JVI.74.23.10950-10957.2000 – volume: 34 start-page: 866 ident: B78 article-title: Ddx1, ddx21, and dhx36 helicases form a complex with the adaptor molecule trif to sense dsrna in dendritic cells publication-title: Immunity doi: 10.1016/j.immuni.2011.03.027 – volume: 9 start-page: e87906 year: 2014 ident: B21 article-title: Human but not mouse hepatocytes respond to interferon-lambda in vivo publication-title: PLoS ONE doi: 10.1371/journal.pone.0087906 – volume: 280 start-page: 38133 year: 2005 ident: B4 article-title: Recognition of double-stranded RNA by human toll-like receptor 3 and downstream receptor signaling requires multimerization and an acidic pH publication-title: J. Biol. Chem. doi: 10.1074/jbc.M507163200 – volume: 243 start-page: 91 year: 2011 ident: B28 article-title: RIG-I-like receptors: cytoplasmic sensors for non-self RNA publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2011.01052.x – volume: 105 start-page: 258 year: 2008 ident: B32 article-title: The TLR3 signaling complex forms by cooperative receptor dimerization publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0710779105 – volume: 107 start-page: 37 year: 2017 ident: B69 article-title: Hmgb1 protein: a therapeutic target inside and outside the cell publication-title: Adv. Protein Chem. Struct. Biol doi: 10.1016/bs.apcsb.2016.10.001 – volume: 4 start-page: 161 year: 2003 ident: B50 article-title: TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction publication-title: Nat. Immunol. doi: 10.1038/ni886 – volume: 314 start-page: 997 year: 2006 ident: B53 article-title: RIG-I- mediated antiviral responses to single-stranded RNA bearing 5'-phosphates publication-title: Science doi: 10.1126/science.1132998 – volume: 88 start-page: 10252 year: 2014 ident: B71 article-title: Hepatitis A Virus 3C Protease Cleaves NEMO To Impair Induction of Beta Interferon publication-title: J. Virol doi: 10.1128/JVI.00869-14 – volume: 11 start-page: 1193 year: 2015 ident: B51 article-title: Ddx60 is involved in rig-i-dependent and independent antiviral responses, and its function is attenuated by virus-induced egfr activation publication-title: Cell Rep doi: 10.1016/j.celrep.2015.04.047 – volume: 86 start-page: 3411 year: 2012 ident: B6 article-title: Paramyxovirus V proteins interact with the RNA Helicase LGP2 to inhibit RIG-I-dependent interferon induction publication-title: J. Virol. doi: 10.1128/JVI.06405-11 – volume: 353 start-page: 1541 year: 2016 ident: B22 article-title: MAVS-dependent host species range and pathogenicity of human hepatitis A virus publication-title: Science doi: 10.1126/science.aaf8325 – volume: 107 start-page: 1512 year: 2010 ident: B61 article-title: LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0912986107 – volume: 17 start-page: 1093 year: 2006 ident: B64 article-title: Human membrane protein Tim-3 facilitates hepatitis A virus entry into target cells publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.17.6.1093 – volume: 140 start-page: 805 year: 2010 ident: B65 article-title: Pattern recognition receptors and inflammation publication-title: Cell doi: 10.1016/j.cell.2010.01.022 – volume: 147 start-page: 409 year: 2011 ident: B38 article-title: Structural insights into RNA recognition by RIG-I publication-title: Cell doi: 10.1016/j.cell.2011.09.023 – volume: 7 start-page: e1002169 year: 2011 ident: B58 article-title: Disruption of TLR3 Signaling Due to Cleavage of TRIF by the Hepatitis A virus protease- polymerase processing intermediate, 3CD publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002169 – volume: 20 start-page: 674 year: 2016 ident: B67 article-title: Dai senses influenza a virus genomic rna and activates ripk3-dependent cell death publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.09.014 – volume: 49 start-page: 1242 year: 2016 ident: B24 article-title: Discriminating self and non-self by rna: roles for rna structure, misfolding, and modification in regulating the innate immune sensor pkr publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00151 – volume: 15 start-page: 761 year: 2008 ident: B54 article-title: A second binding site for double- stranded RNA in TLR3 and consequences for interferon activation publication-title: Nat. Struct. Mol. Biol doi: 10.1038/nsmb.1453 – volume: 24 start-page: 528 year: 2003 ident: B1 article-title: Leucine-rich repeats and pathogen recognition in Toll-like receptors publication-title: Trends Immunol. doi: 10.1016/S1471-4906(03)00242-4 – volume: 72 start-page: 8013 year: 1998 ident: B57 article-title: Processing of proteinase precursors and their effect on hepatitis A virus particle formation publication-title: J. Virol. doi: 10.1128/JVI.72.10.8013-8020.1998 – volume: 320 start-page: 379 year: 2008 ident: B35 article-title: Structural basis of toll-like receptor 3 signaling with double-stranded RNA publication-title: Science doi: 10.1126/science.1155406 – volume: 1 start-page: aag2045 year: 2016 ident: B30 article-title: Zbp1/dai is an innate sensor of influenza virus triggering the nlrp3 inflammasome and programmed cell death pathways publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aag2045 – volume: 350 start-page: 826 ident: B72 article-title: Nlrp6 regulates intestinal antiviral innate immunity publication-title: Science doi: 10.1126/science.aab3145 – volume: 24 start-page: 614 year: 2005 ident: B49 article-title: Interferon-beta induction through toll-like receptor 3 depends on double-stranded RNA structure publication-title: DNA Cell Biol doi: 10.1089/dna.2005.24.614 – volume: 15 start-page: 717 year: 2014 ident: B48 article-title: Diverse intracellular pathogens activate type iii interferon expression from peroxisomes publication-title: Nat. Immunol. doi: 10.1038/ni.2915 |
SSID | ssj0000402000 |
Score | 2.219951 |
SecondaryResourceType | review_article |
Snippet | Hepatitis A virus (HAV) belongs to the family
. It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are sensed by... Hepatitis A virus (HAV) belongs to the family Picornaviridae. It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are... Hepatitis A virus (HAV) belongs to the family Picornaviridae . It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1865 |
SubjectTerms | HAV MAVS Microbiology NEMO TRIF type 1 interferon |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgERIXxJvwkpG4cMiSOHZsH1arstpVQcABUbQ3y47tpdLKhaaV6L9nxskWiipOHHJJ7MSaz-P5Jh7PEPJKy9oGrWPJfedLzmJX2lDH0ttWdd5a5nyO8v3UTmf8_bk4_308ehRgv9e1w3pSs-Xl4c8fm2NQ-CP0OMHeAgLzzmGUljqEqxXXyQ2wSxLV9ONI9vO6jK5SVQ17lXs77timnMJ_H-_8O3zyD3t0dofcHokknQzI3yXXQrpHbg6lJTf3yQesyZHPLFCbPMXinUPEa6KLSN-lBByTThLWjoCX089DqGzoqdvQacAw69W8pxP6db5c9w_I7Oz0y8m0HCsnlB1v2aqUPtooGPfaYX4bFoSLleOyiY12DWDjVOTCAxK1V1VUsVMSHDHrdWCs9rx5SA7SIoXHhEqNHIH5tgmchyoo4AieYU4b6Nn4piBvrmRmujGtOFa3uDTgXqCUTZayQSmbLOWCvN72-D6k1PhH27cIw7YdJsPONxbLCzPqlhEKN5NaGJ8WPDALkyxqHRSQozZIrwry8gpEA8qDOyI2hcW6N3huGFetWhbk0QDq9lOw8kneCl0QuQP3zlh2n6T5t5ygGyipVKJ68j8G_5TcQnHgb-xaPiMHq-U6PAcetHIv8vT-BTt8CAQ priority: 102 providerName: Scholars Portal |
Title | Induction and Suppression of Innate Antiviral Responses by Hepatitis A Virus |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30174659 https://www.proquest.com/docview/2099042517 https://pubmed.ncbi.nlm.nih.gov/PMC6107850 https://doaj.org/article/5811676e44954e2a8cdf99e87436e7d8 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9wgEEVRpEi5RE2bpG7TiEq55OCujbGB4yZKuq3aHqJstTcEBtSVKrbaj0P-fWZgs9qtqvbSgznYgNEbzLwxwwwhl0rUxisVSu56V3IW-tL4OpTOdLJ3xjDrkpfvt2405p8n7WQr1Rf6hOXwwBm4QStxp6DzHJg898xAD0EpL0HzdV64dMwXdN6WMZXWYDSLqirvS4IVpkBM096iK5f8ABfqki09lML1_4lj_u4quaV77l6QozVppMM82GOy5-NLcpDTSD6-Il8w_0Y6n0BNdBQTdWbv1khngX6KEfgkHUbMEwGd0_vsFusX1D7SkUeX6uV0QYf0-3S-WpyQ8d3tw82oXGdJKHvesWUpXDChZdwpi7FsmG9tqCwXTWiUbUAOVgbeOkC9drIKMvRSgNFlnPKM1Y43p2Q_zqJ_TahQyAeY6xqA21deAh9wDOPXQMvGNQUZPGOm-3UIccxk8VODKYEo64SyRpR1QrkgV5sWv3L4jL_UvUYxbOph4Ot0A6aDXk8H_a_pUJD3z0LU8KHg7oeJfrZaaDwjjCtULQpyloW6eRWscoJ3rSqI2BH3zlh2n8TpjxSMG-inkG315n8M_i05RDjwl3Utzsn-cr7y74DzLO1Fmt5QfpzUUH7l8gnlBAFc |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Induction+and+Suppression+of+Innate+Antiviral+Responses+by+Hepatitis+A+Virus&rft.jtitle=Frontiers+in+microbiology&rft.au=Xin+Cao&rft.au=Xin+Cao&rft.au=Xin+Cao&rft.au=Yu-jia+Xue&rft.date=2018-08-17&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=9&rft_id=info:doi/10.3389%2Ffmicb.2018.01865&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5811676e44954e2a8cdf99e87436e7d8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |