Interpreting Whole-Genome Sequence Analyses of Foodborne Bacteria for Regulatory Applications and Outbreak Investigations
Whole-genome sequence (WGS) analysis has revolutionized the food safety industry by enabling high-resolution typing of foodborne bacteria. Higher resolving power allows investigators to identify origins of contamination during illness outbreaks and regulatory activities quickly and accurately. Gover...
Saved in:
Published in | Frontiers in microbiology Vol. 9; p. 1482 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
10.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Whole-genome sequence (WGS) analysis has revolutionized the food safety industry by enabling high-resolution typing of foodborne bacteria. Higher resolving power allows investigators to identify origins of contamination during illness outbreaks and regulatory activities quickly and accurately. Government agencies and industry stakeholders worldwide are now analyzing WGS data routinely. Although researchers have published many studies that assess the efficacy of WGS data analysis for source attribution, guidance for interpreting WGS analyses is lacking. Here, we provide the framework for interpreting WGS analyses used by the Food and Drug Administration's Center for Food Safety and Applied Nutrition (CFSAN). We based this framework on the experiences of CFSAN investigators, collaborations and interactions with government and industry partners, and evaluation of the published literature. A fundamental question for investigators is whether two or more bacteria arose from the same source of contamination. Analysts often count the numbers of nucleotide differences [single-nucleotide polymorphisms (SNPs)] between two or more genome sequences to measure genetic distances. However, using SNP thresholds alone to assess whether bacteria originated from the same source can be misleading. Bacteria that are isolated from food, environmental, or clinical samples are representatives of bacterial populations. These populations are subject to evolutionary forces that can change genome sequences. Therefore, interpreting WGS analyses of foodborne bacteria requires a more sophisticated approach. Here, we present a framework for interpreting WGS analyses that combines SNP counts with phylogenetic tree topologies and bootstrap support. We also clarify the roles of WGS, epidemiological, traceback, and other evidence in forming the conclusions of investigations. Finally, we present examples that illustrate the application of this framework to real-world situations. |
---|---|
AbstractList | Whole-genome sequence (WGS) analysis has revolutionized the food safety industry by enabling high-resolution typing of foodborne bacteria. Higher resolving power allows investigators to identify origins of contamination during illness outbreaks and regulatory activities quickly and accurately. Government agencies and industry stakeholders worldwide are now analyzing WGS data routinely. Although researchers have published many studies that assess the efficacy of WGS data analysis for source attribution, guidance for interpreting WGS analyses is lacking. Here, we provide the framework for interpreting WGS analyses used by the Food and Drug Administration’s Center for Food Safety and Applied Nutrition (CFSAN). We based this framework on the experiences of CFSAN investigators, collaborations and interactions with government and industry partners, and evaluation of the published literature. A fundamental question for investigators is whether two or more bacteria arose from the same source of contamination. Analysts often count the numbers of nucleotide differences [single-nucleotide polymorphisms (SNPs)] between two or more genome sequences to measure genetic distances. However, using SNP thresholds alone to assess whether bacteria originated from the same source can be misleading. Bacteria that are isolated from food, environmental, or clinical samples are representatives of bacterial populations. These populations are subject to evolutionary forces that can change genome sequences. Therefore, interpreting WGS analyses of foodborne bacteria requires a more sophisticated approach. Here, we present a framework for interpreting WGS analyses that combines SNP counts with phylogenetic tree topologies and bootstrap support. We also clarify the roles of WGS, epidemiological, traceback, and other evidence in forming the conclusions of investigations. Finally, we present examples that illustrate the application of this framework to real-world situations. Whole-genome sequence (WGS) analysis has revolutionized the food safety industry by enabling high-resolution typing of foodborne bacteria. Higher resolving power allows investigators to identify origins of contamination during illness outbreaks and regulatory activities quickly and accurately. Government agencies and industry stakeholders worldwide are now analyzing WGS data routinely. Although researchers have published many studies that assess the efficacy of WGS data analysis for source attribution, guidance for interpreting WGS analyses is lacking. Here, we provide the framework for interpreting WGS analyses used by the Food and Drug Administration's Center for Food Safety and Applied Nutrition (CFSAN). We based this framework on the experiences of CFSAN investigators, collaborations and interactions with government and industry partners, and evaluation of the published literature. A fundamental question for investigators is whether two or more bacteria arose from the same source of contamination. Analysts often count the numbers of nucleotide differences [single-nucleotide polymorphisms (SNPs)] between two or more genome sequences to measure genetic distances. However, using SNP thresholds alone to assess whether bacteria originated from the same source can be misleading. Bacteria that are isolated from food, environmental, or clinical samples are representatives of bacterial populations. These populations are subject to evolutionary forces that can change genome sequences. Therefore, interpreting WGS analyses of foodborne bacteria requires a more sophisticated approach. Here, we present a framework for interpreting WGS analyses that combines SNP counts with phylogenetic tree topologies and bootstrap support. We also clarify the roles of WGS, epidemiological, traceback, and other evidence in forming the conclusions of investigations. Finally, we present examples that illustrate the application of this framework to real-world situations.Whole-genome sequence (WGS) analysis has revolutionized the food safety industry by enabling high-resolution typing of foodborne bacteria. Higher resolving power allows investigators to identify origins of contamination during illness outbreaks and regulatory activities quickly and accurately. Government agencies and industry stakeholders worldwide are now analyzing WGS data routinely. Although researchers have published many studies that assess the efficacy of WGS data analysis for source attribution, guidance for interpreting WGS analyses is lacking. Here, we provide the framework for interpreting WGS analyses used by the Food and Drug Administration's Center for Food Safety and Applied Nutrition (CFSAN). We based this framework on the experiences of CFSAN investigators, collaborations and interactions with government and industry partners, and evaluation of the published literature. A fundamental question for investigators is whether two or more bacteria arose from the same source of contamination. Analysts often count the numbers of nucleotide differences [single-nucleotide polymorphisms (SNPs)] between two or more genome sequences to measure genetic distances. However, using SNP thresholds alone to assess whether bacteria originated from the same source can be misleading. Bacteria that are isolated from food, environmental, or clinical samples are representatives of bacterial populations. These populations are subject to evolutionary forces that can change genome sequences. Therefore, interpreting WGS analyses of foodborne bacteria requires a more sophisticated approach. Here, we present a framework for interpreting WGS analyses that combines SNP counts with phylogenetic tree topologies and bootstrap support. We also clarify the roles of WGS, epidemiological, traceback, and other evidence in forming the conclusions of investigations. Finally, we present examples that illustrate the application of this framework to real-world situations. |
Author | Rand, Hugh Baugher, Joseph D. Pightling, Arthur W. Pettengill, James B. Luo, Yan Strain, Errol |
AuthorAffiliation | Biostatistics and Bioinformatics, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , College Park, MD , United States |
AuthorAffiliation_xml | – name: Biostatistics and Bioinformatics, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , College Park, MD , United States |
Author_xml | – sequence: 1 givenname: Arthur W. surname: Pightling fullname: Pightling, Arthur W. – sequence: 2 givenname: James B. surname: Pettengill fullname: Pettengill, James B. – sequence: 3 givenname: Yan surname: Luo fullname: Luo, Yan – sequence: 4 givenname: Joseph D. surname: Baugher fullname: Baugher, Joseph D. – sequence: 5 givenname: Hugh surname: Rand fullname: Rand, Hugh – sequence: 6 givenname: Errol surname: Strain fullname: Strain, Errol |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30042741$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1rGzEQhpeS0qRp7j0VHXuxq69d7V4KbkhSQyDQD9qbGGlnN0rXkivJAf_7ynZSkkIlkAbNvM-A5n1dHfngsareMjoXou0-DCtnzZxT1s4pky1_UZ2wppEzQfnPoyfxcXWW0h0tS1JezlfVsSgxV5KdVNulzxjXEbPzI_lxGyacXaEPKyRf8fcGvUWy8DBtEyYSBnIZQm9C9Eg-gS1KB2QIkXzBcTNBDnFLFuv15CxkF3wi4Htys8kmIvwiS3-PKbvxkHtTvRxgSnj2cJ9W3y8vvp1_nl3fXC3PF9czKxueZwrQgO14XXYvasWwU1zRgdVSQtdzIQCMBaQ955JJ1rcMWKcUBY6sVa04rZYHbh_gTq-jW0Hc6gBO7x9CHDXE7OyEWrSt5L2RRtFWGi6NrFkjetZ01poadqyPB9Z6Y1bYW_Q5wvQM-jzj3a0ew71uaBlQowrg_QMghvK7KeuVSxanCTyGTdKcqoaLVnZdKX33tNffJo-zKwXNocDGkFLEQVuX939bWrtJM6p3PtF7n-idT_TeJ0VI_xE-sv8r-QPiX8Ky |
CitedBy_id | crossref_primary_10_1099_mic_0_000895 crossref_primary_10_1089_fpd_2018_2563 crossref_primary_10_3390_ani11113201 crossref_primary_10_1093_ofid_ofz431 crossref_primary_10_1016_j_jhazmat_2024_136166 crossref_primary_10_1016_j_foodcont_2022_108853 crossref_primary_10_1128_spectrum_01706_24 crossref_primary_10_1093_dnares_dsaa014 crossref_primary_10_1111_lam_13227 crossref_primary_10_1071_MA22024 crossref_primary_10_3390_microorganisms10030570 crossref_primary_10_4315_JFP_21_082 crossref_primary_10_1073_pnas_2411894121 crossref_primary_10_1016_j_ijfoodmicro_2020_108542 crossref_primary_10_1038_s41598_021_87330_8 crossref_primary_10_1038_s43856_022_00124_5 crossref_primary_10_3390_mps7030048 crossref_primary_10_4315_JFP_21_112 crossref_primary_10_1016_j_jfp_2024_100324 crossref_primary_10_1093_jambio_lxad255 crossref_primary_10_1093_fqsafe_fyac040 crossref_primary_10_1128_aem_01892_24 crossref_primary_10_1371_journal_ppat_1009586 crossref_primary_10_1111_1541_4337_70071 crossref_primary_10_3389_fmicb_2019_01107 crossref_primary_10_1016_j_foodcont_2023_109833 crossref_primary_10_1186_s12864_021_07539_9 crossref_primary_10_1016_j_psj_2022_102322 crossref_primary_10_1016_S2666_5247_22_00380_9 crossref_primary_10_1186_s13104_024_06847_z crossref_primary_10_1186_s13059_019_1727_y crossref_primary_10_1371_journal_pone_0213039 crossref_primary_10_3389_fpubh_2020_519293 crossref_primary_10_3389_fmicb_2023_1130891 crossref_primary_10_3389_fmicb_2019_01591 crossref_primary_10_1016_j_foodres_2024_114840 crossref_primary_10_1089_fpd_2020_2856 crossref_primary_10_1186_s13012_019_0930_2 crossref_primary_10_3389_fmicb_2024_1496223 crossref_primary_10_3389_fmicb_2021_626941 crossref_primary_10_3389_fcimb_2022_888568 crossref_primary_10_1016_j_ijfoodmicro_2023_110490 crossref_primary_10_3389_fbinf_2024_1415078 crossref_primary_10_1016_j_microb_2025_100274 crossref_primary_10_4178_epih_e2024036 crossref_primary_10_3389_fmicb_2019_01710 crossref_primary_10_1016_j_ijfoodmicro_2021_109503 crossref_primary_10_1099_mgen_0_001164 crossref_primary_10_3390_microorganisms11040965 crossref_primary_10_3390_pathogens10010045 crossref_primary_10_3390_microorganisms10112120 crossref_primary_10_1038_s41598_022_22168_2 crossref_primary_10_1007_s42770_021_00508_0 crossref_primary_10_1038_s41579_024_01051_z crossref_primary_10_1016_j_foodcont_2021_108148 crossref_primary_10_3390_hygiene1010005 crossref_primary_10_1186_s13073_021_00934_7 crossref_primary_10_3389_fmicb_2022_803043 crossref_primary_10_1371_journal_pntd_0007421 crossref_primary_10_3390_antibiotics12050883 crossref_primary_10_1016_j_gene_2023_147359 crossref_primary_10_3390_biology11040587 crossref_primary_10_1016_j_cofs_2020_02_007 crossref_primary_10_1016_j_xcrm_2023_101094 crossref_primary_10_3390_foods12030599 crossref_primary_10_4315_JFP_21_096 crossref_primary_10_1128_aac_00677_22 crossref_primary_10_3389_fmicb_2019_02413 crossref_primary_10_3390_microorganisms12050848 crossref_primary_10_1128_mSphere_00383_21 crossref_primary_10_1016_j_cofs_2024_101245 crossref_primary_10_1016_j_mran_2022_100214 crossref_primary_10_3389_fmicb_2023_1120285 crossref_primary_10_1186_s12864_022_08695_2 crossref_primary_10_3390_microorganisms8030414 crossref_primary_10_1089_mdr_2020_0389 crossref_primary_10_1016_j_fm_2018_11_005 crossref_primary_10_1099_mgen_0_000491 crossref_primary_10_3390_genes15040466 crossref_primary_10_1016_j_cll_2020_08_011 crossref_primary_10_1186_s12864_022_08347_5 crossref_primary_10_3201_eid2603_190947 crossref_primary_10_3389_fsufs_2018_00083 crossref_primary_10_3390_microorganisms10020203 crossref_primary_10_1186_s13071_020_3997_3 crossref_primary_10_1002_mbo3_1246 crossref_primary_10_1016_j_fm_2022_104055 crossref_primary_10_1186_s40168_024_02026_1 crossref_primary_10_1089_fpd_2022_0078 crossref_primary_10_1016_j_jfp_2023_100117 crossref_primary_10_3389_fmicb_2022_952081 crossref_primary_10_3389_fmicb_2020_561204 crossref_primary_10_3389_fcimb_2022_947486 crossref_primary_10_3390_pathogens11020115 crossref_primary_10_3389_fmicb_2020_00866 crossref_primary_10_1007_s00203_022_02924_8 crossref_primary_10_1089_fpd_2024_0089 crossref_primary_10_2807_1560_7917_ES_2021_26_22_2001396 crossref_primary_10_1128_AEM_00579_20 crossref_primary_10_1038_s41598_022_19289_z crossref_primary_10_1128_AEM_01985_19 crossref_primary_10_1016_j_psj_2019_12_019 crossref_primary_10_1089_mdr_2019_0249 crossref_primary_10_2903_j_efsa_2024_8521 crossref_primary_10_3390_insects12040362 crossref_primary_10_1017_ice_2020_1253 crossref_primary_10_1016_j_meegid_2019_04_026 crossref_primary_10_1128_aem_01177_22 crossref_primary_10_1016_j_jfp_2023_100089 crossref_primary_10_4315_JFP_21_437 crossref_primary_10_3389_fmicb_2023_1139312 crossref_primary_10_1016_j_jfp_2024_100360 crossref_primary_10_1128_spectrum_00047_24 crossref_primary_10_1099_mgen_0_000947 crossref_primary_10_3389_fmicb_2020_00478 crossref_primary_10_1128_msphere_00480_23 crossref_primary_10_1186_s13059_019_1914_x crossref_primary_10_1038_s41598_023_37621_z crossref_primary_10_1128_aem_02136_21 crossref_primary_10_1016_j_cmi_2022_10_012 crossref_primary_10_3389_fmicb_2021_723577 crossref_primary_10_3390_ani10111949 crossref_primary_10_1016_j_jafr_2020_100045 crossref_primary_10_1016_j_jfp_2024_100254 crossref_primary_10_1186_s12917_019_1864_2 crossref_primary_10_1128_JCM_00849_21 crossref_primary_10_3389_fmicb_2023_1295769 crossref_primary_10_1099_mgen_0_000709 crossref_primary_10_3389_fpubh_2019_00139 crossref_primary_10_1016_j_ijfoodmicro_2022_110025 crossref_primary_10_1016_j_onehlt_2022_100370 crossref_primary_10_1371_journal_pone_0259471 crossref_primary_10_1093_cid_ciac638 crossref_primary_10_3389_fmicb_2019_00947 crossref_primary_10_1371_journal_pone_0246885 crossref_primary_10_3390_microorganisms11061543 crossref_primary_10_3389_fmicb_2022_797997 crossref_primary_10_1038_s41538_021_00097_0 crossref_primary_10_1016_j_jfp_2024_100413 crossref_primary_10_1099_mgen_0_000672 crossref_primary_10_3389_fmicb_2024_1460335 crossref_primary_10_3390_microorganisms11061425 crossref_primary_10_1371_journal_pone_0246482 crossref_primary_10_5808_gi_20038 crossref_primary_10_1016_j_ijfoodmicro_2019_03_007 crossref_primary_10_1186_s12859_023_05414_w crossref_primary_10_3389_fmicb_2020_01618 crossref_primary_10_3389_fmicb_2023_1253362 crossref_primary_10_3390_antibiotics12081330 crossref_primary_10_4315_JFP_20_417 crossref_primary_10_1016_j_mimet_2023_106788 crossref_primary_10_1016_j_vetmic_2021_109119 crossref_primary_10_1093_jac_dkab310 crossref_primary_10_1128_aem_02149_21 crossref_primary_10_1128_mbio_00777_24 crossref_primary_10_1186_s12866_024_03412_3 crossref_primary_10_3390_foods10112637 crossref_primary_10_3389_fmicb_2021_649517 crossref_primary_10_3390_microorganisms10122364 crossref_primary_10_3390_pathogens11101075 crossref_primary_10_1016_j_meegid_2019_104047 crossref_primary_10_4315_JFP_20_365 crossref_primary_10_1371_journal_pone_0291109 crossref_primary_10_3390_pathogens10111391 crossref_primary_10_3389_fsufs_2021_725791 crossref_primary_10_1016_j_foodcont_2021_108579 crossref_primary_10_1007_s13132_022_01000_2 crossref_primary_10_3389_fvets_2021_582677 crossref_primary_10_3168_jds_2024_24789 crossref_primary_10_3412_jsb_79_283 crossref_primary_10_1128_aem_00861_22 crossref_primary_10_1128_aem_00861_24 crossref_primary_10_1016_j_ijfoodmicro_2025_111115 |
Cites_doi | 10.1128/JCM.01280-1215 10.1385/1-59259-763-7:323 10.1111/cla.12012 10.4315/0362-028X-59.10.1091 10.1186/1471-2164-13-32 10.1111/j.1558-5646.1985.tb00420.x 10.1128/JCM.02140-2116 10.3389/fmicb.2017.00808 10.2460/javma.244.5.545 10.5740/jaoacint.16-0269 10.1371/journal.pone.0104579 10.1093/infdis/jiv297 10.1371/journal.pone.0087991 10.3201/eid2009.131095 10.1128/JCM.01696-1612 10.1186/1471-2164-11-120 10.1371/currents.outbreaks.aa5372d90826e6cb0136ff66bb7a62fc 10.1128/JCM.00202-215 10.1186/s12879-015-0902-903 10.1073/pnas.1107176108 10.1016/S0956-7135(99)00005-5 10.1371/journal.pone.0171389 10.1038/nmicrobiol.2016.185 10.1126/scitranslmed.3004129 10.1186/s12866-017-1043-1041 10.1128/JCM.00081-16 10.1128/AEM.01486-1416 10.1186/s12866-015-0526-521 10.1128/JCM.03235-3214 10.7717/peerj-cs.20 10.3389/fmicb.2017.01068 10.15585/mmwr.mm6533a6 10.1093/cid/ciw242 10.1002/jsfa.6295 10.1128/AEM.00633-617 10.1099/mgen.0.000094 10.4315/0362-028X.JFP-13-150 10.1128/AEM.01049-1015 10.1056/NEJMoa1615910 10.3201/eid2008.131399 |
ContentType | Journal Article |
Copyright | Copyright © 2018 Pightling, Pettengill, Luo, Baugher, Rand and Strain. 2018 Pightling, Pettengill, Luo, Baugher, Rand and Strain |
Copyright_xml | – notice: Copyright © 2018 Pightling, Pettengill, Luo, Baugher, Rand and Strain. 2018 Pightling, Pettengill, Luo, Baugher, Rand and Strain |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmicb.2018.01482 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_38842db4b7084b24b45163d169ccb5a8 PMC6048267 30042741 10_3389_fmicb_2018_01482 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IAO IEA IHR IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c462t-7aebac925252d3571e97270f1544a9d233aabcae0d224141d81a19770a2e18783 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:31:06 EDT 2025 Thu Aug 21 17:49:59 EDT 2025 Thu Jul 10 20:35:52 EDT 2025 Wed Feb 19 02:41:56 EST 2025 Tue Jul 01 00:55:13 EDT 2025 Thu Apr 24 23:05:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Salmonella enterica genomic epidemiology interpretation whole-genome sequence Escherichia coli Listeria monocytogenes phylogenetics outbreak investigation |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-7aebac925252d3571e97270f1544a9d233aabcae0d224141d81a19770a2e18783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology Edited by: David Rodriguez-Lazaro, University of Burgos, Spain Reviewed by: Baltasar Mayo, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Catherine Maeve Burgess, Teagasc, The Irish Agriculture and Food Development Authority, Ireland |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2018.01482 |
PMID | 30042741 |
PQID | 2076238499 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_38842db4b7084b24b45163d169ccb5a8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6048267 proquest_miscellaneous_2076238499 pubmed_primary_30042741 crossref_citationtrail_10_3389_fmicb_2018_01482 crossref_primary_10_3389_fmicb_2018_01482 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-10 |
PublicationDateYYYYMMDD | 2018-07-10 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2018 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Chen (B4) 2016; 82 Pightling (B34) 2015; 15 Underwood (B41) 2013; 51 Wang (B42) 2015; 53 Griffiths (B18) 2017; 8 Farber (B14) 1996; 59 Moran-Gilad (B29) 2015; 15 Allard (B1) 2012; 13 Stevens (B39) 2017; 8 Pightling (B33) 2014; 9 Kruse (B25) 1999; 10 Octavia (B32) 2015; 53 Chen (B7); 55 Snitkin (B36) 2012; 4 Stasiewicz (B38) 2015; 81 Taylor (B40) 2015; 53 Crowe (B8) 2017; 377 Hoffmann (B21) 2016; 213 Self (B35) 2016 Allard (B2) 2016; 54 Deng (B11) 2014; 20 Wuyts (B44) 2015 Leekitcharoenphon (B27) 2014; 9 Felsenstein (B15) 1985; 39 Aquilina (B3) 2018; 16 Keener (B24) 2014; 94 Gilmour (B17) 2010; 11 Davis (B9) 2015; 1 Chen (B5) Li (B28) 2017; 17 Moura (B30) 2016; 2 Jackson (B23) 2016; 63 Ferreira (B16) 2014; 77 den Bakker (B10) 2014; 20 Nielsen (B31) 2017 Spratt (B37) 2004; 266 Hoffman (B20) 2015 Lambert (B26) 2017; 100 Zwicki (B45) 2006 Duchene (B12) 2016; 2 Eppinger (B13) 2011; 108 (B19) 2011 Imanishi (B22) 2014; 244 Chen (B6); 12 Wilson (B43) 2013; 29 |
References_xml | – volume: 53 start-page: 3334 year: 2015 ident: B40 article-title: Characterization of foodborne outbreaks of Salmonella enterica serovar Enteritidis with whole-genome sequencing single nucleotide polymorphism-based analysis for surveillance and outbreak detection. publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.01280-1215 – year: 2011 ident: B19 publication-title: Capturing Recall Costs: Measuring and Recovering the Losses [Online]. Grocery Manufacters Association. – volume: 266 start-page: 323 year: 2004 ident: B37 article-title: Exploring the concept of clonality in bacteria. publication-title: Methods Mol. Biol. doi: 10.1385/1-59259-763-7:323 – volume: 29 start-page: 449 year: 2013 ident: B43 article-title: The forensic analysis of foodborne bacterial pathogens in the age of whole-genome sequencing. publication-title: Cladistics doi: 10.1111/cla.12012 – volume: 59 start-page: 1091 year: 1996 ident: B14 article-title: An introduction to the hows and whys of molecular typing. publication-title: J. Food Prot. doi: 10.4315/0362-028X-59.10.1091 – volume: 13 year: 2012 ident: B1 article-title: High resolution clustering of Salmonella enterica serovar Montevideo strains using a next-generation sequencing approach. publication-title: BMC Genomics doi: 10.1186/1471-2164-13-32 – volume: 39 start-page: 783 year: 1985 ident: B15 article-title: Confidence limits on phylogenies: an approach using the bootstrap. publication-title: Evolution doi: 10.1111/j.1558-5646.1985.tb00420.x – volume: 55 start-page: 931 ident: B7 article-title: Singleton sequence type 382, an emerging clonal group of Listeria monocytogenes associated with three multistate outbreaks linked to contaminated stone fruit, caramel apples, and leafy green salad. publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.02140-2116 – volume: 8 year: 2017 ident: B39 article-title: The public health impact of a publically available, environmental database of microbial genomes. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00808 – volume: 244 start-page: 545 year: 2014 ident: B22 article-title: Outbreak of Salmonella enterica serotype infantis infection in humans linked to dry dog food in the United States and Canada, 2012. publication-title: J. Am. Vet. Med. Assoc. doi: 10.2460/javma.244.5.545 – volume: 100 start-page: 721 year: 2017 ident: B26 article-title: Baseline practices for the application of genomic data supporting regulatory food safety. publication-title: J. AOAC Int. doi: 10.5740/jaoacint.16-0269 – volume: 9 year: 2014 ident: B33 article-title: Choice of reference sequence and assembler for alignment of Listeria monocytogenes short-read sequence data greatly influences rates of error in SNP analyses. publication-title: PLoS One doi: 10.1371/journal.pone.0104579 – volume: 213 start-page: 502 year: 2016 ident: B21 article-title: Tracing origins of the Salmonella Bareilly strain causing a food-borne outbreak in the United States. publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiv297 – volume: 9 year: 2014 ident: B27 article-title: Evaluation of whole genome sequencing for outbreak detection of Salmonella enterica. publication-title: PLoS One doi: 10.1371/journal.pone.0087991 – volume: 20 start-page: 1481 year: 2014 ident: B11 article-title: Genomic epidemiology of Salmonella enterica serotype Enteritidis based on population structure of prevalent lineages. publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2009.131095 – volume: 51 start-page: 232 year: 2013 ident: B41 article-title: Public health value of next-generation DNA sequencing of enterohemorrhagic Escherichia coli isolates from an outbreak. publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.01696-1612 – year: 2015 ident: B20 publication-title: Economic Burden of Major Foodborne Illnesses Acquired in the United States [Online]. United States Department of Agriculture. – volume: 11 year: 2010 ident: B17 article-title: High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. publication-title: BMC Genomics doi: 10.1186/1471-2164-11-120 – year: 2015 ident: B44 article-title: Whole genome sequence analysis of Salmonella Enteritidis PT4 outbreaks from a national reference laboratory’s viewpoint. publication-title: PLoS Curr. Outbreaks. doi: 10.1371/currents.outbreaks.aa5372d90826e6cb0136ff66bb7a62fc – year: 2006 ident: B45 publication-title: Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets Under the Maximum Likelihood Criterion. – volume: 53 start-page: 3492 year: 2015 ident: B42 article-title: It is not all about single nucleotide polymorphisms: comparison of mobile genetic elements and deletions in Listeria monocytogenes genomes links cases of hospital-acquired Listeriosis to the environmental source. publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.00202-215 – volume: 15 year: 2015 ident: B29 article-title: Proficiency testing for bacterial whole genome sequencing: an end-user survey of current capabilities, requirements and priorities. publication-title: BMC Infect. Dis. doi: 10.1186/s12879-015-0902-903 – volume: 108 start-page: 20142 year: 2011 ident: B13 article-title: Genomic anatomy of Escherichia coli O157:H7 outbreaks. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1107176108 – volume: 10 start-page: 315 year: 1999 ident: B25 article-title: Globalization of the food supply-food safety implications: special regional requirements: future concerns. publication-title: Food Control doi: 10.1016/S0956-7135(99)00005-5 – volume: 12 ident: B6 article-title: Assessing the genome level diversity of Listeria monocytogenes from contaminated ice cream and environmental samples linked to a Listeriosis outbreak in the United States. publication-title: PLoS One doi: 10.1371/journal.pone.0171389 – volume: 2 year: 2016 ident: B30 article-title: Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2016.185 – volume: 4 year: 2012 ident: B36 article-title: Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3004129 – volume: 17 year: 2017 ident: B28 article-title: Whole genome sequencing analyses of Listeria monocytogenes that persisted in a milkshake machine for a year and caused illnesses in washington state. publication-title: BMC Microbiol. doi: 10.1186/s12866-017-1043-1041 – volume: 54 start-page: 1975 year: 2016 ident: B2 article-title: Practical value of food pathogen traceability through building a whole-genome sequencing network and database. publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.00081-16 – year: 2017 ident: B31 publication-title: Closing Gaps for Performing a Risk Assessment on Listeria monocytogenes in Ready-To-Eat (RTE) Foods: Activity 3 the Comparison of Isolates from Different Compartments along the Food Chain, and from Humans Using Whole Genome Sequencing (WGS) Analysis. – volume: 82 start-page: 7030 year: 2016 ident: B4 article-title: Listeria monocytogenes in stone fruits linked to a multistate outbreak: enumeration of cells and whole-genome sequencing. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01486-1416 – volume: 15 year: 2015 ident: B34 article-title: The Listeria monocytogenes core-genome sequence typer (LmCGST): a bioinformatic pipeline for molecular characterization with next-generation sequence data. publication-title: BMC Microbiol. doi: 10.1186/s12866-015-0526-521 – volume: 53 start-page: 1063 year: 2015 ident: B32 article-title: Delineating community outbreaks of Salmonella enterica serovar typhimurium by use of whole-genome sequencing: insights into genomic variability within an outbreak. publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.03235-3214 – volume: 1 year: 2015 ident: B9 article-title: CFSAN SNP pipeline: an automated method for constructing SNP matrices from next-generation sequence data. publication-title: Peerj Comp. Sci. doi: 10.7717/peerj-cs.20 – volume: 8 year: 2017 ident: B18 article-title: Context is everything: harmonization of critical food microbiology descriptors and metadata for improved food safety and surveillance. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01068 – start-page: 879 year: 2016 ident: B35 article-title: Notes from the field: outbreak of Listeriosis associated with consumption of package salad – United States and Canada, 2015-2016. publication-title: MMWR Morb. Mortal. Wkly. Rep. doi: 10.15585/mmwr.mm6533a6 – volume: 63 start-page: 380 year: 2016 ident: B23 article-title: Implementation of nationwide real-time whole-genome sequencing to enhance listeriosis outbreak detection and investigation. publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciw242 – volume: 94 start-page: 1947 year: 2014 ident: B24 article-title: Harmonization of legislation and regulations to achieve food safety: US and Canada perspective. publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.6295 – volume: 16 year: 2018 ident: B3 article-title: Guidance on the characterisation of microorganisms used as feed additives or as production organisms. publication-title: EFSA J. – ident: B5 article-title: Whole genome and core genome multilocus sequence typing and single nucleotide polymorphism analyses of Listeria monocytogenes associated with an outbreak linked to cheese, United States, 2013. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00633-617 – volume: 2 year: 2016 ident: B12 article-title: Genome-scale rates of evolutionary change in bacteria. publication-title: Microb. Genom. doi: 10.1099/mgen.0.000094 – volume: 77 start-page: 150 year: 2014 ident: B16 article-title: Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health. publication-title: J. Food. Prot. doi: 10.4315/0362-028X.JFP-13-150 – volume: 81 start-page: 6024 year: 2015 ident: B38 article-title: Whole-genome sequencing allows for improved identification of persistent Listeria monocytogenes in food-associated environments. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01049-1015 – volume: 377 start-page: 2036 year: 2017 ident: B8 article-title: Shiga toxin-producing E. coli infections associated with flour. publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1615910 – volume: 20 start-page: 1306 year: 2014 ident: B10 article-title: Rapid whole-genome sequencing for surveillance of Salmonella enterica serovar Enteritidis. publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2008.131399 |
SSID | ssj0000402000 |
Score | 2.5723813 |
Snippet | Whole-genome sequence (WGS) analysis has revolutionized the food safety industry by enabling high-resolution typing of foodborne bacteria. Higher resolving... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1482 |
SubjectTerms | genomic epidemiology interpretation Listeria monocytogenes Microbiology outbreak investigation phylogenetics whole-genome sequence |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUOilNEkfbh6okEsPbiRLtuVjUrIJhSbQNjQ3o8eYhrR2SXYP--8zIzmLt5T2UnyzZUloRpoZafR9jB1qG5zunM9L40OuoexyY0uRS4AmdJWAStHd4U8X1fmV_nhdXk-ovignLMEDp4E7UsboAutztTDaFdoRs6wKsmq8d6WN13zR5k2CqbgGU1gkRDqXxCisQTHdeEepXOY9baIVa3YowvX_ycf8PVVyYntmz9mz0Wnkx6mzW2wD-m32JNFILnfYcpU5iHaIfyPG2_wM-uEn8C9jpjRP4CNwz4eOz4YhoOh74CcJq9lydF3550RLP9wt-fHkWJvbPvDLxRxjZ3vLJ7gc-O0Fu5qdfv1wno-UCrnXVTHPawvO-qYo8QmqrCU06MCIjjB5bBMKpax13oIIZNq1DEZaiS6isAVIUxv1km32Qw-vGRcV1qOChs4TobpzRHcTdNk0dLYXuowdPQ5w60e8caK9-NFi3EEiaaNIWhJJG0WSsXerP34lrI2_lD0hma3KEUp2fIG604660_5LdzL29lHiLc4qOiqxPQyLe2wIjYQyGA5m7FXSgFVTKvKTaJmxek031vqy_qW_-R6RuytcL4uqfvM_Or_LntJw0D6zFHtsc363gH10kObuIM6FB9MOEEM priority: 102 providerName: Directory of Open Access Journals |
Title | Interpreting Whole-Genome Sequence Analyses of Foodborne Bacteria for Regulatory Applications and Outbreak Investigations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30042741 https://www.proquest.com/docview/2076238499 https://pubmed.ncbi.nlm.nih.gov/PMC6048267 https://doaj.org/article/38842db4b7084b24b45163d169ccb5a8 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF-kIvgi9Tu1lhV88SE1m91sNg-ltOK1CFVQD-8t7MdEizXR-wDvv-_MJj3v5BAJ5CFfm2RmdmZ2dn8_xl4qG5xqnE8L40OqoGhSY4ssFQBVaHQGWtLa4Yv3-nys3k2KyZ_l0cMPnG1N7YhPajy9Ovz9a3mMBn9EGSf6W5TApXc0S8sc0vgYdsi30S-VZKYXQ7Af-2VKleKaFKE1lQPySV-33PqQDT8V4fy3xaB_T6Vc802jXXZvCCr5Sa8F99ktaB-wOz3N5PIhW65mFqKf4l-IETc9g7b7AfzTMJOa9-AkMONdw0ddF1A1WuCnPZaz5Rja8o89bX03XfKTtbI3t23gHxZzzK3td76G24HnHrHx6O3nN-fpQLmQeqXzeVpacNZXeYFbkEUpoMIAJ2sIs8dWIZfSWuctZIFcvxLBCCswhMxsDsKURj5mO23XwlPGM43PkUFB44lw3TmiwwmqqCqq_YUmYa9vfnDtBzxyosW4qjEvIZHUUSQ1iaSOIknYq9UdP3ssjn9ce0oyW11HKNrxQDf9Wg9GWUtjVI666srMKJcrR6zFMghdee8KaxL24kbiNVodlVJsC91ihg2hE5EG08WEPek1YNWUjPwlSiSs3NCNjXfZPNNefovI3hr701yXe__R7jN2l76WhplFts925tMFPMf4aO4O4rgC7s8m4iCawDXpvRHz |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpreting+Whole-Genome+Sequence+Analyses+of+Foodborne+Bacteria+for+Regulatory+Applications+and+Outbreak+Investigations&rft.jtitle=Frontiers+in+microbiology&rft.au=Pightling%2C+Arthur+W&rft.au=Pettengill%2C+James+B&rft.au=Luo%2C+Yan&rft.au=Baugher%2C+Joseph+D&rft.date=2018-07-10&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=9&rft.spage=1482&rft_id=info:doi/10.3389%2Ffmicb.2018.01482&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |