Optimization of inertial micropower Generators for human walking motion

Micropower generators, which have applications in distributed sensing, have previously been classified into architectures and analyzed for sinusoidal driving motions. However, under many practical operating conditions, the driving motion will not be sinusoidal. In this paper, we present a comparison...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 6; no. 1; pp. 28 - 38
Main Authors von Buren, T., Mitcheson, P.D., Green, T.C., Yeatman, E.M., Holmes, A.S., Troster, G.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Micropower generators, which have applications in distributed sensing, have previously been classified into architectures and analyzed for sinusoidal driving motions. However, under many practical operating conditions, the driving motion will not be sinusoidal. In this paper, we present a comparison of the simulated performance of optimized configurations of the different architectures using measured acceleration data from walking motion gathered from human subjects. The sensitivity of generator performance to variations in generator parameters is investigated, with a 20% change in generator parameters causing between a 3% and 80% drop in generator power output, depending upon generator architecture and operating condition. Based on the results of this investigation, microgenerator design guidelines are provided. The Coulomb-force parametric generator is the recommended architecture for generators with internal displacement amplitude limits of less than /spl sim/0.5 mm and the velocity-damped resonant generator is the recommended architecture when the internal displacement amplitude can exceed /spl sim/0.5 mm, depending upon the exact operating conditions. Maximum power densities for human powered motion vary between 8.7 and 2100 /spl mu/W/cm/sup 3/, depending upon generator size and the location of the body on which it is mounted.
AbstractList Micropower generators, which have applications in distributed sensing, have previously been classified into architectures and analyzed for sinusoidal driving motions. However, under many practical operating conditions, the driving motion will not be sinusoidal. In this paper, we present a comparison of the simulated performance of optimized configurations of the different architectures using measured acceleration data from walking motion gathered from human subjects. The sensitivity of generator performance to variations in generator parameters is investigated, with a 20% change in generator parameters causing between a 3% and 80% drop in generator power output, depending upon generator architecture and operating condition. Based on the results of this investigation, microgenerator design guidelines are provided. The Coulomb-force parametric generator is the recommended architecture for generators with internal displacement amplitude limits of less than /spl sim/0.5 mm and the velocity-damped resonant generator is the recommended architecture when the internal displacement amplitude can exceed /spl sim/0.5 mm, depending upon the exact operating conditions. Maximum power densities for human powered motion vary between 8.7 and 2100 /spl mu/W/cm/sup 3/, depending upon generator size and the location of the body on which it is mounted.
The sensitivity of generator performance to variations in generator parameters is investigated, with a 20% change in generator parameters causing between a 3% and 80% drop in generator power output, depending upon generator architecture and operating condition.
Micropower generators, which have applications in distributed sensing, have previously been classified into architectures and analyzed for sinusoidal driving motions. However, under many practical operating conditions, the driving motion will not be sinusoidal. In this paper, we present a comparison of the simulated performance of optimized configurations of the different architectures using measured acceleration data from walking motion gathered from human subjects. The sensitivity of generator performance to variations in generator parameters is investigated, with a 20% change in generator parameters causing between a 3% and 80% drop in generator power output, depending upon generator architecture and operating condition. Based on the results of this investigation, microgenerator design guidelines are provided. The Coulomb-force parametric generator is the recommended architecture for generators with internal displacement amplitude limits of less than similar to 0.5 mm and the velocity-damped resonant generator is the recommended architecture when the internal displacement amplitude can exceed similar to 0.5 mm, depending upon the exact operating conditions. Maximum power densities for human powered motion vary between 8.7 and 2100 mu W/cm super(3), depending upon generator size and the location of the body on which it is mounted.
Micropower generators, which have applications in distributed sensing, have previously been classified into architectures and analyzed for sinusoidal driving motions. However, under many practical operating conditions, the driving motion will not be sinusoidal. In this paper, we present a comparison of the simulated performance of optimized configurations of the different architectures using measured acceleration data from walking motion gathered from human subjects. The sensitivity of generator performance to variations in generator parameters is investigated, with a 20% change in generator parameters causing between a 3% and 80% drop in generator power output, depending upon generator architecture and operating condition. Based on the results of this investigation, microgenerator design guidelines are provided. The Coulomb-force parametric generator is the recommended architecture for generators with internal displacement amplitude limits of less than /spl sim/0.5 mm and the velocity-damped resonant generator is the recommended architecture when the internal displacement amplitude can exceed /spl sim/0.5 mm, depending upon the exact operating conditions. Maximum power densities for human powered motion vary between 8.7 and 2100 muW/cm/sup 3/, depending upon generator size and the location of the body on which it is mounted.
Author Green, T.C.
Holmes, A.S.
Mitcheson, P.D.
Troster, G.
von Buren, T.
Yeatman, E.M.
Author_xml – sequence: 1
  givenname: T.
  surname: von Buren
  fullname: von Buren, T.
  organization: Dept. of Inf. Technol. & Electr. Eng., Swiss Fed. Inst. of Technol., Zurich, Switzerland
– sequence: 2
  givenname: P.D.
  surname: Mitcheson
  fullname: Mitcheson, P.D.
– sequence: 3
  givenname: T.C.
  surname: Green
  fullname: Green, T.C.
– sequence: 4
  givenname: E.M.
  surname: Yeatman
  fullname: Yeatman, E.M.
– sequence: 5
  givenname: A.S.
  surname: Holmes
  fullname: Holmes, A.S.
– sequence: 6
  givenname: G.
  surname: Troster
  fullname: Troster, G.
BookMark eNp9kc9LwzAUx4NMcJveBS_Fg3jpTNL8aI4y5lSGO6jgLWRtopltU5OWoX-9KRMED57e4_H5fnnvfSdg1LhGA3CK4AwhKK7uHxcPMwwhneU0o4IegDGiNE8RJ_lo6DOYkoy_HIFJCFsIkeCUj8Fy3Xa2tl-qs65JnElso31nVZXUtvCudTvtk6WOQ9U5HxLjfPLW16pJdqp6t81rUrtBegwOjaqCPvmpU_B8s3ia36ar9fJufr1KC8JwlzLNzEZlpigxZgoSrrgoldoQnWHOS8wMRznVlFBRCMMxNsiQjBSQ67wsqMqm4GLv23r30evQydqGQleVarTrg8Q5ZDgXPIKX_4KIcUQggohF9PwPunW9b-IZMmdMkLgNjBDcQ_ErIXhtZOttrfynRFAOCcghATkkIPcJRMnZXmK11r845YxHw2-AE4PW
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1007_s11276_010_0252_4
crossref_primary_10_1088_1742_6596_1407_1_012063
crossref_primary_10_1177_1045389X11435434
crossref_primary_10_1109_JIOT_2023_3315789
crossref_primary_10_1016_j_sna_2016_04_022
crossref_primary_10_1051_e3sconf_201911502005
crossref_primary_10_1088_0960_1317_19_9_094008
crossref_primary_10_1109_TMC_2010_202
crossref_primary_10_1016_j_enconman_2015_09_065
crossref_primary_10_1016_j_sna_2016_08_030
crossref_primary_10_1016_j_gaitpost_2016_11_027
crossref_primary_10_1109_ACCESS_2023_3260106
crossref_primary_10_1109_TMECH_2014_2362685
crossref_primary_10_1109_MSMC_2020_3017936
crossref_primary_10_1016_j_sna_2009_06_008
crossref_primary_10_5139_JKSAS_2016_44_1_40
crossref_primary_10_1109_ACCESS_2021_3094303
crossref_primary_10_1109_TMECH_2014_2308930
crossref_primary_10_3390_s20236915
crossref_primary_10_1109_ACCESS_2020_3037952
crossref_primary_10_1109_TBCAS_2010_2052616
crossref_primary_10_1016_j_sna_2011_04_001
crossref_primary_10_1016_j_nanoen_2015_01_009
crossref_primary_10_1021_acsnano_9b03971
crossref_primary_10_1115_1_4033014
crossref_primary_10_7567_1347_4065_ab0de9
crossref_primary_10_1016_j_jsv_2014_11_035
crossref_primary_10_1109_JIOT_2023_3269953
crossref_primary_10_1088_1742_6596_1407_1_012085
crossref_primary_10_1109_MEI_2022_9757916
crossref_primary_10_1016_j_proeng_2010_09_221
crossref_primary_10_1088_2399_6528_ac77d6
crossref_primary_10_1109_JMEMS_2009_2013395
crossref_primary_10_1109_JMEMS_2009_2037245
crossref_primary_10_1016_j_enconman_2017_09_057
crossref_primary_10_1109_TPEL_2005_861113
crossref_primary_10_3390_electronics10172104
crossref_primary_10_1088_0964_1726_23_2_025009
crossref_primary_10_1080_23311916_2018_1430497
crossref_primary_10_1016_j_nanoen_2017_12_046
crossref_primary_10_1016_j_nanoen_2019_103943
crossref_primary_10_1145_3381754
crossref_primary_10_1002_admt_201700240
crossref_primary_10_1109_JMEMS_2008_928709
crossref_primary_10_1088_0964_1726_21_11_115018
crossref_primary_10_1002_sus2_195
crossref_primary_10_1007_s00542_006_0152_9
crossref_primary_10_31436_iiumej_v23i1_2156
crossref_primary_10_1016_j_ymssp_2019_106318
crossref_primary_10_1109_JMEMS_2009_2039017
crossref_primary_10_1109_JSAC_2015_2391690
crossref_primary_10_1109_TMECH_2011_2181954
crossref_primary_10_3390_electronics9071061
crossref_primary_10_1016_j_proeng_2011_12_200
crossref_primary_10_1109_TMAG_2006_888194
crossref_primary_10_1007_s11071_009_9561_5
crossref_primary_10_1016_j_nanoen_2018_06_042
crossref_primary_10_1109_JSEN_2008_917125
crossref_primary_10_1002_stc_374
crossref_primary_10_1109_JMEMS_2013_2267773
crossref_primary_10_1177_0959651811411406
crossref_primary_10_1088_0967_3334_30_9_R01
crossref_primary_10_1088_0964_1726_20_12_125012
crossref_primary_10_1016_j_egypro_2011_12_1088
crossref_primary_10_1088_1757_899X_291_1_012026
crossref_primary_10_1541_ieejjournal_128_435
crossref_primary_10_1109_JPROC_2008_927494
crossref_primary_10_1109_COMST_2017_2731979
crossref_primary_10_1109_JSEN_2014_2346019
crossref_primary_10_1088_1742_6596_660_1_012061
crossref_primary_10_3390_electronics9101730
crossref_primary_10_1088_1361_665X_aa573f
crossref_primary_10_1109_JSAC_2015_2391871
crossref_primary_10_1109_SURV_2014_012214_00007
crossref_primary_10_1116_1_3046155
crossref_primary_10_1098_rsos_182021
crossref_primary_10_1109_MEMB_2010_936545
crossref_primary_10_1088_0960_1317_19_10_105023
crossref_primary_10_1109_JIOT_2023_3288212
crossref_primary_10_1049_el_2012_0969
crossref_primary_10_1088_1742_6596_660_1_012102
crossref_primary_10_1109_JSEN_2019_2925638
crossref_primary_10_1088_0964_1726_24_11_115009
crossref_primary_10_1002_aenm_201300376
crossref_primary_10_1145_2637364_2591986
crossref_primary_10_1557_mrs_2012_273
crossref_primary_10_1016_j_apenergy_2019_05_059
crossref_primary_10_1016_j_sna_2015_01_025
crossref_primary_10_1109_TMC_2018_2828816
crossref_primary_10_1016_j_nanoen_2021_105986
crossref_primary_10_1088_1742_6596_476_1_012119
crossref_primary_10_1016_j_matpr_2024_02_013
crossref_primary_10_1080_17445760_2017_1410817
crossref_primary_10_1109_TED_2005_850940
crossref_primary_10_1007_s40145_021_0482_1
crossref_primary_10_1002_smll_201400863
crossref_primary_10_1002_aenm_201301592
crossref_primary_10_1016_j_sna_2006_08_009
crossref_primary_10_1021_nn4007708
crossref_primary_10_1063_1_4867216
crossref_primary_10_1088_0960_1317_20_12_125009
crossref_primary_10_1016_j_seta_2020_100708
crossref_primary_10_1109_JSEN_2018_2820644
crossref_primary_10_1088_1742_6596_476_1_012123
crossref_primary_10_1016_j_ymssp_2020_107251
crossref_primary_10_3390_electronics11030383
crossref_primary_10_1088_1361_665X_aacdc4
crossref_primary_10_1002_er_4092
crossref_primary_10_1088_0964_1726_22_9_094029
crossref_primary_10_1002_adfm_201400431
crossref_primary_10_1016_j_apenergy_2019_114069
Cites_doi 10.1109/ISWC.1998.729539
10.1109/VLSIC.1997.623784
10.1109/92.920820
10.1109/JMEMS.2004.830151
10.1117/12.293506
10.1038/scientificamerican0991-94
10.1016/j.sna.2004.04.026
10.1109/20.800598
10.1109/ISWC.2003.1241420
10.1007/978-3-540-24646-6_1
10.1007/978-3-540-24646-6_2
10.1088/0964-1726/10/4/403
10.1109/MEMSYS.1994.555833
10.1299/kikaic.67.2307
10.1007/s005210050030
10.1109/ITAB.2000.892341
10.1109/MMB.2002.1002361
10.1049/el:19911444
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
F28
FR3
7TB
DOI 10.1109/JSEN.2005.853595
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Solid State and Superconductivity Abstracts
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 38
ExternalDocumentID 2348821011
10_1109_JSEN_2005_853595
1576750
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABTAH
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AIBXA
AJQPL
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TWZ
XFK
ZY4
AAYXX
CITATION
7SP
7U5
8FD
L7M
F28
FR3
7TB
ID FETCH-LOGICAL-c462t-6e6fba3fcd226a047a79daab4e3277d26f7185e5459c9f722f1f434c07e8dc5a3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Fri Aug 16 22:25:14 EDT 2024
Sat Aug 17 03:50:32 EDT 2024
Thu Oct 10 18:48:32 EDT 2024
Fri Aug 23 03:44:39 EDT 2024
Wed Jun 26 19:28:09 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-6e6fba3fcd226a047a79daab4e3277d26f7185e5459c9f722f1f434c07e8dc5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://spiral.imperial.ac.uk/bitstream/10044/1/547/1/Optimization%20of%20inertial%20micropower.pdf
PQID 866945450
PQPubID 23500
PageCount 11
ParticipantIDs proquest_journals_866945450
proquest_miscellaneous_1671401016
ieee_primary_1576750
crossref_primary_10_1109_JSEN_2005_853595
proquest_miscellaneous_28062897
PublicationCentury 2000
PublicationDate 2006-02-01
PublicationDateYYYYMMDD 2006-02-01
PublicationDate_xml – month: 02
  year: 2006
  text: 2006-02-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2006
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References yates (ref35) 2003
yeatman (ref34) 2004
ref12
ref15
roundy (ref23) 2003
ref14
ref11
ingber (ref32) 2004
roundy (ref18) 2002
(ref28) 2002
ref17
ref16
ref19
lukowicz (ref8) 2004
(ref31) 0
wanless (ref1) 2002
needham (ref3) 2004
den hartog (ref26) 1931; 53
boland (ref33) 2003
mitcheson (ref27) 2004; 115
konak (ref21) 1997; 3241
starner (ref24) 2004
ref25
ref20
ref22
strasser (ref10) 2001
ref29
ref7
analog devices (ref30) 2000
ref4
flowerday (ref2) 2004
ref5
randall (ref13) 2003
abowd (ref6) 1996
bao (ref9) 2004
References_xml – year: 2000
  ident: ref30
  publication-title: ADXL202/210 iMEMS Accelerometer Datasheet Rev A
  contributor:
    fullname: analog devices
– ident: ref15
  doi: 10.1109/ISWC.1998.729539
– volume: 53
  start-page: 107
  year: 1931
  ident: ref26
  article-title: forced vibrations with combined coulomb and viscous friction
  publication-title: Trans ASME J Appl Mech
  contributor:
    fullname: den hartog
– start-page: 538
  year: 2003
  ident: ref33
  article-title: micro electret power generator
  publication-title: Proc IEEE 16th Annu Int Conf MEMS
  contributor:
    fullname: boland
– ident: ref16
  doi: 10.1109/VLSIC.1997.623784
– ident: ref22
  doi: 10.1109/92.920820
– year: 2004
  ident: ref2
  article-title: lessons learnt from long-term chronic condition monitoring
  publication-title: Proc Int l Workshop Wearable and Implantable Body Sensor Networks
  contributor:
    fullname: flowerday
– year: 2003
  ident: ref23
  publication-title: Energy Scavenging for Wireless Sensor Networks
  contributor:
    fullname: roundy
– ident: ref25
  doi: 10.1109/JMEMS.2004.830151
– volume: 3241
  start-page: 270
  year: 1997
  ident: ref21
  article-title: a self-powered discrete time piezo-elecric vibration damper
  publication-title: Proc SPIE
  doi: 10.1117/12.293506
  contributor:
    fullname: konak
– year: 1996
  ident: ref6
  publication-title: Ubiquitous computing Research themes and open issues from an applications perspective
  contributor:
    fullname: abowd
– year: 2002
  ident: ref1
  publication-title: Securing our future health Taking a long term view
  contributor:
    fullname: wanless
– year: 0
  ident: ref31
  publication-title: Kistler Instruments Ltd
– ident: ref7
  doi: 10.1038/scientificamerican0991-94
– volume: 115
  start-page: 523
  year: 2004
  ident: ref27
  article-title: mems electrostatic micro-power generator for low frequency operation
  publication-title: Sens Actuators A
  doi: 10.1016/j.sna.2004.04.026
  contributor:
    fullname: mitcheson
– year: 2004
  ident: ref3
  article-title: arrhythmia analysis in the community
  publication-title: Proc Int l Workshop Wearable and Implantable Body Sensor Networks
  contributor:
    fullname: needham
– ident: ref14
  doi: 10.1109/20.800598
– ident: ref29
  doi: 10.1109/ISWC.2003.1241420
– year: 2002
  ident: ref28
  publication-title: Matlab
– year: 2003
  ident: ref13
  publication-title: On the Use of Photovoltaic ambient energy sources for powering indoor electronic devices
  contributor:
    fullname: randall
– year: 2004
  ident: ref34
  article-title: advances in power sources for wireless sensor nodes
  publication-title: Proc Int l Workshop Wearable and Implantable Body Sensor Networks
  contributor:
    fullname: yeatman
– start-page: 1
  year: 2004
  ident: ref9
  article-title: activity recognition from user-annotated acceleration data
  publication-title: Proc 2nd Int Conf Pervasive Computing
  doi: 10.1007/978-3-540-24646-6_1
  contributor:
    fullname: bao
– start-page: 18
  year: 2004
  ident: ref8
  article-title: recognizing workshop activity using body worn microphones and accelerometers
  publication-title: Proc 2nd Int Conf Pervasive Computing
  doi: 10.1007/978-3-540-24646-6_2
  contributor:
    fullname: lukowicz
– start-page: 535
  year: 2001
  ident: ref10
  article-title: miniaturised thermoelectric generators based on poly-si and poly-sige surface micromachining
  publication-title: Proc Int Conf Solid-State Sensors Actuators
  contributor:
    fullname: strasser
– ident: ref19
  doi: 10.1088/0964-1726/10/4/403
– year: 2003
  ident: ref35
  publication-title: Micro Power Radio Module
  contributor:
    fullname: yates
– year: 2004
  ident: ref32
  publication-title: Adaptive Simulated Annealing for Matlab
  contributor:
    fullname: ingber
– year: 2004
  ident: ref24
  article-title: human generated power for mobile electronics
  publication-title: Low Power Electron Design
  contributor:
    fullname: starner
– ident: ref12
  doi: 10.1109/MEMSYS.1994.555833
– ident: ref17
  doi: 10.1299/kikaic.67.2307
– ident: ref4
  doi: 10.1007/s005210050030
– ident: ref5
  doi: 10.1109/ITAB.2000.892341
– year: 2002
  ident: ref18
  article-title: microelectrostatic vibration-to-electricity converters
  publication-title: Proc ASME Int Mechanical Engineering Congress and Exposition
  contributor:
    fullname: roundy
– ident: ref20
  doi: 10.1109/MMB.2002.1002361
– ident: ref11
  doi: 10.1049/el:19911444
SSID ssj0019757
Score 2.2741976
Snippet Micropower generators, which have applications in distributed sensing, have previously been classified into architectures and analyzed for sinusoidal driving...
The sensitivity of generator performance to variations in generator parameters is investigated, with a 20% change in generator parameters causing between a 3%...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 28
SubjectTerms Amplitudes
Biomedical monitoring
Blood pressure
Context awareness
Displacement
Driving conditions
Generators
Guidelines
Human
Humans
Legged locomotion
Micropower generator
micropower supply
Motion analysis
Motion measurement
Optimization
Patient monitoring
Power generation
Sensor systems
vibration-to-electric energy conversion
Walking
Title Optimization of inertial micropower Generators for human walking motion
URI https://ieeexplore.ieee.org/document/1576750
https://www.proquest.com/docview/866945450
https://search.proquest.com/docview/1671401016
https://search.proquest.com/docview/28062897
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ui3rwLa7PCF4Eu_aRNM1RxAeCelBhbyVNEwTXXdFdRH-9M0l3FR_grZBAQyaTmczj-wD2MuOsdcJErjYuQotvI_QSVCRtxZ1MjEg8nc_lVX5-xy86ojMBB-NeGGutLz6zbfr0ufy6b4YUKjtMBEGP4AN9sojT0Ks1zhgo6VE9UYHjiGeyM0pJxurw4ubkKkRP0DYJYpL4YoI8p8qPi9hbl9N5uBytKxSVPLSHg6pt3r9BNv534Qsw17iZ7Cici0WYsL0lmP0CPrgE0w3_-f3bMpxd483x2LRksr5j1BKIut9lj1Sw90RUaiwgVBM7D0NPl3l2P_aquxRsZ4ENaAXuTk9uj8-jhmIhMjxPB1Fuc1fpzJka3TAdc6mlqrWuuM1SKes0R3kVwqKbpYxyMk1d4njGTSxtURuhs1WY6vV7dg0YF4Wm0jXqruex1oUxXOKFIFPyMRVvwf5o18ungKRR-hdIrEqSEBFiijJIqAXLtImf88L-tWBjJKayUbWXsshzxXGBOLo7HkUdocSH7tn-8KVMcoIlpDhFC3b-mEMZZnx8yvXff70BMyH4QoUsmzA1eB7aLXRHBtW2P4cf1UDddA
link.rule.ids 315,786,790,802,27955,27956,55107
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyQxEC5ED64HnyvO-sqCl4XtsR9Jp3MUUUfXGQ8qzK1JpxMEdUbWGZb111uV9IziA7w1JNAhlUpV6vF9AHuZcdY6YSJXGxehxbcRegkqkrbiTiZGJJ7Op9vLO9f8rC_6M_B72gtjrfXFZ7ZNnz6XXw_NmEJl-4kg6BF8oM-hnY9l6Naa5gyU9LieqMJxxDPZnyQlY7V_dnnUC_ETtE6CuCReGSHPqvLuKvb25XgJupOVhbKS2_Z4VLXN0xvQxq8ufRkWG0eTHYSTsQIzdrAKC6_gB1dhvmFAv_m_BicXeHfcN02ZbOgYNQWi9t-xeyrZeyAyNRYwqomfh6Gvyzy_H_un7yjczgIf0He4Pj66OuxEDclCZHiejqLc5q7SmTM1OmI65lJLVWtdcZulUtZpjhIrhEVHSxnlZJq6xPGMm1jaojZCZ-swOxgO7AYwLgpNxWvUX89jrQtjuMQrQabkZSregl-TXS8fApZG6d8gsSpJQkSJKcogoRas0Sa-zAv714LNiZjKRtkeyyLPFccF4ujP6ShqCaU-9MAOx49lkhMwIUUqWrD7yRzKMePzU_74-Ne7MN-56p6X56e9P5vwLYRiqKxlC2ZHf8d2G52TUbXjz-QzpzPgyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+inertial+micropower+Generators+for+human+walking+motion&rft.jtitle=IEEE+sensors+journal&rft.au=von+Buren%2C+T&rft.au=Mitcheson%2C+P.D&rft.au=Green%2C+T.C&rft.au=Yeatman%2C+E.M&rft.date=2006-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=6&rft.issue=1&rft.spage=28&rft_id=info:doi/10.1109%2FJSEN.2005.853595&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2348821011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon