Insights Into the Evolution of Picocyanobacteria and Phycoerythrin Genes (mpeBA and cpeBA)
Marine picocyanobacteria, and , substantially contribute to marine primary production and have been the subject of extensive ecological and genomic studies. Little is known about their close relatives from freshwater and non-marine environments. Phylogenomic analyses (using 136 proteins) provide str...
Saved in:
Published in | Frontiers in microbiology Vol. 10; p. 45 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Marine picocyanobacteria,
and
, substantially contribute to marine primary production and have been the subject of extensive ecological and genomic studies. Little is known about their close relatives from freshwater and non-marine environments. Phylogenomic analyses (using 136 proteins) provide strong support for the monophyly of a clade of non-marine picocyanobacteria consisting of
and marine Sub-cluster 5.2; this clade itself is sister to marine
and
. The most basal lineage within the Syn/Pro clade, Sub-Cluster 5.3, includes marine and freshwater strains. Relaxed molecular clock (SSU, LSU) analyses show that while ancestors of the Syn/Pro clade date as far back as the end of the Pre-Cambrian, modern crown groups evolved during the Carboniferous and Triassic. Comparative genomic analyses reveal novel gene cluster arrangements involved in phycobilisome (PBS) metabolism in freshwater strains. Whilst PBS genes in marine
are mostly found in one type of phycoerythrin (PE) rich gene cluster (Type III), strains from non-marine habitats, so far, appear to be more diverse both in terms of pigment content and gene arrangement, likely reflecting a wider range of habitats. Our phylogenetic analyses show that the PE genes (
) evolved via a duplication of the
genes in an ancestor of the marine and non-marine picocyanobacteria and of the symbiotic strains
. A 'primitive' Type III-like ancestor containing
and
had thus evolved prior to the divergence of the Syn/Pro clade and
. During the diversification of
lineages, losses of
genes may explain the emergence of pigment cluster Types I, II, IIB, and III in both marine and non-marine habitats, with few lateral gene transfer events in specific taxa. |
---|---|
AbstractList | Marine picocyanobacteria,
Prochlorococcus
and
Synechococcus
, substantially contribute to marine primary production and have been the subject of extensive ecological and genomic studies. Little is known about their close relatives from freshwater and non-marine environments. Phylogenomic analyses (using 136 proteins) provide strong support for the monophyly of a clade of non-marine picocyanobacteria consisting of
Cyanobium, Synechococcus
and marine Sub-cluster 5.2; this clade itself is sister to marine
Synechococcus
and
Prochlorococcus
. The most basal lineage within the Syn/Pro clade, Sub-Cluster 5.3, includes marine and freshwater strains. Relaxed molecular clock (SSU, LSU) analyses show that while ancestors of the Syn/Pro clade date as far back as the end of the Pre-Cambrian, modern crown groups evolved during the Carboniferous and Triassic. Comparative genomic analyses reveal novel gene cluster arrangements involved in phycobilisome (PBS) metabolism in freshwater strains. Whilst PBS genes in marine
Synechococcus
are mostly found in one type of phycoerythrin (PE) rich gene cluster (Type III), strains from non-marine habitats, so far, appear to be more diverse both in terms of pigment content and gene arrangement, likely reflecting a wider range of habitats. Our phylogenetic analyses show that the PE genes (
mpeBA
) evolved via a duplication of the
cpeBA
genes in an ancestor of the marine and non-marine picocyanobacteria and of the symbiotic strains
Synechococcus spongiarum
. A ‘primitive’ Type III-like ancestor containing
cpeBA
and
mpeBA
had thus evolved prior to the divergence of the Syn/Pro clade and
S. spongiarum
. During the diversification of
Synechococcus
lineages, losses of
mpeBA
genes may explain the emergence of pigment cluster Types I, II, IIB, and III in both marine and non-marine habitats, with few lateral gene transfer events in specific taxa. Marine picocyanobacteria, and , substantially contribute to marine primary production and have been the subject of extensive ecological and genomic studies. Little is known about their close relatives from freshwater and non-marine environments. Phylogenomic analyses (using 136 proteins) provide strong support for the monophyly of a clade of non-marine picocyanobacteria consisting of and marine Sub-cluster 5.2; this clade itself is sister to marine and . The most basal lineage within the Syn/Pro clade, Sub-Cluster 5.3, includes marine and freshwater strains. Relaxed molecular clock (SSU, LSU) analyses show that while ancestors of the Syn/Pro clade date as far back as the end of the Pre-Cambrian, modern crown groups evolved during the Carboniferous and Triassic. Comparative genomic analyses reveal novel gene cluster arrangements involved in phycobilisome (PBS) metabolism in freshwater strains. Whilst PBS genes in marine are mostly found in one type of phycoerythrin (PE) rich gene cluster (Type III), strains from non-marine habitats, so far, appear to be more diverse both in terms of pigment content and gene arrangement, likely reflecting a wider range of habitats. Our phylogenetic analyses show that the PE genes ( ) evolved via a duplication of the genes in an ancestor of the marine and non-marine picocyanobacteria and of the symbiotic strains . A 'primitive' Type III-like ancestor containing and had thus evolved prior to the divergence of the Syn/Pro clade and . During the diversification of lineages, losses of genes may explain the emergence of pigment cluster Types I, II, IIB, and III in both marine and non-marine habitats, with few lateral gene transfer events in specific taxa. Marine picocyanobacteria, Prochlorococcus and Synechococcus, substantially contribute to marine primary production and have been the subject of extensive ecological and genomic studies. Little is known about their close relatives from freshwater and non-marine environments. Phylogenomic analyses (using 136 proteins) provide strong support for the monophyly of a clade of non-marine picocyanobacteria consisting of Cyanobium, Synechococcus and marine Sub-cluster 5.2; this clade itself is sister to marine Synechococcus and Prochlorococcus. The most basal lineage within the Syn/Pro clade, Sub-Cluster 5.3, includes marine and freshwater strains. Relaxed molecular clock (SSU, LSU) analyses show that while ancestors of the Syn/Pro clade date as far back as the end of the Pre-Cambrian, modern crown groups evolved during the Carboniferous and Triassic. Comparative genomic analyses reveal novel gene cluster arrangements involved in phycobilisome (PBS) metabolism in freshwater strains. Whilst PBS genes in marine Synechococcus are mostly found in one type of phycoerythrin (PE) rich gene cluster (Type III), strains from non-marine habitats, so far, appear to be more diverse both in terms of pigment content and gene arrangement, likely reflecting a wider range of habitats. Our phylogenetic analyses show that the PE genes (mpeBA) evolved via a duplication of the cpeBA genes in an ancestor of the marine and non-marine picocyanobacteria and of the symbiotic strains Synechococcus spongiarum. A ‘primitive’ Type III-like ancestor containing cpeBA and mpeBA had thus evolved prior to the divergence of the Syn/Pro clade and S. spongiarum. During the diversification of Synechococcus lineages, losses of mpeBA genes may explain the emergence of pigment cluster Types I, II, IIB, and III in both marine and non-marine habitats, with few lateral gene transfer events in specific taxa. Marine picocyanobacteria, Prochlorococcus and Synechococcus, substantially contribute to marine primary production and have been the subject of extensive ecological and genomic studies. Little is known about their close relatives from freshwater and non-marine environments. Phylogenomic analyses (using 136 proteins) provide strong support for the monophyly of a clade of non-marine picocyanobacteria consisting of Cyanobium, Synechococcus and marine Sub-cluster 5.2; this clade itself is sister to marine Synechococcus and Prochlorococcus. The most basal lineage within the Syn/Pro clade, Sub-Cluster 5.3, includes marine and freshwater strains. Relaxed molecular clock (SSU, LSU) analyses show that while ancestors of the Syn/Pro clade date as far back as the end of the Pre-Cambrian, modern crown groups evolved during the Carboniferous and Triassic. Comparative genomic analyses reveal novel gene cluster arrangements involved in phycobilisome (PBS) metabolism in freshwater strains. Whilst PBS genes in marine Synechococcus are mostly found in one type of phycoerythrin (PE) rich gene cluster (Type III), strains from non-marine habitats, so far, appear to be more diverse both in terms of pigment content and gene arrangement, likely reflecting a wider range of habitats. Our phylogenetic analyses show that the PE genes (mpeBA) evolved via a duplication of the cpeBA genes in an ancestor of the marine and non-marine picocyanobacteria and of the symbiotic strains Synechococcus spongiarum. A 'primitive' Type III-like ancestor containing cpeBA and mpeBA had thus evolved prior to the divergence of the Syn/Pro clade and S. spongiarum. During the diversification of Synechococcus lineages, losses of mpeBA genes may explain the emergence of pigment cluster Types I, II, IIB, and III in both marine and non-marine habitats, with few lateral gene transfer events in specific taxa.Marine picocyanobacteria, Prochlorococcus and Synechococcus, substantially contribute to marine primary production and have been the subject of extensive ecological and genomic studies. Little is known about their close relatives from freshwater and non-marine environments. Phylogenomic analyses (using 136 proteins) provide strong support for the monophyly of a clade of non-marine picocyanobacteria consisting of Cyanobium, Synechococcus and marine Sub-cluster 5.2; this clade itself is sister to marine Synechococcus and Prochlorococcus. The most basal lineage within the Syn/Pro clade, Sub-Cluster 5.3, includes marine and freshwater strains. Relaxed molecular clock (SSU, LSU) analyses show that while ancestors of the Syn/Pro clade date as far back as the end of the Pre-Cambrian, modern crown groups evolved during the Carboniferous and Triassic. Comparative genomic analyses reveal novel gene cluster arrangements involved in phycobilisome (PBS) metabolism in freshwater strains. Whilst PBS genes in marine Synechococcus are mostly found in one type of phycoerythrin (PE) rich gene cluster (Type III), strains from non-marine habitats, so far, appear to be more diverse both in terms of pigment content and gene arrangement, likely reflecting a wider range of habitats. Our phylogenetic analyses show that the PE genes (mpeBA) evolved via a duplication of the cpeBA genes in an ancestor of the marine and non-marine picocyanobacteria and of the symbiotic strains Synechococcus spongiarum. A 'primitive' Type III-like ancestor containing cpeBA and mpeBA had thus evolved prior to the divergence of the Syn/Pro clade and S. spongiarum. During the diversification of Synechococcus lineages, losses of mpeBA genes may explain the emergence of pigment cluster Types I, II, IIB, and III in both marine and non-marine habitats, with few lateral gene transfer events in specific taxa. |
Author | Callieri, Cristiana Sánchez-Baracaldo, Patricia Di Cesare, Andrea Chrismas, Nathan A. M. Bianchini, Giorgio |
AuthorAffiliation | 1 School of Geographical Sciences, University of Bristol , Bristol , United Kingdom 3 Department of Earth, Environment and Life Sciences, University of Genoa , Genoa , Italy 4 The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill , Plymouth , United Kingdom 2 Institute of Ecosystem Study–Consiglio Nazionale delle Ricerche , Verbania , Italy |
AuthorAffiliation_xml | – name: 2 Institute of Ecosystem Study–Consiglio Nazionale delle Ricerche , Verbania , Italy – name: 4 The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill , Plymouth , United Kingdom – name: 1 School of Geographical Sciences, University of Bristol , Bristol , United Kingdom – name: 3 Department of Earth, Environment and Life Sciences, University of Genoa , Genoa , Italy |
Author_xml | – sequence: 1 givenname: Patricia surname: Sánchez-Baracaldo fullname: Sánchez-Baracaldo, Patricia – sequence: 2 givenname: Giorgio surname: Bianchini fullname: Bianchini, Giorgio – sequence: 3 givenname: Andrea surname: Di Cesare fullname: Di Cesare, Andrea – sequence: 4 givenname: Cristiana surname: Callieri fullname: Callieri, Cristiana – sequence: 5 givenname: Nathan A. M. surname: Chrismas fullname: Chrismas, Nathan A. M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30761097$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ksFrHCEUxqWkNGmae09ljulht466zsylkIQ0XQg0hxZKL6JvnjuGWd2qG9j_vs5uGpJCLyq-3_c95X1vyZEPHgl5X9M55233ya4dmDmjdTenlIrFK3JSSylmnLKfR8_Ox-QspXs6MZSV9Q055rSRNe2aE_Jr6ZNbDTlVS59DlQesrh_CuM0u-CrY6s5BgJ32wWjIGJ2utO-ru2EHAeMuD9H56gY9pup8vcHLi30ZptPHd-S11WPCs8f9lPz4cv396uvs9tvN8uridgZCsjxrgApprZWCIe3a3upW2L7vtC2f5IteAFhpe9ZABwa1EIU0oqktoDas5fyULA--fdD3ahPdWsedCtqp_UWIK6VjdjCiwqYzC4EMqKHCFrVg0lLTStPrWggsXp8PXputWWMP6HPU4wvTlxXvBrUKD0pyyZuaFoPzR4MYfm8xZbV2CXActcewTYrVLZei6WRb0A_Pez01-TucAtADADGkFNE-ITVVUwTUPgJqioDaR6BI5D8ScFlPwyyvdeP_hX8APoe4Kg |
CitedBy_id | crossref_primary_10_1038_s41467_024_47914_0 crossref_primary_10_1080_20442041_2022_2053455 crossref_primary_10_1021_acssynbio_4c00094 crossref_primary_10_1080_00318884_2021_1881729 crossref_primary_10_4236_jwarp_2023_156017 crossref_primary_10_1016_j_bbabio_2020_148215 crossref_primary_10_1002_mbo3_1228 crossref_primary_10_1111_gbi_12465 crossref_primary_10_1038_s41396_020_00775_z crossref_primary_10_1016_j_freeradbiomed_2019_05_004 crossref_primary_10_1093_sysbio_syae025 crossref_primary_10_3389_fmicb_2020_01979 crossref_primary_10_7554_eLife_88268_3 crossref_primary_10_1146_annurev_marine_010419_010706 crossref_primary_10_1111_1462_2920_16384 crossref_primary_10_1007_s42995_024_00271_9 crossref_primary_10_1128_spectrum_00187_22 crossref_primary_10_4236_jwarp_2023_159024 crossref_primary_10_1093_ismejo_wrae236 crossref_primary_10_3389_fmicb_2020_567431 crossref_primary_10_3389_fphar_2021_542891 crossref_primary_10_1038_s41467_021_24396_y crossref_primary_10_1016_j_marenvres_2022_105622 crossref_primary_10_1098_rspb_2021_0675 crossref_primary_10_1038_s41396_019_0378_z crossref_primary_10_1093_molbev_msaa273 crossref_primary_10_1186_s12915_022_01379_z crossref_primary_10_1093_molbev_msaa234 crossref_primary_10_3389_fmicb_2021_757929 crossref_primary_10_1093_pcp_pcae115 crossref_primary_10_1128_spectrum_04000_22 crossref_primary_10_1111_1758_2229_70005 crossref_primary_10_3390_d15101049 crossref_primary_10_1016_j_tim_2021_05_008 crossref_primary_10_7554_eLife_88268 crossref_primary_10_3390_microorganisms10030546 crossref_primary_10_1093_gbe_evac035 crossref_primary_10_1038_s41598_024_63502_0 crossref_primary_10_1111_nph_16249 crossref_primary_10_1038_s43705_023_00231_x crossref_primary_10_1093_femsec_fiae043 crossref_primary_10_1111_ppl_14137 crossref_primary_10_1002_mbo3_1287 crossref_primary_10_1111_1462_2920_16313 crossref_primary_10_1038_s41396_022_01282_z |
Cites_doi | 10.1126/science.1069651 10.1046/j.1462-2920.1999.00053.x 10.1038/nature23457 10.1093/sysbio/syq085 10.1038/nrmicro2670 10.1073/pnas.0605709103 10.1371/journal.pone.0088837 10.1111/j.1574-6941.2002.tb00930.x 10.1073/pnas.1307701110 10.1093/bioinformatics/bti263 10.1099/mic.0.000389 10.1038/srep17418 10.4081/jlimnol.2016.1370 10.1093/molbev/msr081 10.1073/pnas.1209927110 10.1093/bioinformatics/btp368 10.1038/nature07673 10.1073/pnas.1217107110 10.1038/ncomms11071 10.1039/c4mb00095a 10.1007/s00248-012-0047-5 10.1128/mBio.00079-14 10.1023/A:1013835924610 10.1099/mic.0.25475-0 10.1093/sysbio/sys029 10.1093/femsle/fnx229 10.1016/S0092-8674(02)00665-7 10.1038/ismej.2011.106 10.1038/nature01947 10.3390/mi4030321 10.1080/01621459.1995.10476572 10.1126/science.1118052 10.1128/MMBR.00035-08 10.1038/nature13068 10.1038/ismej.2014.35 10.1093/bioinformatics/btv383 10.1073/pnas.1524865113 10.1111/mec.12000 10.1016/j.cub.2012.07.030 10.1046/j.1365-2958.2002.02966.x 10.1111/j.1462-2920.2007.01440.x 10.1016/S0016-7037(03)00209-6 10.1073/pnas.1009480107 10.4319/lo.1994.39.1.0169 10.1111/j.1472-4669.2009.00220.x 10.4319/lo.1985.30.6.1303 10.1038/nature02260 10.1007/978-94-007-3855-3_20 10.1007/s11120-004-2143-y 10.1017/S1473550415000579 10.1128/AEM.69.9.5716-5721.2003 10.1016/S0168-9525(02)02690-2 10.1093/nar/gkr1044 10.1093/molbev/mst010 10.1038/nature11445 10.1038/nrmicro3331 10.1111/j.1502-3931.1995.tb01817.x 10.1073/pnas.1405222111 10.1016/j.ygeno.2009.09.002 10.1186/s12864-016-2846-4 10.1038/nature06811 10.1146/annurev.genet.38.072902.094318 10.1016/j.cub.2014.01.041 10.2216/05-22.1 10.1038/ismej.2011.26 10.1099/mic.0.2008/019836-0 10.1128/JB.187.5.1685-1694.2005 10.1186/gb-2007-8-12-r259 10.1093/bioinformatics/btp324 10.1016/S0021-9258(18)54065-5 10.1073/pnas.93.20.11126 10.1111/j.1574-6941.2012.01316.x 10.1093/bioinformatics/btu170 10.1016/S0966-842X(02)02319-3 10.2323/jgam.61.171 10.1089/cmb.2012.0021 10.1016/S0021-9258(18)92851-6 10.1007/s13127-011-0056-0 10.4081/jlimnol.2002.1 10.1128/JB.186.21.7420-7428.2004 10.1039/c5em00546a 10.1038/ncomms2748 10.1007/BF00239722 10.1371/journal.pbio.0040088 10.1073/pnas.1733211100 10.1608/FRJ-1.1.1 10.1186/gb-2005-6-2-r14 10.1128/mBio.00391-15 10.1007/978-94-011-4902-0_6 10.1111/1574-6941.12118 10.1111/pala.12178 10.1016/S0021-9258(18)92853-X 10.1093/bioinformatics/btq413 10.1128/MMBR.63.1.106-127.1999 10.7717/peerj.1522 10.1007/978-94-007-3855-3_8 10.3389/fmicb.2017.01151 10.1186/1471-2148-11-45 10.1093/plankt/16.5.565 10.1074/jbc.M111.284281 10.1006/jsbi.1998.4062 10.1186/1471-2148-11-187 10.1186/s12864-018-4648-3 10.1016/j.earscirev.2011.09.004 10.1111/j.1096-0031.2010.00329.x |
ContentType | Journal Article |
Copyright | Copyright © 2019 Sánchez-Baracaldo, Bianchini, Di Cesare, Callieri and Chrismas. 2019 Sánchez-Baracaldo, Bianchini, Di Cesare, Callieri and Chrismas |
Copyright_xml | – notice: Copyright © 2019 Sánchez-Baracaldo, Bianchini, Di Cesare, Callieri and Chrismas. 2019 Sánchez-Baracaldo, Bianchini, Di Cesare, Callieri and Chrismas |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmicb.2019.00045 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_e79b54e2c0b04fb28426f0b86bda144e PMC6363710 30761097 10_3389_fmicb_2019_00045 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Natural Environment Research Council |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c462t-7c046fff642e098dfa84fdd9af38935d4ccf6fd27c9cbea44f64b471fceab2833 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:30:07 EDT 2025 Thu Aug 21 18:01:08 EDT 2025 Thu Jul 10 23:07:03 EDT 2025 Mon Jul 21 06:04:50 EDT 2025 Tue Jul 01 00:44:32 EDT 2025 Thu Apr 24 22:51:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | phycoerythrin Synechococcus Cyanobium phycobilisomes picocyanobacteria comparative genomics phylogenomics |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-7c046fff642e098dfa84fdd9af38935d4ccf6fd27c9cbea44f64b471fceab2833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Petr Dvorak, Palacký University Olomouc, Czechia Reviewed by: Vera Tai, University of Western Ontario, Canada; Jeffrey Morris, University of Alabama at Birmingham, United States This article was submitted to Evolutionary and Genomic Microbiology, a section of the journal Frontiers in Microbiology |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2019.00045 |
PMID | 30761097 |
PQID | 2183647968 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e79b54e2c0b04fb28426f0b86bda144e pubmedcentral_primary_oai_pubmedcentral_nih_gov_6363710 proquest_miscellaneous_2183647968 pubmed_primary_30761097 crossref_primary_10_3389_fmicb_2019_00045 crossref_citationtrail_10_3389_fmicb_2019_00045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Shih (B93) 2013; 110 Abascal (B1) 2005; 21 Burnett (B15) 1998 Lartillot (B57) 2009; 25 Six (B98) 2005; 187 Zwirglmaier (B109) 2008; 10 Nakayama (B70) 2014; 111 Moran (B68) 2002; 108 Hofmann (B49) 1976; 50 Li (B58) 2009; 25 Six (B97) 2007; 8 Zubkov (B108) 1998; 45 Sánchez-Baracaldo (B83) 2008; 154 Gao (B40) 2014; 5 Scanlan (B85) 2012 Bekker (B7) 2004; 427 Bankevich (B4) 2012; 19 Coutinho (B28) 2016; 4 Scott (B92) 2008; 452 Larsson (B56) 2011; 11 Wilbanks (B104) 1993; 268 Di Cesare (B30) 2018; 19 Cobley (B24) 2002; 44 Och (B71) 2012; 110 Brocks (B12) 2003; 67 Zhang (B107) 1987; 4 Farrant (B36) 2016; 113 Raven (B75) 1994; 16 Bentley (B8) 2004; 38 Janson (B51) 1999; 1 Sánchez-Baracaldo (B82) 2015; 5 Schirrmeister (B90); 58 Ong (B72) 1991; 266 Wick (B102) 2015; 31 Wood (B105) 1985; 30 Schirrmeister (B91); 15 Montgomery (B67) 2004; 186 Sims (B96) 2006; 45 Ronquist (B79) 2012; 61 Li (B59) 1994; 39 Callieri (B21) 2012 Callieri (B18) 2016; 75 Katoh (B54) 2013; 30 Cornejo-Castillo (B27) 2016; 7 Becker (B6) 2012; 80 Rocha (B78) 2002; 18 Brocks (B13) 2017; 548 Callieri (B17) 2008; 1 Guy (B43) 2010; 26 Rambaut (B74) 2013 Larsson (B55) 2014; 8 MacColl (B63) 1998; 124 Coleman (B26) 2010; 107 Love (B60) 2009; 457 Partensky (B73) 1999; 63 Hall (B45) 2013; 4 Wilbanks (B103) 1991; 266 Sánchez-Baracaldo (B84) 2014; 24 Blank (B10) 2010; 8 Ruber (B80) 2016; 162 Dufresne (B32) 2005; 6 Flombaum (B37) 2013; 110 Raven (B76) 2012; 22 Coelho (B25) 2012; 22 Scanlan (B86) 2009; 73 Callieri (B19) 2017; 364 Erwin (B35) 2012; 64 Vaidya (B101) 2011; 27 Rocap (B77) 2003; 424 Adir (B2) 2005; 85 Crosbie (B29) 2003; 69 Sun (B99) 2014; 9 Huang (B50) 2012; 6 Fujimoto (B39) 2015; 61 Lyons (B62) 2014; 506 Mulkidjanian (B69) 2006; 103 Scanlan (B87) 2002; 40 Hess (B47) 2001; 70 Simonsen (B95) 2008 Xie (B106) 2011; 60 Chrismas (B23) 2016; 17 Batut (B5) 2014; 12 Callieri (B20) 2013; 85 McCutcheon (B66) 2011; 10 Johnson (B52) 2006; 311 Dufresne (B33) 2003; 100 Mann (B64) 2010; 95 Anbar (B3) 2002; 297 Sahoo (B81) 2012; 489 Golubic (B41) 1995; 28 Hess (B46) 1996; 93 Biswas (B9) 2011; 286 Luo (B61) 2011; 28 Bolger (B11) 2014; 30 Ernst (B34) 2003; 149 Burgsdorf (B14) 2015; 6 Schirrmeister (B88) 2011; 11 Callieri (B22) 2002; 61 Hagemann (B44) 2013 Ting (B100) 2002; 10 Cabello-Yeves (B16) 2017; 8 Schirrmeister (B89) 2013; 110 Markowitz (B65) 2012; 40 Drummond (B31) 2006; 4 Hilton (B48) 2013; 4 Foster (B38) 2011; 5 Silvestro (B94) 2012; 12 Gradinger (B42) 1995; 15 Kass (B53) 2012; 90 |
References_xml | – volume: 297 start-page: 1137 year: 2002 ident: B3 article-title: Proterozoic ocean chemistry and evolution: a bioinorganic bridge? publication-title: Science doi: 10.1126/science.1069651 – volume: 1 start-page: 431 year: 1999 ident: B51 article-title: Host specificity in the Richelia-diatom symbiosis revealed by hetR gene sequence analysis. publication-title: Environ. Microbiol. doi: 10.1046/j.1462-2920.1999.00053.x – volume: 548 start-page: 578 year: 2017 ident: B13 article-title: The rise of algae in Cryogenian oceans and the emergence of animals. publication-title: Nature doi: 10.1038/nature23457 – volume: 60 start-page: 150 year: 2011 ident: B106 article-title: Improving marginal likelihood estimation for Bayesian phylogenetic model selection. publication-title: Syst. Biol. doi: 10.1093/sysbio/syq085 – volume: 10 start-page: 13 year: 2011 ident: B66 article-title: Extreme genome reduction in symbiotic bacteria. publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2670 – volume: 103 start-page: 13126 year: 2006 ident: B69 article-title: The cyanobacterial genome core and the origin of photosynthesis. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0605709103 – volume: 9 year: 2014 ident: B99 article-title: Strong genome-wide selection early in the evolution of Prochlorococcus resulted in a reduced genome through the loss of a large number of small effect genes. publication-title: PLoS One doi: 10.1371/journal.pone.0088837 – volume: 40 start-page: 1 year: 2002 ident: B87 article-title: Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2002.tb00930.x – volume: 110 start-page: 9824 year: 2013 ident: B37 article-title: Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1307701110 – volume: 21 start-page: 2104 year: 2005 ident: B1 article-title: ProtTest: selection of best-fit models of protein evolution. publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti263 – volume: 162 start-page: 2053 year: 2016 ident: B80 article-title: Synechococcus diversity along a trophic gradient in the Osterseen Lake District, Bavaria. publication-title: Microbiology doi: 10.1099/mic.0.000389 – volume: 5 year: 2015 ident: B82 article-title: Origin of marine planktonic cyanobacteria. publication-title: Sci. Rep. doi: 10.1038/srep17418 – volume: 75 start-page: 191 year: 2016 ident: B18 article-title: Micro-players for macro-roles: aquatic microbes in deep lakes. publication-title: J. Limnol. doi: 10.4081/jlimnol.2016.1370 – volume: 28 start-page: 2751 year: 2011 ident: B61 article-title: Genome reduction by deletion of paralogs in the marine cyanobacterium Prochlorococcus. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msr081 – volume: 110 start-page: 1791 year: 2013 ident: B89 article-title: Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1209927110 – volume: 25 start-page: 2286 year: 2009 ident: B57 article-title: PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp368 – volume: 457 start-page: 718 year: 2009 ident: B60 article-title: Fossil steroids record the appearance of Demospongiae during the Cryogenian period. publication-title: Nature doi: 10.1038/nature07673 – volume: 50 start-page: 1040 year: 1976 ident: B49 article-title: Precambrian microflora, Belcher Islands, Canada: significance and systematics. publication-title: J. Paleontol. – volume: 110 start-page: 1053 year: 2013 ident: B93 article-title: Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1217107110 – volume: 7 year: 2016 ident: B27 article-title: Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton. publication-title: Nat. Commun. doi: 10.1038/ncomms11071 – start-page: 27 year: 2013 ident: B44 article-title: “Genomics of salt acclimation: synthesis of compatible solutes among cyanobacteria. Genomics of cyanobacteria,” in publication-title: Advances in Botanical Research doi: 10.1039/c4mb00095a – volume: 64 start-page: 771 year: 2012 ident: B35 article-title: Ultrastructure, molecular phylogenetics, and chlorophyll a content of novel cyanobacterial symbionts in temperate sponges. publication-title: Microb. Ecol. doi: 10.1007/s00248-012-0047-5 – volume: 5 year: 2014 ident: B40 article-title: Symbiotic adaptation drives genome streamlining of the cyanobacterial sponge symbiont “Candidatus Synechococcus spongiarum”. publication-title: mBio doi: 10.1128/mBio.00079-14 – volume: 70 start-page: 53 year: 2001 ident: B47 article-title: The photosynthetic apparatus of Prochlorococcus: insights through comparative genomics. publication-title: Photosynth. Res. doi: 10.1023/A:1013835924610 – volume: 149 start-page: 217 year: 2003 ident: B34 article-title: Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. publication-title: Microbiology doi: 10.1099/mic.0.25475-0 – volume: 61 start-page: 539 year: 2012 ident: B79 article-title: MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. publication-title: Syst. Biol. doi: 10.1093/sysbio/sys029 – volume: 364 year: 2017 ident: B19 article-title: Synechococcus plasticity under environmental changes. publication-title: FEMS Microbiol. Lett. doi: 10.1093/femsle/fnx229 – volume: 108 start-page: 583 year: 2002 ident: B68 article-title: Microbial minimalism: genome reduction in bacterial pathogens. publication-title: Cell doi: 10.1016/S0092-8674(02)00665-7 – volume: 6 start-page: 285 year: 2012 ident: B50 article-title: Novel lineages of Prochlorococcus and Synechococcus in the global oceans. publication-title: ISME J. doi: 10.1038/ismej.2011.106 – volume: 424 start-page: 1042 year: 2003 ident: B77 article-title: Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. publication-title: Nature doi: 10.1038/nature01947 – volume: 4 start-page: 321 year: 2013 ident: B45 article-title: Lysis of a single cyanobacterium for whole genome amplification. publication-title: Micromachines doi: 10.3390/mi4030321 – volume: 90 start-page: 773 year: 2012 ident: B53 article-title: Bayes factors. publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1995.10476572 – volume: 311 start-page: 1737 year: 2006 ident: B52 article-title: Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. publication-title: Science doi: 10.1126/science.1118052 – volume: 73 start-page: 249 year: 2009 ident: B86 article-title: Ecological genomics of marine picocyanobacteria. publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00035-08 – volume: 506 start-page: 307 year: 2014 ident: B62 article-title: The rise of oxygen in Earth’s early ocean and atmosphere. publication-title: Nature doi: 10.1038/nature13068 – volume: 8 start-page: 1892 year: 2014 ident: B55 article-title: Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea. publication-title: ISME J. doi: 10.1038/ismej.2014.35 – volume: 31 start-page: 3350 year: 2015 ident: B102 article-title: Bandage: interactive visualization of de novo genome assemblies. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv383 – volume: 113 start-page: E3365 year: 2016 ident: B36 article-title: Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1524865113 – volume: 22 start-page: 867 year: 2012 ident: B25 article-title: Ecological and evolutionary genomics of marine photosynthetic organisms. publication-title: Mol. Ecol. doi: 10.1111/mec.12000 – volume: 22 start-page: R682 year: 2012 ident: B76 article-title: Algal biogeography: metagenomics shows distribution of a picoplanktonic pelagophyte. publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.07.030 – volume: 44 start-page: 1517 year: 2002 ident: B24 article-title: CpeR is an activator required for expression of the phycoerythrin operon (cpeBA) in the cyanobacterium Fremyella diplosiphon and is encoded in the phycoerythrin linker-polypeptide operon (cpeCDESTR). publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2002.02966.x – volume: 10 start-page: 147 year: 2008 ident: B109 article-title: Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2007.01440.x – volume: 67 start-page: 4321 year: 2003 ident: B12 article-title: A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(03)00209-6 – volume: 107 start-page: 18634 year: 2010 ident: B26 article-title: Ecosystem-specific selection pressures revealed through comparative population genomics. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1009480107 – volume: 39 start-page: 169 year: 1994 ident: B59 article-title: Primary production of prochlorophytes, cyanobacteria, and eukaryotic ultraphytoplankton - measurements from flow cytometric sorting. publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1994.39.1.0169 – volume: 8 start-page: 1 year: 2010 ident: B10 article-title: Timing of morphological and ecological innovations in the cyanobacteria–a key to understanding the rise in atmospheric oxygen. publication-title: Geobiology doi: 10.1111/j.1472-4669.2009.00220.x – volume: 30 start-page: 1303 year: 1985 ident: B105 article-title: Discrimination between types of pigments in marine Synechococcus Spp by scanning spectroscopy, epifluorescence microscopy, and flow-cytometry. publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1985.30.6.1303 – volume: 427 start-page: 117 year: 2004 ident: B7 article-title: Dating the rise of atmospheric oxygen. publication-title: Nature doi: 10.1038/nature02260 – year: 2012 ident: B85 publication-title: Marine Picocyanobacteria. doi: 10.1007/978-94-007-3855-3_20 – volume: 85 start-page: 15 year: 2005 ident: B2 article-title: Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. publication-title: Photosynth. Res. doi: 10.1007/s11120-004-2143-y – volume: 15 start-page: 187 ident: B91 article-title: Cyanobacterial evolution during the Precambrian. publication-title: Int. J. Astrobiol. doi: 10.1017/S1473550415000579 – volume: 69 start-page: 5716 year: 2003 ident: B29 article-title: Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16S rRNA gene and cpcBA-intergenic spacer sequence analyses. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.69.9.5716-5721.2003 – volume: 18 start-page: 291 year: 2002 ident: B78 article-title: Base composition bias might result from competition for metabolic resources. publication-title: Trends Genet. doi: 10.1016/S0168-9525(02)02690-2 – volume: 40 start-page: D115 year: 2012 ident: B65 article-title: IMG: the Integrated Microbial Genomes database and comparative analysis system. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1044 – volume: 30 start-page: 772 year: 2013 ident: B54 article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst010 – volume: 489 start-page: 546 year: 2012 ident: B81 article-title: Ocean oxygenation in the wake of the Marinoan glaciation. publication-title: Nature doi: 10.1038/nature11445 – volume: 12 start-page: 841 year: 2014 ident: B5 article-title: Reductive genome evolution at both ends of the bacterial population size spectrum. publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3331 – volume: 28 start-page: 285 year: 1995 ident: B41 article-title: Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria. publication-title: Lethaia doi: 10.1111/j.1502-3931.1995.tb01817.x – volume: 111 start-page: 11407 year: 2014 ident: B70 article-title: Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1405222111 – volume: 95 start-page: 7 year: 2010 ident: B64 article-title: Bacterial genomic G+C composition-eliciting environmental adaptation. publication-title: Genomics doi: 10.1016/j.ygeno.2009.09.002 – volume: 17 year: 2016 ident: B23 article-title: Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401. publication-title: BMC Genomics doi: 10.1186/s12864-016-2846-4 – volume: 452 start-page: 456 year: 2008 ident: B92 article-title: Tracing the stepwise oxygenation of the Proterozoic ocean. publication-title: Nature doi: 10.1038/nature06811 – volume: 4 start-page: 1 year: 1987 ident: B107 article-title: Endolithic microfossils (cyanophyta) from early Proterozoic stromatolites, Hebei, China. publication-title: Acta Micropaleontol. Sin. – volume: 38 start-page: 771 year: 2004 ident: B8 article-title: Comparative genomic structure of prokaryotes. publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.38.072902.094318 – volume: 24 start-page: 652 year: 2014 ident: B84 article-title: A Neoproterozoic transition in the marine nitrogen cycle. publication-title: Curr. Biol. doi: 10.1016/j.cub.2014.01.041 – volume: 45 start-page: 361 year: 2006 ident: B96 article-title: Evolution of the diatoms: insights from fossil, biological and molecular data. publication-title: Phycologia doi: 10.2216/05-22.1 – volume: 5 start-page: 1484 year: 2011 ident: B38 article-title: Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. publication-title: ISME J. doi: 10.1038/ismej.2011.26 – volume: 154 start-page: 3347 year: 2008 ident: B83 article-title: Picocyanobacterial community structure of freshwater lakes and the Baltic Sea revealed by phylogenetic analyses and clade-specific quantitative PCR. publication-title: Microbiology doi: 10.1099/mic.0.2008/019836-0 – volume: 187 start-page: 1685 year: 2005 ident: B98 article-title: Two novel phycoerythrin-associated linker proteins in the marine cyanobacterium Synechococcus sp. strain WH8102. publication-title: J. Bacteriol. doi: 10.1128/JB.187.5.1685-1694.2005 – volume: 8 year: 2007 ident: B97 article-title: Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. publication-title: Genome Biol. doi: 10.1186/gb-2007-8-12-r259 – volume: 25 start-page: 1754 year: 2009 ident: B58 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 268 start-page: 1236 year: 1993 ident: B104 article-title: Rod structure of a phycoerythrin II-containing phycobilisome. II. Complete sequence and bilin attachment site of a phycoerythrin gamma subunit. publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)54065-5 – volume: 93 start-page: 11126 year: 1996 ident: B46 article-title: Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.93.20.11126 – volume: 80 start-page: 488 year: 2012 ident: B6 article-title: Spatio-temporal niche partitioning of closely related picocyanobacteria clades and phycocyanin pigment types in Lake Constance (Germany). publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2012.01316.x – year: 2008 ident: B95 article-title: “Rapid neighbour joining,” in publication-title: Algorithms in Bioinformatics. WABI 2008. Lecture Notes in Computer Science – volume: 30 start-page: 2114 year: 2014 ident: B11 article-title: Trimmomatic: a flexible trimmer for Illumina sequence data. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 10 start-page: 134 year: 2002 ident: B100 article-title: Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. publication-title: Trends Microbiol. doi: 10.1016/S0966-842X(02)02319-3 – volume: 61 start-page: 171 year: 2015 ident: B39 article-title: Community analysis of picocyanobacteria in an oligotrophic lake by cloning 16S rRNA gene and 16S rRNA gene amplicon sequencing. publication-title: J. Gen. Appl. Microbiol. doi: 10.2323/jgam.61.171 – volume: 19 start-page: 455 year: 2012 ident: B4 article-title: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. publication-title: J. Comput. Biol. doi: 10.1089/cmb.2012.0021 – volume: 266 start-page: 9515 year: 1991 ident: B72 article-title: Phycoerythrins of marine unicellular cyanobacteria. I. Bilin types and locations and energy transfer pathways in Synechococcus spp. phycoerythrins. publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)92851-6 – volume: 12 start-page: 335 year: 2012 ident: B94 article-title: raxmlGUI: a graphical front-end for RAxML. publication-title: Org. Divers. Evol. doi: 10.1007/s13127-011-0056-0 – volume: 61 start-page: 1 year: 2002 ident: B22 article-title: Freshwater autotrophic picoplankton: a review. publication-title: J. Limnol. doi: 10.4081/jlimnol.2002.1 – volume: 186 start-page: 7420 year: 2004 ident: B67 article-title: AplA, a member of a new class of phycobiliproteins lacking a traditional role in photosynthetic light harvesting. publication-title: J. Bacteriol. doi: 10.1128/JB.186.21.7420-7428.2004 – volume: 45 start-page: 1339 year: 1998 ident: B108 article-title: Picoplanktonic community structure on an Atlantic transect from 50 degrees N to 50 degrees S. publication-title: Deep Sea Res. Part I Oceanogr. Res. Pap. doi: 10.1039/c5em00546a – volume: 4 year: 2013 ident: B48 article-title: Genomic deletions disrupt nitrogen metabolism pathways of a cyanobacterial diatom symbiont. publication-title: Nat. Commun. doi: 10.1038/ncomms2748 – volume: 15 start-page: 447 year: 1995 ident: B42 article-title: Seasonal occurrence of picocyanobacteria in the greenland sea and central arctic-ocean. publication-title: Polar Biol. doi: 10.1007/BF00239722 – volume: 4 year: 2006 ident: B31 article-title: Relaxed phylogenetics and dating with confidence. publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0040088 – volume: 100 start-page: 10020 year: 2003 ident: B33 article-title: Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1733211100 – volume: 1 start-page: 1 year: 2008 ident: B17 article-title: Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. publication-title: Freshw. Rev. doi: 10.1608/FRJ-1.1.1 – volume: 6 year: 2005 ident: B32 article-title: Accelerated evolution associated with genome reduction in a free-living prokaryote. publication-title: Genome Biol. doi: 10.1186/gb-2005-6-2-r14 – year: 2013 ident: B74 publication-title: Tracer v 1.6.0. – volume: 6 year: 2015 ident: B14 article-title: Lifestyle evolution in cyanobacterial symbionts of sponges. publication-title: mBio doi: 10.1128/mBio.00391-15 – year: 1998 ident: B15 article-title: “Upper cretaceous,” in publication-title: Calcareous Nannofossil Biostratigraphy British Micropalaeontological Society Publications Series doi: 10.1007/978-94-011-4902-0_6 – volume: 85 start-page: 293 year: 2013 ident: B20 article-title: Phylogenetic diversity of nonmarine picocyanobacteria. publication-title: FEMS Microbiol. Ecol. doi: 10.1111/1574-6941.12118 – volume: 58 start-page: 769 ident: B90 article-title: Cyanobacteria and the great oxidation event: evidence from genes and fossils. publication-title: Palaeontology doi: 10.1111/pala.12178 – volume: 266 start-page: 9535 year: 1991 ident: B103 article-title: Phycoerythrins of marine unicellular cyanobacteria. III. Sequence of a class II phycoerythrin. publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)92853-X – volume: 26 start-page: 2334 year: 2010 ident: B43 article-title: genoPlotR: comparative gene and genome visualization in R. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq413 – volume: 63 start-page: 106 year: 1999 ident: B73 article-title: Prochlorococcus, a marine photosynthetic prokaryote of global significance. publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.63.1.106-127.1999 – volume: 4 year: 2016 ident: B28 article-title: Comparative genomics of Synechococcus and proposal of the new genus Parasynechococcus. publication-title: PeerJ doi: 10.7717/peerj.1522 – start-page: 229 year: 2012 ident: B21 article-title: “Freshwater picocyanobacteria: single cells, microcolonies and colonial forms,” in publication-title: The Ecology of Cyanobacteria II: Their Diversity in Time and Space doi: 10.1007/978-94-007-3855-3_8 – volume: 8 year: 2017 ident: B16 article-title: Synechococcus, picocyanobacteria, freshwater reservoirs, metagenomics, abundance, smallest estimated size. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01151 – volume: 11 year: 2011 ident: B88 article-title: The origin of multicellularity in cyanobacteria. publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-11-45 – volume: 16 start-page: 565 year: 1994 ident: B75 article-title: Why are there no picoplanktonic O2 evolvers with volumes less than 10-19 m3? publication-title: J. Plankton Res. doi: 10.1093/plankt/16.5.565 – volume: 286 start-page: 35509 year: 2011 ident: B9 article-title: Characterization of the activities of the CpeY, CpeZ, and CpeS bilin lyases in phycoerythrin biosynthesis in Fremyella diplosiphon strain UTEX 481. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.284281 – volume: 124 start-page: 311 year: 1998 ident: B63 article-title: Cyanobacterial phycobilisomes. publication-title: J. Struct. Biol. doi: 10.1006/jsbi.1998.4062 – volume: 11 year: 2011 ident: B56 article-title: Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits. publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-11-187 – volume: 19 year: 2018 ident: B30 article-title: Genome analysis of the freshwater planktonic Vulcanococcus limneticus sp. nov. reveals horizontal transfer of nitrogenase operon and alternative pathways of nitrogen utilization. publication-title: BMC Genomics doi: 10.1186/s12864-018-4648-3 – volume: 110 start-page: 26 year: 2012 ident: B71 article-title: The neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2011.09.004 – volume: 27 start-page: 171 year: 2011 ident: B101 article-title: SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. publication-title: Cladistics doi: 10.1111/j.1096-0031.2010.00329.x |
SSID | ssj0000402000 |
Score | 2.4047444 |
Snippet | Marine picocyanobacteria,
and
, substantially contribute to marine primary production and have been the subject of extensive ecological and genomic studies.... Marine picocyanobacteria, Prochlorococcus and Synechococcus, substantially contribute to marine primary production and have been the subject of extensive... Marine picocyanobacteria, Prochlorococcus and Synechococcus , substantially contribute to marine primary production and have been the subject of extensive... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 45 |
SubjectTerms | comparative genomics Cyanobium Microbiology phycobilisomes phylogenomics picocyanobacteria Synechococcus |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS-UwFA0iDLgRnfGjfpEBF7ooliZNm6WKorMYXCiIm5BP3gNJ5b0qvH_vvWl9vCeDs3FXmpSGc2-Sc5JwQsixlDyE0rBcGgcCxTOeG8Fl7o11QjcFUlg8bfFX3DzwP4_V48JVX3gmrLcH7oE787U0FfelLUzBg4HRtBShMI0wToMY8Dj6wpy3IKbSGIyyqCj6fUlQYRLCNLYGj3LJZNBZLc1Dya7_Xxzz81HJhbnneoOsD6SRnveN3SQrPv4kP_prJGe_yNNtnKLGntLb2LUUKB29ehtSiraB3kG07UxH6LrJmllTHR29G81s6yezbjQZR4r201N6AiT64jwVW3w63SIP11f3lzf5cGdCbrkou7y2IHhDCCArfCEbF3TDg3NSB2QmlePWBhFcWVtpjdecQ00DE1SwXgO4jG2T1dhGv0toEDJAb3elBorIXCVBmwEZ1Jr5CvCwGTn7QFDZwVAc77V4ViAsEHOVMFeIuUqYZ-R0_sVLb6bxRd0LDMq8HtpgpxeQHGpIDvW_5MjI74-QKug2uBeio29fpwqZoeC1FE1GdvoQz3_FcG0HsjQj9VLwl9qyXBLHo2TNLZhgwNn2vqPx-2QN4ejXew7Iajd59YfAgDpzlJL9HYdzBjQ priority: 102 providerName: Directory of Open Access Journals |
Title | Insights Into the Evolution of Picocyanobacteria and Phycoerythrin Genes (mpeBA and cpeBA) |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30761097 https://www.proquest.com/docview/2183647968 https://pubmed.ncbi.nlm.nih.gov/PMC6363710 https://doaj.org/article/e79b54e2c0b04fb28426f0b86bda144e |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA86EXwRv-02RwQf3EO1tmnaPAzZZHMTlD144eJLyKf3wki17cb633tO2l29cvHJl1KalIbzkfP7Jek5hLwSgnmf6yIV2gJBcQVLNWciddpYruoMISyetvjCT2fs07yc__49ehJgt5HaYT2pWXvx5vrn8B4c_gAZJ8Rb0MDSaDylJWLuzfI2uQNxqcJ6Bp8nsB_nZaRKWTbuVW58cS02xRT-m3Dn38cn_4hHJw_I_QlI0sNR8w_JLRcekbtjacnhMfl2Fjrk3R09C31DAebR46vJzGjj6TlYgBlUAHeO6ZoVVcHS88VgGtcO_aJdBoopqTv6GoD10WFsNni3_4TMTo6_fjhNpzoKqWE879PKAAn23gPVcJmorVc189YK5RGtlJYZ47m3eWWE0U4xBj01BC1vnNIAP4qnZCs0wT0n1HPhYQawuQLYWNhSAF8DgKhU4UqQh0nI2xsJSjMlGcdaFxcSyAbKXEaZS5S5jDJPyP7qjR9jgo1_9D1Cpaz6YWrs-KBpv8vJ06SrhC6Zy02mM-Zh_IBBfKZrrq0C9ugS8vJGpRJcCfdHVHDNZScRLXJWCV4n5Nmo4tWnClzvActNSLWm_LWxrLeE5SKm6-YFLwDHbf-Pwe-QeyiOcQ1ol2z17aV7Aaio13txNQGuH-fv9qLh_wIf2Q_0 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+Into+the+Evolution+of+Picocyanobacteria+and+Phycoerythrin+Genes+%28mpeBA+and+cpeBA%29&rft.jtitle=Frontiers+in+microbiology&rft.au=Patricia+S%C3%A1nchez-Baracaldo&rft.au=Giorgio+Bianchini&rft.au=Andrea+Di+Cesare&rft.au=Andrea+Di+Cesare&rft.date=2019&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=10&rft_id=info:doi/10.3389%2Ffmicb.2019.00045&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e79b54e2c0b04fb28426f0b86bda144e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |