Induction and Suppression of Innate Antiviral Responses by Hepatitis A Virus

Hepatitis A virus (HAV) belongs to the family . It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are sensed by pathogen-associated pattern recognition receptors (PRRs) such as Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I), and melanoma...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 9; p. 1865
Main Authors Cao, Xin, Xue, Yu-jia, Du, Jiang-long, Xu, Qiang, Yang, Xue-cai, Zeng, Yan, Wang, Bo-bo, Wang, Hai-zhen, Liu, Jing, Cai, Kui-zheng, Ma, Zhong-ren
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 17.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hepatitis A virus (HAV) belongs to the family . It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are sensed by pathogen-associated pattern recognition receptors (PRRs) such as Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated gene 5 (MDA5). PRR activation leads to production of type 1 interferon (IFN-α/β), serving as the first line of defense against viruses. However, HAV has developed various strategies to compromise the innate immune system and promote viral propagation within the host cells. The long coevolution of HAV in hosts has prompted the development of effective immune antagonism strategies that actively fight against host antiviral responses. Proteases encoded by HAV can cleave the mitochondrial antiviral signaling protein (MAVS, also known as IPS-1, VISA, or Cardif), TIR domain- containing adaptor inducing IFN-β (TRIF, also known as TICAM-1) and nuclear factor-κB (NF-κB) essential modulator (NEMO), which are key adaptor proteins in RIG-I-like receptor (RLR), TLR3 and NF-κB signaling, respectively. In this mini-review, we summarize all the recent progress on the interaction between HAV and the host, especially focusing on how HAV abrogates the antiviral effects of the innate immune system.
AbstractList Hepatitis A virus (HAV) belongs to the family Picornaviridae. It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are sensed by pathogen-associated pattern recognition receptors (PRRs) such as Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated gene 5 (MDA5). PRR activation leads to production of type 1 interferon (IFN-α/β), serving as the first line of defense against viruses. However, HAV has developed various strategies to compromise the innate immune system and promote viral propagation within the host cells. The long coevolution of HAV in hosts has prompted the development of effective immune antagonism strategies that actively fight against host antiviral responses. Proteases encoded by HAV can cleave the mitochondrial antiviral signaling protein (MAVS, also known as IPS-1, VISA, or Cardif), TIR domain- containing adaptor inducing IFN-β (TRIF, also known as TICAM-1) and nuclear factor-κB (NF-κB) essential modulator (NEMO), which are key adaptor proteins in RIG-I-like receptor (RLR), TLR3 and NF-κB signaling, respectively. In this mini-review, we summarize all the recent progress on the interaction between HAV and the host, especially focusing on how HAV abrogates the antiviral effects of the innate immune system.Hepatitis A virus (HAV) belongs to the family Picornaviridae. It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are sensed by pathogen-associated pattern recognition receptors (PRRs) such as Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated gene 5 (MDA5). PRR activation leads to production of type 1 interferon (IFN-α/β), serving as the first line of defense against viruses. However, HAV has developed various strategies to compromise the innate immune system and promote viral propagation within the host cells. The long coevolution of HAV in hosts has prompted the development of effective immune antagonism strategies that actively fight against host antiviral responses. Proteases encoded by HAV can cleave the mitochondrial antiviral signaling protein (MAVS, also known as IPS-1, VISA, or Cardif), TIR domain- containing adaptor inducing IFN-β (TRIF, also known as TICAM-1) and nuclear factor-κB (NF-κB) essential modulator (NEMO), which are key adaptor proteins in RIG-I-like receptor (RLR), TLR3 and NF-κB signaling, respectively. In this mini-review, we summarize all the recent progress on the interaction between HAV and the host, especially focusing on how HAV abrogates the antiviral effects of the innate immune system.
Hepatitis A virus (HAV) belongs to the family Picornaviridae . It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are sensed by pathogen-associated pattern recognition receptors (PRRs) such as Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated gene 5 (MDA5). PRR activation leads to production of type 1 interferon (IFN-α/β), serving as the first line of defense against viruses. However, HAV has developed various strategies to compromise the innate immune system and promote viral propagation within the host cells. The long coevolution of HAV in hosts has prompted the development of effective immune antagonism strategies that actively fight against host antiviral responses. Proteases encoded by HAV can cleave the mitochondrial antiviral signaling protein (MAVS, also known as IPS-1, VISA, or Cardif), TIR domain- containing adaptor inducing IFN-β (TRIF, also known as TICAM-1) and nuclear factor-κB (NF-κB) essential modulator (NEMO), which are key adaptor proteins in RIG-I-like receptor (RLR), TLR3 and NF-κB signaling, respectively. In this mini-review, we summarize all the recent progress on the interaction between HAV and the host, especially focusing on how HAV abrogates the antiviral effects of the innate immune system.
Hepatitis A virus (HAV) belongs to the family . It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are sensed by pathogen-associated pattern recognition receptors (PRRs) such as Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated gene 5 (MDA5). PRR activation leads to production of type 1 interferon (IFN-α/β), serving as the first line of defense against viruses. However, HAV has developed various strategies to compromise the innate immune system and promote viral propagation within the host cells. The long coevolution of HAV in hosts has prompted the development of effective immune antagonism strategies that actively fight against host antiviral responses. Proteases encoded by HAV can cleave the mitochondrial antiviral signaling protein (MAVS, also known as IPS-1, VISA, or Cardif), TIR domain- containing adaptor inducing IFN-β (TRIF, also known as TICAM-1) and nuclear factor-κB (NF-κB) essential modulator (NEMO), which are key adaptor proteins in RIG-I-like receptor (RLR), TLR3 and NF-κB signaling, respectively. In this mini-review, we summarize all the recent progress on the interaction between HAV and the host, especially focusing on how HAV abrogates the antiviral effects of the innate immune system.
Hepatitis A virus (HAV) belongs to the family Picornaviridae. It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are sensed by pathogen-associated pattern recognition receptors (PRRs) such as Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated gene 5 (MDA5). PRR activation leads to production of type 1 interferon (IFN-α/β), serving as the first line of defense against viruses. However, HAV has developed various strategies to compromise the innate immune system and promote viral propagation within the host cells. The long coevolution of HAV in hosts has prompted the development of effective immune antagonism strategies that actively fight against host antiviral responses. Proteases encoded by HAV can cleave the mitochondrial antiviral signaling protein (MAVS, also known as IPS-1, VISA, or Cardif), TIR domain- containing adaptor inducing IFN-β (TRIF, also known as TICAM-1) and nuclear factor-κB (NF-κB) essential modulator (NEMO), which are key adaptor proteins in RIG-I-like receptor (RLR), TLR3 and NF-κB signaling, respectively. In this mini-review, we summarize all the recent progress on the interaction between HAV and the host, especially focusing on how HAV abrogates the antiviral effects of the innate immune system.
Author Xue, Yu-jia
Xu, Qiang
Cai, Kui-zheng
Liu, Jing
Du, Jiang-long
Yang, Xue-cai
Wang, Hai-zhen
Cao, Xin
Wang, Bo-bo
Ma, Zhong-ren
Zeng, Yan
AuthorAffiliation 3 State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
4 Hebi Precision Medical Research Institute, People's Hospital of Hebi , Hebi , China
5 Department of Medical Oncology People's Hospital of Hebi, Hebi, China
1 College of Life Science and Engineering, Northwest Minzu University, Engineering & Technology Research Center for Animal Cell , Lanzhou , China
2 Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission , Lanzhou , China
AuthorAffiliation_xml – name: 4 Hebi Precision Medical Research Institute, People's Hospital of Hebi , Hebi , China
– name: 5 Department of Medical Oncology People's Hospital of Hebi, Hebi, China
– name: 2 Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission , Lanzhou , China
– name: 1 College of Life Science and Engineering, Northwest Minzu University, Engineering & Technology Research Center for Animal Cell , Lanzhou , China
– name: 3 State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
Author_xml – sequence: 1
  givenname: Xin
  surname: Cao
  fullname: Cao, Xin
– sequence: 2
  givenname: Yu-jia
  surname: Xue
  fullname: Xue, Yu-jia
– sequence: 3
  givenname: Jiang-long
  surname: Du
  fullname: Du, Jiang-long
– sequence: 4
  givenname: Qiang
  surname: Xu
  fullname: Xu, Qiang
– sequence: 5
  givenname: Xue-cai
  surname: Yang
  fullname: Yang, Xue-cai
– sequence: 6
  givenname: Yan
  surname: Zeng
  fullname: Zeng, Yan
– sequence: 7
  givenname: Bo-bo
  surname: Wang
  fullname: Wang, Bo-bo
– sequence: 8
  givenname: Hai-zhen
  surname: Wang
  fullname: Wang, Hai-zhen
– sequence: 9
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
– sequence: 10
  givenname: Kui-zheng
  surname: Cai
  fullname: Cai, Kui-zheng
– sequence: 11
  givenname: Zhong-ren
  surname: Ma
  fullname: Ma, Zhong-ren
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30174659$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rHCEYxiWkJGmae05ljr3sVh3H0UthCW2zsFDoF72Jo6-JYVan6gTy39fdTUNSqOD38zyv8nuNjkMMgNAlwcu2FfK923ozLCkmYlk7747QGeGcLVpMfx0_W5-ii5zvcG0M0zqeoNMWk57xTp6hzTrY2RQfQ6ODbb7N05Qg590-umYdgi7QrELx9z7psfkKeYohQ26Gh-YaJl188blZNT99mvMb9MrpMcPF43yOfnz6-P3qerH58nl9tdosDOO0LHrrtOsos3LAlAoK3eDwwPrWtXJoQcpBONZZTQdiBXbCGdFLyrSVQCmxrD1H60OujfpOTclvdXpQUXu1P4jpRulUvBlBdYIQ3nNgTHYMqBbGOilB9Kzl0FtRsz4csqZ52II1EEr96IvQlzfB36qbeK84wb3ocA149xiQ4u8ZclFbnw2Mow4Q56wolhIz2pG-St8-r_VU5C-OKsAHgUkx5wTuSUKw2kFXe-hqB13toVcL_8difNE7oPW1fvy_8Q9p87JP
CitedBy_id crossref_primary_10_3390_v15040864
crossref_primary_10_1111_jvh_13379
crossref_primary_10_3390_v15030666
crossref_primary_10_3390_v14102129
crossref_primary_10_1016_j_vetmic_2025_110479
crossref_primary_10_1089_ars_2022_0114
Cites_doi 10.1016/j.immuni.2013.07.001
10.1038/nrg2303
10.1126/science.1087262
10.1002/hep.21052
10.1002/cphy.c120026
10.1016/j.cell.2005.08.012
10.1371/journal.ppat.1005772
10.1038/ni.3647
10.1038/ni.3853
10.1101/cshperspect.a033464
10.1128/MCB.01368-10
10.1055/s-0030-1267534.
10.4049/jimmunol.1303322
10.1099/0022-1317-77-2-247
10.1002/j.1460-2075.1996.tb00803.x
10.1099/vir.0.83521-0
10.1172/JCI77527
10.1038/ni1465
10.1128/JVI.79.17.10968-10977.2005
10.4049/jimmunol.1101307
10.1038/ni.1824
10.1038/ni.1876
10.1371/journal.ppat.1005264
10.1038/nature10537
10.1126/scisignal.2004841
10.1128/JVI.01585-06
10.1128/JVI.76.23.11920-11930.2002
10.1016/j.immuni
10.1128/JVI.02744-14
10.1128/JVI.00510-12
10.1128/JVI.72.8.6621-6628.1998
10.1084/jem.20030162
10.1101/cshperspect.a033480
10.1146/annurev-immunol-042617-053309
10.1016/j.immuni.2017.11.025
10.1016/j.bbagrm.2009.06.005
10.1038/nature12029
10.1084/jem.20111906
10.1038/nature13806
10.1371/journal.ppat.1003256
10.1146/annurev-immunol-031210-101345
10.1073/pnas.1101939108
10.1016/j.molcel.2006.05.012
10.1074/jbc.M414139200
10.4049/jimmunol.178.10.6444
10.12703/P7-15
10.1038/nri2358
10.1038/nature06042
10.1006/viro.1994.1030
10.1002/med.21292
10.1261/rna.2244210
10.1126/science.1132505
10.1073/pnas.0611506104
10.1128/JVI.74.23.10950-10957.2000
10.1016/j.immuni.2011.03.027
10.1371/journal.pone.0087906
10.1074/jbc.M507163200
10.1111/j.1600-065X.2011.01052.x
10.1073/pnas.0710779105
10.1016/bs.apcsb.2016.10.001
10.1038/ni886
10.1126/science.1132998
10.1128/JVI.00869-14
10.1016/j.celrep.2015.04.047
10.1128/JVI.06405-11
10.1126/science.aaf8325
10.1073/pnas.0912986107
10.3892/ijmm.17.6.1093
10.1016/j.cell.2010.01.022
10.1016/j.cell.2011.09.023
10.1371/journal.ppat.1002169
10.1016/j.chom.2016.09.014
10.1021/acs.accounts.6b00151
10.1038/nsmb.1453
10.1016/S1471-4906(03)00242-4
10.1128/JVI.72.10.8013-8020.1998
10.1126/science.1155406
10.1126/sciimmunol.aag2045
10.1126/science.aab3145
10.1089/dna.2005.24.614
10.1038/ni.2915
ContentType Journal Article
Copyright Copyright © 2018 Cao, Xue, Du, Xu, Yang, Zeng, Wang, Wang, Liu, Cai and Ma. 2018 Cao, Xue, Du, Xu, Yang, Zeng, Wang, Wang, Liu, Cai and Ma
Copyright_xml – notice: Copyright © 2018 Cao, Xue, Du, Xu, Yang, Zeng, Wang, Wang, Liu, Cai and Ma. 2018 Cao, Xue, Du, Xu, Yang, Zeng, Wang, Wang, Liu, Cai and Ma
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmicb.2018.01865
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_5811676e44954e2a8cdf99e87436e7d8
PMC6107850
30174659
10_3389_fmicb_2018_01865
Genre Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-7dfaf524d9b02282e5bf0b473f39b3e99b8f45da2b1d80f8fc87924ad9e221d43
IEDL.DBID DOA
ISSN 1664-302X
IngestDate Wed Aug 27 01:24:45 EDT 2025
Thu Aug 21 14:26:12 EDT 2025
Fri Jul 11 04:40:19 EDT 2025
Thu Apr 03 07:04:54 EDT 2025
Tue Jul 01 00:55:19 EDT 2025
Thu Apr 24 22:57:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords type 1 interferon
MAVS
HAV
TRIF
NEMO
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-7dfaf524d9b02282e5bf0b473f39b3e99b8f45da2b1d80f8fc87924ad9e221d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Zhiyong Li, Lanzhou Veterinary Research Institute (CAAS), China
These authors have contributed equally to this work
This article was submitted to Virology, a section of the journal Frontiers in Microbiology
Reviewed by: Koji Ishii, National Institute of Infectious Diseases (NIID), Japan; Long Yang, McGill University, Canada
OpenAccessLink https://doaj.org/article/5811676e44954e2a8cdf99e87436e7d8
PMID 30174659
PQID 2099042517
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5811676e44954e2a8cdf99e87436e7d8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6107850
proquest_miscellaneous_2099042517
pubmed_primary_30174659
crossref_primary_10_3389_fmicb_2018_01865
crossref_citationtrail_10_3389_fmicb_2018_01865
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-17
PublicationDateYYYYMMDD 2018-08-17
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-17
  day: 17
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Fensterl (B16) 2005; 79
Gringhuis (B20) 2017; 18
Hermant (B21) 2014; 9
Gilliet (B18) 2008; 8
Hull (B24) 2016; 49
Zhang (B79); 187
Paulmann (B52) 2008; 89
Reizis (B60) 2011; 29
Hirai-Yuki (B22) 2016; 353
Leonard (B32) 2008; 105
Takeuchi (B65) 2010; 140
Feigelstock (B11) 1998; 72
Dotzauer (B10) 2000; 74
Kuriakose (B30) 2016; 1
Seth (B63) 2005; 122
Qu (B58) 2011; 7
Chow (B7) 2018; 36
Miyashita (B46) 2011; 31
Odendall (B48) 2014; 15
Lanford (B31) 2011; 108
Tami (B66) 2007; 81
Lu (B36) 2014; 193
McKnight (B43) 2018; 2
Probst (B57) 1998; 72
Martin (B42) 2006; 43
Mosallanejad (B47) 2014; 7
Childs (B6) 2012; 86
Feng (B13) 2013; 496
Leulier (B33) 2008; 9
Botos (B3) 2009; 1789
Oshiumi (B50) 2003; 4
Kato (B28) 2011; 243
Malathi (B39) 2007; 448
Zhang (B78); 34
Yang (B77) 2007; 104
Bell (B1) 2003; 24
Bouteiller (B4) 2005; 280
Malathi (B40) 2010; 16
Yamamoto (B75) 2003; 301
Zhou (B81) 2012; 209
Yang (B76) 2010; 11
Gosert (B19) 1996; 77
Jha (B25) 2015; 7
Ugrinova (B69) 2017; 107
Wang (B71) 2014; 88
Oshiumi (B51) 2015; 11
Qu (B59) 2010; 30
Kaplan (B27) 1996; 15
Wang (B72); 350
Pothlichet (B56) 2013; 9
Lund (B37) 2003; 198
Venkataraman (B70) 2007; 178
Wen (B74) 2013; 39
Mitoma (B45) 2013; 39
Satoh (B61) 2010; 107
Pirher (B54) 2008; 15
Luo (B38) 2011; 147
Wang (B73); 517
Bender (B2) 2015; 76
Poeck (B55) 2010; 11
Li (B34) 2005; 280
Liu (B35) 2008; 320
Schultheiss (B62) 1994; 198
Hornung (B23) 2006; 314
Jiang (B26) 2011; 479
Okahira (B49) 2005; 24
Tremblay (B68) 2017; 13
Feng (B14) 2018; 23
Meylan (B44) 2006; 22
Dixon (B9) 2013; 3
Kim (B29) 2018; 48
Feng (B15) 2015; 125
Thapa (B67) 2016; 20
Sui (B64) 2006; 17
Zhao (B80) 2007; 8
Fensterl (B17) 2015; 89
Feng (B12) 2017; 18
Pichlmair (B53) 2006; 314
Debing (B8) 2014; 34
Malur (B41) 2012; 86
Brack (B5) 2002; 76
References_xml – volume: 39
  start-page: 123
  year: 2013
  ident: B45
  article-title: The dhx33 rna helicase senses cytosolic rna and activates the nlrp3 inflammasome
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.07.001
– volume: 9
  start-page: 165
  year: 2008
  ident: B33
  article-title: Toll-like receptors — taking an evolutionary approach
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2303
– volume: 301
  start-page: 640
  year: 2003
  ident: B75
  article-title: Role of adaptor TRIF in the MyD88- independent toll-like receptor signaling pathway
  publication-title: Science
  doi: 10.1126/science.1087262
– volume: 43
  start-page: S164
  year: 2006
  ident: B42
  article-title: Hepatitis a virus: from discovery to vaccines
  publication-title: Hepatology
  doi: 10.1002/hep.21052
– volume: 3
  start-page: 785
  year: 2013
  ident: B9
  article-title: Kupffer cells in the liver
  publication-title: Compr. Physiol.
  doi: 10.1002/cphy.c120026
– volume: 122
  start-page: 669
  year: 2005
  ident: B63
  article-title: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.012
– volume: 13
  start-page: e1005772
  year: 2017
  ident: B68
  article-title: Spliceosome snrnp200 promotes viral rna sensing and irf3 activation of antiviral response
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005772
– volume: 18
  start-page: 225
  year: 2017
  ident: B20
  article-title: Hiv-1 blocks the signaling adaptor mavs to evade antiviral host defense after sensing of abortive hiv-1 rna by the host helicase ddx3
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3647
– volume: 18
  start-page: 1299
  year: 2017
  ident: B12
  article-title: NLRX1 promotes immediate IRF1-directed antiviral responses by limiting dsRNA-activated translational inhibition mediated by PKR
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3853
– volume: 23
  start-page: a033464
  year: 2018
  ident: B14
  article-title: Innate immunity to enteric hepatitis viruses
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a033464
– volume: 31
  start-page: 3802
  year: 2011
  ident: B46
  article-title: Ddx60, a dexd/h box helicase, is a novel antiviral factor promoting rig-i-like receptor-mediated signaling
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01368-10
– volume: 30
  start-page: 319
  year: 2010
  ident: B59
  article-title: Hepatitis A and Hepatitis C viruses: divergent infection outcomes marked by similarities in induction and evasion of interferon responses
  publication-title: Semin. Liver Dis.
  doi: 10.1055/s-0030-1267534.
– volume: 193
  start-page: 1364
  year: 2014
  ident: B36
  article-title: Dhx15 senses double-stranded rna in myeloid dendritic cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1303322
– volume: 77
  start-page: 247
  year: 1996
  ident: B19
  article-title: Identification of hepatitis A virus non-structural protein 2B and its release by the major virus protease 3C
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-77-2-247
– volume: 15
  start-page: 4282
  year: 1996
  ident: B27
  article-title: Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb00803.x
– volume: 89
  start-page: 1593
  year: 2008
  ident: B52
  article-title: Hepatitis A virus protein 2B suppresses beta interferon (IFN) gene transcription by interfering with IFN regulatory factor 3 activation
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.83521-0
– volume: 125
  start-page: 169
  year: 2015
  ident: B15
  article-title: Human pDCs preferentially sense enveloped hepatitis A virions
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI77527
– volume: 8
  start-page: 592
  year: 2007
  ident: B80
  article-title: The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1465
– volume: 79
  start-page: 10968
  year: 2005
  ident: B16
  article-title: Hepatitis A virus suppresses RIG-I-mediated IRF-3 activation to block induction of beta interferon
  publication-title: J. Virol.
  doi: 10.1128/JVI.79.17.10968-10977.2005
– volume: 187
  start-page: 4501
  ident: B79
  article-title: Dhx9 pairs with ips-1 to sense double-stranded rna in myeloid dendritic cells
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.1101307
– volume: 11
  start-page: 63
  year: 2010
  ident: B55
  article-title: Recognition of rna virus by rig-i results in activation of card9 and inflammasome signaling for interleukin 1 beta production
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1824
– volume: 11
  start-page: 487
  year: 2010
  ident: B76
  article-title: The cytosolic nucleic acid sensor lrrfip1 mediates the production of type i interferon via a β-catenin-dependent pathway
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1876
– volume: 76
  start-page: 85
  year: 2015
  ident: B2
  article-title: Activation of type i and iii interferon response by mitochondrial and peroxisomal mavs and inhibition by hepatitis c virus
  publication-title: Cytokine
  doi: 10.1371/journal.ppat.1005264
– volume: 479
  start-page: 423
  year: 2011
  ident: B26
  article-title: Structural basis of RNA recognition and activation by innate immune receptor RIG-I
  publication-title: Nature
  doi: 10.1038/nature10537
– volume: 7
  start-page: ra40
  year: 2014
  ident: B47
  article-title: The deah-box rna helicase dhx15 activates nf-κb and mapk signaling downstream of mavs during antiviral responses
  publication-title: Sci. Signal
  doi: 10.1126/scisignal.2004841
– volume: 81
  start-page: 3437
  year: 2007
  ident: B66
  article-title: Immunoglobulin A (IgA) is a natural ligand of hepatitis A virus cellular receptor 1 (HAVCR1), and the association of IgA with HAVCR1 enhances virus-receptor interactions
  publication-title: J. Virol.
  doi: 10.1128/JVI.01585-06
– volume: 76
  start-page: 11920
  year: 2002
  ident: B5
  article-title: HepatitisAvirus inhibits cellular antiviral defense mechanisms induced by double-stranded RNA
  publication-title: J. Virol.
  doi: 10.1128/JVI.76.23.11920-11930.2002
– volume: 39
  start-page: 432
  year: 2013
  ident: B74
  article-title: New mechanisms of nod-like receptor-associated inflammasome activation
  publication-title: Immunity
  doi: 10.1016/j.immuni
– volume: 89
  start-page: 2462
  year: 2015
  ident: B17
  article-title: Interferon-induced ifit proteins: their role in viral pathogenesis
  publication-title: J. Virol.
  doi: 10.1128/JVI.02744-14
– volume: 86
  start-page: 10733
  year: 2012
  ident: B41
  article-title: LGP2 downregulates interferon production during infection with seasonal human influenza A viruses that activate interferon regulatory factor 3
  publication-title: J. Virol
  doi: 10.1128/JVI.00510-12
– volume: 72
  start-page: 6621
  year: 1998
  ident: B11
  publication-title: J. Virol.
  doi: 10.1128/JVI.72.8.6621-6628.1998
– volume: 198
  start-page: 513
  year: 2003
  ident: B37
  article-title: Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20030162
– volume: 2
  start-page: a033480
  year: 2018
  ident: B43
  article-title: Hepatitis A virus genome organization and replication strategy
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a033480
– volume: 36
  start-page: 667
  year: 2018
  ident: B7
  article-title: RIG-I and Other RNA sensors in antiviral immunity
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-042617-053309
– volume: 48
  start-page: e5
  year: 2018
  ident: B29
  article-title: Innate-like Cytotoxic Function of Bystander-Activated CD8+ T cells is associated with liver injury in acute hepatitis A
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.11.025
– volume: 1789
  start-page: 667
  year: 2009
  ident: B3
  article-title: The toll-like receptor 3:dsRNA signaling complex
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2009.06.005
– volume: 496
  start-page: 367
  year: 2013
  ident: B13
  article-title: A pathogenic picornavirus acquires an envelope by hijacking cellular membranes
  publication-title: Nature
  doi: 10.1038/nature12029
– volume: 209
  start-page: 1481
  year: 2012
  ident: B81
  article-title: Dominance of the CD4+ T helper cell response during acute resolving hepatitis A virus infection
  publication-title: J Exp Med
  doi: 10.1084/jem.20111906
– volume: 517
  start-page: 85
  ident: B73
  article-title: Hepatitis A virus and the origins of picornaviruses
  publication-title: Nature
  doi: 10.1038/nature13806
– volume: 9
  start-page: e1003256
  year: 2013
  ident: B56
  article-title: Type i ifn triggers rig-i/tlr3/nlrp3-dependent inflammasome activation in influenza a virus infected cells
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003256
– volume: 29
  start-page: 163
  year: 2011
  ident: B60
  article-title: Plasmacytoid dendritic cells: recent progress and open questions
  publication-title: Annu. Rev. Immunol
  doi: 10.1146/annurev-immunol-031210-101345
– volume: 108
  start-page: 11223
  year: 2011
  ident: B31
  article-title: Acute hepatitis Avirus infection is associated with a limited type I interferon response and persistence of intrahepatic viral RNA. Proc. Natl. Acad. Sci
  publication-title: U.S.A.
  doi: 10.1073/pnas.1101939108
– volume: 22
  start-page: 561
  year: 2006
  ident: B44
  article-title: Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.05.012
– volume: 280
  start-page: 16739
  year: 2005
  ident: B34
  article-title: Distinct poly-I:C and virus-activated interferon signaling pathways in hepatocytes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M414139200
– volume: 178
  start-page: 6444
  year: 2007
  ident: B70
  article-title: Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.178.10.6444
– volume: 7
  start-page: 15
  year: 2015
  ident: B25
  article-title: Holding the inflammatory system in check: NLRs keep it cool
  publication-title: F1000prime Rep.
  doi: 10.12703/P7-15
– volume: 8
  start-page: 594
  year: 2008
  ident: B18
  article-title: Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases
  publication-title: Nat. Rev. Immunol
  doi: 10.1038/nri2358
– volume: 448
  start-page: 816
  year: 2007
  ident: B39
  article-title: Small self-rna generated by rnase l amplifies antiviral innate immunity
  publication-title: Nature
  doi: 10.1038/nature06042
– volume: 198
  start-page: 275
  year: 1994
  ident: B62
  article-title: Proteinase 3C of hepatitis A virus (HAV) cleaves the HAV polyprotein P2-P3 at all sites including VP1/2A and 2A/2B
  publication-title: Virology
  doi: 10.1006/viro.1994.1030
– volume: 34
  start-page: 895
  year: 2014
  ident: B8
  article-title: Molecular biology and inhibitors of hepatitis a virus
  publication-title: Med. Res. Rev.
  doi: 10.1002/med.21292
– volume: 16
  start-page: 2108
  year: 2010
  ident: B40
  article-title: Rnase l releases a small rna from hcv rna that refolds into a potent pamp
  publication-title: RNA Public. RNA Soc.
  doi: 10.1261/rna.2244210
– volume: 314
  start-page: 994
  year: 2006
  ident: B23
  article-title: 5′-Triphosphate RNA is the ligand for RIG-I
  publication-title: Science
  doi: 10.1126/science.1132505
– volume: 104
  start-page: 7253
  year: 2007
  ident: B77
  article-title: Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.0611506104
– volume: 74
  start-page: 10950
  year: 2000
  ident: B10
  article-title: Hepatitis A virus-specific immunoglobulin A mediates infection of hepatocytes with hepatitis A virus via the asialoglycoprotein receptor
  publication-title: J. Virol.
  doi: 10.1128/JVI.74.23.10950-10957.2000
– volume: 34
  start-page: 866
  ident: B78
  article-title: Ddx1, ddx21, and dhx36 helicases form a complex with the adaptor molecule trif to sense dsrna in dendritic cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.03.027
– volume: 9
  start-page: e87906
  year: 2014
  ident: B21
  article-title: Human but not mouse hepatocytes respond to interferon-lambda in vivo
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0087906
– volume: 280
  start-page: 38133
  year: 2005
  ident: B4
  article-title: Recognition of double-stranded RNA by human toll-like receptor 3 and downstream receptor signaling requires multimerization and an acidic pH
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M507163200
– volume: 243
  start-page: 91
  year: 2011
  ident: B28
  article-title: RIG-I-like receptors: cytoplasmic sensors for non-self RNA
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2011.01052.x
– volume: 105
  start-page: 258
  year: 2008
  ident: B32
  article-title: The TLR3 signaling complex forms by cooperative receptor dimerization
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0710779105
– volume: 107
  start-page: 37
  year: 2017
  ident: B69
  article-title: Hmgb1 protein: a therapeutic target inside and outside the cell
  publication-title: Adv. Protein Chem. Struct. Biol
  doi: 10.1016/bs.apcsb.2016.10.001
– volume: 4
  start-page: 161
  year: 2003
  ident: B50
  article-title: TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction
  publication-title: Nat. Immunol.
  doi: 10.1038/ni886
– volume: 314
  start-page: 997
  year: 2006
  ident: B53
  article-title: RIG-I- mediated antiviral responses to single-stranded RNA bearing 5'-phosphates
  publication-title: Science
  doi: 10.1126/science.1132998
– volume: 88
  start-page: 10252
  year: 2014
  ident: B71
  article-title: Hepatitis A Virus 3C Protease Cleaves NEMO To Impair Induction of Beta Interferon
  publication-title: J. Virol
  doi: 10.1128/JVI.00869-14
– volume: 11
  start-page: 1193
  year: 2015
  ident: B51
  article-title: Ddx60 is involved in rig-i-dependent and independent antiviral responses, and its function is attenuated by virus-induced egfr activation
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.04.047
– volume: 86
  start-page: 3411
  year: 2012
  ident: B6
  article-title: Paramyxovirus V proteins interact with the RNA Helicase LGP2 to inhibit RIG-I-dependent interferon induction
  publication-title: J. Virol.
  doi: 10.1128/JVI.06405-11
– volume: 353
  start-page: 1541
  year: 2016
  ident: B22
  article-title: MAVS-dependent host species range and pathogenicity of human hepatitis A virus
  publication-title: Science
  doi: 10.1126/science.aaf8325
– volume: 107
  start-page: 1512
  year: 2010
  ident: B61
  article-title: LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.0912986107
– volume: 17
  start-page: 1093
  year: 2006
  ident: B64
  article-title: Human membrane protein Tim-3 facilitates hepatitis A virus entry into target cells
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.17.6.1093
– volume: 140
  start-page: 805
  year: 2010
  ident: B65
  article-title: Pattern recognition receptors and inflammation
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.022
– volume: 147
  start-page: 409
  year: 2011
  ident: B38
  article-title: Structural insights into RNA recognition by RIG-I
  publication-title: Cell
  doi: 10.1016/j.cell.2011.09.023
– volume: 7
  start-page: e1002169
  year: 2011
  ident: B58
  article-title: Disruption of TLR3 Signaling Due to Cleavage of TRIF by the Hepatitis A virus protease- polymerase processing intermediate, 3CD
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002169
– volume: 20
  start-page: 674
  year: 2016
  ident: B67
  article-title: Dai senses influenza a virus genomic rna and activates ripk3-dependent cell death
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.09.014
– volume: 49
  start-page: 1242
  year: 2016
  ident: B24
  article-title: Discriminating self and non-self by rna: roles for rna structure, misfolding, and modification in regulating the innate immune sensor pkr
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00151
– volume: 15
  start-page: 761
  year: 2008
  ident: B54
  article-title: A second binding site for double- stranded RNA in TLR3 and consequences for interferon activation
  publication-title: Nat. Struct. Mol. Biol
  doi: 10.1038/nsmb.1453
– volume: 24
  start-page: 528
  year: 2003
  ident: B1
  article-title: Leucine-rich repeats and pathogen recognition in Toll-like receptors
  publication-title: Trends Immunol.
  doi: 10.1016/S1471-4906(03)00242-4
– volume: 72
  start-page: 8013
  year: 1998
  ident: B57
  article-title: Processing of proteinase precursors and their effect on hepatitis A virus particle formation
  publication-title: J. Virol.
  doi: 10.1128/JVI.72.10.8013-8020.1998
– volume: 320
  start-page: 379
  year: 2008
  ident: B35
  article-title: Structural basis of toll-like receptor 3 signaling with double-stranded RNA
  publication-title: Science
  doi: 10.1126/science.1155406
– volume: 1
  start-page: aag2045
  year: 2016
  ident: B30
  article-title: Zbp1/dai is an innate sensor of influenza virus triggering the nlrp3 inflammasome and programmed cell death pathways
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aag2045
– volume: 350
  start-page: 826
  ident: B72
  article-title: Nlrp6 regulates intestinal antiviral innate immunity
  publication-title: Science
  doi: 10.1126/science.aab3145
– volume: 24
  start-page: 614
  year: 2005
  ident: B49
  article-title: Interferon-beta induction through toll-like receptor 3 depends on double-stranded RNA structure
  publication-title: DNA Cell Biol
  doi: 10.1089/dna.2005.24.614
– volume: 15
  start-page: 717
  year: 2014
  ident: B48
  article-title: Diverse intracellular pathogens activate type iii interferon expression from peroxisomes
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2915
SSID ssj0000402000
Score 2.219951
SecondaryResourceType review_article
Snippet Hepatitis A virus (HAV) belongs to the family . It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are sensed by...
Hepatitis A virus (HAV) belongs to the family Picornaviridae. It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are...
Hepatitis A virus (HAV) belongs to the family Picornaviridae . It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1865
SubjectTerms HAV
MAVS
Microbiology
NEMO
TRIF
type 1 interferon
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgERIXxJvwkpG4cMiSOHZsH1arstpVQcABUbQ3y47tpdLKhaaV6L9nxskWiipOHHJJ7MSaz-P5Jh7PEPJKy9oGrWPJfedLzmJX2lDH0ttWdd5a5nyO8v3UTmf8_bk4_308ehRgv9e1w3pSs-Xl4c8fm2NQ-CP0OMHeAgLzzmGUljqEqxXXyQ2wSxLV9ONI9vO6jK5SVQ17lXs77timnMJ_H-_8O3zyD3t0dofcHokknQzI3yXXQrpHbg6lJTf3yQesyZHPLFCbPMXinUPEa6KLSN-lBByTThLWjoCX089DqGzoqdvQacAw69W8pxP6db5c9w_I7Oz0y8m0HCsnlB1v2aqUPtooGPfaYX4bFoSLleOyiY12DWDjVOTCAxK1V1VUsVMSHDHrdWCs9rx5SA7SIoXHhEqNHIH5tgmchyoo4AieYU4b6Nn4piBvrmRmujGtOFa3uDTgXqCUTZayQSmbLOWCvN72-D6k1PhH27cIw7YdJsPONxbLCzPqlhEKN5NaGJ8WPDALkyxqHRSQozZIrwry8gpEA8qDOyI2hcW6N3huGFetWhbk0QDq9lOw8kneCl0QuQP3zlh2n6T5t5ygGyipVKJ68j8G_5TcQnHgb-xaPiMHq-U6PAcetHIv8vT-BTt8CAQ
  priority: 102
  providerName: Scholars Portal
Title Induction and Suppression of Innate Antiviral Responses by Hepatitis A Virus
URI https://www.ncbi.nlm.nih.gov/pubmed/30174659
https://www.proquest.com/docview/2099042517
https://pubmed.ncbi.nlm.nih.gov/PMC6107850
https://doaj.org/article/5811676e44954e2a8cdf99e87436e7d8
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9wgEEVRpEi5RE2bpG7TiEq55OCujbGB4yZKuq3aHqJstTcEBtSVKrbaj0P-fWZgs9qtqvbSgznYgNEbzLwxwwwhl0rUxisVSu56V3IW-tL4OpTOdLJ3xjDrkpfvt2405p8n7WQr1Rf6hOXwwBm4QStxp6DzHJg898xAD0EpL0HzdV64dMwXdN6WMZXWYDSLqirvS4IVpkBM096iK5f8ABfqki09lML1_4lj_u4quaV77l6QozVppMM82GOy5-NLcpDTSD6-Il8w_0Y6n0BNdBQTdWbv1khngX6KEfgkHUbMEwGd0_vsFusX1D7SkUeX6uV0QYf0-3S-WpyQ8d3tw82oXGdJKHvesWUpXDChZdwpi7FsmG9tqCwXTWiUbUAOVgbeOkC9drIKMvRSgNFlnPKM1Y43p2Q_zqJ_TahQyAeY6xqA21deAh9wDOPXQMvGNQUZPGOm-3UIccxk8VODKYEo64SyRpR1QrkgV5sWv3L4jL_UvUYxbOph4Ot0A6aDXk8H_a_pUJD3z0LU8KHg7oeJfrZaaDwjjCtULQpyloW6eRWscoJ3rSqI2BH3zlh2n8TpjxSMG-inkG315n8M_i05RDjwl3Utzsn-cr7y74DzLO1Fmt5QfpzUUH7l8gnlBAFc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Induction+and+Suppression+of+Innate+Antiviral+Responses+by+Hepatitis+A+Virus&rft.jtitle=Frontiers+in+microbiology&rft.au=Xin+Cao&rft.au=Xin+Cao&rft.au=Xin+Cao&rft.au=Yu-jia+Xue&rft.date=2018-08-17&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=9&rft_id=info:doi/10.3389%2Ffmicb.2018.01865&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5811676e44954e2a8cdf99e87436e7d8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon