Evolution of nanoporosity in organic-rich shales during thermal maturation

•Laboratory-matured shale samples were produced by an anhydrous pyrolysis experiment.•Low-pressure gas adsorption was used to characterize the pore structure of laboratory-matured shales.•There are substantial differences in evolution of nanoporosity between organic-rich and organic-poor samples.•Ev...

Full description

Saved in:
Bibliographic Details
Published inFuel (Guildford) Vol. 129; pp. 173 - 181
Main Authors Chen, Ji, Xiao, Xianming
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.08.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Laboratory-matured shale samples were produced by an anhydrous pyrolysis experiment.•Low-pressure gas adsorption was used to characterize the pore structure of laboratory-matured shales.•There are substantial differences in evolution of nanoporosity between organic-rich and organic-poor samples.•Evolution of organic matter-hosted nanopores of gas shales can be roughly divided into three stages. Artificial shale samples with equivalent vitrinite reflectance values (VRo) ranging from 0.69% to 4.19% were obtained from an anhydrous pyrolysis experiment. Microporous and mesoporous characteristics of these samples were investigated by low-pressure nitrogen and carbon dioxide adsorption techniques. The result shows that the nanoporosity (microporosity plus mesoporosity) increases with thermal maturity after the oil window stage, and this increase is attributed to the formation of porosity within organic matter and/or mineral–organic matter groundmass, rather than in the pure clay minerals. By combining the gas generation and porosity evolution of these shales, a general model for formation and development of the nanoporosity is proposed.
AbstractList •Laboratory-matured shale samples were produced by an anhydrous pyrolysis experiment.•Low-pressure gas adsorption was used to characterize the pore structure of laboratory-matured shales.•There are substantial differences in evolution of nanoporosity between organic-rich and organic-poor samples.•Evolution of organic matter-hosted nanopores of gas shales can be roughly divided into three stages. Artificial shale samples with equivalent vitrinite reflectance values (VRo) ranging from 0.69% to 4.19% were obtained from an anhydrous pyrolysis experiment. Microporous and mesoporous characteristics of these samples were investigated by low-pressure nitrogen and carbon dioxide adsorption techniques. The result shows that the nanoporosity (microporosity plus mesoporosity) increases with thermal maturity after the oil window stage, and this increase is attributed to the formation of porosity within organic matter and/or mineral–organic matter groundmass, rather than in the pure clay minerals. By combining the gas generation and porosity evolution of these shales, a general model for formation and development of the nanoporosity is proposed.
Artificial shale samples with equivalent vitrinite reflectance values (VRo) ranging from 0.69% to 4.19% were obtained from an anhydrous pyrolysis experiment. Microporous and mesoporous characteristics of these samples were investigated by low-pressure nitrogen and carbon dioxide adsorption techniques. The result shows that the nanoporosity (microporosity plus mesoporosity) increases with thermal maturity after the oil window stage, and this increase is attributed to the formation of porosity within organic matter and/or mineral-organic matter groundmass, rather than in the pure clay minerals. By combining the gas generation and porosity evolution of these shales, a general model for formation and development of the nanoporosity is proposed.
Author Xiao, Xianming
Chen, Ji
Author_xml – sequence: 1
  givenname: Ji
  surname: Chen
  fullname: Chen, Ji
  organization: State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
– sequence: 2
  givenname: Xianming
  surname: Xiao
  fullname: Xiao, Xianming
  email: xmxiao@gig.ac.cn
  organization: State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28446825$$DView record in Pascal Francis
BookMark eNqFkUtrGzEUhUVxobabP5DVbArdzESveRiyKSFNWgzdtGshaa5sGVlyJE0g_77yo5sunNWFw3cOnHsWaOaDB4RuCW4IJt3drjETuIZiwhvMGtwOH9CcDD2re9KyGZrjQtWUdeQTWqS0wxj3Q8vn6Ofja3BTtsFXwVRe-nAIMSSb3ypbpLiR3uo6Wr2t0lY6SNU4Res3Vd5C3EtX7WWeojwGfEYfjXQJbi53if58f_z98Fyvfz39ePi2rjXvaK77XjFQLR1GMradVsD1qAjrFOGkpz09iRh6owzjEhu64mwcV6ozpRxRii3R13PuIYaXCVIWe5s0OCc9hCkJ0pXOK8L48D7atgRzTAu9RF8uqExaOhOl1zaJQ7R7Gd8EHTjvBtoWbjhzurwpRTBC23zqn6O0ThAsjouInTguIo6LCMxEWaRY6X_Wf-lXTfdnE5SXvlqIImkLXsNoI-gsxmCv2f8CwJOnWg
CitedBy_id crossref_primary_10_1016_j_fuel_2020_117412
crossref_primary_10_1016_j_fuel_2020_118627
crossref_primary_10_1016_j_coal_2014_12_007
crossref_primary_10_2113_2021_6646791
crossref_primary_10_1016_j_fuel_2021_121079
crossref_primary_10_1016_j_marpetgeo_2016_09_001
crossref_primary_10_1016_j_coal_2018_04_001
crossref_primary_10_1016_j_marpetgeo_2023_106328
crossref_primary_10_1007_s12517_021_06918_6
crossref_primary_10_1016_j_marpetgeo_2021_105233
crossref_primary_10_1016_j_fuel_2018_01_126
crossref_primary_10_1021_acs_energyfuels_9b03686
crossref_primary_10_1016_j_fuel_2022_123424
crossref_primary_10_1016_j_fuel_2022_123304
crossref_primary_10_1016_j_fuel_2023_130119
crossref_primary_10_1190_INT_2017_0221_1
crossref_primary_10_3390_min8060226
crossref_primary_10_1016_j_marpetgeo_2020_104667
crossref_primary_10_1155_2022_9745313
crossref_primary_10_3390_en11092297
crossref_primary_10_1016_j_clay_2021_106334
crossref_primary_10_1016_j_marpetgeo_2018_09_009
crossref_primary_10_1016_j_marpetgeo_2020_104662
crossref_primary_10_1016_j_jngse_2015_12_003
crossref_primary_10_1016_j_marpetgeo_2021_105114
crossref_primary_10_1016_j_petrol_2021_109071
crossref_primary_10_1038_s41598_023_35259_5
crossref_primary_10_1016_j_fuel_2018_12_108
crossref_primary_10_1016_j_ces_2018_05_016
crossref_primary_10_1016_j_energy_2023_128359
crossref_primary_10_1016_j_petrol_2020_107182
crossref_primary_10_1021_acsearthspacechem_4c00025
crossref_primary_10_1016_j_jngse_2021_104020
crossref_primary_10_1016_j_marpetgeo_2020_104314
crossref_primary_10_3389_feart_2022_889067
crossref_primary_10_1021_acsearthspacechem_0c00234
crossref_primary_10_1016_j_jngse_2020_103676
crossref_primary_10_1016_j_engeos_2020_06_005
crossref_primary_10_1016_j_jngse_2015_12_026
crossref_primary_10_3390_min8040163
crossref_primary_10_1177_0144598720912346
crossref_primary_10_1016_j_marpetgeo_2019_04_001
crossref_primary_10_1088_1755_1315_360_1_012017
crossref_primary_10_3390_min13121482
crossref_primary_10_1016_j_marpetgeo_2019_08_019
crossref_primary_10_1021_acs_iecr_3c02759
crossref_primary_10_1021_acs_energyfuels_8b04344
crossref_primary_10_1016_j_coal_2022_103939
crossref_primary_10_1016_j_earscirev_2023_104627
crossref_primary_10_1021_acs_energyfuels_8b03011
crossref_primary_10_1016_j_marpetgeo_2019_08_010
crossref_primary_10_1016_j_jngse_2018_09_012
crossref_primary_10_1016_j_jngse_2019_04_020
crossref_primary_10_3390_en15197075
crossref_primary_10_1016_j_fmre_2023_07_014
crossref_primary_10_1007_s40789_021_00431_7
crossref_primary_10_1016_j_jngse_2022_104552
crossref_primary_10_1016_j_marpetgeo_2023_106461
crossref_primary_10_1016_j_jaap_2022_105501
crossref_primary_10_1016_j_jngse_2017_07_009
crossref_primary_10_1016_j_marpetgeo_2020_104565
crossref_primary_10_1021_acs_energyfuels_3c00687
crossref_primary_10_1038_s41598_024_51960_5
crossref_primary_10_1016_j_jhydrol_2022_128799
crossref_primary_10_1016_j_coal_2020_103622
crossref_primary_10_48072_2525_7579_rog_2022_226
crossref_primary_10_1016_j_petrol_2019_01_071
crossref_primary_10_1007_s11631_018_0295_2
crossref_primary_10_1016_j_coal_2019_02_012
crossref_primary_10_3390_min14040392
crossref_primary_10_1016_j_petsci_2023_06_010
crossref_primary_10_1016_j_jnggs_2021_07_002
crossref_primary_10_1016_j_marpetgeo_2019_08_003
crossref_primary_10_1016_j_geoen_2023_212015
crossref_primary_10_1021_acs_energyfuels_9b00885
crossref_primary_10_1016_j_marpetgeo_2021_105328
crossref_primary_10_1021_acs_energyfuels_9b01730
crossref_primary_10_3390_en15030820
crossref_primary_10_3390_pr11123436
crossref_primary_10_3390_w15112017
crossref_primary_10_1016_j_coal_2018_05_015
crossref_primary_10_1016_j_petrol_2021_109643
crossref_primary_10_1016_j_coal_2025_104728
crossref_primary_10_1016_j_coal_2022_103998
crossref_primary_10_1016_j_earscirev_2024_104884
crossref_primary_10_1177_0144598717723647
crossref_primary_10_1007_s11242_018_1130_2
crossref_primary_10_1007_s12182_020_00481_7
crossref_primary_10_1016_j_fuel_2021_120744
crossref_primary_10_1021_acs_energyfuels_8b02107
crossref_primary_10_1007_s10553_024_01789_5
crossref_primary_10_1016_j_ijggc_2021_103563
crossref_primary_10_1016_j_marpetgeo_2018_05_020
crossref_primary_10_1016_j_uncres_2024_100100
crossref_primary_10_1016_j_jngse_2016_09_022
crossref_primary_10_1190_INT_2020_0245_1
crossref_primary_10_1007_s11053_022_10149_1
crossref_primary_10_1016_j_fuel_2017_08_034
crossref_primary_10_1021_acs_energyfuels_1c00526
crossref_primary_10_3390_en15051875
crossref_primary_10_1016_j_coal_2016_07_013
crossref_primary_10_1016_j_marpetgeo_2019_03_013
crossref_primary_10_1021_acsomega_2c00989
crossref_primary_10_1016_j_fuel_2018_04_137
crossref_primary_10_1016_j_petrol_2021_108460
crossref_primary_10_1016_S1876_3804_24_60508_2
crossref_primary_10_1016_j_coal_2015_05_009
crossref_primary_10_1016_j_jngse_2020_103348
crossref_primary_10_1016_j_coal_2015_05_005
crossref_primary_10_1007_s12182_018_0277_3
crossref_primary_10_1021_acs_energyfuels_3c00547
crossref_primary_10_1016_j_coal_2025_104713
crossref_primary_10_1021_acs_energyfuels_1c01631
crossref_primary_10_1021_acs_energyfuels_4c05306
crossref_primary_10_1016_j_fuel_2023_129678
crossref_primary_10_1016_j_apenergy_2024_122693
crossref_primary_10_1016_j_marpetgeo_2021_105421
crossref_primary_10_1016_j_orggeochem_2018_05_015
crossref_primary_10_1177_0144598717753166
crossref_primary_10_2343_geochemj_2_0600
crossref_primary_10_1080_08120099_2019_1588168
crossref_primary_10_1080_15567036_2020_1817186
crossref_primary_10_1016_j_energy_2023_128799
crossref_primary_10_1016_j_fuel_2015_05_061
crossref_primary_10_1016_j_orggeochem_2019_03_009
crossref_primary_10_1007_s12583_017_0732_x
crossref_primary_10_1016_j_petsci_2024_10_011
crossref_primary_10_1016_S1876_3804_16_30065_9
crossref_primary_10_1002_ese3_796
crossref_primary_10_1016_j_coal_2016_03_001
crossref_primary_10_1515_geo_2020_0216
crossref_primary_10_1016_j_marpetgeo_2018_12_045
crossref_primary_10_1016_j_coal_2024_104625
crossref_primary_10_3390_min10020194
crossref_primary_10_1007_s12182_015_0057_2
crossref_primary_10_1021_acs_energyfuels_8b02805
crossref_primary_10_3390_min9070428
crossref_primary_10_3390_min12091098
crossref_primary_10_1155_2021_7947116
crossref_primary_10_1002_gj_4670
crossref_primary_10_1166_jnn_2021_18563
crossref_primary_10_1016_j_jngse_2021_104277
crossref_primary_10_1016_j_jngse_2021_104278
crossref_primary_10_1021_acs_energyfuels_9b03789
crossref_primary_10_1111_1755_6724_14419
crossref_primary_10_3390_fractalfract8100555
crossref_primary_10_1016_j_petrol_2020_107631
crossref_primary_10_1016_j_coal_2019_03_010
crossref_primary_10_1007_s12583_020_1344_4
crossref_primary_10_1007_s13202_023_01637_y
crossref_primary_10_1016_j_marpetgeo_2019_104172
crossref_primary_10_1007_s12583_019_1013_7
crossref_primary_10_1016_j_petsci_2025_02_024
crossref_primary_10_1016_j_marpetgeo_2015_05_011
crossref_primary_10_1021_acs_energyfuels_0c04131
crossref_primary_10_1142_S0218348X25500215
crossref_primary_10_1190_INT_2021_0212_1
crossref_primary_10_1016_j_petsci_2021_09_032
crossref_primary_10_1016_j_marpetgeo_2018_01_013
crossref_primary_10_1016_j_marpetgeo_2018_12_026
crossref_primary_10_1016_j_marpetgeo_2018_06_035
crossref_primary_10_1016_j_coal_2019_03_009
crossref_primary_10_1016_j_jseaes_2024_106280
crossref_primary_10_1021_acs_energyfuels_3c01185
crossref_primary_10_1039_D2SE01361D
crossref_primary_10_1016_j_marpetgeo_2019_03_027
crossref_primary_10_1021_acs_energyfuels_3c00752
crossref_primary_10_1093_jge_gxaa018
crossref_primary_10_3389_feart_2022_854129
crossref_primary_10_1016_j_coal_2020_103673
crossref_primary_10_1016_j_coal_2016_06_010
crossref_primary_10_1016_j_jngse_2020_103153
crossref_primary_10_1016_j_petsci_2021_01_002
crossref_primary_10_1016_j_ces_2018_12_042
crossref_primary_10_1016_j_petrol_2019_106351
crossref_primary_10_1155_2020_8872244
crossref_primary_10_1111_1755_6724_13861
crossref_primary_10_1021_acs_energyfuels_1c02077
crossref_primary_10_3390_fractalfract8110657
crossref_primary_10_3389_feart_2022_848247
crossref_primary_10_1007_s12583_018_0835_z
crossref_primary_10_1016_j_marpetgeo_2016_12_015
crossref_primary_10_1016_j_marpetgeo_2019_06_023
crossref_primary_10_1016_j_jngse_2017_06_010
crossref_primary_10_1155_2023_2070913
crossref_primary_10_1016_j_marpetgeo_2024_106689
crossref_primary_10_1016_j_marpetgeo_2018_12_014
crossref_primary_10_1016_j_petsci_2022_11_001
crossref_primary_10_1016_j_petsci_2024_03_027
crossref_primary_10_1016_j_jngse_2016_01_041
crossref_primary_10_1007_s12517_023_11267_7
crossref_primary_10_1016_j_marpetgeo_2023_106150
crossref_primary_10_1021_acs_energyfuels_7b01815
crossref_primary_10_1016_j_jseaes_2023_105740
crossref_primary_10_1016_j_energy_2022_125545
crossref_primary_10_1016_j_jnggs_2015_12_001
crossref_primary_10_3390_en13061349
crossref_primary_10_1021_acs_energyfuels_0c02529
crossref_primary_10_1016_j_jngse_2018_12_011
crossref_primary_10_1016_j_petrol_2021_109464
crossref_primary_10_1016_j_marpetgeo_2020_104830
crossref_primary_10_1016_j_fuel_2017_02_035
crossref_primary_10_1016_j_fuel_2025_134532
crossref_primary_10_1016_j_fuel_2017_09_068
crossref_primary_10_1016_j_marpetgeo_2019_104145
crossref_primary_10_1021_acs_energyfuels_6b01499
crossref_primary_10_3390_en16083305
crossref_primary_10_1016_j_marpetgeo_2020_104837
crossref_primary_10_1016_j_coal_2017_08_006
crossref_primary_10_1021_acs_energyfuels_0c04189
crossref_primary_10_1111_1755_6724_13640
crossref_primary_10_1007_s11053_023_10222_3
crossref_primary_10_1016_j_coal_2021_103816
crossref_primary_10_1016_j_marpetgeo_2019_06_009
crossref_primary_10_1016_j_jngse_2016_02_056
crossref_primary_10_3390_en17092107
crossref_primary_10_1016_j_marpetgeo_2017_03_033
crossref_primary_10_1016_j_marpetgeo_2017_06_043
crossref_primary_10_1016_j_energy_2022_125433
crossref_primary_10_1080_08120099_2018_1455741
crossref_primary_10_1016_j_fuel_2017_03_080
crossref_primary_10_1016_j_coal_2022_104068
crossref_primary_10_1016_j_geoen_2022_211413
crossref_primary_10_3390_app13074295
crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_070
crossref_primary_10_1016_j_fuel_2014_07_005
crossref_primary_10_1021_acs_energyfuels_4c02454
crossref_primary_10_1021_acs_energyfuels_1c01574
crossref_primary_10_1111_1755_6724_12302_40
crossref_primary_10_1016_j_marpetgeo_2019_02_027
crossref_primary_10_1190_INT_2017_0238_1
crossref_primary_10_1016_j_petrol_2018_08_061
crossref_primary_10_1111_1755_6724_14285
crossref_primary_10_1016_j_gca_2020_01_019
crossref_primary_10_1021_acs_energyfuels_9b01453
crossref_primary_10_1016_j_micromeso_2021_110969
crossref_primary_10_1017_cmn_2024_3
crossref_primary_10_3390_en14102880
crossref_primary_10_1016_j_fuel_2017_09_060
crossref_primary_10_1016_j_petsci_2024_12_025
crossref_primary_10_1016_j_coal_2017_01_011
crossref_primary_10_1016_j_petrol_2019_106671
crossref_primary_10_1016_j_marpetgeo_2025_107298
crossref_primary_10_1021_acs_energyfuels_6b01475
crossref_primary_10_1177_01445987211001675
crossref_primary_10_1016_j_coal_2020_103515
crossref_primary_10_1016_j_earscirev_2017_06_010
crossref_primary_10_1016_j_jngse_2018_11_001
crossref_primary_10_1016_j_fmre_2024_01_015
crossref_primary_10_1016_j_fuel_2022_127149
crossref_primary_10_1016_j_fuel_2015_06_022
crossref_primary_10_1016_j_petrol_2021_108502
crossref_primary_10_1016_j_energy_2023_128844
crossref_primary_10_1016_j_petsci_2021_12_010
crossref_primary_10_1002_aic_14791
crossref_primary_10_1016_j_marpetgeo_2021_105272
crossref_primary_10_1016_j_fuel_2022_125649
crossref_primary_10_1016_j_marpetgeo_2020_104622
crossref_primary_10_1016_j_marpetgeo_2018_10_045
crossref_primary_10_1016_j_marpetgeo_2023_106125
crossref_primary_10_1016_j_fuel_2016_07_100
crossref_primary_10_1021_acs_energyfuels_8b01405
crossref_primary_10_3390_su13147668
crossref_primary_10_1007_s10553_023_01549_x
crossref_primary_10_1016_j_fuel_2018_12_035
crossref_primary_10_1002_ese3_1580
crossref_primary_10_3390_en14227603
crossref_primary_10_3390_min13101340
crossref_primary_10_1016_j_petrol_2022_110543
crossref_primary_10_1016_j_colsurfa_2024_134282
crossref_primary_10_1177_0144598716656064
crossref_primary_10_3389_feart_2021_735647
crossref_primary_10_1021_acs_energyfuels_1c00811
crossref_primary_10_1016_j_petrol_2020_108230
crossref_primary_10_1038_s41598_018_25104_5
crossref_primary_10_1021_acs_energyfuels_5b00033
crossref_primary_10_3390_min14020182
crossref_primary_10_1016_j_marpetgeo_2015_07_027
crossref_primary_10_1021_acsomega_0c01432
crossref_primary_10_3390_en15228696
crossref_primary_10_1016_j_fuel_2020_117316
crossref_primary_10_1016_j_marpetgeo_2019_104101
crossref_primary_10_1016_j_petrol_2018_09_078
crossref_primary_10_1016_j_fuel_2017_05_046
crossref_primary_10_2113_2022_6290684
crossref_primary_10_3389_feart_2022_884518
crossref_primary_10_1007_s00603_019_01820_w
crossref_primary_10_1080_10916466_2024_2424469
crossref_primary_10_1021_acs_energyfuels_7b01787
crossref_primary_10_1177_0144598718810256
crossref_primary_10_3390_en12081480
crossref_primary_10_1016_j_apenergy_2022_120051
crossref_primary_10_1016_j_coal_2019_103231
crossref_primary_10_1007_s12517_017_3337_x
crossref_primary_10_1016_j_marpetgeo_2018_08_014
crossref_primary_10_3390_en11040755
crossref_primary_10_3390_fractalfract8060335
crossref_primary_10_3390_min15040336
crossref_primary_10_1016_j_jnggs_2020_09_003
crossref_primary_10_1016_j_jnggs_2023_09_001
crossref_primary_10_1016_j_orggeochem_2017_01_004
crossref_primary_10_1016_j_coal_2019_103236
crossref_primary_10_1016_j_marpetgeo_2021_104962
crossref_primary_10_1002_er_5114
crossref_primary_10_1016_j_coal_2019_103233
crossref_primary_10_1021_acs_energyfuels_3c02320
crossref_primary_10_3390_min13091220
crossref_primary_10_1016_j_petsci_2023_05_012
crossref_primary_10_1016_j_marpetgeo_2016_11_025
crossref_primary_10_1016_j_fuel_2023_130161
crossref_primary_10_1016_j_petsci_2022_03_005
crossref_primary_10_1016_j_jnggs_2016_07_001
crossref_primary_10_1016_j_marpetgeo_2020_104527
crossref_primary_10_1016_j_jngse_2018_05_002
crossref_primary_10_1016_j_jnggs_2016_07_004
crossref_primary_10_1016_j_coal_2018_10_005
crossref_primary_10_1190_INT_2019_0219_1
crossref_primary_10_1021_acs_energyfuels_4c02778
crossref_primary_10_3390_en15238805
crossref_primary_10_1016_j_petsci_2024_02_008
crossref_primary_10_1111_1755_6724_13030
crossref_primary_10_1155_2021_5582262
crossref_primary_10_1016_j_petrol_2017_06_011
crossref_primary_10_1016_j_marpetgeo_2017_12_008
crossref_primary_10_1021_acs_energyfuels_9b00442
crossref_primary_10_1016_j_marpetgeo_2017_06_012
crossref_primary_10_1021_acs_energyfuels_3c04059
crossref_primary_10_1016_j_marpetgeo_2019_05_014
crossref_primary_10_1016_j_coal_2016_05_013
crossref_primary_10_1016_j_marpetgeo_2021_105368
crossref_primary_10_1007_s12517_023_11638_0
Cites_doi 10.1016/j.marpetgeo.2008.06.004
10.2138/am.2011.3813
10.1016/j.orggeochem.2013.06.003
10.1180/claymin.1993.028.1.06
10.1306/04011312194
10.1016/j.marpetgeo.2013.07.008
10.1016/j.fuel.2012.06.119
10.1016/j.marpetgeo.2012.09.001
10.1130/G33639.1
10.2110/jsr.2009.092
10.1180/002646198548034
10.1016/S0146-6380(03)00173-6
10.1016/S0146-6380(98)00040-0
10.1306/07231212048
10.1046/j.1365-2117.2003.00210.x
10.1306/10240808059
10.1306/10171111052
10.1016/j.coal.2013.01.001
10.1016/S1387-1811(03)00339-1
10.1021/ja01145a126
10.1007/BF01137914
10.2113/gscpgbull.55.1.51
10.1306/09040707048
10.1306/08171111061
10.1016/j.coal.2012.08.004
10.3997/2214-4609.20130110
10.1016/j.clay.2013.07.017
10.1016/j.coal.2012.04.010
10.1016/0021-9797(80)90346-X
10.1021/ef300735t
10.1111/jpg.12561
10.1351/pac198557040603
10.1346/CCMN.2006.0540308
10.1021/ja01269a023
10.1016/S0008-6223(02)00357-3
10.1346/CCMN.2008.0560106
10.1306/12190606068
10.1016/j.clay.2011.11.007
10.1144/gsjgs.140.3.0445
10.1016/j.marpetgeo.2012.08.004
10.1016/j.coal.2012.07.012
10.1007/BF02708614
10.1346/CCMN.1997.0450502
10.1016/j.coal.2006.05.001
10.1016/S0169-1317(02)00146-1
10.1016/j.fuel.2011.12.010
10.1306/04111110201
10.1016/j.coal.2012.05.006
10.1016/B0-08-043751-6/07095-X
10.2113/gscpgbull.56.1.1
10.1021/ef400381v
10.1306/09210706140
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1016/j.fuel.2014.03.058
DatabaseName CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-7153
EndPage 181
ExternalDocumentID 28446825
10_1016_j_fuel_2014_03_058
S0016236114003093
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
SEW
SSH
VH1
WUQ
XPP
ZY4
ABTAH
IQODW
7TB
8FD
EFKBS
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c462t-77b3eb528d1d56cbe4cdb136b1417272d56cb0e7fbf34a0f2943dd9b6f0141bb3
IEDL.DBID .~1
ISSN 0016-2361
IngestDate Tue Aug 05 10:42:47 EDT 2025
Thu Aug 07 15:24:17 EDT 2025
Wed Apr 02 07:21:53 EDT 2025
Tue Jul 01 00:43:45 EDT 2025
Thu Apr 24 23:10:36 EDT 2025
Fri Feb 23 02:18:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Anhydrous pyrolysis
Thermal maturation
Nanoporosity evolution
Gas shale
Pyrolysis
Shale
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-77b3eb528d1d56cbe4cdb136b1417272d56cb0e7fbf34a0f2943dd9b6f0141bb3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1551040291
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1671591348
proquest_miscellaneous_1551040291
pascalfrancis_primary_28446825
crossref_citationtrail_10_1016_j_fuel_2014_03_058
crossref_primary_10_1016_j_fuel_2014_03_058
elsevier_sciencedirect_doi_10_1016_j_fuel_2014_03_058
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Fuel (Guildford)
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Jarvie, Hill, Ruble, Pollastro (b0275) 2007; 91
Zhou, Xiao, Tian, Wilkins (b0120) 2013; 36
Bernard, Wirth, Schreiber, Schulz, Horsfield (b0200) 2012; 103
DeMaster (b0255) 2003; 7
Blood R, Lash G, Bridges L. Biogenic silica in the Devonian Shale Succession of the Appalachian Basin, USA. In: AAPG search and discovery article 50864 presented at AAPG 2013 annual convention and exhibition, Pittsburgh, Pennsylvania; May 19–22, 2013.
Nelson (b0040) 2009; 93
Brunauer, Emmett, Teller (b0140) 1938; 60
Barrett, Joyner, Halenda (b0145) 1951; 73
Feng, Bhatia (b0135) 2003; 41
Fishman, Hackley, Lowers, Hill, Egenhoff, Eberl (b0105) 2012; 103
Bray, Redfern, Clark (b0215) 1998; 62
Hill, Tang, Kaplan (b0280) 2003; 34
Dubinin, Stoeckli (b0155) 1980; 75
Ross, Bustin (b0005) 2007; 55
Ross, Bustin (b0010) 2008; 92
Sweeney, Burnham (b0185) 1990; 74
Clarkson, Solano, Bustin, Bustin, Chalmers, He (b0075) 2013; 103
Cheng, Tian, Huang, Wilkins, Xiao (b0125) 2013; 61
Bala, Samantaray, Srivastava (b0220) 2000; 23
Carroll (b0115) 1998; 28
Groen, Peffer, Perez-Ramirez (b0130) 2003; 60
Waples (b0175) 1980; 64
Prinz, Littke (b0195) 2005; 84
Chalmers, Ross, Bustin (b0245) 2012; 103
Loucks, Reed, Ruppel, Jarvie (b0030) 2009; 79
Chalmers, Bustin (b0020) 2008; 56
Chalmers, Bustin (b0250) 2012; 38
Volpi, Camerlenghi, Hillenbrand, Rebesco, Ivaldi (b0260) 2003; 15
Schmitt, Fernandes, da Cunha Neto, Wolf, dos Santos (b0080) 2013; 39
Ross, Bustin (b0050) 2009; 26
Lopatin (b0170) 1971; 3
Mathia E, Rexer T, Bowen L, Aplin A. Evolution of porosity and pore systems in organic-rich Posidonia and Wealden Shales. In: 75th EAGE conference & exhibition incorporating SPE EUROPEC 2013, London, UK; June 10–13, 2013.
Gasparini, Tarantino, Ghigna, Riccardi, Cedillo-González, Siligardi (b0160) 2013; 80–81
Rodriguez-Navarro, Kudlacz, Ruiz-Agudo (b0165) 2012; 97
Loucks, Reed, Ruppel, Hammes (b0035) 2012; 96
Ghosal, Smith (b0150) 1996; 3
Goff (b0180) 1983; 140
Noyan, Onal, Sarikaya (b0210) 2006; 54
Sing, Everett, Haul, Moscou, Pierotti, Rouquerol (b0045) 1985; 57
Metwally, Chesnokov (b0240) 2012; 55
Curtis, Cardott, Sondergeld, Rai (b0100) 2012; 103
Chalmers, Bustin (b0015) 2007; 70
Valenza, Drenzek, Marques, Pagels, Mastalerz (b0090) 2013; 41
Milliken, Rudnicki, Awwiller, Zhang (b0270) 2013; 97
Van de Kamp (b0230) 2008; 56
Mastalerz, Schimmelmann, Drobniak, Chen (b0110) 2013; 97
Tian, Xiao, Wilkins, Tang (b0285) 2008; 92
Neaman, Pelletier, Villieras (b0205) 2003; 22
Rexer, Benham, Aplin, Thomas (b0055) 2013; 27
Chalmers, Bustin, Power (b0025) 2012; 96
Clarkson, Freeman, He, Agamalian, Melnichenko, Mastalerz (b0070) 2012; 95
Tian, Pan, Xiao, Wilkins, Meng, Huang (b0085) 2013; 48
Mastalerz, He, Melnichenko, Rupp (b0065) 2012; 26
Eberl, Velde, McCormick (b0235) 1993; 28
Mosher, He, Liu, Rupp, Wilcox (b0060) 2013; 109
Modica, Lapierre (b0095) 2012; 96
Lynch (b0225) 1997; 45
Noyan (10.1016/j.fuel.2014.03.058_b0210) 2006; 54
Eberl (10.1016/j.fuel.2014.03.058_b0235) 1993; 28
Gasparini (10.1016/j.fuel.2014.03.058_b0160) 2013; 80–81
10.1016/j.fuel.2014.03.058_b0265
Tian (10.1016/j.fuel.2014.03.058_b0285) 2008; 92
Clarkson (10.1016/j.fuel.2014.03.058_b0070) 2012; 95
Bray (10.1016/j.fuel.2014.03.058_b0215) 1998; 62
Chalmers (10.1016/j.fuel.2014.03.058_b0025) 2012; 96
Curtis (10.1016/j.fuel.2014.03.058_b0100) 2012; 103
Groen (10.1016/j.fuel.2014.03.058_b0130) 2003; 60
Dubinin (10.1016/j.fuel.2014.03.058_b0155) 1980; 75
Zhou (10.1016/j.fuel.2014.03.058_b0120) 2013; 36
Ross (10.1016/j.fuel.2014.03.058_b0010) 2008; 92
Bernard (10.1016/j.fuel.2014.03.058_b0200) 2012; 103
Ross (10.1016/j.fuel.2014.03.058_b0050) 2009; 26
Milliken (10.1016/j.fuel.2014.03.058_b0270) 2013; 97
Nelson (10.1016/j.fuel.2014.03.058_b0040) 2009; 93
Waples (10.1016/j.fuel.2014.03.058_b0175) 1980; 64
10.1016/j.fuel.2014.03.058_b0190
Rexer (10.1016/j.fuel.2014.03.058_b0055) 2013; 27
Brunauer (10.1016/j.fuel.2014.03.058_b0140) 1938; 60
Tian (10.1016/j.fuel.2014.03.058_b0085) 2013; 48
Carroll (10.1016/j.fuel.2014.03.058_b0115) 1998; 28
Chalmers (10.1016/j.fuel.2014.03.058_b0015) 2007; 70
Ghosal (10.1016/j.fuel.2014.03.058_b0150) 1996; 3
DeMaster (10.1016/j.fuel.2014.03.058_b0255) 2003; 7
Loucks (10.1016/j.fuel.2014.03.058_b0030) 2009; 79
Metwally (10.1016/j.fuel.2014.03.058_b0240) 2012; 55
Ross (10.1016/j.fuel.2014.03.058_b0005) 2007; 55
Sing (10.1016/j.fuel.2014.03.058_b0045) 1985; 57
Mosher (10.1016/j.fuel.2014.03.058_b0060) 2013; 109
Loucks (10.1016/j.fuel.2014.03.058_b0035) 2012; 96
Bala (10.1016/j.fuel.2014.03.058_b0220) 2000; 23
Hill (10.1016/j.fuel.2014.03.058_b0280) 2003; 34
Cheng (10.1016/j.fuel.2014.03.058_b0125) 2013; 61
Modica (10.1016/j.fuel.2014.03.058_b0095) 2012; 96
Jarvie (10.1016/j.fuel.2014.03.058_b0275) 2007; 91
Mastalerz (10.1016/j.fuel.2014.03.058_b0110) 2013; 97
Lopatin (10.1016/j.fuel.2014.03.058_b0170) 1971; 3
Volpi (10.1016/j.fuel.2014.03.058_b0260) 2003; 15
Mastalerz (10.1016/j.fuel.2014.03.058_b0065) 2012; 26
Feng (10.1016/j.fuel.2014.03.058_b0135) 2003; 41
Barrett (10.1016/j.fuel.2014.03.058_b0145) 1951; 73
Van de Kamp (10.1016/j.fuel.2014.03.058_b0230) 2008; 56
Chalmers (10.1016/j.fuel.2014.03.058_b0250) 2012; 38
Lynch (10.1016/j.fuel.2014.03.058_b0225) 1997; 45
Rodriguez-Navarro (10.1016/j.fuel.2014.03.058_b0165) 2012; 97
Valenza (10.1016/j.fuel.2014.03.058_b0090) 2013; 41
Chalmers (10.1016/j.fuel.2014.03.058_b0245) 2012; 103
Chalmers (10.1016/j.fuel.2014.03.058_b0020) 2008; 56
Sweeney (10.1016/j.fuel.2014.03.058_b0185) 1990; 74
Neaman (10.1016/j.fuel.2014.03.058_b0205) 2003; 22
Clarkson (10.1016/j.fuel.2014.03.058_b0075) 2013; 103
Fishman (10.1016/j.fuel.2014.03.058_b0105) 2012; 103
Schmitt (10.1016/j.fuel.2014.03.058_b0080) 2013; 39
Goff (10.1016/j.fuel.2014.03.058_b0180) 1983; 140
Prinz (10.1016/j.fuel.2014.03.058_b0195) 2005; 84
References_xml – volume: 103
  start-page: 32
  year: 2012
  end-page: 50
  ident: b0105
  article-title: The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom
  publication-title: Int J Coal Geol
– volume: 7
  start-page: 87
  year: 2003
  end-page: 98
  ident: b0255
  article-title: The diagenesis of biogenic silica: chemical transformations occurring in the water column, seabed, and crust
  publication-title: Treatise Geochem
– volume: 140
  start-page: 445
  year: 1983
  end-page: 474
  ident: b0180
  article-title: Hydrocarbon generation and migration from Jurassic source rock in East Shetland basin and Viking Graben of the northern North Sea
  publication-title: J Geol Soc (London, UK)
– volume: 45
  start-page: 618
  year: 1997
  end-page: 631
  ident: b0225
  article-title: Frio shale mineralogy and the stoichiometry of the smectite-to-illite reaction: the most important reaction in clastic sedimentary diagenesis
  publication-title: Clays Clay Miner
– volume: 39
  start-page: 138
  year: 2013
  end-page: 149
  ident: b0080
  article-title: Characterization of pore systems in seal rocks using nitrogen gas adsorption combined with mercury injection capillary pressure techniques
  publication-title: Mar Pet Geol
– volume: 60
  start-page: 309
  year: 1938
  end-page: 319
  ident: b0140
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J Am Chem Soc
– volume: 62
  start-page: 647
  year: 1998
  end-page: 656
  ident: b0215
  article-title: The kinetics of dehydration in Ca-montmorillonite: an in situ X-ray diffraction study
  publication-title: Mineral Mag
– volume: 96
  start-page: 1071
  year: 2012
  end-page: 1098
  ident: b0035
  article-title: Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores
  publication-title: AAPG Bull
– volume: 22
  start-page: 153
  year: 2003
  end-page: 168
  ident: b0205
  article-title: The effects of exchanged cation, compression, heating and hydration on textural properties of bulk bentonite and its corresponding purified montmorillonite
  publication-title: Appl Clay Sci
– volume: 109
  start-page: 36
  year: 2013
  end-page: 44
  ident: b0060
  article-title: Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems
  publication-title: Int J Coal Geol
– volume: 103
  start-page: 26
  year: 2012
  end-page: 31
  ident: b0100
  article-title: Development of organic porosity in the Woodford Shale with increasing thermal maturity
  publication-title: Int J Coal Geol
– volume: 97
  start-page: 177
  year: 2013
  end-page: 200
  ident: b0270
  article-title: Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania
  publication-title: AAPG Bull
– volume: 70
  start-page: 223
  year: 2007
  end-page: 239
  ident: b0015
  article-title: The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada
  publication-title: Int J Coal Geol
– reference: Blood R, Lash G, Bridges L. Biogenic silica in the Devonian Shale Succession of the Appalachian Basin, USA. In: AAPG search and discovery article 50864 presented at AAPG 2013 annual convention and exhibition, Pittsburgh, Pennsylvania; May 19–22, 2013.
– volume: 56
  start-page: 66
  year: 2008
  end-page: 81
  ident: b0230
  article-title: Smectite-illite-muscovite transformations, quartz dissolution, and silica release in shales
  publication-title: Clays Clay Miner
– volume: 96
  start-page: 1099
  year: 2012
  end-page: 1119
  ident: b0025
  article-title: Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units
  publication-title: AAPG Bull
– volume: 103
  start-page: 606
  year: 2013
  end-page: 616
  ident: b0075
  article-title: Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion
  publication-title: Fuel
– volume: 91
  start-page: 475
  year: 2007
  end-page: 499
  ident: b0275
  article-title: Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment
  publication-title: AAPG Bull
– volume: 97
  start-page: 38
  year: 2012
  end-page: 51
  ident: b0165
  article-title: The mechanism of thermal decomposition of dolomite: new insights from 2D-XRD and TEM analyses
  publication-title: Am Miner
– volume: 103
  start-page: 120
  year: 2012
  end-page: 131
  ident: b0245
  article-title: Geological controls on matrix permeability of Devonian Gas Shales in the Horn River and Liard basins, Northeastern British Columbia, Canada
  publication-title: Int J Coal Geol
– volume: 54
  start-page: 375
  year: 2006
  end-page: 381
  ident: b0210
  article-title: The effect of heating on the surface area, porosity and surface acidity of a bentonite
  publication-title: Clays Clay Miner
– volume: 41
  start-page: 507
  year: 2003
  end-page: 523
  ident: b0135
  article-title: Variation of the pore structure of coal chars during gasification
  publication-title: Carbon
– volume: 48
  start-page: 8
  year: 2013
  end-page: 19
  ident: b0085
  article-title: A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N
  publication-title: Mar Pet Geol
– volume: 79
  start-page: 848
  year: 2009
  end-page: 861
  ident: b0030
  article-title: Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale
  publication-title: J Sediment Res
– volume: 27
  start-page: 3099
  year: 2013
  end-page: 3109
  ident: b0055
  article-title: Methane adsorption on shale under simulated geological temperature and pressure conditions
  publication-title: Energy Fuels
– volume: 95
  start-page: 371
  year: 2012
  end-page: 385
  ident: b0070
  article-title: Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis
  publication-title: Fuel
– volume: 61
  start-page: 15
  year: 2013
  end-page: 26
  ident: b0125
  article-title: Tracing early-charged oils and exploration directions for the Wenchang A sag, western Pearl River Mouth Basin, offshore South China Sea
  publication-title: Org Geochem
– volume: 28
  start-page: 649
  year: 1998
  end-page: 667
  ident: b0115
  article-title: Upper Permian lacustrine organic facies evolution, Southern Junggar Basin, NW China
  publication-title: Org Geochem
– volume: 93
  start-page: 329
  year: 2009
  end-page: 340
  ident: b0040
  article-title: Pore-throat sizes in sandstones, tight sandstones, and shales
  publication-title: AAPG Bull
– volume: 75
  start-page: 34
  year: 1980
  end-page: 42
  ident: b0155
  article-title: Homogeneous and heterogeneous micropore structures in carbonaceous adsorbents
  publication-title: J Colloid Interface Sci
– volume: 73
  start-page: 373
  year: 1951
  end-page: 380
  ident: b0145
  article-title: The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms
  publication-title: J Am Chem Soc
– volume: 41
  start-page: 611
  year: 2013
  end-page: 614
  ident: b0090
  article-title: Geochemical controls on shale microstructure
  publication-title: Geology
– volume: 74
  start-page: 1559
  year: 1990
  end-page: 1570
  ident: b0185
  article-title: Evaluation of a simple model of vitrinite reflectance based on chemical kinetics
  publication-title: AAPG Bull
– volume: 15
  start-page: 339
  year: 2003
  end-page: 363
  ident: b0260
  article-title: Effects of biogenic silica on sediment compaction and slope stability on the Pacific margin of the Antarctic Peninsula
  publication-title: Basin Res
– volume: 56
  start-page: 1
  year: 2008
  end-page: 21
  ident: b0020
  article-title: Lower Cretaceous gas shales in Northeastern British Columbia, Part I: geological controls on methane sorption capacity
  publication-title: Bull Can Pet Geol
– volume: 103
  start-page: 3
  year: 2012
  end-page: 11
  ident: b0200
  article-title: Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin)
  publication-title: Int J Coal Geol
– volume: 3
  start-page: 247
  year: 1996
  end-page: 255
  ident: b0150
  article-title: Micropore characterization using the Dubinin–Astakhov equation to analyze high pressure CO
  publication-title: J Porous Mater
– volume: 55
  start-page: 51
  year: 2007
  end-page: 75
  ident: b0005
  article-title: Shale gas potential of the Lower Jurassic Gordondale member, Northeastern British Columbia, Canada
  publication-title: Bull Can Pet Geol
– volume: 97
  start-page: 1621
  year: 2013
  end-page: 1643
  ident: b0110
  article-title: Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: insights from organic petrology, gas adsorption, and mercury intrusion
  publication-title: AAPG Bull
– reference: Mathia E, Rexer T, Bowen L, Aplin A. Evolution of porosity and pore systems in organic-rich Posidonia and Wealden Shales. In: 75th EAGE conference & exhibition incorporating SPE EUROPEC 2013, London, UK; June 10–13, 2013.
– volume: 84
  start-page: 1645
  year: 2005
  end-page: 1652
  ident: b0195
  article-title: Development of the micro- and ultramicroporous structure of coals with rank as deduced from the accessibility to water
  publication-title: Fuel
– volume: 26
  start-page: 916
  year: 2009
  end-page: 927
  ident: b0050
  article-title: The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs
  publication-title: Mar Pet Geol
– volume: 26
  start-page: 5109
  year: 2012
  end-page: 5120
  ident: b0065
  article-title: Porosity of coal and shale: Insights from gas adsorption and SANS/USANS techniques
  publication-title: Energy Fuels
– volume: 92
  start-page: 87
  year: 2008
  end-page: 125
  ident: b0010
  article-title: Characterizing the shale gas resource potential of Devonian–Mississippian strata in the Western Canada sedimentary basin: application of an integrated formation evaluation
  publication-title: AAPG Bull
– volume: 64
  start-page: 916
  year: 1980
  end-page: 926
  ident: b0175
  article-title: Time and temperature in petroleum formation: application of Lopatin’s method to petroleum exploration
  publication-title: AAPG Bull
– volume: 38
  start-page: 53
  year: 2012
  end-page: 72
  ident: b0250
  article-title: Geological evaluation of Halfway–Doig–Montney hybrid gas shale-tight gas reservoir, northeastern British Columbia
  publication-title: Mar Pet Geol
– volume: 80–81
  start-page: 417
  year: 2013
  end-page: 425
  ident: b0160
  article-title: Thermal dehydroxylation of kaolinite under isothermal conditions
  publication-title: Appl Clay Sci
– volume: 34
  start-page: 1651
  year: 2003
  end-page: 1672
  ident: b0280
  article-title: Insights into oil cracking based on laboratory experiments
  publication-title: Org Geochem
– volume: 57
  start-page: 603
  year: 1985
  end-page: 619
  ident: b0045
  article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity
  publication-title: Pure Appl Chem
– volume: 36
  start-page: 363
  year: 2013
  end-page: 382
  ident: b0120
  article-title: Oil charge history of bitumens of differing maturities in exhumed Palaeozoic reservoir rocks at Tianjingshan, NW Sichuan Basin, Southern China
  publication-title: J Pet Geol
– volume: 96
  start-page: 87
  year: 2012
  end-page: 108
  ident: b0095
  article-title: Estimation of kerogen porosity in source rocks as a function of thermal transformation: example from the Mowry Shale in the Powder River Basin of Wyoming
  publication-title: AAPG Bull
– volume: 23
  start-page: 61
  year: 2000
  end-page: 67
  ident: b0220
  article-title: Dehydration transformation in Ca-montmorillonite
  publication-title: Bull Mater Sci
– volume: 60
  start-page: 1
  year: 2003
  end-page: 17
  ident: b0130
  article-title: Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis
  publication-title: Microporous Mesoporous Mater
– volume: 55
  start-page: 138
  year: 2012
  end-page: 150
  ident: b0240
  article-title: Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale
  publication-title: Appl Clay Sci
– volume: 28
  start-page: 49
  year: 1993
  end-page: 60
  ident: b0235
  article-title: Synthesis of illite–smectite from smectite at earth surface temperature and high pH
  publication-title: Clay Miner
– volume: 92
  start-page: 181
  year: 2008
  end-page: 200
  ident: b0285
  article-title: New insights into the volume and pressure changes during the thermal cracking of oil to gas in reservoirs: implications for the in situ accumulation of gas cracked from oils
  publication-title: AAPG Bull
– volume: 3
  start-page: 95
  year: 1971
  end-page: 106
  ident: b0170
  article-title: Temperature and geologic time as factors in coalification
  publication-title: Akad Nauk SSSR Izv Ser Geol
– volume: 26
  start-page: 916
  year: 2009
  ident: 10.1016/j.fuel.2014.03.058_b0050
  article-title: The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs
  publication-title: Mar Pet Geol
  doi: 10.1016/j.marpetgeo.2008.06.004
– volume: 97
  start-page: 38
  year: 2012
  ident: 10.1016/j.fuel.2014.03.058_b0165
  article-title: The mechanism of thermal decomposition of dolomite: new insights from 2D-XRD and TEM analyses
  publication-title: Am Miner
  doi: 10.2138/am.2011.3813
– volume: 61
  start-page: 15
  year: 2013
  ident: 10.1016/j.fuel.2014.03.058_b0125
  article-title: Tracing early-charged oils and exploration directions for the Wenchang A sag, western Pearl River Mouth Basin, offshore South China Sea
  publication-title: Org Geochem
  doi: 10.1016/j.orggeochem.2013.06.003
– volume: 28
  start-page: 49
  year: 1993
  ident: 10.1016/j.fuel.2014.03.058_b0235
  article-title: Synthesis of illite–smectite from smectite at earth surface temperature and high pH
  publication-title: Clay Miner
  doi: 10.1180/claymin.1993.028.1.06
– volume: 97
  start-page: 1621
  year: 2013
  ident: 10.1016/j.fuel.2014.03.058_b0110
  article-title: Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: insights from organic petrology, gas adsorption, and mercury intrusion
  publication-title: AAPG Bull
  doi: 10.1306/04011312194
– volume: 48
  start-page: 8
  year: 2013
  ident: 10.1016/j.fuel.2014.03.058_b0085
  article-title: A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE–SEM methods
  publication-title: Mar Pet Geol
  doi: 10.1016/j.marpetgeo.2013.07.008
– volume: 103
  start-page: 606
  year: 2013
  ident: 10.1016/j.fuel.2014.03.058_b0075
  article-title: Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.06.119
– volume: 39
  start-page: 138
  year: 2013
  ident: 10.1016/j.fuel.2014.03.058_b0080
  article-title: Characterization of pore systems in seal rocks using nitrogen gas adsorption combined with mercury injection capillary pressure techniques
  publication-title: Mar Pet Geol
  doi: 10.1016/j.marpetgeo.2012.09.001
– volume: 41
  start-page: 611
  year: 2013
  ident: 10.1016/j.fuel.2014.03.058_b0090
  article-title: Geochemical controls on shale microstructure
  publication-title: Geology
  doi: 10.1130/G33639.1
– volume: 79
  start-page: 848
  year: 2009
  ident: 10.1016/j.fuel.2014.03.058_b0030
  article-title: Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale
  publication-title: J Sediment Res
  doi: 10.2110/jsr.2009.092
– volume: 62
  start-page: 647
  issue: 5
  year: 1998
  ident: 10.1016/j.fuel.2014.03.058_b0215
  article-title: The kinetics of dehydration in Ca-montmorillonite: an in situ X-ray diffraction study
  publication-title: Mineral Mag
  doi: 10.1180/002646198548034
– volume: 34
  start-page: 1651
  year: 2003
  ident: 10.1016/j.fuel.2014.03.058_b0280
  article-title: Insights into oil cracking based on laboratory experiments
  publication-title: Org Geochem
  doi: 10.1016/S0146-6380(03)00173-6
– volume: 28
  start-page: 649
  issue: 11
  year: 1998
  ident: 10.1016/j.fuel.2014.03.058_b0115
  article-title: Upper Permian lacustrine organic facies evolution, Southern Junggar Basin, NW China
  publication-title: Org Geochem
  doi: 10.1016/S0146-6380(98)00040-0
– volume: 84
  start-page: 1645
  year: 2005
  ident: 10.1016/j.fuel.2014.03.058_b0195
  article-title: Development of the micro- and ultramicroporous structure of coals with rank as deduced from the accessibility to water
  publication-title: Fuel
– volume: 97
  start-page: 177
  year: 2013
  ident: 10.1016/j.fuel.2014.03.058_b0270
  article-title: Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania
  publication-title: AAPG Bull
  doi: 10.1306/07231212048
– volume: 15
  start-page: 339
  year: 2003
  ident: 10.1016/j.fuel.2014.03.058_b0260
  article-title: Effects of biogenic silica on sediment compaction and slope stability on the Pacific margin of the Antarctic Peninsula
  publication-title: Basin Res
  doi: 10.1046/j.1365-2117.2003.00210.x
– volume: 93
  start-page: 329
  year: 2009
  ident: 10.1016/j.fuel.2014.03.058_b0040
  article-title: Pore-throat sizes in sandstones, tight sandstones, and shales
  publication-title: AAPG Bull
  doi: 10.1306/10240808059
– volume: 96
  start-page: 1099
  issue: 6
  year: 2012
  ident: 10.1016/j.fuel.2014.03.058_b0025
  publication-title: AAPG Bull
  doi: 10.1306/10171111052
– volume: 109
  start-page: 36
  year: 2013
  ident: 10.1016/j.fuel.2014.03.058_b0060
  article-title: Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems
  publication-title: Int J Coal Geol
  doi: 10.1016/j.coal.2013.01.001
– volume: 60
  start-page: 1
  year: 2003
  ident: 10.1016/j.fuel.2014.03.058_b0130
  article-title: Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/S1387-1811(03)00339-1
– volume: 73
  start-page: 373
  issue: 1
  year: 1951
  ident: 10.1016/j.fuel.2014.03.058_b0145
  article-title: The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms
  publication-title: J Am Chem Soc
  doi: 10.1021/ja01145a126
– volume: 3
  start-page: 247
  year: 1996
  ident: 10.1016/j.fuel.2014.03.058_b0150
  article-title: Micropore characterization using the Dubinin–Astakhov equation to analyze high pressure CO2 (273K) adsorption data
  publication-title: J Porous Mater
  doi: 10.1007/BF01137914
– volume: 55
  start-page: 51
  year: 2007
  ident: 10.1016/j.fuel.2014.03.058_b0005
  article-title: Shale gas potential of the Lower Jurassic Gordondale member, Northeastern British Columbia, Canada
  publication-title: Bull Can Pet Geol
  doi: 10.2113/gscpgbull.55.1.51
– volume: 92
  start-page: 87
  issue: 1
  year: 2008
  ident: 10.1016/j.fuel.2014.03.058_b0010
  article-title: Characterizing the shale gas resource potential of Devonian–Mississippian strata in the Western Canada sedimentary basin: application of an integrated formation evaluation
  publication-title: AAPG Bull
  doi: 10.1306/09040707048
– volume: 96
  start-page: 1071
  year: 2012
  ident: 10.1016/j.fuel.2014.03.058_b0035
  article-title: Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores
  publication-title: AAPG Bull
  doi: 10.1306/08171111061
– volume: 103
  start-page: 26
  year: 2012
  ident: 10.1016/j.fuel.2014.03.058_b0100
  article-title: Development of organic porosity in the Woodford Shale with increasing thermal maturity
  publication-title: Int J Coal Geol
  doi: 10.1016/j.coal.2012.08.004
– ident: 10.1016/j.fuel.2014.03.058_b0190
  doi: 10.3997/2214-4609.20130110
– volume: 80–81
  start-page: 417
  year: 2013
  ident: 10.1016/j.fuel.2014.03.058_b0160
  article-title: Thermal dehydroxylation of kaolinite under isothermal conditions
  publication-title: Appl Clay Sci
  doi: 10.1016/j.clay.2013.07.017
– volume: 103
  start-page: 3
  year: 2012
  ident: 10.1016/j.fuel.2014.03.058_b0200
  article-title: Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin)
  publication-title: Int J Coal Geol
  doi: 10.1016/j.coal.2012.04.010
– volume: 75
  start-page: 34
  issue: 1
  year: 1980
  ident: 10.1016/j.fuel.2014.03.058_b0155
  article-title: Homogeneous and heterogeneous micropore structures in carbonaceous adsorbents
  publication-title: J Colloid Interface Sci
  doi: 10.1016/0021-9797(80)90346-X
– volume: 26
  start-page: 5109
  year: 2012
  ident: 10.1016/j.fuel.2014.03.058_b0065
  article-title: Porosity of coal and shale: Insights from gas adsorption and SANS/USANS techniques
  publication-title: Energy Fuels
  doi: 10.1021/ef300735t
– volume: 36
  start-page: 363
  issue: 4
  year: 2013
  ident: 10.1016/j.fuel.2014.03.058_b0120
  article-title: Oil charge history of bitumens of differing maturities in exhumed Palaeozoic reservoir rocks at Tianjingshan, NW Sichuan Basin, Southern China
  publication-title: J Pet Geol
  doi: 10.1111/jpg.12561
– volume: 57
  start-page: 603
  year: 1985
  ident: 10.1016/j.fuel.2014.03.058_b0045
  article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity
  publication-title: Pure Appl Chem
  doi: 10.1351/pac198557040603
– volume: 54
  start-page: 375
  issue: 3
  year: 2006
  ident: 10.1016/j.fuel.2014.03.058_b0210
  article-title: The effect of heating on the surface area, porosity and surface acidity of a bentonite
  publication-title: Clays Clay Miner
  doi: 10.1346/CCMN.2006.0540308
– volume: 60
  start-page: 309
  year: 1938
  ident: 10.1016/j.fuel.2014.03.058_b0140
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J Am Chem Soc
  doi: 10.1021/ja01269a023
– volume: 41
  start-page: 507
  year: 2003
  ident: 10.1016/j.fuel.2014.03.058_b0135
  article-title: Variation of the pore structure of coal chars during gasification
  publication-title: Carbon
  doi: 10.1016/S0008-6223(02)00357-3
– volume: 56
  start-page: 66
  year: 2008
  ident: 10.1016/j.fuel.2014.03.058_b0230
  article-title: Smectite-illite-muscovite transformations, quartz dissolution, and silica release in shales
  publication-title: Clays Clay Miner
  doi: 10.1346/CCMN.2008.0560106
– volume: 74
  start-page: 1559
  issue: 10
  year: 1990
  ident: 10.1016/j.fuel.2014.03.058_b0185
  article-title: Evaluation of a simple model of vitrinite reflectance based on chemical kinetics
  publication-title: AAPG Bull
– volume: 91
  start-page: 475
  year: 2007
  ident: 10.1016/j.fuel.2014.03.058_b0275
  article-title: Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment
  publication-title: AAPG Bull
  doi: 10.1306/12190606068
– volume: 3
  start-page: 95
  year: 1971
  ident: 10.1016/j.fuel.2014.03.058_b0170
  article-title: Temperature and geologic time as factors in coalification
  publication-title: Akad Nauk SSSR Izv Ser Geol
– volume: 55
  start-page: 138
  year: 2012
  ident: 10.1016/j.fuel.2014.03.058_b0240
  article-title: Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale
  publication-title: Appl Clay Sci
  doi: 10.1016/j.clay.2011.11.007
– volume: 140
  start-page: 445
  year: 1983
  ident: 10.1016/j.fuel.2014.03.058_b0180
  article-title: Hydrocarbon generation and migration from Jurassic source rock in East Shetland basin and Viking Graben of the northern North Sea
  publication-title: J Geol Soc (London, UK)
  doi: 10.1144/gsjgs.140.3.0445
– volume: 38
  start-page: 53
  year: 2012
  ident: 10.1016/j.fuel.2014.03.058_b0250
  article-title: Geological evaluation of Halfway–Doig–Montney hybrid gas shale-tight gas reservoir, northeastern British Columbia
  publication-title: Mar Pet Geol
  doi: 10.1016/j.marpetgeo.2012.08.004
– volume: 103
  start-page: 32
  year: 2012
  ident: 10.1016/j.fuel.2014.03.058_b0105
  article-title: The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom
  publication-title: Int J Coal Geol
  doi: 10.1016/j.coal.2012.07.012
– volume: 23
  start-page: 61
  issue: 1
  year: 2000
  ident: 10.1016/j.fuel.2014.03.058_b0220
  article-title: Dehydration transformation in Ca-montmorillonite
  publication-title: Bull Mater Sci
  doi: 10.1007/BF02708614
– ident: 10.1016/j.fuel.2014.03.058_b0265
– volume: 64
  start-page: 916
  issue: 6
  year: 1980
  ident: 10.1016/j.fuel.2014.03.058_b0175
  article-title: Time and temperature in petroleum formation: application of Lopatin’s method to petroleum exploration
  publication-title: AAPG Bull
– volume: 45
  start-page: 618
  year: 1997
  ident: 10.1016/j.fuel.2014.03.058_b0225
  article-title: Frio shale mineralogy and the stoichiometry of the smectite-to-illite reaction: the most important reaction in clastic sedimentary diagenesis
  publication-title: Clays Clay Miner
  doi: 10.1346/CCMN.1997.0450502
– volume: 70
  start-page: 223
  year: 2007
  ident: 10.1016/j.fuel.2014.03.058_b0015
  article-title: The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada
  publication-title: Int J Coal Geol
  doi: 10.1016/j.coal.2006.05.001
– volume: 22
  start-page: 153
  year: 2003
  ident: 10.1016/j.fuel.2014.03.058_b0205
  article-title: The effects of exchanged cation, compression, heating and hydration on textural properties of bulk bentonite and its corresponding purified montmorillonite
  publication-title: Appl Clay Sci
  doi: 10.1016/S0169-1317(02)00146-1
– volume: 95
  start-page: 371
  year: 2012
  ident: 10.1016/j.fuel.2014.03.058_b0070
  article-title: Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.12.010
– volume: 96
  start-page: 87
  year: 2012
  ident: 10.1016/j.fuel.2014.03.058_b0095
  article-title: Estimation of kerogen porosity in source rocks as a function of thermal transformation: example from the Mowry Shale in the Powder River Basin of Wyoming
  publication-title: AAPG Bull
  doi: 10.1306/04111110201
– volume: 103
  start-page: 120
  year: 2012
  ident: 10.1016/j.fuel.2014.03.058_b0245
  article-title: Geological controls on matrix permeability of Devonian Gas Shales in the Horn River and Liard basins, Northeastern British Columbia, Canada
  publication-title: Int J Coal Geol
  doi: 10.1016/j.coal.2012.05.006
– volume: 7
  start-page: 87
  year: 2003
  ident: 10.1016/j.fuel.2014.03.058_b0255
  article-title: The diagenesis of biogenic silica: chemical transformations occurring in the water column, seabed, and crust
  publication-title: Treatise Geochem
  doi: 10.1016/B0-08-043751-6/07095-X
– volume: 56
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.fuel.2014.03.058_b0020
  article-title: Lower Cretaceous gas shales in Northeastern British Columbia, Part I: geological controls on methane sorption capacity
  publication-title: Bull Can Pet Geol
  doi: 10.2113/gscpgbull.56.1.1
– volume: 27
  start-page: 3099
  year: 2013
  ident: 10.1016/j.fuel.2014.03.058_b0055
  article-title: Methane adsorption on shale under simulated geological temperature and pressure conditions
  publication-title: Energy Fuels
  doi: 10.1021/ef400381v
– volume: 92
  start-page: 181
  year: 2008
  ident: 10.1016/j.fuel.2014.03.058_b0285
  article-title: New insights into the volume and pressure changes during the thermal cracking of oil to gas in reservoirs: implications for the in situ accumulation of gas cracked from oils
  publication-title: AAPG Bull
  doi: 10.1306/09210706140
SSID ssj0007854
Score 2.5826116
Snippet •Laboratory-matured shale samples were produced by an anhydrous pyrolysis experiment.•Low-pressure gas adsorption was used to characterize the pore structure...
Artificial shale samples with equivalent vitrinite reflectance values (VRo) ranging from 0.69% to 4.19% were obtained from an anhydrous pyrolysis experiment....
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 173
SubjectTerms Anhydrous pyrolysis
Applied sciences
Carbon dioxide
Energy
Energy. Thermal use of fuels
Equivalence
Evolution
Exact sciences and technology
Fuels
Gas shale
Nanoporosity evolution
Nanostructure
Natural gas
Porosity
Reflectivity
Shale
Thermal maturation
Title Evolution of nanoporosity in organic-rich shales during thermal maturation
URI https://dx.doi.org/10.1016/j.fuel.2014.03.058
https://www.proquest.com/docview/1551040291
https://www.proquest.com/docview/1671591348
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jvigifuL8GBV8k-rSpGn7OMbGnLgnBd9CkyY40W7YTfDFv927tJ2KsgcfmyZtuLtcfiF3vyPkHM7FTIg08TngXZ9n2sCaCyLfWmWSNExU5OgYbsdieM9HD-FDg_TqXBgMq6x8f-nTnbeuWq4qaV7NJhPM8aUCqUPgiODu8zCDnUdo5ZcfX2Ee8K-SiZkKH3tXiTNljJddGLx-oNwRnWLZ9783p81ZWoDIbFnr4pfbdnvRYJtsVSDS65bz3CENk--SjW_Ugntk1H-rjMqbWi9P8ykAbQzQevcm0OQyMLUPTvDRKx5hkyi8MmHRQ0D4Ah9_QcZPp7Z9cj_o3_WGflU3wddcBHMAzIoZFQZxRrNQaGW4zhRlQlGOcCVwjR0TWWUZTzs2AH1lWaKExahPpdgBaebT3BwSTwuqaCdN4VXMGY-VCUKtWGRikWkWJS1Ca4FJXZGKY22LZ1lHjz1JFLJEIcsOkyDkFrlYjpmVlBore4e1HuQPw5Dg81eOa_9Q2vJXsB9zAefiFjmrtShhSeE9SZqb6aKQiCLBtwUJXdFHRAAEKYjk6J8TPCbr-FQGE56Q5vx1YU4B4MxV21lwm6x1r2-G408y0fr5
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgCEEE91oRQjwQmFrh9xNoceELTaPk-t1JuJHVtd1GZXZBfUC3-KP8iM4xQq0B6QevUr8Yw98408D4A3aBdLrasyU4h3M1U7j3dOFFkI1pdVXtoipmM4PNLjE7V3mp-uwM8-FobcKpPs72R6lNapZTNRc3M2mVCML9eUOgRNhPielzwr9_3ld7Tb2q3dT8jkt0LsbB9_HGeptEDmlBZzxJRWepuLUc3rXDvrlastl9pyRRpdxMahL4INUlXDIHBLdV1aHcgx0lqJ696C2wrFBZVNeP_jt18Jbq5L_cx1Rr-XInU6p7Kw8PTewVXMrEp15v-tDe_PqhZ5FLriGn_piaj8dh7Cg4Ra2YeOMI9gxTeP4d4fuQyfwN72t3SK2TSwpmqmiOzJI-ySTbAphny6DKXuGWvPUCu1rIuQZIRAL3DxC0oxGs_JUzi5EWo-g9Vm2vg1YE5zy4dVhV0jJdXIepE7Kws_0rWTRTkA3hPMuJTFnIppnJveXe2LISIbIrIZSoNEHsC7qzmzLofH0tF5zwdz7SQaVDJL521cY9rVpxAAKI2G-ABe91w0eIfpYaZq_HTRGoKtKExFyZeM0QUiT44kef6fP_gK7oyPDw_Mwe7R_gu4Sz2dJ-M6rM6_LvxLRFdzuxFPM4PPN319fgEZmjdi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+nanoporosity+in+organic-rich+shales+during+thermal+maturation&rft.jtitle=Fuel+%28Guildford%29&rft.au=Chen%2C+Ji&rft.au=Xiao%2C+Xianming&rft.date=2014-08-01&rft.pub=Elsevier+Ltd&rft.issn=0016-2361&rft.eissn=1873-7153&rft.volume=129&rft.spage=173&rft.epage=181&rft_id=info:doi/10.1016%2Fj.fuel.2014.03.058&rft.externalDocID=S0016236114003093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon