Interpreting Whole-Genome Sequence Analyses of Foodborne Bacteria for Regulatory Applications and Outbreak Investigations

Whole-genome sequence (WGS) analysis has revolutionized the food safety industry by enabling high-resolution typing of foodborne bacteria. Higher resolving power allows investigators to identify origins of contamination during illness outbreaks and regulatory activities quickly and accurately. Gover...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 9; p. 1482
Main Authors Pightling, Arthur W., Pettengill, James B., Luo, Yan, Baugher, Joseph D., Rand, Hugh, Strain, Errol
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 10.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Whole-genome sequence (WGS) analysis has revolutionized the food safety industry by enabling high-resolution typing of foodborne bacteria. Higher resolving power allows investigators to identify origins of contamination during illness outbreaks and regulatory activities quickly and accurately. Government agencies and industry stakeholders worldwide are now analyzing WGS data routinely. Although researchers have published many studies that assess the efficacy of WGS data analysis for source attribution, guidance for interpreting WGS analyses is lacking. Here, we provide the framework for interpreting WGS analyses used by the Food and Drug Administration's Center for Food Safety and Applied Nutrition (CFSAN). We based this framework on the experiences of CFSAN investigators, collaborations and interactions with government and industry partners, and evaluation of the published literature. A fundamental question for investigators is whether two or more bacteria arose from the same source of contamination. Analysts often count the numbers of nucleotide differences [single-nucleotide polymorphisms (SNPs)] between two or more genome sequences to measure genetic distances. However, using SNP thresholds alone to assess whether bacteria originated from the same source can be misleading. Bacteria that are isolated from food, environmental, or clinical samples are representatives of bacterial populations. These populations are subject to evolutionary forces that can change genome sequences. Therefore, interpreting WGS analyses of foodborne bacteria requires a more sophisticated approach. Here, we present a framework for interpreting WGS analyses that combines SNP counts with phylogenetic tree topologies and bootstrap support. We also clarify the roles of WGS, epidemiological, traceback, and other evidence in forming the conclusions of investigations. Finally, we present examples that illustrate the application of this framework to real-world situations.
AbstractList Whole-genome sequence (WGS) analysis has revolutionized the food safety industry by enabling high-resolution typing of foodborne bacteria. Higher resolving power allows investigators to identify origins of contamination during illness outbreaks and regulatory activities quickly and accurately. Government agencies and industry stakeholders worldwide are now analyzing WGS data routinely. Although researchers have published many studies that assess the efficacy of WGS data analysis for source attribution, guidance for interpreting WGS analyses is lacking. Here, we provide the framework for interpreting WGS analyses used by the Food and Drug Administration’s Center for Food Safety and Applied Nutrition (CFSAN). We based this framework on the experiences of CFSAN investigators, collaborations and interactions with government and industry partners, and evaluation of the published literature. A fundamental question for investigators is whether two or more bacteria arose from the same source of contamination. Analysts often count the numbers of nucleotide differences [single-nucleotide polymorphisms (SNPs)] between two or more genome sequences to measure genetic distances. However, using SNP thresholds alone to assess whether bacteria originated from the same source can be misleading. Bacteria that are isolated from food, environmental, or clinical samples are representatives of bacterial populations. These populations are subject to evolutionary forces that can change genome sequences. Therefore, interpreting WGS analyses of foodborne bacteria requires a more sophisticated approach. Here, we present a framework for interpreting WGS analyses that combines SNP counts with phylogenetic tree topologies and bootstrap support. We also clarify the roles of WGS, epidemiological, traceback, and other evidence in forming the conclusions of investigations. Finally, we present examples that illustrate the application of this framework to real-world situations.
Whole-genome sequence (WGS) analysis has revolutionized the food safety industry by enabling high-resolution typing of foodborne bacteria. Higher resolving power allows investigators to identify origins of contamination during illness outbreaks and regulatory activities quickly and accurately. Government agencies and industry stakeholders worldwide are now analyzing WGS data routinely. Although researchers have published many studies that assess the efficacy of WGS data analysis for source attribution, guidance for interpreting WGS analyses is lacking. Here, we provide the framework for interpreting WGS analyses used by the Food and Drug Administration's Center for Food Safety and Applied Nutrition (CFSAN). We based this framework on the experiences of CFSAN investigators, collaborations and interactions with government and industry partners, and evaluation of the published literature. A fundamental question for investigators is whether two or more bacteria arose from the same source of contamination. Analysts often count the numbers of nucleotide differences [single-nucleotide polymorphisms (SNPs)] between two or more genome sequences to measure genetic distances. However, using SNP thresholds alone to assess whether bacteria originated from the same source can be misleading. Bacteria that are isolated from food, environmental, or clinical samples are representatives of bacterial populations. These populations are subject to evolutionary forces that can change genome sequences. Therefore, interpreting WGS analyses of foodborne bacteria requires a more sophisticated approach. Here, we present a framework for interpreting WGS analyses that combines SNP counts with phylogenetic tree topologies and bootstrap support. We also clarify the roles of WGS, epidemiological, traceback, and other evidence in forming the conclusions of investigations. Finally, we present examples that illustrate the application of this framework to real-world situations.Whole-genome sequence (WGS) analysis has revolutionized the food safety industry by enabling high-resolution typing of foodborne bacteria. Higher resolving power allows investigators to identify origins of contamination during illness outbreaks and regulatory activities quickly and accurately. Government agencies and industry stakeholders worldwide are now analyzing WGS data routinely. Although researchers have published many studies that assess the efficacy of WGS data analysis for source attribution, guidance for interpreting WGS analyses is lacking. Here, we provide the framework for interpreting WGS analyses used by the Food and Drug Administration's Center for Food Safety and Applied Nutrition (CFSAN). We based this framework on the experiences of CFSAN investigators, collaborations and interactions with government and industry partners, and evaluation of the published literature. A fundamental question for investigators is whether two or more bacteria arose from the same source of contamination. Analysts often count the numbers of nucleotide differences [single-nucleotide polymorphisms (SNPs)] between two or more genome sequences to measure genetic distances. However, using SNP thresholds alone to assess whether bacteria originated from the same source can be misleading. Bacteria that are isolated from food, environmental, or clinical samples are representatives of bacterial populations. These populations are subject to evolutionary forces that can change genome sequences. Therefore, interpreting WGS analyses of foodborne bacteria requires a more sophisticated approach. Here, we present a framework for interpreting WGS analyses that combines SNP counts with phylogenetic tree topologies and bootstrap support. We also clarify the roles of WGS, epidemiological, traceback, and other evidence in forming the conclusions of investigations. Finally, we present examples that illustrate the application of this framework to real-world situations.
Author Rand, Hugh
Baugher, Joseph D.
Pightling, Arthur W.
Pettengill, James B.
Luo, Yan
Strain, Errol
AuthorAffiliation Biostatistics and Bioinformatics, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , College Park, MD , United States
AuthorAffiliation_xml – name: Biostatistics and Bioinformatics, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , College Park, MD , United States
Author_xml – sequence: 1
  givenname: Arthur W.
  surname: Pightling
  fullname: Pightling, Arthur W.
– sequence: 2
  givenname: James B.
  surname: Pettengill
  fullname: Pettengill, James B.
– sequence: 3
  givenname: Yan
  surname: Luo
  fullname: Luo, Yan
– sequence: 4
  givenname: Joseph D.
  surname: Baugher
  fullname: Baugher, Joseph D.
– sequence: 5
  givenname: Hugh
  surname: Rand
  fullname: Rand, Hugh
– sequence: 6
  givenname: Errol
  surname: Strain
  fullname: Strain, Errol
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30042741$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1rGzEQhpeS0qRp7j0VHXuxq69d7V4KbkhSQyDQD9qbGGlnN0rXkivJAf_7ynZSkkIlkAbNvM-A5n1dHfngsareMjoXou0-DCtnzZxT1s4pky1_UZ2wppEzQfnPoyfxcXWW0h0tS1JezlfVsSgxV5KdVNulzxjXEbPzI_lxGyacXaEPKyRf8fcGvUWy8DBtEyYSBnIZQm9C9Eg-gS1KB2QIkXzBcTNBDnFLFuv15CxkF3wi4Htys8kmIvwiS3-PKbvxkHtTvRxgSnj2cJ9W3y8vvp1_nl3fXC3PF9czKxueZwrQgO14XXYvasWwU1zRgdVSQtdzIQCMBaQ955JJ1rcMWKcUBY6sVa04rZYHbh_gTq-jW0Hc6gBO7x9CHDXE7OyEWrSt5L2RRtFWGi6NrFkjetZ01poadqyPB9Z6Y1bYW_Q5wvQM-jzj3a0ew71uaBlQowrg_QMghvK7KeuVSxanCTyGTdKcqoaLVnZdKX33tNffJo-zKwXNocDGkFLEQVuX939bWrtJM6p3PtF7n-idT_TeJ0VI_xE-sv8r-QPiX8Ky
CitedBy_id crossref_primary_10_1099_mic_0_000895
crossref_primary_10_1089_fpd_2018_2563
crossref_primary_10_3390_ani11113201
crossref_primary_10_1093_ofid_ofz431
crossref_primary_10_1016_j_jhazmat_2024_136166
crossref_primary_10_1016_j_foodcont_2022_108853
crossref_primary_10_1128_spectrum_01706_24
crossref_primary_10_1093_dnares_dsaa014
crossref_primary_10_1111_lam_13227
crossref_primary_10_1071_MA22024
crossref_primary_10_3390_microorganisms10030570
crossref_primary_10_4315_JFP_21_082
crossref_primary_10_1073_pnas_2411894121
crossref_primary_10_1016_j_ijfoodmicro_2020_108542
crossref_primary_10_1038_s41598_021_87330_8
crossref_primary_10_1038_s43856_022_00124_5
crossref_primary_10_3390_mps7030048
crossref_primary_10_4315_JFP_21_112
crossref_primary_10_1016_j_jfp_2024_100324
crossref_primary_10_1093_jambio_lxad255
crossref_primary_10_1093_fqsafe_fyac040
crossref_primary_10_1128_aem_01892_24
crossref_primary_10_1371_journal_ppat_1009586
crossref_primary_10_1111_1541_4337_70071
crossref_primary_10_3389_fmicb_2019_01107
crossref_primary_10_1016_j_foodcont_2023_109833
crossref_primary_10_1186_s12864_021_07539_9
crossref_primary_10_1016_j_psj_2022_102322
crossref_primary_10_1016_S2666_5247_22_00380_9
crossref_primary_10_1186_s13104_024_06847_z
crossref_primary_10_1186_s13059_019_1727_y
crossref_primary_10_1371_journal_pone_0213039
crossref_primary_10_3389_fpubh_2020_519293
crossref_primary_10_3389_fmicb_2023_1130891
crossref_primary_10_3389_fmicb_2019_01591
crossref_primary_10_1016_j_foodres_2024_114840
crossref_primary_10_1089_fpd_2020_2856
crossref_primary_10_1186_s13012_019_0930_2
crossref_primary_10_3389_fmicb_2024_1496223
crossref_primary_10_3389_fmicb_2021_626941
crossref_primary_10_3389_fcimb_2022_888568
crossref_primary_10_1016_j_ijfoodmicro_2023_110490
crossref_primary_10_3389_fbinf_2024_1415078
crossref_primary_10_1016_j_microb_2025_100274
crossref_primary_10_4178_epih_e2024036
crossref_primary_10_3389_fmicb_2019_01710
crossref_primary_10_1016_j_ijfoodmicro_2021_109503
crossref_primary_10_1099_mgen_0_001164
crossref_primary_10_3390_microorganisms11040965
crossref_primary_10_3390_pathogens10010045
crossref_primary_10_3390_microorganisms10112120
crossref_primary_10_1038_s41598_022_22168_2
crossref_primary_10_1007_s42770_021_00508_0
crossref_primary_10_1038_s41579_024_01051_z
crossref_primary_10_1016_j_foodcont_2021_108148
crossref_primary_10_3390_hygiene1010005
crossref_primary_10_1186_s13073_021_00934_7
crossref_primary_10_3389_fmicb_2022_803043
crossref_primary_10_1371_journal_pntd_0007421
crossref_primary_10_3390_antibiotics12050883
crossref_primary_10_1016_j_gene_2023_147359
crossref_primary_10_3390_biology11040587
crossref_primary_10_1016_j_cofs_2020_02_007
crossref_primary_10_1016_j_xcrm_2023_101094
crossref_primary_10_3390_foods12030599
crossref_primary_10_4315_JFP_21_096
crossref_primary_10_1128_aac_00677_22
crossref_primary_10_3389_fmicb_2019_02413
crossref_primary_10_3390_microorganisms12050848
crossref_primary_10_1128_mSphere_00383_21
crossref_primary_10_1016_j_cofs_2024_101245
crossref_primary_10_1016_j_mran_2022_100214
crossref_primary_10_3389_fmicb_2023_1120285
crossref_primary_10_1186_s12864_022_08695_2
crossref_primary_10_3390_microorganisms8030414
crossref_primary_10_1089_mdr_2020_0389
crossref_primary_10_1016_j_fm_2018_11_005
crossref_primary_10_1099_mgen_0_000491
crossref_primary_10_3390_genes15040466
crossref_primary_10_1016_j_cll_2020_08_011
crossref_primary_10_1186_s12864_022_08347_5
crossref_primary_10_3201_eid2603_190947
crossref_primary_10_3389_fsufs_2018_00083
crossref_primary_10_3390_microorganisms10020203
crossref_primary_10_1186_s13071_020_3997_3
crossref_primary_10_1002_mbo3_1246
crossref_primary_10_1016_j_fm_2022_104055
crossref_primary_10_1186_s40168_024_02026_1
crossref_primary_10_1089_fpd_2022_0078
crossref_primary_10_1016_j_jfp_2023_100117
crossref_primary_10_3389_fmicb_2022_952081
crossref_primary_10_3389_fmicb_2020_561204
crossref_primary_10_3389_fcimb_2022_947486
crossref_primary_10_3390_pathogens11020115
crossref_primary_10_3389_fmicb_2020_00866
crossref_primary_10_1007_s00203_022_02924_8
crossref_primary_10_1089_fpd_2024_0089
crossref_primary_10_2807_1560_7917_ES_2021_26_22_2001396
crossref_primary_10_1128_AEM_00579_20
crossref_primary_10_1038_s41598_022_19289_z
crossref_primary_10_1128_AEM_01985_19
crossref_primary_10_1016_j_psj_2019_12_019
crossref_primary_10_1089_mdr_2019_0249
crossref_primary_10_2903_j_efsa_2024_8521
crossref_primary_10_3390_insects12040362
crossref_primary_10_1017_ice_2020_1253
crossref_primary_10_1016_j_meegid_2019_04_026
crossref_primary_10_1128_aem_01177_22
crossref_primary_10_1016_j_jfp_2023_100089
crossref_primary_10_4315_JFP_21_437
crossref_primary_10_3389_fmicb_2023_1139312
crossref_primary_10_1016_j_jfp_2024_100360
crossref_primary_10_1128_spectrum_00047_24
crossref_primary_10_1099_mgen_0_000947
crossref_primary_10_3389_fmicb_2020_00478
crossref_primary_10_1128_msphere_00480_23
crossref_primary_10_1186_s13059_019_1914_x
crossref_primary_10_1038_s41598_023_37621_z
crossref_primary_10_1128_aem_02136_21
crossref_primary_10_1016_j_cmi_2022_10_012
crossref_primary_10_3389_fmicb_2021_723577
crossref_primary_10_3390_ani10111949
crossref_primary_10_1016_j_jafr_2020_100045
crossref_primary_10_1016_j_jfp_2024_100254
crossref_primary_10_1186_s12917_019_1864_2
crossref_primary_10_1128_JCM_00849_21
crossref_primary_10_3389_fmicb_2023_1295769
crossref_primary_10_1099_mgen_0_000709
crossref_primary_10_3389_fpubh_2019_00139
crossref_primary_10_1016_j_ijfoodmicro_2022_110025
crossref_primary_10_1016_j_onehlt_2022_100370
crossref_primary_10_1371_journal_pone_0259471
crossref_primary_10_1093_cid_ciac638
crossref_primary_10_3389_fmicb_2019_00947
crossref_primary_10_1371_journal_pone_0246885
crossref_primary_10_3390_microorganisms11061543
crossref_primary_10_3389_fmicb_2022_797997
crossref_primary_10_1038_s41538_021_00097_0
crossref_primary_10_1016_j_jfp_2024_100413
crossref_primary_10_1099_mgen_0_000672
crossref_primary_10_3389_fmicb_2024_1460335
crossref_primary_10_3390_microorganisms11061425
crossref_primary_10_1371_journal_pone_0246482
crossref_primary_10_5808_gi_20038
crossref_primary_10_1016_j_ijfoodmicro_2019_03_007
crossref_primary_10_1186_s12859_023_05414_w
crossref_primary_10_3389_fmicb_2020_01618
crossref_primary_10_3389_fmicb_2023_1253362
crossref_primary_10_3390_antibiotics12081330
crossref_primary_10_4315_JFP_20_417
crossref_primary_10_1016_j_mimet_2023_106788
crossref_primary_10_1016_j_vetmic_2021_109119
crossref_primary_10_1093_jac_dkab310
crossref_primary_10_1128_aem_02149_21
crossref_primary_10_1128_mbio_00777_24
crossref_primary_10_1186_s12866_024_03412_3
crossref_primary_10_3390_foods10112637
crossref_primary_10_3389_fmicb_2021_649517
crossref_primary_10_3390_microorganisms10122364
crossref_primary_10_3390_pathogens11101075
crossref_primary_10_1016_j_meegid_2019_104047
crossref_primary_10_4315_JFP_20_365
crossref_primary_10_1371_journal_pone_0291109
crossref_primary_10_3390_pathogens10111391
crossref_primary_10_3389_fsufs_2021_725791
crossref_primary_10_1016_j_foodcont_2021_108579
crossref_primary_10_1007_s13132_022_01000_2
crossref_primary_10_3389_fvets_2021_582677
crossref_primary_10_3168_jds_2024_24789
crossref_primary_10_3412_jsb_79_283
crossref_primary_10_1128_aem_00861_22
crossref_primary_10_1128_aem_00861_24
crossref_primary_10_1016_j_ijfoodmicro_2025_111115
Cites_doi 10.1128/JCM.01280-1215
10.1385/1-59259-763-7:323
10.1111/cla.12012
10.4315/0362-028X-59.10.1091
10.1186/1471-2164-13-32
10.1111/j.1558-5646.1985.tb00420.x
10.1128/JCM.02140-2116
10.3389/fmicb.2017.00808
10.2460/javma.244.5.545
10.5740/jaoacint.16-0269
10.1371/journal.pone.0104579
10.1093/infdis/jiv297
10.1371/journal.pone.0087991
10.3201/eid2009.131095
10.1128/JCM.01696-1612
10.1186/1471-2164-11-120
10.1371/currents.outbreaks.aa5372d90826e6cb0136ff66bb7a62fc
10.1128/JCM.00202-215
10.1186/s12879-015-0902-903
10.1073/pnas.1107176108
10.1016/S0956-7135(99)00005-5
10.1371/journal.pone.0171389
10.1038/nmicrobiol.2016.185
10.1126/scitranslmed.3004129
10.1186/s12866-017-1043-1041
10.1128/JCM.00081-16
10.1128/AEM.01486-1416
10.1186/s12866-015-0526-521
10.1128/JCM.03235-3214
10.7717/peerj-cs.20
10.3389/fmicb.2017.01068
10.15585/mmwr.mm6533a6
10.1093/cid/ciw242
10.1002/jsfa.6295
10.1128/AEM.00633-617
10.1099/mgen.0.000094
10.4315/0362-028X.JFP-13-150
10.1128/AEM.01049-1015
10.1056/NEJMoa1615910
10.3201/eid2008.131399
ContentType Journal Article
Copyright Copyright © 2018 Pightling, Pettengill, Luo, Baugher, Rand and Strain. 2018 Pightling, Pettengill, Luo, Baugher, Rand and Strain
Copyright_xml – notice: Copyright © 2018 Pightling, Pettengill, Luo, Baugher, Rand and Strain. 2018 Pightling, Pettengill, Luo, Baugher, Rand and Strain
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmicb.2018.01482
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_38842db4b7084b24b45163d169ccb5a8
PMC6048267
30042741
10_3389_fmicb_2018_01482
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-7aebac925252d3571e97270f1544a9d233aabcae0d224141d81a19770a2e18783
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:31:06 EDT 2025
Thu Aug 21 17:49:59 EDT 2025
Thu Jul 10 20:35:52 EDT 2025
Wed Feb 19 02:41:56 EST 2025
Tue Jul 01 00:55:13 EDT 2025
Thu Apr 24 23:05:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Salmonella enterica
genomic epidemiology
interpretation
whole-genome sequence
Escherichia coli
Listeria monocytogenes
phylogenetics
outbreak investigation
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-7aebac925252d3571e97270f1544a9d233aabcae0d224141d81a19770a2e18783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology
Edited by: David Rodriguez-Lazaro, University of Burgos, Spain
Reviewed by: Baltasar Mayo, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Catherine Maeve Burgess, Teagasc, The Irish Agriculture and Food Development Authority, Ireland
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2018.01482
PMID 30042741
PQID 2076238499
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_38842db4b7084b24b45163d169ccb5a8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6048267
proquest_miscellaneous_2076238499
pubmed_primary_30042741
crossref_citationtrail_10_3389_fmicb_2018_01482
crossref_primary_10_3389_fmicb_2018_01482
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-10
PublicationDateYYYYMMDD 2018-07-10
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-10
  day: 10
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Chen (B4) 2016; 82
Pightling (B34) 2015; 15
Underwood (B41) 2013; 51
Wang (B42) 2015; 53
Griffiths (B18) 2017; 8
Farber (B14) 1996; 59
Moran-Gilad (B29) 2015; 15
Allard (B1) 2012; 13
Stevens (B39) 2017; 8
Pightling (B33) 2014; 9
Kruse (B25) 1999; 10
Octavia (B32) 2015; 53
Chen (B7); 55
Snitkin (B36) 2012; 4
Stasiewicz (B38) 2015; 81
Taylor (B40) 2015; 53
Crowe (B8) 2017; 377
Hoffmann (B21) 2016; 213
Self (B35) 2016
Allard (B2) 2016; 54
Deng (B11) 2014; 20
Wuyts (B44) 2015
Leekitcharoenphon (B27) 2014; 9
Felsenstein (B15) 1985; 39
Aquilina (B3) 2018; 16
Keener (B24) 2014; 94
Gilmour (B17) 2010; 11
Davis (B9) 2015; 1
Chen (B5)
Li (B28) 2017; 17
Moura (B30) 2016; 2
Jackson (B23) 2016; 63
Ferreira (B16) 2014; 77
den Bakker (B10) 2014; 20
Nielsen (B31) 2017
Spratt (B37) 2004; 266
Hoffman (B20) 2015
Lambert (B26) 2017; 100
Zwicki (B45) 2006
Duchene (B12) 2016; 2
Eppinger (B13) 2011; 108
(B19) 2011
Imanishi (B22) 2014; 244
Chen (B6); 12
Wilson (B43) 2013; 29
References_xml – volume: 53
  start-page: 3334
  year: 2015
  ident: B40
  article-title: Characterization of foodborne outbreaks of Salmonella enterica serovar Enteritidis with whole-genome sequencing single nucleotide polymorphism-based analysis for surveillance and outbreak detection.
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.01280-1215
– year: 2011
  ident: B19
  publication-title: Capturing Recall Costs: Measuring and Recovering the Losses [Online]. Grocery Manufacters Association.
– volume: 266
  start-page: 323
  year: 2004
  ident: B37
  article-title: Exploring the concept of clonality in bacteria.
  publication-title: Methods Mol. Biol.
  doi: 10.1385/1-59259-763-7:323
– volume: 29
  start-page: 449
  year: 2013
  ident: B43
  article-title: The forensic analysis of foodborne bacterial pathogens in the age of whole-genome sequencing.
  publication-title: Cladistics
  doi: 10.1111/cla.12012
– volume: 59
  start-page: 1091
  year: 1996
  ident: B14
  article-title: An introduction to the hows and whys of molecular typing.
  publication-title: J. Food Prot.
  doi: 10.4315/0362-028X-59.10.1091
– volume: 13
  year: 2012
  ident: B1
  article-title: High resolution clustering of Salmonella enterica serovar Montevideo strains using a next-generation sequencing approach.
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-32
– volume: 39
  start-page: 783
  year: 1985
  ident: B15
  article-title: Confidence limits on phylogenies: an approach using the bootstrap.
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1985.tb00420.x
– volume: 55
  start-page: 931
  ident: B7
  article-title: Singleton sequence type 382, an emerging clonal group of Listeria monocytogenes associated with three multistate outbreaks linked to contaminated stone fruit, caramel apples, and leafy green salad.
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.02140-2116
– volume: 8
  year: 2017
  ident: B39
  article-title: The public health impact of a publically available, environmental database of microbial genomes.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00808
– volume: 244
  start-page: 545
  year: 2014
  ident: B22
  article-title: Outbreak of Salmonella enterica serotype infantis infection in humans linked to dry dog food in the United States and Canada, 2012.
  publication-title: J. Am. Vet. Med. Assoc.
  doi: 10.2460/javma.244.5.545
– volume: 100
  start-page: 721
  year: 2017
  ident: B26
  article-title: Baseline practices for the application of genomic data supporting regulatory food safety.
  publication-title: J. AOAC Int.
  doi: 10.5740/jaoacint.16-0269
– volume: 9
  year: 2014
  ident: B33
  article-title: Choice of reference sequence and assembler for alignment of Listeria monocytogenes short-read sequence data greatly influences rates of error in SNP analyses.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0104579
– volume: 213
  start-page: 502
  year: 2016
  ident: B21
  article-title: Tracing origins of the Salmonella Bareilly strain causing a food-borne outbreak in the United States.
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiv297
– volume: 9
  year: 2014
  ident: B27
  article-title: Evaluation of whole genome sequencing for outbreak detection of Salmonella enterica.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0087991
– volume: 20
  start-page: 1481
  year: 2014
  ident: B11
  article-title: Genomic epidemiology of Salmonella enterica serotype Enteritidis based on population structure of prevalent lineages.
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2009.131095
– volume: 51
  start-page: 232
  year: 2013
  ident: B41
  article-title: Public health value of next-generation DNA sequencing of enterohemorrhagic Escherichia coli isolates from an outbreak.
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.01696-1612
– year: 2015
  ident: B20
  publication-title: Economic Burden of Major Foodborne Illnesses Acquired in the United States [Online]. United States Department of Agriculture.
– volume: 11
  year: 2010
  ident: B17
  article-title: High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak.
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-120
– year: 2015
  ident: B44
  article-title: Whole genome sequence analysis of Salmonella Enteritidis PT4 outbreaks from a national reference laboratory’s viewpoint.
  publication-title: PLoS Curr. Outbreaks.
  doi: 10.1371/currents.outbreaks.aa5372d90826e6cb0136ff66bb7a62fc
– year: 2006
  ident: B45
  publication-title: Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets Under the Maximum Likelihood Criterion.
– volume: 53
  start-page: 3492
  year: 2015
  ident: B42
  article-title: It is not all about single nucleotide polymorphisms: comparison of mobile genetic elements and deletions in Listeria monocytogenes genomes links cases of hospital-acquired Listeriosis to the environmental source.
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.00202-215
– volume: 15
  year: 2015
  ident: B29
  article-title: Proficiency testing for bacterial whole genome sequencing: an end-user survey of current capabilities, requirements and priorities.
  publication-title: BMC Infect. Dis.
  doi: 10.1186/s12879-015-0902-903
– volume: 108
  start-page: 20142
  year: 2011
  ident: B13
  article-title: Genomic anatomy of Escherichia coli O157:H7 outbreaks.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1107176108
– volume: 10
  start-page: 315
  year: 1999
  ident: B25
  article-title: Globalization of the food supply-food safety implications: special regional requirements: future concerns.
  publication-title: Food Control
  doi: 10.1016/S0956-7135(99)00005-5
– volume: 12
  ident: B6
  article-title: Assessing the genome level diversity of Listeria monocytogenes from contaminated ice cream and environmental samples linked to a Listeriosis outbreak in the United States.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0171389
– volume: 2
  year: 2016
  ident: B30
  article-title: Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes.
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2016.185
– volume: 4
  year: 2012
  ident: B36
  article-title: Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing.
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3004129
– volume: 17
  year: 2017
  ident: B28
  article-title: Whole genome sequencing analyses of Listeria monocytogenes that persisted in a milkshake machine for a year and caused illnesses in washington state.
  publication-title: BMC Microbiol.
  doi: 10.1186/s12866-017-1043-1041
– volume: 54
  start-page: 1975
  year: 2016
  ident: B2
  article-title: Practical value of food pathogen traceability through building a whole-genome sequencing network and database.
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.00081-16
– year: 2017
  ident: B31
  publication-title: Closing Gaps for Performing a Risk Assessment on Listeria monocytogenes in Ready-To-Eat (RTE) Foods: Activity 3 the Comparison of Isolates from Different Compartments along the Food Chain, and from Humans Using Whole Genome Sequencing (WGS) Analysis.
– volume: 82
  start-page: 7030
  year: 2016
  ident: B4
  article-title: Listeria monocytogenes in stone fruits linked to a multistate outbreak: enumeration of cells and whole-genome sequencing.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01486-1416
– volume: 15
  year: 2015
  ident: B34
  article-title: The Listeria monocytogenes core-genome sequence typer (LmCGST): a bioinformatic pipeline for molecular characterization with next-generation sequence data.
  publication-title: BMC Microbiol.
  doi: 10.1186/s12866-015-0526-521
– volume: 53
  start-page: 1063
  year: 2015
  ident: B32
  article-title: Delineating community outbreaks of Salmonella enterica serovar typhimurium by use of whole-genome sequencing: insights into genomic variability within an outbreak.
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.03235-3214
– volume: 1
  year: 2015
  ident: B9
  article-title: CFSAN SNP pipeline: an automated method for constructing SNP matrices from next-generation sequence data.
  publication-title: Peerj Comp. Sci.
  doi: 10.7717/peerj-cs.20
– volume: 8
  year: 2017
  ident: B18
  article-title: Context is everything: harmonization of critical food microbiology descriptors and metadata for improved food safety and surveillance.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01068
– start-page: 879
  year: 2016
  ident: B35
  article-title: Notes from the field: outbreak of Listeriosis associated with consumption of package salad – United States and Canada, 2015-2016.
  publication-title: MMWR Morb. Mortal. Wkly. Rep.
  doi: 10.15585/mmwr.mm6533a6
– volume: 63
  start-page: 380
  year: 2016
  ident: B23
  article-title: Implementation of nationwide real-time whole-genome sequencing to enhance listeriosis outbreak detection and investigation.
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciw242
– volume: 94
  start-page: 1947
  year: 2014
  ident: B24
  article-title: Harmonization of legislation and regulations to achieve food safety: US and Canada perspective.
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.6295
– volume: 16
  year: 2018
  ident: B3
  article-title: Guidance on the characterisation of microorganisms used as feed additives or as production organisms.
  publication-title: EFSA J.
– ident: B5
  article-title: Whole genome and core genome multilocus sequence typing and single nucleotide polymorphism analyses of Listeria monocytogenes associated with an outbreak linked to cheese, United States, 2013.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00633-617
– volume: 2
  year: 2016
  ident: B12
  article-title: Genome-scale rates of evolutionary change in bacteria.
  publication-title: Microb. Genom.
  doi: 10.1099/mgen.0.000094
– volume: 77
  start-page: 150
  year: 2014
  ident: B16
  article-title: Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health.
  publication-title: J. Food. Prot.
  doi: 10.4315/0362-028X.JFP-13-150
– volume: 81
  start-page: 6024
  year: 2015
  ident: B38
  article-title: Whole-genome sequencing allows for improved identification of persistent Listeria monocytogenes in food-associated environments.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01049-1015
– volume: 377
  start-page: 2036
  year: 2017
  ident: B8
  article-title: Shiga toxin-producing E. coli infections associated with flour.
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1615910
– volume: 20
  start-page: 1306
  year: 2014
  ident: B10
  article-title: Rapid whole-genome sequencing for surveillance of Salmonella enterica serovar Enteritidis.
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2008.131399
SSID ssj0000402000
Score 2.5723813
Snippet Whole-genome sequence (WGS) analysis has revolutionized the food safety industry by enabling high-resolution typing of foodborne bacteria. Higher resolving...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1482
SubjectTerms genomic epidemiology
interpretation
Listeria monocytogenes
Microbiology
outbreak investigation
phylogenetics
whole-genome sequence
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUOilNEkfbh6okEsPbiRLtuVjUrIJhSbQNjQ3o8eYhrR2SXYP--8zIzmLt5T2UnyzZUloRpoZafR9jB1qG5zunM9L40OuoexyY0uRS4AmdJWAStHd4U8X1fmV_nhdXk-ovignLMEDp4E7UsboAutztTDaFdoRs6wKsmq8d6WN13zR5k2CqbgGU1gkRDqXxCisQTHdeEepXOY9baIVa3YowvX_ycf8PVVyYntmz9mz0Wnkx6mzW2wD-m32JNFILnfYcpU5iHaIfyPG2_wM-uEn8C9jpjRP4CNwz4eOz4YhoOh74CcJq9lydF3550RLP9wt-fHkWJvbPvDLxRxjZ3vLJ7gc-O0Fu5qdfv1wno-UCrnXVTHPawvO-qYo8QmqrCU06MCIjjB5bBMKpax13oIIZNq1DEZaiS6isAVIUxv1km32Qw-vGRcV1qOChs4TobpzRHcTdNk0dLYXuowdPQ5w60e8caK9-NFi3EEiaaNIWhJJG0WSsXerP34lrI2_lD0hma3KEUp2fIG604660_5LdzL29lHiLc4qOiqxPQyLe2wIjYQyGA5m7FXSgFVTKvKTaJmxek031vqy_qW_-R6RuytcL4uqfvM_Or_LntJw0D6zFHtsc363gH10kObuIM6FB9MOEEM
  priority: 102
  providerName: Directory of Open Access Journals
Title Interpreting Whole-Genome Sequence Analyses of Foodborne Bacteria for Regulatory Applications and Outbreak Investigations
URI https://www.ncbi.nlm.nih.gov/pubmed/30042741
https://www.proquest.com/docview/2076238499
https://pubmed.ncbi.nlm.nih.gov/PMC6048267
https://doaj.org/article/38842db4b7084b24b45163d169ccb5a8
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF-kIvgi9Tu1lhV88SE1m91sNg-ltOK1CFVQD-8t7MdEizXR-wDvv-_MJj3v5BAJ5CFfm2RmdmZ2dn8_xl4qG5xqnE8L40OqoGhSY4ssFQBVaHQGWtLa4Yv3-nys3k2KyZ_l0cMPnG1N7YhPajy9Ovz9a3mMBn9EGSf6W5TApXc0S8sc0vgYdsi30S-VZKYXQ7Af-2VKleKaFKE1lQPySV-33PqQDT8V4fy3xaB_T6Vc802jXXZvCCr5Sa8F99ktaB-wOz3N5PIhW65mFqKf4l-IETc9g7b7AfzTMJOa9-AkMONdw0ddF1A1WuCnPZaz5Rja8o89bX03XfKTtbI3t23gHxZzzK3td76G24HnHrHx6O3nN-fpQLmQeqXzeVpacNZXeYFbkEUpoMIAJ2sIs8dWIZfSWuctZIFcvxLBCCswhMxsDsKURj5mO23XwlPGM43PkUFB44lw3TmiwwmqqCqq_YUmYa9vfnDtBzxyosW4qjEvIZHUUSQ1iaSOIknYq9UdP3ssjn9ce0oyW11HKNrxQDf9Wg9GWUtjVI666srMKJcrR6zFMghdee8KaxL24kbiNVodlVJsC91ihg2hE5EG08WEPek1YNWUjPwlSiSs3NCNjXfZPNNefovI3hr701yXe__R7jN2l76WhplFts925tMFPMf4aO4O4rgC7s8m4iCawDXpvRHz
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpreting+Whole-Genome+Sequence+Analyses+of+Foodborne+Bacteria+for+Regulatory+Applications+and+Outbreak+Investigations&rft.jtitle=Frontiers+in+microbiology&rft.au=Pightling%2C+Arthur+W&rft.au=Pettengill%2C+James+B&rft.au=Luo%2C+Yan&rft.au=Baugher%2C+Joseph+D&rft.date=2018-07-10&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=9&rft.spage=1482&rft_id=info:doi/10.3389%2Ffmicb.2018.01482&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon