Evolution of nanoporosity in organic-rich shales during thermal maturation
•Laboratory-matured shale samples were produced by an anhydrous pyrolysis experiment.•Low-pressure gas adsorption was used to characterize the pore structure of laboratory-matured shales.•There are substantial differences in evolution of nanoporosity between organic-rich and organic-poor samples.•Ev...
Saved in:
Published in | Fuel (Guildford) Vol. 129; pp. 173 - 181 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.08.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Laboratory-matured shale samples were produced by an anhydrous pyrolysis experiment.•Low-pressure gas adsorption was used to characterize the pore structure of laboratory-matured shales.•There are substantial differences in evolution of nanoporosity between organic-rich and organic-poor samples.•Evolution of organic matter-hosted nanopores of gas shales can be roughly divided into three stages.
Artificial shale samples with equivalent vitrinite reflectance values (VRo) ranging from 0.69% to 4.19% were obtained from an anhydrous pyrolysis experiment. Microporous and mesoporous characteristics of these samples were investigated by low-pressure nitrogen and carbon dioxide adsorption techniques. The result shows that the nanoporosity (microporosity plus mesoporosity) increases with thermal maturity after the oil window stage, and this increase is attributed to the formation of porosity within organic matter and/or mineral–organic matter groundmass, rather than in the pure clay minerals. By combining the gas generation and porosity evolution of these shales, a general model for formation and development of the nanoporosity is proposed. |
---|---|
AbstractList | •Laboratory-matured shale samples were produced by an anhydrous pyrolysis experiment.•Low-pressure gas adsorption was used to characterize the pore structure of laboratory-matured shales.•There are substantial differences in evolution of nanoporosity between organic-rich and organic-poor samples.•Evolution of organic matter-hosted nanopores of gas shales can be roughly divided into three stages.
Artificial shale samples with equivalent vitrinite reflectance values (VRo) ranging from 0.69% to 4.19% were obtained from an anhydrous pyrolysis experiment. Microporous and mesoporous characteristics of these samples were investigated by low-pressure nitrogen and carbon dioxide adsorption techniques. The result shows that the nanoporosity (microporosity plus mesoporosity) increases with thermal maturity after the oil window stage, and this increase is attributed to the formation of porosity within organic matter and/or mineral–organic matter groundmass, rather than in the pure clay minerals. By combining the gas generation and porosity evolution of these shales, a general model for formation and development of the nanoporosity is proposed. Artificial shale samples with equivalent vitrinite reflectance values (VRo) ranging from 0.69% to 4.19% were obtained from an anhydrous pyrolysis experiment. Microporous and mesoporous characteristics of these samples were investigated by low-pressure nitrogen and carbon dioxide adsorption techniques. The result shows that the nanoporosity (microporosity plus mesoporosity) increases with thermal maturity after the oil window stage, and this increase is attributed to the formation of porosity within organic matter and/or mineral-organic matter groundmass, rather than in the pure clay minerals. By combining the gas generation and porosity evolution of these shales, a general model for formation and development of the nanoporosity is proposed. |
Author | Xiao, Xianming Chen, Ji |
Author_xml | – sequence: 1 givenname: Ji surname: Chen fullname: Chen, Ji organization: State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China – sequence: 2 givenname: Xianming surname: Xiao fullname: Xiao, Xianming email: xmxiao@gig.ac.cn organization: State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28446825$$DView record in Pascal Francis |
BookMark | eNqFkUtrGzEUhUVxobabP5DVbArdzESveRiyKSFNWgzdtGshaa5sGVlyJE0g_77yo5sunNWFw3cOnHsWaOaDB4RuCW4IJt3drjETuIZiwhvMGtwOH9CcDD2re9KyGZrjQtWUdeQTWqS0wxj3Q8vn6Ofja3BTtsFXwVRe-nAIMSSb3ypbpLiR3uo6Wr2t0lY6SNU4Res3Vd5C3EtX7WWeojwGfEYfjXQJbi53if58f_z98Fyvfz39ePi2rjXvaK77XjFQLR1GMradVsD1qAjrFOGkpz09iRh6owzjEhu64mwcV6ozpRxRii3R13PuIYaXCVIWe5s0OCc9hCkJ0pXOK8L48D7atgRzTAu9RF8uqExaOhOl1zaJQ7R7Gd8EHTjvBtoWbjhzurwpRTBC23zqn6O0ThAsjouInTguIo6LCMxEWaRY6X_Wf-lXTfdnE5SXvlqIImkLXsNoI-gsxmCv2f8CwJOnWg |
CitedBy_id | crossref_primary_10_1016_j_fuel_2020_117412 crossref_primary_10_1016_j_fuel_2020_118627 crossref_primary_10_1016_j_coal_2014_12_007 crossref_primary_10_2113_2021_6646791 crossref_primary_10_1016_j_fuel_2021_121079 crossref_primary_10_1016_j_marpetgeo_2016_09_001 crossref_primary_10_1016_j_coal_2018_04_001 crossref_primary_10_1016_j_marpetgeo_2023_106328 crossref_primary_10_1007_s12517_021_06918_6 crossref_primary_10_1016_j_marpetgeo_2021_105233 crossref_primary_10_1016_j_fuel_2018_01_126 crossref_primary_10_1021_acs_energyfuels_9b03686 crossref_primary_10_1016_j_fuel_2022_123424 crossref_primary_10_1016_j_fuel_2022_123304 crossref_primary_10_1016_j_fuel_2023_130119 crossref_primary_10_1190_INT_2017_0221_1 crossref_primary_10_3390_min8060226 crossref_primary_10_1016_j_marpetgeo_2020_104667 crossref_primary_10_1155_2022_9745313 crossref_primary_10_3390_en11092297 crossref_primary_10_1016_j_clay_2021_106334 crossref_primary_10_1016_j_marpetgeo_2018_09_009 crossref_primary_10_1016_j_marpetgeo_2020_104662 crossref_primary_10_1016_j_jngse_2015_12_003 crossref_primary_10_1016_j_marpetgeo_2021_105114 crossref_primary_10_1016_j_petrol_2021_109071 crossref_primary_10_1038_s41598_023_35259_5 crossref_primary_10_1016_j_fuel_2018_12_108 crossref_primary_10_1016_j_ces_2018_05_016 crossref_primary_10_1016_j_energy_2023_128359 crossref_primary_10_1016_j_petrol_2020_107182 crossref_primary_10_1021_acsearthspacechem_4c00025 crossref_primary_10_1016_j_jngse_2021_104020 crossref_primary_10_1016_j_marpetgeo_2020_104314 crossref_primary_10_3389_feart_2022_889067 crossref_primary_10_1021_acsearthspacechem_0c00234 crossref_primary_10_1016_j_jngse_2020_103676 crossref_primary_10_1016_j_engeos_2020_06_005 crossref_primary_10_1016_j_jngse_2015_12_026 crossref_primary_10_3390_min8040163 crossref_primary_10_1177_0144598720912346 crossref_primary_10_1016_j_marpetgeo_2019_04_001 crossref_primary_10_1088_1755_1315_360_1_012017 crossref_primary_10_3390_min13121482 crossref_primary_10_1016_j_marpetgeo_2019_08_019 crossref_primary_10_1021_acs_iecr_3c02759 crossref_primary_10_1021_acs_energyfuels_8b04344 crossref_primary_10_1016_j_coal_2022_103939 crossref_primary_10_1016_j_earscirev_2023_104627 crossref_primary_10_1021_acs_energyfuels_8b03011 crossref_primary_10_1016_j_marpetgeo_2019_08_010 crossref_primary_10_1016_j_jngse_2018_09_012 crossref_primary_10_1016_j_jngse_2019_04_020 crossref_primary_10_3390_en15197075 crossref_primary_10_1016_j_fmre_2023_07_014 crossref_primary_10_1007_s40789_021_00431_7 crossref_primary_10_1016_j_jngse_2022_104552 crossref_primary_10_1016_j_marpetgeo_2023_106461 crossref_primary_10_1016_j_jaap_2022_105501 crossref_primary_10_1016_j_jngse_2017_07_009 crossref_primary_10_1016_j_marpetgeo_2020_104565 crossref_primary_10_1021_acs_energyfuels_3c00687 crossref_primary_10_1038_s41598_024_51960_5 crossref_primary_10_1016_j_jhydrol_2022_128799 crossref_primary_10_1016_j_coal_2020_103622 crossref_primary_10_48072_2525_7579_rog_2022_226 crossref_primary_10_1016_j_petrol_2019_01_071 crossref_primary_10_1007_s11631_018_0295_2 crossref_primary_10_1016_j_coal_2019_02_012 crossref_primary_10_3390_min14040392 crossref_primary_10_1016_j_petsci_2023_06_010 crossref_primary_10_1016_j_jnggs_2021_07_002 crossref_primary_10_1016_j_marpetgeo_2019_08_003 crossref_primary_10_1016_j_geoen_2023_212015 crossref_primary_10_1021_acs_energyfuels_9b00885 crossref_primary_10_1016_j_marpetgeo_2021_105328 crossref_primary_10_1021_acs_energyfuels_9b01730 crossref_primary_10_3390_en15030820 crossref_primary_10_3390_pr11123436 crossref_primary_10_3390_w15112017 crossref_primary_10_1016_j_coal_2018_05_015 crossref_primary_10_1016_j_petrol_2021_109643 crossref_primary_10_1016_j_coal_2025_104728 crossref_primary_10_1016_j_coal_2022_103998 crossref_primary_10_1016_j_earscirev_2024_104884 crossref_primary_10_1177_0144598717723647 crossref_primary_10_1007_s11242_018_1130_2 crossref_primary_10_1007_s12182_020_00481_7 crossref_primary_10_1016_j_fuel_2021_120744 crossref_primary_10_1021_acs_energyfuels_8b02107 crossref_primary_10_1007_s10553_024_01789_5 crossref_primary_10_1016_j_ijggc_2021_103563 crossref_primary_10_1016_j_marpetgeo_2018_05_020 crossref_primary_10_1016_j_uncres_2024_100100 crossref_primary_10_1016_j_jngse_2016_09_022 crossref_primary_10_1190_INT_2020_0245_1 crossref_primary_10_1007_s11053_022_10149_1 crossref_primary_10_1016_j_fuel_2017_08_034 crossref_primary_10_1021_acs_energyfuels_1c00526 crossref_primary_10_3390_en15051875 crossref_primary_10_1016_j_coal_2016_07_013 crossref_primary_10_1016_j_marpetgeo_2019_03_013 crossref_primary_10_1021_acsomega_2c00989 crossref_primary_10_1016_j_fuel_2018_04_137 crossref_primary_10_1016_j_petrol_2021_108460 crossref_primary_10_1016_S1876_3804_24_60508_2 crossref_primary_10_1016_j_coal_2015_05_009 crossref_primary_10_1016_j_jngse_2020_103348 crossref_primary_10_1016_j_coal_2015_05_005 crossref_primary_10_1007_s12182_018_0277_3 crossref_primary_10_1021_acs_energyfuels_3c00547 crossref_primary_10_1016_j_coal_2025_104713 crossref_primary_10_1021_acs_energyfuels_1c01631 crossref_primary_10_1021_acs_energyfuels_4c05306 crossref_primary_10_1016_j_fuel_2023_129678 crossref_primary_10_1016_j_apenergy_2024_122693 crossref_primary_10_1016_j_marpetgeo_2021_105421 crossref_primary_10_1016_j_orggeochem_2018_05_015 crossref_primary_10_1177_0144598717753166 crossref_primary_10_2343_geochemj_2_0600 crossref_primary_10_1080_08120099_2019_1588168 crossref_primary_10_1080_15567036_2020_1817186 crossref_primary_10_1016_j_energy_2023_128799 crossref_primary_10_1016_j_fuel_2015_05_061 crossref_primary_10_1016_j_orggeochem_2019_03_009 crossref_primary_10_1007_s12583_017_0732_x crossref_primary_10_1016_j_petsci_2024_10_011 crossref_primary_10_1016_S1876_3804_16_30065_9 crossref_primary_10_1002_ese3_796 crossref_primary_10_1016_j_coal_2016_03_001 crossref_primary_10_1515_geo_2020_0216 crossref_primary_10_1016_j_marpetgeo_2018_12_045 crossref_primary_10_1016_j_coal_2024_104625 crossref_primary_10_3390_min10020194 crossref_primary_10_1007_s12182_015_0057_2 crossref_primary_10_1021_acs_energyfuels_8b02805 crossref_primary_10_3390_min9070428 crossref_primary_10_3390_min12091098 crossref_primary_10_1155_2021_7947116 crossref_primary_10_1002_gj_4670 crossref_primary_10_1166_jnn_2021_18563 crossref_primary_10_1016_j_jngse_2021_104277 crossref_primary_10_1016_j_jngse_2021_104278 crossref_primary_10_1021_acs_energyfuels_9b03789 crossref_primary_10_1111_1755_6724_14419 crossref_primary_10_3390_fractalfract8100555 crossref_primary_10_1016_j_petrol_2020_107631 crossref_primary_10_1016_j_coal_2019_03_010 crossref_primary_10_1007_s12583_020_1344_4 crossref_primary_10_1007_s13202_023_01637_y crossref_primary_10_1016_j_marpetgeo_2019_104172 crossref_primary_10_1007_s12583_019_1013_7 crossref_primary_10_1016_j_petsci_2025_02_024 crossref_primary_10_1016_j_marpetgeo_2015_05_011 crossref_primary_10_1021_acs_energyfuels_0c04131 crossref_primary_10_1142_S0218348X25500215 crossref_primary_10_1190_INT_2021_0212_1 crossref_primary_10_1016_j_petsci_2021_09_032 crossref_primary_10_1016_j_marpetgeo_2018_01_013 crossref_primary_10_1016_j_marpetgeo_2018_12_026 crossref_primary_10_1016_j_marpetgeo_2018_06_035 crossref_primary_10_1016_j_coal_2019_03_009 crossref_primary_10_1016_j_jseaes_2024_106280 crossref_primary_10_1021_acs_energyfuels_3c01185 crossref_primary_10_1039_D2SE01361D crossref_primary_10_1016_j_marpetgeo_2019_03_027 crossref_primary_10_1021_acs_energyfuels_3c00752 crossref_primary_10_1093_jge_gxaa018 crossref_primary_10_3389_feart_2022_854129 crossref_primary_10_1016_j_coal_2020_103673 crossref_primary_10_1016_j_coal_2016_06_010 crossref_primary_10_1016_j_jngse_2020_103153 crossref_primary_10_1016_j_petsci_2021_01_002 crossref_primary_10_1016_j_ces_2018_12_042 crossref_primary_10_1016_j_petrol_2019_106351 crossref_primary_10_1155_2020_8872244 crossref_primary_10_1111_1755_6724_13861 crossref_primary_10_1021_acs_energyfuels_1c02077 crossref_primary_10_3390_fractalfract8110657 crossref_primary_10_3389_feart_2022_848247 crossref_primary_10_1007_s12583_018_0835_z crossref_primary_10_1016_j_marpetgeo_2016_12_015 crossref_primary_10_1016_j_marpetgeo_2019_06_023 crossref_primary_10_1016_j_jngse_2017_06_010 crossref_primary_10_1155_2023_2070913 crossref_primary_10_1016_j_marpetgeo_2024_106689 crossref_primary_10_1016_j_marpetgeo_2018_12_014 crossref_primary_10_1016_j_petsci_2022_11_001 crossref_primary_10_1016_j_petsci_2024_03_027 crossref_primary_10_1016_j_jngse_2016_01_041 crossref_primary_10_1007_s12517_023_11267_7 crossref_primary_10_1016_j_marpetgeo_2023_106150 crossref_primary_10_1021_acs_energyfuels_7b01815 crossref_primary_10_1016_j_jseaes_2023_105740 crossref_primary_10_1016_j_energy_2022_125545 crossref_primary_10_1016_j_jnggs_2015_12_001 crossref_primary_10_3390_en13061349 crossref_primary_10_1021_acs_energyfuels_0c02529 crossref_primary_10_1016_j_jngse_2018_12_011 crossref_primary_10_1016_j_petrol_2021_109464 crossref_primary_10_1016_j_marpetgeo_2020_104830 crossref_primary_10_1016_j_fuel_2017_02_035 crossref_primary_10_1016_j_fuel_2025_134532 crossref_primary_10_1016_j_fuel_2017_09_068 crossref_primary_10_1016_j_marpetgeo_2019_104145 crossref_primary_10_1021_acs_energyfuels_6b01499 crossref_primary_10_3390_en16083305 crossref_primary_10_1016_j_marpetgeo_2020_104837 crossref_primary_10_1016_j_coal_2017_08_006 crossref_primary_10_1021_acs_energyfuels_0c04189 crossref_primary_10_1111_1755_6724_13640 crossref_primary_10_1007_s11053_023_10222_3 crossref_primary_10_1016_j_coal_2021_103816 crossref_primary_10_1016_j_marpetgeo_2019_06_009 crossref_primary_10_1016_j_jngse_2016_02_056 crossref_primary_10_3390_en17092107 crossref_primary_10_1016_j_marpetgeo_2017_03_033 crossref_primary_10_1016_j_marpetgeo_2017_06_043 crossref_primary_10_1016_j_energy_2022_125433 crossref_primary_10_1080_08120099_2018_1455741 crossref_primary_10_1016_j_fuel_2017_03_080 crossref_primary_10_1016_j_coal_2022_104068 crossref_primary_10_1016_j_geoen_2022_211413 crossref_primary_10_3390_app13074295 crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_070 crossref_primary_10_1016_j_fuel_2014_07_005 crossref_primary_10_1021_acs_energyfuels_4c02454 crossref_primary_10_1021_acs_energyfuels_1c01574 crossref_primary_10_1111_1755_6724_12302_40 crossref_primary_10_1016_j_marpetgeo_2019_02_027 crossref_primary_10_1190_INT_2017_0238_1 crossref_primary_10_1016_j_petrol_2018_08_061 crossref_primary_10_1111_1755_6724_14285 crossref_primary_10_1016_j_gca_2020_01_019 crossref_primary_10_1021_acs_energyfuels_9b01453 crossref_primary_10_1016_j_micromeso_2021_110969 crossref_primary_10_1017_cmn_2024_3 crossref_primary_10_3390_en14102880 crossref_primary_10_1016_j_fuel_2017_09_060 crossref_primary_10_1016_j_petsci_2024_12_025 crossref_primary_10_1016_j_coal_2017_01_011 crossref_primary_10_1016_j_petrol_2019_106671 crossref_primary_10_1016_j_marpetgeo_2025_107298 crossref_primary_10_1021_acs_energyfuels_6b01475 crossref_primary_10_1177_01445987211001675 crossref_primary_10_1016_j_coal_2020_103515 crossref_primary_10_1016_j_earscirev_2017_06_010 crossref_primary_10_1016_j_jngse_2018_11_001 crossref_primary_10_1016_j_fmre_2024_01_015 crossref_primary_10_1016_j_fuel_2022_127149 crossref_primary_10_1016_j_fuel_2015_06_022 crossref_primary_10_1016_j_petrol_2021_108502 crossref_primary_10_1016_j_energy_2023_128844 crossref_primary_10_1016_j_petsci_2021_12_010 crossref_primary_10_1002_aic_14791 crossref_primary_10_1016_j_marpetgeo_2021_105272 crossref_primary_10_1016_j_fuel_2022_125649 crossref_primary_10_1016_j_marpetgeo_2020_104622 crossref_primary_10_1016_j_marpetgeo_2018_10_045 crossref_primary_10_1016_j_marpetgeo_2023_106125 crossref_primary_10_1016_j_fuel_2016_07_100 crossref_primary_10_1021_acs_energyfuels_8b01405 crossref_primary_10_3390_su13147668 crossref_primary_10_1007_s10553_023_01549_x crossref_primary_10_1016_j_fuel_2018_12_035 crossref_primary_10_1002_ese3_1580 crossref_primary_10_3390_en14227603 crossref_primary_10_3390_min13101340 crossref_primary_10_1016_j_petrol_2022_110543 crossref_primary_10_1016_j_colsurfa_2024_134282 crossref_primary_10_1177_0144598716656064 crossref_primary_10_3389_feart_2021_735647 crossref_primary_10_1021_acs_energyfuels_1c00811 crossref_primary_10_1016_j_petrol_2020_108230 crossref_primary_10_1038_s41598_018_25104_5 crossref_primary_10_1021_acs_energyfuels_5b00033 crossref_primary_10_3390_min14020182 crossref_primary_10_1016_j_marpetgeo_2015_07_027 crossref_primary_10_1021_acsomega_0c01432 crossref_primary_10_3390_en15228696 crossref_primary_10_1016_j_fuel_2020_117316 crossref_primary_10_1016_j_marpetgeo_2019_104101 crossref_primary_10_1016_j_petrol_2018_09_078 crossref_primary_10_1016_j_fuel_2017_05_046 crossref_primary_10_2113_2022_6290684 crossref_primary_10_3389_feart_2022_884518 crossref_primary_10_1007_s00603_019_01820_w crossref_primary_10_1080_10916466_2024_2424469 crossref_primary_10_1021_acs_energyfuels_7b01787 crossref_primary_10_1177_0144598718810256 crossref_primary_10_3390_en12081480 crossref_primary_10_1016_j_apenergy_2022_120051 crossref_primary_10_1016_j_coal_2019_103231 crossref_primary_10_1007_s12517_017_3337_x crossref_primary_10_1016_j_marpetgeo_2018_08_014 crossref_primary_10_3390_en11040755 crossref_primary_10_3390_fractalfract8060335 crossref_primary_10_3390_min15040336 crossref_primary_10_1016_j_jnggs_2020_09_003 crossref_primary_10_1016_j_jnggs_2023_09_001 crossref_primary_10_1016_j_orggeochem_2017_01_004 crossref_primary_10_1016_j_coal_2019_103236 crossref_primary_10_1016_j_marpetgeo_2021_104962 crossref_primary_10_1002_er_5114 crossref_primary_10_1016_j_coal_2019_103233 crossref_primary_10_1021_acs_energyfuels_3c02320 crossref_primary_10_3390_min13091220 crossref_primary_10_1016_j_petsci_2023_05_012 crossref_primary_10_1016_j_marpetgeo_2016_11_025 crossref_primary_10_1016_j_fuel_2023_130161 crossref_primary_10_1016_j_petsci_2022_03_005 crossref_primary_10_1016_j_jnggs_2016_07_001 crossref_primary_10_1016_j_marpetgeo_2020_104527 crossref_primary_10_1016_j_jngse_2018_05_002 crossref_primary_10_1016_j_jnggs_2016_07_004 crossref_primary_10_1016_j_coal_2018_10_005 crossref_primary_10_1190_INT_2019_0219_1 crossref_primary_10_1021_acs_energyfuels_4c02778 crossref_primary_10_3390_en15238805 crossref_primary_10_1016_j_petsci_2024_02_008 crossref_primary_10_1111_1755_6724_13030 crossref_primary_10_1155_2021_5582262 crossref_primary_10_1016_j_petrol_2017_06_011 crossref_primary_10_1016_j_marpetgeo_2017_12_008 crossref_primary_10_1021_acs_energyfuels_9b00442 crossref_primary_10_1016_j_marpetgeo_2017_06_012 crossref_primary_10_1021_acs_energyfuels_3c04059 crossref_primary_10_1016_j_marpetgeo_2019_05_014 crossref_primary_10_1016_j_coal_2016_05_013 crossref_primary_10_1016_j_marpetgeo_2021_105368 crossref_primary_10_1007_s12517_023_11638_0 |
Cites_doi | 10.1016/j.marpetgeo.2008.06.004 10.2138/am.2011.3813 10.1016/j.orggeochem.2013.06.003 10.1180/claymin.1993.028.1.06 10.1306/04011312194 10.1016/j.marpetgeo.2013.07.008 10.1016/j.fuel.2012.06.119 10.1016/j.marpetgeo.2012.09.001 10.1130/G33639.1 10.2110/jsr.2009.092 10.1180/002646198548034 10.1016/S0146-6380(03)00173-6 10.1016/S0146-6380(98)00040-0 10.1306/07231212048 10.1046/j.1365-2117.2003.00210.x 10.1306/10240808059 10.1306/10171111052 10.1016/j.coal.2013.01.001 10.1016/S1387-1811(03)00339-1 10.1021/ja01145a126 10.1007/BF01137914 10.2113/gscpgbull.55.1.51 10.1306/09040707048 10.1306/08171111061 10.1016/j.coal.2012.08.004 10.3997/2214-4609.20130110 10.1016/j.clay.2013.07.017 10.1016/j.coal.2012.04.010 10.1016/0021-9797(80)90346-X 10.1021/ef300735t 10.1111/jpg.12561 10.1351/pac198557040603 10.1346/CCMN.2006.0540308 10.1021/ja01269a023 10.1016/S0008-6223(02)00357-3 10.1346/CCMN.2008.0560106 10.1306/12190606068 10.1016/j.clay.2011.11.007 10.1144/gsjgs.140.3.0445 10.1016/j.marpetgeo.2012.08.004 10.1016/j.coal.2012.07.012 10.1007/BF02708614 10.1346/CCMN.1997.0450502 10.1016/j.coal.2006.05.001 10.1016/S0169-1317(02)00146-1 10.1016/j.fuel.2011.12.010 10.1306/04111110201 10.1016/j.coal.2012.05.006 10.1016/B0-08-043751-6/07095-X 10.2113/gscpgbull.56.1.1 10.1021/ef400381v 10.1306/09210706140 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1016/j.fuel.2014.03.058 |
DatabaseName | CrossRef Pascal-Francis Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-7153 |
EndPage | 181 |
ExternalDocumentID | 28446825 10_1016_j_fuel_2014_03_058 S0016236114003093 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ WH7 ZMT ~02 ~G- 29H 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABEFU ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SCB SEW SSH VH1 WUQ XPP ZY4 ABTAH IQODW 7TB 8FD EFKBS F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c462t-77b3eb528d1d56cbe4cdb136b1417272d56cb0e7fbf34a0f2943dd9b6f0141bb3 |
IEDL.DBID | .~1 |
ISSN | 0016-2361 |
IngestDate | Tue Aug 05 10:42:47 EDT 2025 Thu Aug 07 15:24:17 EDT 2025 Wed Apr 02 07:21:53 EDT 2025 Tue Jul 01 00:43:45 EDT 2025 Thu Apr 24 23:10:36 EDT 2025 Fri Feb 23 02:18:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Anhydrous pyrolysis Thermal maturation Nanoporosity evolution Gas shale Pyrolysis Shale |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-77b3eb528d1d56cbe4cdb136b1417272d56cb0e7fbf34a0f2943dd9b6f0141bb3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1551040291 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1671591348 proquest_miscellaneous_1551040291 pascalfrancis_primary_28446825 crossref_citationtrail_10_1016_j_fuel_2014_03_058 crossref_primary_10_1016_j_fuel_2014_03_058 elsevier_sciencedirect_doi_10_1016_j_fuel_2014_03_058 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Fuel (Guildford) |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Jarvie, Hill, Ruble, Pollastro (b0275) 2007; 91 Zhou, Xiao, Tian, Wilkins (b0120) 2013; 36 Bernard, Wirth, Schreiber, Schulz, Horsfield (b0200) 2012; 103 DeMaster (b0255) 2003; 7 Blood R, Lash G, Bridges L. Biogenic silica in the Devonian Shale Succession of the Appalachian Basin, USA. In: AAPG search and discovery article 50864 presented at AAPG 2013 annual convention and exhibition, Pittsburgh, Pennsylvania; May 19–22, 2013. Nelson (b0040) 2009; 93 Brunauer, Emmett, Teller (b0140) 1938; 60 Barrett, Joyner, Halenda (b0145) 1951; 73 Feng, Bhatia (b0135) 2003; 41 Fishman, Hackley, Lowers, Hill, Egenhoff, Eberl (b0105) 2012; 103 Bray, Redfern, Clark (b0215) 1998; 62 Hill, Tang, Kaplan (b0280) 2003; 34 Dubinin, Stoeckli (b0155) 1980; 75 Ross, Bustin (b0005) 2007; 55 Ross, Bustin (b0010) 2008; 92 Sweeney, Burnham (b0185) 1990; 74 Clarkson, Solano, Bustin, Bustin, Chalmers, He (b0075) 2013; 103 Cheng, Tian, Huang, Wilkins, Xiao (b0125) 2013; 61 Bala, Samantaray, Srivastava (b0220) 2000; 23 Carroll (b0115) 1998; 28 Groen, Peffer, Perez-Ramirez (b0130) 2003; 60 Waples (b0175) 1980; 64 Prinz, Littke (b0195) 2005; 84 Chalmers, Ross, Bustin (b0245) 2012; 103 Loucks, Reed, Ruppel, Jarvie (b0030) 2009; 79 Chalmers, Bustin (b0020) 2008; 56 Chalmers, Bustin (b0250) 2012; 38 Volpi, Camerlenghi, Hillenbrand, Rebesco, Ivaldi (b0260) 2003; 15 Schmitt, Fernandes, da Cunha Neto, Wolf, dos Santos (b0080) 2013; 39 Ross, Bustin (b0050) 2009; 26 Lopatin (b0170) 1971; 3 Mathia E, Rexer T, Bowen L, Aplin A. Evolution of porosity and pore systems in organic-rich Posidonia and Wealden Shales. In: 75th EAGE conference & exhibition incorporating SPE EUROPEC 2013, London, UK; June 10–13, 2013. Gasparini, Tarantino, Ghigna, Riccardi, Cedillo-González, Siligardi (b0160) 2013; 80–81 Rodriguez-Navarro, Kudlacz, Ruiz-Agudo (b0165) 2012; 97 Loucks, Reed, Ruppel, Hammes (b0035) 2012; 96 Ghosal, Smith (b0150) 1996; 3 Goff (b0180) 1983; 140 Noyan, Onal, Sarikaya (b0210) 2006; 54 Sing, Everett, Haul, Moscou, Pierotti, Rouquerol (b0045) 1985; 57 Metwally, Chesnokov (b0240) 2012; 55 Curtis, Cardott, Sondergeld, Rai (b0100) 2012; 103 Chalmers, Bustin (b0015) 2007; 70 Valenza, Drenzek, Marques, Pagels, Mastalerz (b0090) 2013; 41 Milliken, Rudnicki, Awwiller, Zhang (b0270) 2013; 97 Van de Kamp (b0230) 2008; 56 Mastalerz, Schimmelmann, Drobniak, Chen (b0110) 2013; 97 Tian, Xiao, Wilkins, Tang (b0285) 2008; 92 Neaman, Pelletier, Villieras (b0205) 2003; 22 Rexer, Benham, Aplin, Thomas (b0055) 2013; 27 Chalmers, Bustin, Power (b0025) 2012; 96 Clarkson, Freeman, He, Agamalian, Melnichenko, Mastalerz (b0070) 2012; 95 Tian, Pan, Xiao, Wilkins, Meng, Huang (b0085) 2013; 48 Mastalerz, He, Melnichenko, Rupp (b0065) 2012; 26 Eberl, Velde, McCormick (b0235) 1993; 28 Mosher, He, Liu, Rupp, Wilcox (b0060) 2013; 109 Modica, Lapierre (b0095) 2012; 96 Lynch (b0225) 1997; 45 Noyan (10.1016/j.fuel.2014.03.058_b0210) 2006; 54 Eberl (10.1016/j.fuel.2014.03.058_b0235) 1993; 28 Gasparini (10.1016/j.fuel.2014.03.058_b0160) 2013; 80–81 10.1016/j.fuel.2014.03.058_b0265 Tian (10.1016/j.fuel.2014.03.058_b0285) 2008; 92 Clarkson (10.1016/j.fuel.2014.03.058_b0070) 2012; 95 Bray (10.1016/j.fuel.2014.03.058_b0215) 1998; 62 Chalmers (10.1016/j.fuel.2014.03.058_b0025) 2012; 96 Curtis (10.1016/j.fuel.2014.03.058_b0100) 2012; 103 Groen (10.1016/j.fuel.2014.03.058_b0130) 2003; 60 Dubinin (10.1016/j.fuel.2014.03.058_b0155) 1980; 75 Zhou (10.1016/j.fuel.2014.03.058_b0120) 2013; 36 Ross (10.1016/j.fuel.2014.03.058_b0010) 2008; 92 Bernard (10.1016/j.fuel.2014.03.058_b0200) 2012; 103 Ross (10.1016/j.fuel.2014.03.058_b0050) 2009; 26 Milliken (10.1016/j.fuel.2014.03.058_b0270) 2013; 97 Nelson (10.1016/j.fuel.2014.03.058_b0040) 2009; 93 Waples (10.1016/j.fuel.2014.03.058_b0175) 1980; 64 10.1016/j.fuel.2014.03.058_b0190 Rexer (10.1016/j.fuel.2014.03.058_b0055) 2013; 27 Brunauer (10.1016/j.fuel.2014.03.058_b0140) 1938; 60 Tian (10.1016/j.fuel.2014.03.058_b0085) 2013; 48 Carroll (10.1016/j.fuel.2014.03.058_b0115) 1998; 28 Chalmers (10.1016/j.fuel.2014.03.058_b0015) 2007; 70 Ghosal (10.1016/j.fuel.2014.03.058_b0150) 1996; 3 DeMaster (10.1016/j.fuel.2014.03.058_b0255) 2003; 7 Loucks (10.1016/j.fuel.2014.03.058_b0030) 2009; 79 Metwally (10.1016/j.fuel.2014.03.058_b0240) 2012; 55 Ross (10.1016/j.fuel.2014.03.058_b0005) 2007; 55 Sing (10.1016/j.fuel.2014.03.058_b0045) 1985; 57 Mosher (10.1016/j.fuel.2014.03.058_b0060) 2013; 109 Loucks (10.1016/j.fuel.2014.03.058_b0035) 2012; 96 Bala (10.1016/j.fuel.2014.03.058_b0220) 2000; 23 Hill (10.1016/j.fuel.2014.03.058_b0280) 2003; 34 Cheng (10.1016/j.fuel.2014.03.058_b0125) 2013; 61 Modica (10.1016/j.fuel.2014.03.058_b0095) 2012; 96 Jarvie (10.1016/j.fuel.2014.03.058_b0275) 2007; 91 Mastalerz (10.1016/j.fuel.2014.03.058_b0110) 2013; 97 Lopatin (10.1016/j.fuel.2014.03.058_b0170) 1971; 3 Volpi (10.1016/j.fuel.2014.03.058_b0260) 2003; 15 Mastalerz (10.1016/j.fuel.2014.03.058_b0065) 2012; 26 Feng (10.1016/j.fuel.2014.03.058_b0135) 2003; 41 Barrett (10.1016/j.fuel.2014.03.058_b0145) 1951; 73 Van de Kamp (10.1016/j.fuel.2014.03.058_b0230) 2008; 56 Chalmers (10.1016/j.fuel.2014.03.058_b0250) 2012; 38 Lynch (10.1016/j.fuel.2014.03.058_b0225) 1997; 45 Rodriguez-Navarro (10.1016/j.fuel.2014.03.058_b0165) 2012; 97 Valenza (10.1016/j.fuel.2014.03.058_b0090) 2013; 41 Chalmers (10.1016/j.fuel.2014.03.058_b0245) 2012; 103 Chalmers (10.1016/j.fuel.2014.03.058_b0020) 2008; 56 Sweeney (10.1016/j.fuel.2014.03.058_b0185) 1990; 74 Neaman (10.1016/j.fuel.2014.03.058_b0205) 2003; 22 Clarkson (10.1016/j.fuel.2014.03.058_b0075) 2013; 103 Fishman (10.1016/j.fuel.2014.03.058_b0105) 2012; 103 Schmitt (10.1016/j.fuel.2014.03.058_b0080) 2013; 39 Goff (10.1016/j.fuel.2014.03.058_b0180) 1983; 140 Prinz (10.1016/j.fuel.2014.03.058_b0195) 2005; 84 |
References_xml | – volume: 103 start-page: 32 year: 2012 end-page: 50 ident: b0105 article-title: The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom publication-title: Int J Coal Geol – volume: 7 start-page: 87 year: 2003 end-page: 98 ident: b0255 article-title: The diagenesis of biogenic silica: chemical transformations occurring in the water column, seabed, and crust publication-title: Treatise Geochem – volume: 140 start-page: 445 year: 1983 end-page: 474 ident: b0180 article-title: Hydrocarbon generation and migration from Jurassic source rock in East Shetland basin and Viking Graben of the northern North Sea publication-title: J Geol Soc (London, UK) – volume: 45 start-page: 618 year: 1997 end-page: 631 ident: b0225 article-title: Frio shale mineralogy and the stoichiometry of the smectite-to-illite reaction: the most important reaction in clastic sedimentary diagenesis publication-title: Clays Clay Miner – volume: 39 start-page: 138 year: 2013 end-page: 149 ident: b0080 article-title: Characterization of pore systems in seal rocks using nitrogen gas adsorption combined with mercury injection capillary pressure techniques publication-title: Mar Pet Geol – volume: 60 start-page: 309 year: 1938 end-page: 319 ident: b0140 article-title: Adsorption of gases in multimolecular layers publication-title: J Am Chem Soc – volume: 62 start-page: 647 year: 1998 end-page: 656 ident: b0215 article-title: The kinetics of dehydration in Ca-montmorillonite: an in situ X-ray diffraction study publication-title: Mineral Mag – volume: 96 start-page: 1071 year: 2012 end-page: 1098 ident: b0035 article-title: Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores publication-title: AAPG Bull – volume: 22 start-page: 153 year: 2003 end-page: 168 ident: b0205 article-title: The effects of exchanged cation, compression, heating and hydration on textural properties of bulk bentonite and its corresponding purified montmorillonite publication-title: Appl Clay Sci – volume: 109 start-page: 36 year: 2013 end-page: 44 ident: b0060 article-title: Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems publication-title: Int J Coal Geol – volume: 103 start-page: 26 year: 2012 end-page: 31 ident: b0100 article-title: Development of organic porosity in the Woodford Shale with increasing thermal maturity publication-title: Int J Coal Geol – volume: 97 start-page: 177 year: 2013 end-page: 200 ident: b0270 article-title: Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania publication-title: AAPG Bull – volume: 70 start-page: 223 year: 2007 end-page: 239 ident: b0015 article-title: The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada publication-title: Int J Coal Geol – reference: Blood R, Lash G, Bridges L. Biogenic silica in the Devonian Shale Succession of the Appalachian Basin, USA. In: AAPG search and discovery article 50864 presented at AAPG 2013 annual convention and exhibition, Pittsburgh, Pennsylvania; May 19–22, 2013. – volume: 56 start-page: 66 year: 2008 end-page: 81 ident: b0230 article-title: Smectite-illite-muscovite transformations, quartz dissolution, and silica release in shales publication-title: Clays Clay Miner – volume: 96 start-page: 1099 year: 2012 end-page: 1119 ident: b0025 article-title: Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units publication-title: AAPG Bull – volume: 103 start-page: 606 year: 2013 end-page: 616 ident: b0075 article-title: Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion publication-title: Fuel – volume: 91 start-page: 475 year: 2007 end-page: 499 ident: b0275 article-title: Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment publication-title: AAPG Bull – volume: 97 start-page: 38 year: 2012 end-page: 51 ident: b0165 article-title: The mechanism of thermal decomposition of dolomite: new insights from 2D-XRD and TEM analyses publication-title: Am Miner – volume: 103 start-page: 120 year: 2012 end-page: 131 ident: b0245 article-title: Geological controls on matrix permeability of Devonian Gas Shales in the Horn River and Liard basins, Northeastern British Columbia, Canada publication-title: Int J Coal Geol – volume: 54 start-page: 375 year: 2006 end-page: 381 ident: b0210 article-title: The effect of heating on the surface area, porosity and surface acidity of a bentonite publication-title: Clays Clay Miner – volume: 41 start-page: 507 year: 2003 end-page: 523 ident: b0135 article-title: Variation of the pore structure of coal chars during gasification publication-title: Carbon – volume: 48 start-page: 8 year: 2013 end-page: 19 ident: b0085 article-title: A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N publication-title: Mar Pet Geol – volume: 79 start-page: 848 year: 2009 end-page: 861 ident: b0030 article-title: Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale publication-title: J Sediment Res – volume: 27 start-page: 3099 year: 2013 end-page: 3109 ident: b0055 article-title: Methane adsorption on shale under simulated geological temperature and pressure conditions publication-title: Energy Fuels – volume: 95 start-page: 371 year: 2012 end-page: 385 ident: b0070 article-title: Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis publication-title: Fuel – volume: 61 start-page: 15 year: 2013 end-page: 26 ident: b0125 article-title: Tracing early-charged oils and exploration directions for the Wenchang A sag, western Pearl River Mouth Basin, offshore South China Sea publication-title: Org Geochem – volume: 28 start-page: 649 year: 1998 end-page: 667 ident: b0115 article-title: Upper Permian lacustrine organic facies evolution, Southern Junggar Basin, NW China publication-title: Org Geochem – volume: 93 start-page: 329 year: 2009 end-page: 340 ident: b0040 article-title: Pore-throat sizes in sandstones, tight sandstones, and shales publication-title: AAPG Bull – volume: 75 start-page: 34 year: 1980 end-page: 42 ident: b0155 article-title: Homogeneous and heterogeneous micropore structures in carbonaceous adsorbents publication-title: J Colloid Interface Sci – volume: 73 start-page: 373 year: 1951 end-page: 380 ident: b0145 article-title: The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms publication-title: J Am Chem Soc – volume: 41 start-page: 611 year: 2013 end-page: 614 ident: b0090 article-title: Geochemical controls on shale microstructure publication-title: Geology – volume: 74 start-page: 1559 year: 1990 end-page: 1570 ident: b0185 article-title: Evaluation of a simple model of vitrinite reflectance based on chemical kinetics publication-title: AAPG Bull – volume: 15 start-page: 339 year: 2003 end-page: 363 ident: b0260 article-title: Effects of biogenic silica on sediment compaction and slope stability on the Pacific margin of the Antarctic Peninsula publication-title: Basin Res – volume: 56 start-page: 1 year: 2008 end-page: 21 ident: b0020 article-title: Lower Cretaceous gas shales in Northeastern British Columbia, Part I: geological controls on methane sorption capacity publication-title: Bull Can Pet Geol – volume: 103 start-page: 3 year: 2012 end-page: 11 ident: b0200 article-title: Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin) publication-title: Int J Coal Geol – volume: 3 start-page: 247 year: 1996 end-page: 255 ident: b0150 article-title: Micropore characterization using the Dubinin–Astakhov equation to analyze high pressure CO publication-title: J Porous Mater – volume: 55 start-page: 51 year: 2007 end-page: 75 ident: b0005 article-title: Shale gas potential of the Lower Jurassic Gordondale member, Northeastern British Columbia, Canada publication-title: Bull Can Pet Geol – volume: 97 start-page: 1621 year: 2013 end-page: 1643 ident: b0110 article-title: Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: insights from organic petrology, gas adsorption, and mercury intrusion publication-title: AAPG Bull – reference: Mathia E, Rexer T, Bowen L, Aplin A. Evolution of porosity and pore systems in organic-rich Posidonia and Wealden Shales. In: 75th EAGE conference & exhibition incorporating SPE EUROPEC 2013, London, UK; June 10–13, 2013. – volume: 84 start-page: 1645 year: 2005 end-page: 1652 ident: b0195 article-title: Development of the micro- and ultramicroporous structure of coals with rank as deduced from the accessibility to water publication-title: Fuel – volume: 26 start-page: 916 year: 2009 end-page: 927 ident: b0050 article-title: The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs publication-title: Mar Pet Geol – volume: 26 start-page: 5109 year: 2012 end-page: 5120 ident: b0065 article-title: Porosity of coal and shale: Insights from gas adsorption and SANS/USANS techniques publication-title: Energy Fuels – volume: 92 start-page: 87 year: 2008 end-page: 125 ident: b0010 article-title: Characterizing the shale gas resource potential of Devonian–Mississippian strata in the Western Canada sedimentary basin: application of an integrated formation evaluation publication-title: AAPG Bull – volume: 64 start-page: 916 year: 1980 end-page: 926 ident: b0175 article-title: Time and temperature in petroleum formation: application of Lopatin’s method to petroleum exploration publication-title: AAPG Bull – volume: 38 start-page: 53 year: 2012 end-page: 72 ident: b0250 article-title: Geological evaluation of Halfway–Doig–Montney hybrid gas shale-tight gas reservoir, northeastern British Columbia publication-title: Mar Pet Geol – volume: 80–81 start-page: 417 year: 2013 end-page: 425 ident: b0160 article-title: Thermal dehydroxylation of kaolinite under isothermal conditions publication-title: Appl Clay Sci – volume: 34 start-page: 1651 year: 2003 end-page: 1672 ident: b0280 article-title: Insights into oil cracking based on laboratory experiments publication-title: Org Geochem – volume: 57 start-page: 603 year: 1985 end-page: 619 ident: b0045 article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity publication-title: Pure Appl Chem – volume: 36 start-page: 363 year: 2013 end-page: 382 ident: b0120 article-title: Oil charge history of bitumens of differing maturities in exhumed Palaeozoic reservoir rocks at Tianjingshan, NW Sichuan Basin, Southern China publication-title: J Pet Geol – volume: 96 start-page: 87 year: 2012 end-page: 108 ident: b0095 article-title: Estimation of kerogen porosity in source rocks as a function of thermal transformation: example from the Mowry Shale in the Powder River Basin of Wyoming publication-title: AAPG Bull – volume: 23 start-page: 61 year: 2000 end-page: 67 ident: b0220 article-title: Dehydration transformation in Ca-montmorillonite publication-title: Bull Mater Sci – volume: 60 start-page: 1 year: 2003 end-page: 17 ident: b0130 article-title: Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis publication-title: Microporous Mesoporous Mater – volume: 55 start-page: 138 year: 2012 end-page: 150 ident: b0240 article-title: Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale publication-title: Appl Clay Sci – volume: 28 start-page: 49 year: 1993 end-page: 60 ident: b0235 article-title: Synthesis of illite–smectite from smectite at earth surface temperature and high pH publication-title: Clay Miner – volume: 92 start-page: 181 year: 2008 end-page: 200 ident: b0285 article-title: New insights into the volume and pressure changes during the thermal cracking of oil to gas in reservoirs: implications for the in situ accumulation of gas cracked from oils publication-title: AAPG Bull – volume: 3 start-page: 95 year: 1971 end-page: 106 ident: b0170 article-title: Temperature and geologic time as factors in coalification publication-title: Akad Nauk SSSR Izv Ser Geol – volume: 26 start-page: 916 year: 2009 ident: 10.1016/j.fuel.2014.03.058_b0050 article-title: The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs publication-title: Mar Pet Geol doi: 10.1016/j.marpetgeo.2008.06.004 – volume: 97 start-page: 38 year: 2012 ident: 10.1016/j.fuel.2014.03.058_b0165 article-title: The mechanism of thermal decomposition of dolomite: new insights from 2D-XRD and TEM analyses publication-title: Am Miner doi: 10.2138/am.2011.3813 – volume: 61 start-page: 15 year: 2013 ident: 10.1016/j.fuel.2014.03.058_b0125 article-title: Tracing early-charged oils and exploration directions for the Wenchang A sag, western Pearl River Mouth Basin, offshore South China Sea publication-title: Org Geochem doi: 10.1016/j.orggeochem.2013.06.003 – volume: 28 start-page: 49 year: 1993 ident: 10.1016/j.fuel.2014.03.058_b0235 article-title: Synthesis of illite–smectite from smectite at earth surface temperature and high pH publication-title: Clay Miner doi: 10.1180/claymin.1993.028.1.06 – volume: 97 start-page: 1621 year: 2013 ident: 10.1016/j.fuel.2014.03.058_b0110 article-title: Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: insights from organic petrology, gas adsorption, and mercury intrusion publication-title: AAPG Bull doi: 10.1306/04011312194 – volume: 48 start-page: 8 year: 2013 ident: 10.1016/j.fuel.2014.03.058_b0085 article-title: A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE–SEM methods publication-title: Mar Pet Geol doi: 10.1016/j.marpetgeo.2013.07.008 – volume: 103 start-page: 606 year: 2013 ident: 10.1016/j.fuel.2014.03.058_b0075 article-title: Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion publication-title: Fuel doi: 10.1016/j.fuel.2012.06.119 – volume: 39 start-page: 138 year: 2013 ident: 10.1016/j.fuel.2014.03.058_b0080 article-title: Characterization of pore systems in seal rocks using nitrogen gas adsorption combined with mercury injection capillary pressure techniques publication-title: Mar Pet Geol doi: 10.1016/j.marpetgeo.2012.09.001 – volume: 41 start-page: 611 year: 2013 ident: 10.1016/j.fuel.2014.03.058_b0090 article-title: Geochemical controls on shale microstructure publication-title: Geology doi: 10.1130/G33639.1 – volume: 79 start-page: 848 year: 2009 ident: 10.1016/j.fuel.2014.03.058_b0030 article-title: Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale publication-title: J Sediment Res doi: 10.2110/jsr.2009.092 – volume: 62 start-page: 647 issue: 5 year: 1998 ident: 10.1016/j.fuel.2014.03.058_b0215 article-title: The kinetics of dehydration in Ca-montmorillonite: an in situ X-ray diffraction study publication-title: Mineral Mag doi: 10.1180/002646198548034 – volume: 34 start-page: 1651 year: 2003 ident: 10.1016/j.fuel.2014.03.058_b0280 article-title: Insights into oil cracking based on laboratory experiments publication-title: Org Geochem doi: 10.1016/S0146-6380(03)00173-6 – volume: 28 start-page: 649 issue: 11 year: 1998 ident: 10.1016/j.fuel.2014.03.058_b0115 article-title: Upper Permian lacustrine organic facies evolution, Southern Junggar Basin, NW China publication-title: Org Geochem doi: 10.1016/S0146-6380(98)00040-0 – volume: 84 start-page: 1645 year: 2005 ident: 10.1016/j.fuel.2014.03.058_b0195 article-title: Development of the micro- and ultramicroporous structure of coals with rank as deduced from the accessibility to water publication-title: Fuel – volume: 97 start-page: 177 year: 2013 ident: 10.1016/j.fuel.2014.03.058_b0270 article-title: Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania publication-title: AAPG Bull doi: 10.1306/07231212048 – volume: 15 start-page: 339 year: 2003 ident: 10.1016/j.fuel.2014.03.058_b0260 article-title: Effects of biogenic silica on sediment compaction and slope stability on the Pacific margin of the Antarctic Peninsula publication-title: Basin Res doi: 10.1046/j.1365-2117.2003.00210.x – volume: 93 start-page: 329 year: 2009 ident: 10.1016/j.fuel.2014.03.058_b0040 article-title: Pore-throat sizes in sandstones, tight sandstones, and shales publication-title: AAPG Bull doi: 10.1306/10240808059 – volume: 96 start-page: 1099 issue: 6 year: 2012 ident: 10.1016/j.fuel.2014.03.058_b0025 publication-title: AAPG Bull doi: 10.1306/10171111052 – volume: 109 start-page: 36 year: 2013 ident: 10.1016/j.fuel.2014.03.058_b0060 article-title: Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems publication-title: Int J Coal Geol doi: 10.1016/j.coal.2013.01.001 – volume: 60 start-page: 1 year: 2003 ident: 10.1016/j.fuel.2014.03.058_b0130 article-title: Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis publication-title: Microporous Mesoporous Mater doi: 10.1016/S1387-1811(03)00339-1 – volume: 73 start-page: 373 issue: 1 year: 1951 ident: 10.1016/j.fuel.2014.03.058_b0145 article-title: The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms publication-title: J Am Chem Soc doi: 10.1021/ja01145a126 – volume: 3 start-page: 247 year: 1996 ident: 10.1016/j.fuel.2014.03.058_b0150 article-title: Micropore characterization using the Dubinin–Astakhov equation to analyze high pressure CO2 (273K) adsorption data publication-title: J Porous Mater doi: 10.1007/BF01137914 – volume: 55 start-page: 51 year: 2007 ident: 10.1016/j.fuel.2014.03.058_b0005 article-title: Shale gas potential of the Lower Jurassic Gordondale member, Northeastern British Columbia, Canada publication-title: Bull Can Pet Geol doi: 10.2113/gscpgbull.55.1.51 – volume: 92 start-page: 87 issue: 1 year: 2008 ident: 10.1016/j.fuel.2014.03.058_b0010 article-title: Characterizing the shale gas resource potential of Devonian–Mississippian strata in the Western Canada sedimentary basin: application of an integrated formation evaluation publication-title: AAPG Bull doi: 10.1306/09040707048 – volume: 96 start-page: 1071 year: 2012 ident: 10.1016/j.fuel.2014.03.058_b0035 article-title: Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores publication-title: AAPG Bull doi: 10.1306/08171111061 – volume: 103 start-page: 26 year: 2012 ident: 10.1016/j.fuel.2014.03.058_b0100 article-title: Development of organic porosity in the Woodford Shale with increasing thermal maturity publication-title: Int J Coal Geol doi: 10.1016/j.coal.2012.08.004 – ident: 10.1016/j.fuel.2014.03.058_b0190 doi: 10.3997/2214-4609.20130110 – volume: 80–81 start-page: 417 year: 2013 ident: 10.1016/j.fuel.2014.03.058_b0160 article-title: Thermal dehydroxylation of kaolinite under isothermal conditions publication-title: Appl Clay Sci doi: 10.1016/j.clay.2013.07.017 – volume: 103 start-page: 3 year: 2012 ident: 10.1016/j.fuel.2014.03.058_b0200 article-title: Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin) publication-title: Int J Coal Geol doi: 10.1016/j.coal.2012.04.010 – volume: 75 start-page: 34 issue: 1 year: 1980 ident: 10.1016/j.fuel.2014.03.058_b0155 article-title: Homogeneous and heterogeneous micropore structures in carbonaceous adsorbents publication-title: J Colloid Interface Sci doi: 10.1016/0021-9797(80)90346-X – volume: 26 start-page: 5109 year: 2012 ident: 10.1016/j.fuel.2014.03.058_b0065 article-title: Porosity of coal and shale: Insights from gas adsorption and SANS/USANS techniques publication-title: Energy Fuels doi: 10.1021/ef300735t – volume: 36 start-page: 363 issue: 4 year: 2013 ident: 10.1016/j.fuel.2014.03.058_b0120 article-title: Oil charge history of bitumens of differing maturities in exhumed Palaeozoic reservoir rocks at Tianjingshan, NW Sichuan Basin, Southern China publication-title: J Pet Geol doi: 10.1111/jpg.12561 – volume: 57 start-page: 603 year: 1985 ident: 10.1016/j.fuel.2014.03.058_b0045 article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity publication-title: Pure Appl Chem doi: 10.1351/pac198557040603 – volume: 54 start-page: 375 issue: 3 year: 2006 ident: 10.1016/j.fuel.2014.03.058_b0210 article-title: The effect of heating on the surface area, porosity and surface acidity of a bentonite publication-title: Clays Clay Miner doi: 10.1346/CCMN.2006.0540308 – volume: 60 start-page: 309 year: 1938 ident: 10.1016/j.fuel.2014.03.058_b0140 article-title: Adsorption of gases in multimolecular layers publication-title: J Am Chem Soc doi: 10.1021/ja01269a023 – volume: 41 start-page: 507 year: 2003 ident: 10.1016/j.fuel.2014.03.058_b0135 article-title: Variation of the pore structure of coal chars during gasification publication-title: Carbon doi: 10.1016/S0008-6223(02)00357-3 – volume: 56 start-page: 66 year: 2008 ident: 10.1016/j.fuel.2014.03.058_b0230 article-title: Smectite-illite-muscovite transformations, quartz dissolution, and silica release in shales publication-title: Clays Clay Miner doi: 10.1346/CCMN.2008.0560106 – volume: 74 start-page: 1559 issue: 10 year: 1990 ident: 10.1016/j.fuel.2014.03.058_b0185 article-title: Evaluation of a simple model of vitrinite reflectance based on chemical kinetics publication-title: AAPG Bull – volume: 91 start-page: 475 year: 2007 ident: 10.1016/j.fuel.2014.03.058_b0275 article-title: Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment publication-title: AAPG Bull doi: 10.1306/12190606068 – volume: 3 start-page: 95 year: 1971 ident: 10.1016/j.fuel.2014.03.058_b0170 article-title: Temperature and geologic time as factors in coalification publication-title: Akad Nauk SSSR Izv Ser Geol – volume: 55 start-page: 138 year: 2012 ident: 10.1016/j.fuel.2014.03.058_b0240 article-title: Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale publication-title: Appl Clay Sci doi: 10.1016/j.clay.2011.11.007 – volume: 140 start-page: 445 year: 1983 ident: 10.1016/j.fuel.2014.03.058_b0180 article-title: Hydrocarbon generation and migration from Jurassic source rock in East Shetland basin and Viking Graben of the northern North Sea publication-title: J Geol Soc (London, UK) doi: 10.1144/gsjgs.140.3.0445 – volume: 38 start-page: 53 year: 2012 ident: 10.1016/j.fuel.2014.03.058_b0250 article-title: Geological evaluation of Halfway–Doig–Montney hybrid gas shale-tight gas reservoir, northeastern British Columbia publication-title: Mar Pet Geol doi: 10.1016/j.marpetgeo.2012.08.004 – volume: 103 start-page: 32 year: 2012 ident: 10.1016/j.fuel.2014.03.058_b0105 article-title: The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom publication-title: Int J Coal Geol doi: 10.1016/j.coal.2012.07.012 – volume: 23 start-page: 61 issue: 1 year: 2000 ident: 10.1016/j.fuel.2014.03.058_b0220 article-title: Dehydration transformation in Ca-montmorillonite publication-title: Bull Mater Sci doi: 10.1007/BF02708614 – ident: 10.1016/j.fuel.2014.03.058_b0265 – volume: 64 start-page: 916 issue: 6 year: 1980 ident: 10.1016/j.fuel.2014.03.058_b0175 article-title: Time and temperature in petroleum formation: application of Lopatin’s method to petroleum exploration publication-title: AAPG Bull – volume: 45 start-page: 618 year: 1997 ident: 10.1016/j.fuel.2014.03.058_b0225 article-title: Frio shale mineralogy and the stoichiometry of the smectite-to-illite reaction: the most important reaction in clastic sedimentary diagenesis publication-title: Clays Clay Miner doi: 10.1346/CCMN.1997.0450502 – volume: 70 start-page: 223 year: 2007 ident: 10.1016/j.fuel.2014.03.058_b0015 article-title: The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada publication-title: Int J Coal Geol doi: 10.1016/j.coal.2006.05.001 – volume: 22 start-page: 153 year: 2003 ident: 10.1016/j.fuel.2014.03.058_b0205 article-title: The effects of exchanged cation, compression, heating and hydration on textural properties of bulk bentonite and its corresponding purified montmorillonite publication-title: Appl Clay Sci doi: 10.1016/S0169-1317(02)00146-1 – volume: 95 start-page: 371 year: 2012 ident: 10.1016/j.fuel.2014.03.058_b0070 article-title: Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis publication-title: Fuel doi: 10.1016/j.fuel.2011.12.010 – volume: 96 start-page: 87 year: 2012 ident: 10.1016/j.fuel.2014.03.058_b0095 article-title: Estimation of kerogen porosity in source rocks as a function of thermal transformation: example from the Mowry Shale in the Powder River Basin of Wyoming publication-title: AAPG Bull doi: 10.1306/04111110201 – volume: 103 start-page: 120 year: 2012 ident: 10.1016/j.fuel.2014.03.058_b0245 article-title: Geological controls on matrix permeability of Devonian Gas Shales in the Horn River and Liard basins, Northeastern British Columbia, Canada publication-title: Int J Coal Geol doi: 10.1016/j.coal.2012.05.006 – volume: 7 start-page: 87 year: 2003 ident: 10.1016/j.fuel.2014.03.058_b0255 article-title: The diagenesis of biogenic silica: chemical transformations occurring in the water column, seabed, and crust publication-title: Treatise Geochem doi: 10.1016/B0-08-043751-6/07095-X – volume: 56 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.fuel.2014.03.058_b0020 article-title: Lower Cretaceous gas shales in Northeastern British Columbia, Part I: geological controls on methane sorption capacity publication-title: Bull Can Pet Geol doi: 10.2113/gscpgbull.56.1.1 – volume: 27 start-page: 3099 year: 2013 ident: 10.1016/j.fuel.2014.03.058_b0055 article-title: Methane adsorption on shale under simulated geological temperature and pressure conditions publication-title: Energy Fuels doi: 10.1021/ef400381v – volume: 92 start-page: 181 year: 2008 ident: 10.1016/j.fuel.2014.03.058_b0285 article-title: New insights into the volume and pressure changes during the thermal cracking of oil to gas in reservoirs: implications for the in situ accumulation of gas cracked from oils publication-title: AAPG Bull doi: 10.1306/09210706140 |
SSID | ssj0007854 |
Score | 2.5826116 |
Snippet | •Laboratory-matured shale samples were produced by an anhydrous pyrolysis experiment.•Low-pressure gas adsorption was used to characterize the pore structure... Artificial shale samples with equivalent vitrinite reflectance values (VRo) ranging from 0.69% to 4.19% were obtained from an anhydrous pyrolysis experiment.... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 173 |
SubjectTerms | Anhydrous pyrolysis Applied sciences Carbon dioxide Energy Energy. Thermal use of fuels Equivalence Evolution Exact sciences and technology Fuels Gas shale Nanoporosity evolution Nanostructure Natural gas Porosity Reflectivity Shale Thermal maturation |
Title | Evolution of nanoporosity in organic-rich shales during thermal maturation |
URI | https://dx.doi.org/10.1016/j.fuel.2014.03.058 https://www.proquest.com/docview/1551040291 https://www.proquest.com/docview/1671591348 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jvigifuL8GBV8k-rSpGn7OMbGnLgnBd9CkyY40W7YTfDFv927tJ2KsgcfmyZtuLtcfiF3vyPkHM7FTIg08TngXZ9n2sCaCyLfWmWSNExU5OgYbsdieM9HD-FDg_TqXBgMq6x8f-nTnbeuWq4qaV7NJhPM8aUCqUPgiODu8zCDnUdo5ZcfX2Ee8K-SiZkKH3tXiTNljJddGLx-oNwRnWLZ9783p81ZWoDIbFnr4pfbdnvRYJtsVSDS65bz3CENk--SjW_Ugntk1H-rjMqbWi9P8ykAbQzQevcm0OQyMLUPTvDRKx5hkyi8MmHRQ0D4Ah9_QcZPp7Z9cj_o3_WGflU3wddcBHMAzIoZFQZxRrNQaGW4zhRlQlGOcCVwjR0TWWUZTzs2AH1lWaKExahPpdgBaebT3BwSTwuqaCdN4VXMGY-VCUKtWGRikWkWJS1Ca4FJXZGKY22LZ1lHjz1JFLJEIcsOkyDkFrlYjpmVlBore4e1HuQPw5Dg81eOa_9Q2vJXsB9zAefiFjmrtShhSeE9SZqb6aKQiCLBtwUJXdFHRAAEKYjk6J8TPCbr-FQGE56Q5vx1YU4B4MxV21lwm6x1r2-G408y0fr5 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgCEEE91oRQjwQmFrh9xNoceELTaPk-t1JuJHVtd1GZXZBfUC3-KP8iM4xQq0B6QevUr8Yw98408D4A3aBdLrasyU4h3M1U7j3dOFFkI1pdVXtoipmM4PNLjE7V3mp-uwM8-FobcKpPs72R6lNapZTNRc3M2mVCML9eUOgRNhPielzwr9_3ld7Tb2q3dT8jkt0LsbB9_HGeptEDmlBZzxJRWepuLUc3rXDvrlastl9pyRRpdxMahL4INUlXDIHBLdV1aHcgx0lqJ696C2wrFBZVNeP_jt18Jbq5L_cx1Rr-XInU6p7Kw8PTewVXMrEp15v-tDe_PqhZ5FLriGn_piaj8dh7Cg4Ra2YeOMI9gxTeP4d4fuQyfwN72t3SK2TSwpmqmiOzJI-ySTbAphny6DKXuGWvPUCu1rIuQZIRAL3DxC0oxGs_JUzi5EWo-g9Vm2vg1YE5zy4dVhV0jJdXIepE7Kws_0rWTRTkA3hPMuJTFnIppnJveXe2LISIbIrIZSoNEHsC7qzmzLofH0tF5zwdz7SQaVDJL521cY9rVpxAAKI2G-ABe91w0eIfpYaZq_HTRGoKtKExFyZeM0QUiT44kef6fP_gK7oyPDw_Mwe7R_gu4Sz2dJ-M6rM6_LvxLRFdzuxFPM4PPN319fgEZmjdi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+nanoporosity+in+organic-rich+shales+during+thermal+maturation&rft.jtitle=Fuel+%28Guildford%29&rft.au=Chen%2C+Ji&rft.au=Xiao%2C+Xianming&rft.date=2014-08-01&rft.pub=Elsevier+Ltd&rft.issn=0016-2361&rft.eissn=1873-7153&rft.volume=129&rft.spage=173&rft.epage=181&rft_id=info:doi/10.1016%2Fj.fuel.2014.03.058&rft.externalDocID=S0016236114003093 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |