Exogenous melatonin strengthens saline-alkali stress tolerance in apple rootstock M9-T337 seedlings by initiating a variety of physiological and biochemical pathways
Melatonin (MT) is an important plant growth regulator that significantly regulates the growth and development of plants. Previous studies confirmed the effectiveness of MT in improving plant stress tolerance. In this study, annual M9-T337 seedlings were selected as subjects, and five treatments were...
Saved in:
Published in | Chemical and biological technologies in agriculture Vol. 11; no. 1; p. 58 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2024
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Melatonin (MT) is an important plant growth regulator that significantly regulates the growth and development of plants. Previous studies confirmed the effectiveness of MT in improving plant stress tolerance. In this study, annual M9-T337 seedlings were selected as subjects, and five treatments were applied: control (CK), in which only half the concentration of Hoagland was applied; Saline-alkaline stress treatment (SA, 100 mmol·L
−1
saline-alkaline solution); melatonin treatment (MT, CK + 200 μmol L
−1
exogenous MT); Saline-alkaline + melatonin treatment (MS, SA + 200 μmol L
−1
exogenous MT); and saline-alkaline stress + melatonin + inhibitor treatment (HS, additional 100 μmol L
−1
p-CPA treatment to MS). The results showed that saline-alkaline stress negatively affected the growth of M9-T337 seedlings by reducing photosynthetic capacity, increasing Na
+
, promoting reactive oxygen species such as H
2
O
2
, and changing the osmotic content and antioxidant system. However, the application of exogenous MT effectively alleviated saline-alkaline damage and significantly promoted the growth of M9-T337 seedlings. It significantly increased plant height, diameter, root length, root surface area, volume and activity. Furthermore, MT alleviated osmotic stress by accumulating proline, soluble sugars, soluble proteins and starch. MT improved photosynthetic capacity by delaying chlorophyll degradation and regulating gas exchange parameters as well as fluorescence parameters in leaves. Additionally, MT reduced the Na
+
/K
+
ratio to reduce ion toxicity by upregulating the expression of Na
+
transporter genes (
MhCAX5
,
MhCHX15
,
MhSOS1
, and
MhALT1
) and downregulating the expression of K
+
transporter genes (
MhSKOR
and
MhNHX4
). In addition, MT can increase antioxidant enzyme activity (superoxide dismutase (SOD), peroxidase(POD), catalase (CAT), ascorbic acid oxidase (AAO), ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR)) in the ASA-GSH cycle and increase ascorbic acid (AsA), reduced glutathione (GSH) and oxidized glutathione (GSSG) levels to counteract the accumulation of reactive oxygen species (ROS) such as hydrogen peroxide (H
2
O
2
) and Superoxide anion free radicals (O
2
−
), reducing oxidative damage. Exogenous MT promotes M9-T337 seedlings growth under saline-alkaline stress by responding synergistically with auxin (IAA), gibberellin (GA
3
) and zeatin (ZT) to saline-alkaline stress. Our results confirm that MT has the potential to alleviate Saline-alkaline stress by promoting root growth, increasing biomass accumulation and photosynthetic capacity, strengthening the antioxidant defense system, maintaining ionic balance, the ascorbate–glutathione cycle and the Osmoregulation facilitates and regulates endogenous hormone levels in M9-T337 seedlings.
Graphical Abstract |
---|---|
AbstractList | Melatonin (MT) is an important plant growth regulator that significantly regulates the growth and development of plants. Previous studies confirmed the effectiveness of MT in improving plant stress tolerance. In this study, annual M9-T337 seedlings were selected as subjects, and five treatments were applied: control (CK), in which only half the concentration of Hoagland was applied; Saline-alkaline stress treatment (SA, 100 mmol·L⁻¹ saline-alkaline solution); melatonin treatment (MT, CK + 200 μmol L⁻¹ exogenous MT); Saline-alkaline + melatonin treatment (MS, SA + 200 μmol L⁻¹ exogenous MT); and saline-alkaline stress + melatonin + inhibitor treatment (HS, additional 100 μmol L⁻¹ p-CPA treatment to MS). The results showed that saline-alkaline stress negatively affected the growth of M9-T337 seedlings by reducing photosynthetic capacity, increasing Na⁺, promoting reactive oxygen species such as H₂O₂, and changing the osmotic content and antioxidant system. However, the application of exogenous MT effectively alleviated saline-alkaline damage and significantly promoted the growth of M9-T337 seedlings. It significantly increased plant height, diameter, root length, root surface area, volume and activity. Furthermore, MT alleviated osmotic stress by accumulating proline, soluble sugars, soluble proteins and starch. MT improved photosynthetic capacity by delaying chlorophyll degradation and regulating gas exchange parameters as well as fluorescence parameters in leaves. Additionally, MT reduced the Na⁺/K⁺ ratio to reduce ion toxicity by upregulating the expression of Na⁺ transporter genes (MhCAX5, MhCHX15, MhSOS1, and MhALT1) and downregulating the expression of K⁺ transporter genes (MhSKOR and MhNHX4). In addition, MT can increase antioxidant enzyme activity (superoxide dismutase (SOD), peroxidase(POD), catalase (CAT), ascorbic acid oxidase (AAO), ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR)) in the ASA-GSH cycle and increase ascorbic acid (AsA), reduced glutathione (GSH) and oxidized glutathione (GSSG) levels to counteract the accumulation of reactive oxygen species (ROS) such as hydrogen peroxide (H₂O₂) and Superoxide anion free radicals (O₂⁻), reducing oxidative damage. Exogenous MT promotes M9-T337 seedlings growth under saline-alkaline stress by responding synergistically with auxin (IAA), gibberellin (GA₃) and zeatin (ZT) to saline-alkaline stress. Our results confirm that MT has the potential to alleviate Saline-alkaline stress by promoting root growth, increasing biomass accumulation and photosynthetic capacity, strengthening the antioxidant defense system, maintaining ionic balance, the ascorbate–glutathione cycle and the Osmoregulation facilitates and regulates endogenous hormone levels in M9-T337 seedlings. Melatonin (MT) is an important plant growth regulator that significantly regulates the growth and development of plants. Previous studies confirmed the effectiveness of MT in improving plant stress tolerance. In this study, annual M9-T337 seedlings were selected as subjects, and five treatments were applied: control (CK), in which only half the concentration of Hoagland was applied; Saline-alkaline stress treatment (SA, 100 mmol·L−1 saline-alkaline solution); melatonin treatment (MT, CK + 200 μmol L−1 exogenous MT); Saline-alkaline + melatonin treatment (MS, SA + 200 μmol L−1 exogenous MT); and saline-alkaline stress + melatonin + inhibitor treatment (HS, additional 100 μmol L−1 p-CPA treatment to MS). The results showed that saline-alkaline stress negatively affected the growth of M9-T337 seedlings by reducing photosynthetic capacity, increasing Na+, promoting reactive oxygen species such as H2O2, and changing the osmotic content and antioxidant system. However, the application of exogenous MT effectively alleviated saline-alkaline damage and significantly promoted the growth of M9-T337 seedlings. It significantly increased plant height, diameter, root length, root surface area, volume and activity. Furthermore, MT alleviated osmotic stress by accumulating proline, soluble sugars, soluble proteins and starch. MT improved photosynthetic capacity by delaying chlorophyll degradation and regulating gas exchange parameters as well as fluorescence parameters in leaves. Additionally, MT reduced the Na+/K+ ratio to reduce ion toxicity by upregulating the expression of Na+ transporter genes (MhCAX5, MhCHX15, MhSOS1, and MhALT1) and downregulating the expression of K+ transporter genes (MhSKOR and MhNHX4). In addition, MT can increase antioxidant enzyme activity (superoxide dismutase (SOD), peroxidase(POD), catalase (CAT), ascorbic acid oxidase (AAO), ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR)) in the ASA-GSH cycle and increase ascorbic acid (AsA), reduced glutathione (GSH) and oxidized glutathione (GSSG) levels to counteract the accumulation of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and Superoxide anion free radicals (O2−), reducing oxidative damage. Exogenous MT promotes M9-T337 seedlings growth under saline-alkaline stress by responding synergistically with auxin (IAA), gibberellin (GA3) and zeatin (ZT) to saline-alkaline stress. Our results confirm that MT has the potential to alleviate Saline-alkaline stress by promoting root growth, increasing biomass accumulation and photosynthetic capacity, strengthening the antioxidant defense system, maintaining ionic balance, the ascorbate–glutathione cycle and the Osmoregulation facilitates and regulates endogenous hormone levels in M9-T337 seedlings. Abstract Melatonin (MT) is an important plant growth regulator that significantly regulates the growth and development of plants. Previous studies confirmed the effectiveness of MT in improving plant stress tolerance. In this study, annual M9-T337 seedlings were selected as subjects, and five treatments were applied: control (CK), in which only half the concentration of Hoagland was applied; Saline-alkaline stress treatment (SA, 100 mmol·L−1 saline-alkaline solution); melatonin treatment (MT, CK + 200 μmol L−1 exogenous MT); Saline-alkaline + melatonin treatment (MS, SA + 200 μmol L−1 exogenous MT); and saline-alkaline stress + melatonin + inhibitor treatment (HS, additional 100 μmol L−1 p-CPA treatment to MS). The results showed that saline-alkaline stress negatively affected the growth of M9-T337 seedlings by reducing photosynthetic capacity, increasing Na+, promoting reactive oxygen species such as H2O2, and changing the osmotic content and antioxidant system. However, the application of exogenous MT effectively alleviated saline-alkaline damage and significantly promoted the growth of M9-T337 seedlings. It significantly increased plant height, diameter, root length, root surface area, volume and activity. Furthermore, MT alleviated osmotic stress by accumulating proline, soluble sugars, soluble proteins and starch. MT improved photosynthetic capacity by delaying chlorophyll degradation and regulating gas exchange parameters as well as fluorescence parameters in leaves. Additionally, MT reduced the Na+/K+ ratio to reduce ion toxicity by upregulating the expression of Na+ transporter genes (MhCAX5, MhCHX15, MhSOS1, and MhALT1) and downregulating the expression of K+ transporter genes (MhSKOR and MhNHX4). In addition, MT can increase antioxidant enzyme activity (superoxide dismutase (SOD), peroxidase(POD), catalase (CAT), ascorbic acid oxidase (AAO), ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR)) in the ASA-GSH cycle and increase ascorbic acid (AsA), reduced glutathione (GSH) and oxidized glutathione (GSSG) levels to counteract the accumulation of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and Superoxide anion free radicals (O2 −), reducing oxidative damage. Exogenous MT promotes M9-T337 seedlings growth under saline-alkaline stress by responding synergistically with auxin (IAA), gibberellin (GA3) and zeatin (ZT) to saline-alkaline stress. Our results confirm that MT has the potential to alleviate Saline-alkaline stress by promoting root growth, increasing biomass accumulation and photosynthetic capacity, strengthening the antioxidant defense system, maintaining ionic balance, the ascorbate–glutathione cycle and the Osmoregulation facilitates and regulates endogenous hormone levels in M9-T337 seedlings. Graphical Abstract Melatonin (MT) is an important plant growth regulator that significantly regulates the growth and development of plants. Previous studies confirmed the effectiveness of MT in improving plant stress tolerance. In this study, annual M9-T337 seedlings were selected as subjects, and five treatments were applied: control (CK), in which only half the concentration of Hoagland was applied; Saline-alkaline stress treatment (SA, 100 mmol·L −1 saline-alkaline solution); melatonin treatment (MT, CK + 200 μmol L −1 exogenous MT); Saline-alkaline + melatonin treatment (MS, SA + 200 μmol L −1 exogenous MT); and saline-alkaline stress + melatonin + inhibitor treatment (HS, additional 100 μmol L −1 p-CPA treatment to MS). The results showed that saline-alkaline stress negatively affected the growth of M9-T337 seedlings by reducing photosynthetic capacity, increasing Na + , promoting reactive oxygen species such as H 2 O 2 , and changing the osmotic content and antioxidant system. However, the application of exogenous MT effectively alleviated saline-alkaline damage and significantly promoted the growth of M9-T337 seedlings. It significantly increased plant height, diameter, root length, root surface area, volume and activity. Furthermore, MT alleviated osmotic stress by accumulating proline, soluble sugars, soluble proteins and starch. MT improved photosynthetic capacity by delaying chlorophyll degradation and regulating gas exchange parameters as well as fluorescence parameters in leaves. Additionally, MT reduced the Na + /K + ratio to reduce ion toxicity by upregulating the expression of Na + transporter genes ( MhCAX5 , MhCHX15 , MhSOS1 , and MhALT1 ) and downregulating the expression of K + transporter genes ( MhSKOR and MhNHX4 ). In addition, MT can increase antioxidant enzyme activity (superoxide dismutase (SOD), peroxidase(POD), catalase (CAT), ascorbic acid oxidase (AAO), ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR)) in the ASA-GSH cycle and increase ascorbic acid (AsA), reduced glutathione (GSH) and oxidized glutathione (GSSG) levels to counteract the accumulation of reactive oxygen species (ROS) such as hydrogen peroxide (H 2 O 2 ) and Superoxide anion free radicals (O 2 − ), reducing oxidative damage. Exogenous MT promotes M9-T337 seedlings growth under saline-alkaline stress by responding synergistically with auxin (IAA), gibberellin (GA 3 ) and zeatin (ZT) to saline-alkaline stress. Our results confirm that MT has the potential to alleviate Saline-alkaline stress by promoting root growth, increasing biomass accumulation and photosynthetic capacity, strengthening the antioxidant defense system, maintaining ionic balance, the ascorbate–glutathione cycle and the Osmoregulation facilitates and regulates endogenous hormone levels in M9-T337 seedlings. Graphical Abstract |
ArticleNumber | 58 |
Author | Cheng, Jiao Ma, Naiying Wang, Yanxiu Gao, Yanlong Zhang, Zhongxing Li, Cailong Xian, Xulin Wang, Shuangcheng |
Author_xml | – sequence: 1 givenname: Xulin surname: Xian fullname: Xian, Xulin organization: College of Horticulture, Gansu Agricultural University – sequence: 2 givenname: Zhongxing surname: Zhang fullname: Zhang, Zhongxing organization: College of Horticulture, Gansu Agricultural University – sequence: 3 givenname: Shuangcheng surname: Wang fullname: Wang, Shuangcheng organization: College of Horticulture, Gansu Agricultural University – sequence: 4 givenname: Jiao surname: Cheng fullname: Cheng, Jiao organization: College of Horticulture, Gansu Agricultural University – sequence: 5 givenname: Yanlong surname: Gao fullname: Gao, Yanlong organization: College of Horticulture, Gansu Agricultural University – sequence: 6 givenname: Naiying surname: Ma fullname: Ma, Naiying organization: College of Horticulture, Gansu Agricultural University – sequence: 7 givenname: Cailong surname: Li fullname: Li, Cailong organization: College of Horticulture, Gansu Agricultural University – sequence: 8 givenname: Yanxiu surname: Wang fullname: Wang, Yanxiu email: wangxy@gsau.edu.cn organization: College of Horticulture, Gansu Agricultural University |
BookMark | eNp9ks1u1DAUhSNUJErpC7CyxIZNwL-JvURVKZWK2JS1deM4GU89drA9MPNAvCdmAgJ10ZXvtb9z5Ht1XjZnIQbbNK8JfkeI7N5njgWTLaa8xVj0fXt41pxTorpWdJyc_Ve_aC5z3mKMCSVS9ey8-Xl9iLMNcZ_RznooMbiAckk2zGVjQ0YZvAu2Bf9Qi9NLzqhEbxMEY1GlYVm8RSnGkks0D-izau8Z61G2dqzaOaPhWDlXHJTaIkDfITlbjihOaNkcs4s-zs6ARxBGNLhoNnZ36hcomx9wzK-a5xP4bC__nBfN14_X91ef2rsvN7dXH-5awzta2o4LOxJFp4ETMfGJCilHIZWRzDDVkWnAWHFKgEjTiUHSyZiu5z2hAtgoObtoblffMcJWL8ntIB11BKdPFzHNGlJxxlstcS8mpSbKB8EHbqFXXTUHxgm2Sg7V6-3qtaT4bW9z0TuXjfUegq3r1owI1mNORVfRN4_QbdynUCfVDHMmetkrUSm5UibFnJOdtHGlrjSGksB5TbD-HQe9xkHXOOhTHPShSukj6d_ZnhSxVZQrHGab_v3qCdUvSdfMBw |
CitedBy_id | crossref_primary_10_1080_15592324_2024_2379695 crossref_primary_10_1016_j_stress_2025_100789 crossref_primary_10_3390_ijms26020574 crossref_primary_10_1016_j_indcrop_2024_120002 |
Cites_doi | 10.1016/j.plaphy.2022.02.004 10.3390/ijms20071735 10.1007/s00425-008-0878-y 10.1016/j.plaphy.2021.03.058 10.1016/j.hpj.2019.01.002 10.1016/j.plaphy.2022.06.019 10.3389/fpls.2022.998861 10.1016/j.niox.2016.01.003 10.1016/j.envexpbot.2018.12.011 10.3389/fpls.2018.01939 10.1016/j.hpj.2021.03.008 10.21273/JASHS.138.5.395 10.1016/j.scienta.2013.03.032 10.1080/15592324.2022.2031782 10.1104/pp.24.1.1 10.1016/j.scienta.2022.111002 10.1016/j.jaridenv.2005.04.015 10.1071/FP18120 10.1016/j.scienta.2019.108761 10.1007/s11427-020-1683-x 10.3389/fpls.2022.965996 10.3390/agronomy12061393 10.1002/csc2.20949 10.1007/s11120-010-9588-y 10.1371/journal.pgen.1007086 10.1007/s13238-017-0454-y 10.1007/s41748-017-0033-7 10.1016/j.envexpbot.2019.03.015 10.3389/fpls.2022.905100 10.1016/j.ecoenv.2015.03.023 10.3389/fpls.2021.567782 10.1016/j.stress.2022.100111 10.1016/j.scienta.2014.10.049 10.1038/s41438-019-0172-0 10.3390/antiox12111917 10.1002/jsfa.4746 10.1016/j.scienta.2021.110026 10.3389/fpls.2022.998293 10.1016/j.scienta.2018.10.058 10.1111/tpj.13595 10.1104/pp.011254 10.3390/antiox8090384 10.1104/pp.16.00648 10.1111/nph.14891 10.1016/j.jphotobiol.2016.10.026 10.1007/s44154-022-00061-2 10.1021/acsomega.2c01427 10.1016/j.envexpbot.2010.03.004 10.1007/s00299-020-02543-x 10.1016/j.plaphy.2020.12.027 10.3390/plants8120610 10.3390/antiox11040758 10.1080/02827581.2014.960892 10.1134/S1021443717020042 10.1007/s00468-021-02140-9 10.1111/jpi.12243 10.1016/j.stress.2022.100122 10.3390/plants10050886 10.3390/biom9110640 10.3906/tar-1405-102 10.3390/antiox10081227 10.1016/j.jplph.2022.153813 10.1186/s12870-018-1228-2 10.1105/tpc.20.00800 10.1016/j.ecoleng.2016.07.011 10.5513/JCEA01/20.3.2312 10.1007/s10725-022-00857-2 10.1080/00103624.2015.1059848 10.15243/jdmlm.2018.052.1047 10.3390/plants10050845 10.1016/j.scienta.2018.10.017 10.1016/j.plaphy.2021.04.017 10.1016/j.plaphy.2017.07.015 10.1016/j.indcrop.2021.113671 10.18517/ijaseit.12.3.13311 10.1016/j.tplants.2014.02.001 10.2134/agronj2009.0471 10.3390/plants11050639 10.1016/j.eti.2021.101808 10.3389/fpls.2021.680376 10.1016/j.jfca.2022.104507 10.1111/ppl.12737 10.1016/j.envexpbot.2013.03.001 10.1016/j.sajb.2022.03.050 10.3923/ijar.2017.19.27 10.1016/j.plaphy.2022.11.041 10.1186/s12870-022-03930-0 10.1016/j.bbrc.2017.11.043 10.1016/j.pmpp.2019.03.003 10.3390/plants11091151 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M0K M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 DOA |
DOI | 10.1186/s40538-024-00577-x |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Agricultural Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Agricultural Science Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2196-5641 |
EndPage | 58 |
ExternalDocumentID | oai_doaj_org_article_8075f99f24b54b4ea796094a3410e98b 10_1186_s40538_024_00577_x |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 32160696 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | 0R~ 5VS 7X2 8FE 8FH AAFWJ AAHBH AAJSJ AAKKN ABEEZ ACACY ACGFS ACULB ADBBV ADINQ AEUYN AFGXO AFKRA AFPKN AHBYD ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG ATCPS BBNVY BCNDV BENPR BHPHI C24 C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ IAO KQ8 LK8 M0K M7P M~E OK1 PIMPY PROAC RSV RVI SOJ AASML AAYXX CITATION PHGZM PHGZT 3V. 8FK ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c462t-645ed192fb415f4f2588d589c83c3961fb009421a18c65b82fcc6747125a3d843 |
IEDL.DBID | BENPR |
ISSN | 2196-5641 |
IngestDate | Wed Aug 27 01:18:56 EDT 2025 Thu Jul 10 17:36:11 EDT 2025 Fri Jul 25 11:12:35 EDT 2025 Thu Apr 24 23:09:53 EDT 2025 Tue Jul 01 03:41:16 EDT 2025 Fri Feb 21 02:40:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | M9-T337 Saline-alkaline stress Ion homeostasis Oxidative damage ASA-GSH cycle |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-645ed192fb415f4f2588d589c83c3961fb009421a18c65b82fcc6747125a3d843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/3043578795?pq-origsite=%requestingapplication% |
PQID | 3043578795 |
PQPubID | 2034788 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8075f99f24b54b4ea796094a3410e98b proquest_miscellaneous_3153704256 proquest_journals_3043578795 crossref_citationtrail_10_1186_s40538_024_00577_x crossref_primary_10_1186_s40538_024_00577_x springer_journals_10_1186_s40538_024_00577_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Chemical and biological technologies in agriculture |
PublicationTitleAbbrev | Chem. Biol. Technol. Agric |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
References | Gao, Liu, Zhang (CR33) 2020; 55 Liang, Ma, Wan, Liu (CR1) 2017; 495 Arnon (CR35) 1949; 24 Wu, Hu, Liao, Mohammed, Lyu, Xie, Feng, Calderón-Urrea, Yu (CR84) 2019; 257 Goda, Shimada, Asami, Fujioka, Yoshida (CR80) 2002; 130 Jia, Zhang, Liu, Zou, Ma, Xu, Chun (CR27) 2019; 39 Jia, Zhu, Hu, Zhang, Cheng, Zhu, Zhao, Zhang, Wang (CR32) 2019; 6 Gong, Wen, Vandenlangenbery, Wei, Yang, Shi, Wamh (CR14) 2013; 157 González, Reyes, Tighe, Inostroza, Escobar, Bravo (CR22) 2022; 11 María, Maria, Maria, Hu, Sandalio (CR18) 2016; 171 Eros, Shriravi (CR45) 2016; 165 Zhang, Zhou, Dong, Zhang, He, Chen, Zhu, Zhao (CR61) 2021; 169 Li, Yang, Zhang (CR24) 2019; 162 Yang, Guo, Shi (CR12) 2010; 102 Su, Rahat, Ren, Kojima, Takebayashi, Sakakibara, Wang, Chen, Qi (CR93) 2021; 282 Pu, An, Han, Zhang (CR70) 2015; 117 Ren, Zhang (CR74) 2017; 8 Yan, Zhang, Li, Ding, Zhong, Xu, Wei, Li (CR67) 2021; 163 Singh, Bhatla (CR8) 2016; 53 Omena-Garcia, Martins, Medeiros, Vallarino, Ribeiro, Fernie, Araújo, Nunes-Nesi (CR23) 2019; 159 Mehta, Allakhverdiev, Jajoo (CR64) 2010; 105 Hayat, Hasan, Yusuf, Hayat, Ahmad (CR78) 2010; 69 Zhang, Wang, Ma, Ouyang, Deng, Shen, Dong, Du, Dong, Guo (CR79) 2022; 11 Tawfik, Badr, Ibrahim (CR88) 2017; 12 Varghese, Alyammahi, Nasreddine, Alhassani, Gururani (CR52) 2019; 8 Liu, Song, Li, Yuan, Li, Fu, Zhang, Ma, Liu, Zou, Cheng (CR28) 2016; 17 Dhokne, Pandey, Yadav, Ramachandran, Rath, Subramanyam (CR60) 2022; 177 Yuan, Xu, Duan, Fan, Li (CR37) 2013; 138 Ali, Shaheen, Ihsan, Masood, Zubair, Shehzad, Khalid (CR75) 2022; 148 Sengupta, Majumder (CR66) 2009; 229 Chen, Burke, John, Xin (CR63) 2018; 18 Chu, Bao, Li, Sun, Liu, Shi, Huang (CR34) 2023; 12 Ashraf, Orooj (CR53) 2006; 64 Zuo, Li, Guan, Jia, Xu, Zhamg, Lu, Li, Li, Pang (CR20) 2022; 278 Fan, Ding, Xu, Du (CR57) 2017; 64 High (CR72) 2016; 7 El-Badri, Batool, Mohamed, Wang, Khatab, Sherif, Ahmad, Khan, Hassan, Elrewainy (CR96) 2021; 10 Liang, Fang, Ji, Zheng (CR4) 2015; 46 Lin, Niu, Jiang, Yu, Wang, Qiao (CR36) 2022; 8 Wang, Wang, Lv, Khanzada, Huang, Cai, Zhou, Huo, Jiang (CR44) 2021; 3 An, Chen, Gao, Li, Chao (CR17) 2017; 13 Gong, Xiong, Shi, Yang, Herrera-Estrella, Xu, Chao, Li, Wang, Qin, Li, Ding, Shi, Wang, Yang, Guo, Zhu (CR97) 2020; 63 Cut, Rita, Bakhtiar, Sabaruddin, Efendi (CR42) 2022; 12 José, Carlos (CR56) 2019; 5 Yamika, Aini, Setiawan, Purwaningrahayu (CR9) 2018; 5 Reeta, Sonal, Deepali, Neeti, Amit (CR19) 2022; 6 Wang, Jie, Peng, Hua, Yan, Zhou, Lin (CR49) 2019; 9 Xu, Kang, Zhu, Zhao, Yuan, Yang, Zhen, Hu (CR86) 2021; 164 Liang, Ni, Xia, Xie, Lv, Wang, Lin, Deng, Luo (CR76) 2019; 246 An, Yang, Zhang, Zhang, Du, Yao, Li, Guo (CR10) 2020; 39 Ge, Chen, Li, Wei, Li, Tang, Duan (CR41) 2019; 106 Hnilickova, Kraus, Vachova, Hnilicka (CR39) 2021; 10 Zhang, Liu, Wang, Wang, Zhang, Chen, Liu, Wang, Li (CR90) 2021; 10 Harizanova, Koleva-Valkova (CR62) 2019; 20 Lu, Tian, Hou, Jia, Li, Hao, Jiang, Liu (CR5) 2022; 2 Wang, Sheng, Shi, Yu, Li (CR3) 2016; 95 Soumya, Satish (CR30) 2020; 40 Hasegawa (CR7) 2013; 92 Li, Xie, Yu, Lv, Zhang, Ding, Li, Zhang, Bakpa, Yang, Niu, Gao (CR29) 2022; 13 Ullah, Tian, Xu, Abid, Lei, Khanzada, Zeeshan, Sun, Yu, Dai (CR40) 2022; 13 Zhu, Li, Thorpe, Charles, Song (CR58) 2021; 35 Yan, Chong, Zhao (CR13) 2022; 17 Saima (CR98) 2020; 32 Liu, Jin, Wang, Gong, Wen, Wang, Wei, Shi (CR50) 2015; 18 He, Zhou, Lü, Liang (CR54) 2022; 12 Eiyazied, Ibrahim, Ibrahim, Nasef, AlQahtani, AlHarbi (CR31) 2022; 11 Şevket, Melayib (CR43) 2018; 2 Jiang, Ye, Liu, Brestic, Li (CR25) 2022; 13 Zheng, Zhao, Shan, Shi, Wang, Li, Wang, Zhou, Yao, Xue, Fang, Chu, Guo, Kong (CR46) 2018; 217 Wang, Wang, Zhu, Li (CR81) 2021; 12 Fu, Zhu, Wang, Liu, Shen, Xu, Wang (CR94) 2021; 159 Li, Fu, Li, Yin, Xi (CR21) 2022; 299 Chen, Mao, Sun, Huang, Ding, Gu (CR77) 2018; 164 Wang, Liu, Yang, Wu, Wang, He, Zhou (CR91) 2022; 185 Pravej, Thamer, Albalawi, Altalayan, Mohammad, Vaseem, Muhammad, Parvaiz (CR83) 2019; 9 Kaya (CR85) 2023; 194 Xu, Lei, Pang, Li, Feng, Xu (CR92) 2017; 118 Kobayashi, Yamaji, Yamamoto, Okubo, Ueno, Costa, Horie (CR16) 2017; 91 Mafakheri, Siosemardeh, Bahramnejad (CR59) 2010; 4 Mirza, Bhuyan, Taufika, Khursheda, Kamrun, Mahmud, Masayuki (CR82) 2019; 8 Jia, Wang, Svetla, Zhu, Hu, Cheng, Zhao, Wang (CR95) 2019; 245 Mikolajczyk (CR15) 2000; 12 Weisany, Sohrabi, Heidari, Siosemardeh, Ghassemi-Golezani (CR71) 2012; 5 Wei, Li, Ming, Peng (CR100) 2022; 22 Zhao, Bian, Li, Wang, Yang, Ciu, Kentbayev, Kentbayeva (CR2) 2014; 29 Yuan, Liang, Li, Yin, Wang (CR38) 2018; 46 An, Gao, Tong, Liu (CR48) 2021; 12 Gao, Huang, Gong, Wang, Qiao, Xiao, Yang, Yu, Guo, Yu, Zhang (CR26) 2022; 98 Cai, He, Lin, Nie, Li, Liu, Ma (CR89) 2023; 63 Yan, Mei, Dong, Zhou, Cui, Sun (CR65) 2022; 13 Parveen, Ahmar, Kamran, Ali, Riaz (CR99) 2021; 413 Li, Liu, Zhu, Zhao, Li, Chen (CR51) 2019; 20 Kuang, Wang, Zhang, Xu, Li (CR47) 2022; 109 Deinlein, Stephan, Horie, Cuo, Xu, Schroeder (CR11) 2014; 19 Song, Zheng, Basne, Li, Chen, Jiang (CR69) 2022; 6 Liang, Zheng, Li, Wang, Hu, Wang, Wu, Qian, Zhu, Tan, Chen, Chu (CR73) 2015; 59 Taârit, Msaada, Hosni, Marzouk (CR55) 2012; 92 Alharbi, Al-Osaimi, Alghamdi (CR68) 2022; 7 Capula, Valdez, Cartmill, Alia (CR6) 2016; 47 Hosseini, Hasanloo, Mohammadi (CR87) 2015; 39 H Hnilickova (577_CR39) 2021; 10 PM Hasegawa (577_CR7) 2013; 92 L Kuang (577_CR47) 2022; 109 T Zhang (577_CR79) 2022; 11 JW Xu (577_CR86) 2021; 164 Y Ren (577_CR74) 2017; 8 K Alharbi (577_CR68) 2022; 7 Y Song (577_CR69) 2022; 6 YE Chen (577_CR77) 2018; 164 PR Omena-Garcia (577_CR23) 2019; 159 CW Yang (577_CR12) 2010; 102 JH Yuan (577_CR37) 2013; 138 M Jiang (577_CR25) 2022; 13 CZ Liang (577_CR73) 2015; 59 Y An (577_CR48) 2021; 12 C Kaya (577_CR85) 2023; 194 M Mikolajczyk (577_CR15) 2000; 12 MM Cai (577_CR89) 2023; 63 AM El-Badri (577_CR96) 2021; 10 K Reeta (577_CR19) 2022; 6 LL Zhu (577_CR58) 2021; 35 X Jia (577_CR32) 2019; 6 N Liu (577_CR50) 2015; 18 HF Fan (577_CR57) 2017; 64 B Gong (577_CR14) 2013; 157 S Hayat (577_CR78) 2010; 69 K Dhokne (577_CR60) 2022; 177 A Pravej (577_CR83) 2019; 9 J Fu (577_CR94) 2021; 159 XH Pu (577_CR70) 2015; 117 YJ Zuo (577_CR20) 2022; 278 LY Gao (577_CR33) 2020; 55 Y Wu (577_CR84) 2019; 257 A Harizanova (577_CR62) 2019; 20 J Chen (577_CR63) 2018; 18 ZQ Xu (577_CR92) 2017; 118 Y Chu (577_CR34) 2023; 12 YH Ge (577_CR41) 2019; 106 F Yuan (577_CR38) 2018; 46 FN Wang (577_CR3) 2016; 95 P Mehta (577_CR64) 2010; 105 R Capula (577_CR6) 2016; 47 HM Wang (577_CR91) 2022; 185 CC Lu (577_CR5) 2022; 2 Z Liu (577_CR28) 2016; 17 D Liang (577_CR76) 2019; 246 H Goda (577_CR80) 2002; 130 Y Zhang (577_CR61) 2021; 169 D An (577_CR17) 2017; 13 A Parveen (577_CR99) 2021; 413 XD Zheng (577_CR46) 2018; 217 J Wang (577_CR81) 2021; 12 A Mafakheri (577_CR59) 2010; 4 H Mirza (577_CR82) 2019; 8 J Li (577_CR51) 2019; 20 Q Li (577_CR24) 2019; 162 CH Jia (577_CR27) 2019; 39 W Weisany (577_CR71) 2012; 5 BB Li (577_CR21) 2022; 299 K Yan (577_CR65) 2022; 13 DI Arnon (577_CR35) 1949; 24 XY Zhao (577_CR2) 2014; 29 S Saima (577_CR98) 2020; 32 VJ González (577_CR22) 2022; 11 HS Gao (577_CR26) 2022; 98 L Lin (577_CR36) 2022; 8 R Wei (577_CR100) 2022; 22 U Deinlein (577_CR11) 2014; 19 LC José (577_CR56) 2019; 5 M Soumya (577_CR30) 2020; 40 K Eros (577_CR45) 2016; 165 N Singh (577_CR8) 2016; 53 A Ullah (577_CR40) 2022; 13 XM Jia (577_CR95) 2019; 245 Z Gong (577_CR97) 2020; 63 PF Zhang (577_CR90) 2021; 10 J Li (577_CR29) 2022; 13 RS María (577_CR18) 2016; 171 FY Yan (577_CR67) 2021; 163 WSD Yamika (577_CR9) 2018; 5 M Ashraf (577_CR53) 2006; 64 NI Cut (577_CR42) 2022; 12 SM Hosseini (577_CR87) 2015; 39 L Ali (577_CR75) 2022; 148 SI High (577_CR72) 2016; 7 AA Eiyazied (577_CR31) 2022; 11 MM Tawfik (577_CR88) 2017; 12 Y An (577_CR10) 2020; 39 WL Wang (577_CR44) 2021; 3 NI Kobayashi (577_CR16) 2017; 91 S Sengupta (577_CR66) 2009; 229 MB Taârit (577_CR55) 2012; 92 N Varghese (577_CR52) 2019; 8 XL Liang (577_CR4) 2015; 46 SP Yan (577_CR13) 2022; 17 YN Wang (577_CR49) 2019; 9 WJ Liang (577_CR1) 2017; 495 T Şevket (577_CR43) 2018; 2 L Su (577_CR93) 2021; 282 H He (577_CR54) 2022; 12 |
References_xml | – volume: 177 start-page: 46 year: 2022 end-page: 60 ident: CR60 article-title: Change in the photochemical and structural organization of thylakoids from pea ( ) under salt stress publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2022.02.004 – volume: 20 start-page: 1735 issue: 7 year: 2019 ident: CR51 article-title: The role of melatonin in salt stress responses publication-title: Int J Mol Sci doi: 10.3390/ijms20071735 – volume: 229 start-page: 911 issue: 4 year: 2009 end-page: 929 ident: CR66 article-title: Insight into the salt tolerance factors of a wild halophytic rice, : a physio-logical and proteomic approach publication-title: Planta doi: 10.1007/s00425-008-0878-y – volume: 163 start-page: 367 year: 2021 end-page: 375 ident: CR67 article-title: Exogenous melatonin alleviates salt stress by improving leaf photosynthesis in rice seedlings publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2021.03.058 – volume: 3 start-page: 1 year: 2021 end-page: 14 ident: CR44 article-title: Effects of cold and salicylic acid priming on free proline and sucrose accumulation in winter wheat under freezing stress publication-title: J Plant Growth Regul – volume: 5 start-page: 79 issue: 2 year: 2019 end-page: 87 ident: CR56 article-title: Effect of exogenous melatonin on seed germination and seedling growth in melon ( L.) under salt stress publication-title: Hortic Plant J. doi: 10.1016/j.hpj.2019.01.002 – volume: 185 start-page: 336 year: 2022 end-page: 343 ident: CR91 article-title: Potassium application promote cotton acclimation to soil waterlogging stress by regulating endogenous protective enzymes activities and hormones contents publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2022.06.019 – volume: 13 start-page: 998861 year: 2022 end-page: 998861 ident: CR25 article-title: Rhizosphere melatonin application reprograms nitrogen-cycling related micro-organisms to modulate low temperature response in barley publication-title: Front Plant Sci doi: 10.3389/fpls.2022.998861 – volume: 53 start-page: 54 year: 2016 end-page: 64 ident: CR8 article-title: Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons publication-title: Nitric Oxide doi: 10.1016/j.niox.2016.01.003 – volume: 159 start-page: 95 year: 2019 end-page: 107 ident: CR23 article-title: Growth and metabolic adjustments in response to gibberellin deficiency in drought stressed tomato plants publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2018.12.011 – volume: 9 start-page: 1939 year: 2019 ident: CR49 article-title: Physiological adaptive strategies of oil seed crop early seedlings (cotyledon vs. true leaf) under salt and alkali stresses: from the growth, photosynthesis and chlorophyll fluorescence publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01939 – volume: 8 start-page: 133 issue: 2 year: 2022 end-page: 142 ident: CR36 article-title: Influences of open-central canopy on photosynthetic parameters and fruit quality of apples (Malus × domestica) in the Loess Plateau of China publication-title: Hortic Plant J doi: 10.1016/j.hpj.2021.03.008 – volume: 138 start-page: 395 issue: 5 year: 2013 end-page: 402 ident: CR37 article-title: Effects of whole-root and half-root water stress on gas exchange and chlorophyll fluorescence parameters in apple trees publication-title: J Am Soc Hortic Sci doi: 10.21273/JASHS.138.5.395 – volume: 157 start-page: 1 year: 2013 end-page: 12 ident: CR14 article-title: Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves publication-title: Sci Hortic doi: 10.1016/j.scienta.2013.03.032 – volume: 17 start-page: 2031782 issue: 1 year: 2022 end-page: 2031782 ident: CR13 article-title: Effect of salt stress on the photosynthetic characteristics and endogenous hormones, and: a comprehensive evaluation of salt tolerance in seedlings publication-title: Plant Signal Behav doi: 10.1080/15592324.2022.2031782 – volume: 24 start-page: 1 year: 1949 end-page: 15 ident: CR35 article-title: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in publication-title: Plant Physiol doi: 10.1104/pp.24.1.1 – volume: 299 year: 2022 ident: CR21 article-title: Brassinosteroids alleviate cadmium phytotoxicity by minimizing oxidative stress in grape seedlings: toward regulating the ascorbate-glutathione cycle publication-title: Sci Hortic doi: 10.1016/j.scienta.2022.111002 – volume: 64 start-page: 209 issue: 2 year: 2006 end-page: 220 ident: CR53 article-title: Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain ( [L.] Sprague) publication-title: J Arid Environ doi: 10.1016/j.jaridenv.2005.04.015 – volume: 46 start-page: 82 issue: 1 year: 2018 end-page: 92 ident: CR38 article-title: Methyl jasmonate improves tolerance to high salt stress in the recretohalophyte Limonium bicolor publication-title: Funct Plant Biol doi: 10.1071/FP18120 – volume: 257 start-page: 108761 year: 2019 end-page: 108761 ident: CR84 article-title: Foliar application of 5-aminolevulinic acid (ALA) alleviates NaCl stress in cucumber ( L.) seedlings through the enhancement of ascorbate-glutathione cycle publication-title: Sci Hortic doi: 10.1016/j.scienta.2019.108761 – volume: 63 start-page: 635 issue: 5 year: 2020 end-page: 674 ident: CR97 article-title: Plant abiotic stress response and nutrient use efficiency publication-title: Sci China Life Sci doi: 10.1007/s11427-020-1683-x – volume: 40 start-page: 1 issue: 6 year: 2020 end-page: 13 ident: CR30 article-title: Exogenous melatonin modulates endogenous H 2 S homeostasis and L-Cysteine desulfhydrase activity in salt-stressed tomato ( L. var. cherry) seedling cotyledons publication-title: J Plant Growth Regul – volume: 47 start-page: 505 issue: 4 year: 2016 end-page: 511 ident: CR6 article-title: Supplementary calcium and potassium improve the response of Tomato ( L.) to simultaneous alkalinity salinity and boron stress publication-title: Commun Soil Sci Plant Anal – volume: 13 year: 2022 ident: CR40 article-title: Improving the effects of drought priming against post-anthesis drought stress in wheat ( L.) using nitrogen publication-title: Front Plant Sci doi: 10.3389/fpls.2022.965996 – volume: 12 start-page: 1393 issue: 6 year: 2022 ident: CR54 article-title: Growth, leaf morphological and physiological adaptability of leaf beet ( var. cicla) to salt stress: a soil culture experiment publication-title: Agronomy doi: 10.3390/agronomy12061393 – volume: 63 start-page: 1442 issue: 3 year: 2023 end-page: 1457 ident: CR89 article-title: Comparative physiological, transcriptome, and qRT-PCR analysis provide insights into osmotic adjustment in the licorice species under salt stress publication-title: Crop Sci doi: 10.1002/csc2.20949 – volume: 105 start-page: 249 issue: 3 year: 2010 end-page: 255 ident: CR64 article-title: Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves ( ) publication-title: Photosynth Res doi: 10.1007/s11120-010-9588-y – volume: 13 issue: 10 year: 2017 ident: CR17 article-title: drives adaptation of to salinity by reducing floral sodium content publication-title: PLoS Genet doi: 10.1371/journal.pgen.1007086 – volume: 8 start-page: 707 issue: 10 year: 2017 end-page: 710 ident: CR74 article-title: The excessive response: a preparation for harder conditions publication-title: Protein Cell doi: 10.1007/s13238-017-0454-y – volume: 2 start-page: 85 issue: 1 year: 2018 end-page: 94 ident: CR43 article-title: Enhanced soluble protein and biochemical methane potential of apple biowaste by different pre-treatment publication-title: Earth Syst Environ doi: 10.1007/s41748-017-0033-7 – volume: 7 start-page: 276 year: 2016 ident: CR72 article-title: Different oxidative stress and antioxidant responses in maize seedlings organs publication-title: Front Plant Sci – volume: 162 start-page: 357 year: 2019 end-page: 363 ident: CR24 article-title: Higher endogenous bioactive gibberellins and α-amylase activity confer greater tolerance of rice seed germination to saline-alkaline stress publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2019.03.015 – volume: 13 year: 2022 ident: CR65 article-title: Dissecting photosynthetic electron transport and photosystems performance in Jerusalem artichoke ( L.) under salt stress publication-title: Front Plant Sci doi: 10.3389/fpls.2022.905100 – volume: 117 start-page: 96 year: 2015 end-page: 106 ident: CR70 article-title: Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass ( L.) cultivars publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2015.03.023 – volume: 12 start-page: 567782 year: 2021 end-page: 567782 ident: CR48 article-title: Morphological and physiological traits related to the response and adaption of seedlings grown under salt-alkaline stress conditions publication-title: Front Plant Sci doi: 10.3389/fpls.2021.567782 – volume: 6 year: 2022 ident: CR19 article-title: Potential of organic amendments (AM fungi, PGPR, vermicompost and seaweeds) in combating salt stress- a review publication-title: Plant Stress. doi: 10.1016/j.stress.2022.100111 – volume: 18 start-page: 18 year: 2015 end-page: 25 ident: CR50 article-title: Sodic alkaline stress mitigation with exogenous melatonin involves reactive oxygen metabolism and ion homeostasis in tomato publication-title: Sci Hortic doi: 10.1016/j.scienta.2014.10.049 – volume: 6 start-page: 1 issue: 1 year: 2019 end-page: 19 ident: CR32 article-title: Integrated physiologic, proteomic, and metabolomic analyses of adaptation to saline–alkali stress publication-title: Hortic Res doi: 10.1038/s41438-019-0172-0 – volume: 12 start-page: 1917 issue: 11 year: 2023 ident: CR34 article-title: Melatonin alleviates antimony toxicity by regulating the antioxidant response and reducing antimony accumulation in L publication-title: Antioxidants doi: 10.3390/antiox12111917 – volume: 92 start-page: 1614 issue: 8 year: 2012 end-page: 1619 ident: CR55 article-title: Physiological changes, phenolic content and antioxidant activity of L. grown under saline conditions publication-title: J Sci Food Agric doi: 10.1002/jsfa.4746 – volume: 282 year: 2021 ident: CR93 article-title: Cytokinin and auxin modulate cucumber parthenocarpy fruit development publication-title: Sci Hortic doi: 10.1016/j.scienta.2021.110026 – volume: 13 start-page: 998293 year: 2022 end-page: 998293 ident: CR29 article-title: Melatonin enhanced low-temperature combined with low-light tolerance of pepper ( L.) seedlings by regulating root growth, antioxidant defense system, and osmotic adjustment publication-title: Front Plant Sci doi: 10.3389/fpls.2022.998293 – volume: 5 start-page: 60 issue: 2 year: 2012 end-page: 67 ident: CR71 article-title: Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean ( L.) publication-title: Plant Omics. – volume: 246 start-page: 34 year: 2019 end-page: 43 ident: CR76 article-title: Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress publication-title: Sci Hortic doi: 10.1016/j.scienta.2018.10.058 – volume: 91 start-page: 657 issue: 4 year: 2017 end-page: 670 ident: CR16 article-title: OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice publication-title: Plant J doi: 10.1111/tpj.13595 – volume: 130 start-page: 1319 issue: 3 year: 2002 end-page: 1334 ident: CR80 article-title: Microarray analysis of brassinosteroid-regulated genes in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.011254 – volume: 8 start-page: 384 issue: 9 year: 2019 end-page: 384 ident: CR82 article-title: Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress publication-title: Antioxidants doi: 10.3390/antiox8090384 – volume: 17 start-page: 328 issue: 2 year: 2016 end-page: 335 ident: CR28 article-title: Exogenous ap-plication of a low concentration of melatonin enhances salt tolerance in rapeseed ( L.) seedlings publication-title: J Integr Agric – volume: 171 start-page: 1665 issue: 3 year: 2016 end-page: 1674 ident: CR18 article-title: Peroxisomes extend peroxules in a fast response to stress via a reactive oxygen species-mediated induction of the peroxin PEX11a publication-title: Plant Physiol doi: 10.1104/pp.16.00648 – volume: 217 start-page: 1086 issue: 3 year: 2018 end-page: 1098 ident: CR46 article-title: MdWRKY9 overexpression confers intensive dwarfing in the M26 rootstock of apple by directly inhibiting brassinosteroid synthetase expression publication-title: New Phytol doi: 10.1111/nph.14891 – volume: 165 start-page: 157 year: 2016 end-page: 162 ident: CR45 article-title: Deficiency in phytochrome A alters photosynthetic activity, leaf starch metabolism and shoot biomass production in tomato publication-title: J Photochem Photobiol, B doi: 10.1016/j.jphotobiol.2016.10.026 – volume: 2 start-page: 1 issue: 1 year: 2022 end-page: 14 ident: CR5 article-title: Multiple forms of vitamin B6 regulate salt tolerance by balancing ROS and abscisic acid levels in maize root publication-title: Stress Biol doi: 10.1007/s44154-022-00061-2 – volume: 7 start-page: 20819 issue: 24 year: 2022 end-page: 20832 ident: CR68 article-title: Sodium chloride (NaCl)-induced physiological alteration and oxidative stress generation in (L.): a toxicity assessment publication-title: ACS Omega doi: 10.1021/acsomega.2c01427 – volume: 69 start-page: 105 issue: 2 year: 2010 end-page: 112 ident: CR78 article-title: Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2010.03.004 – volume: 39 start-page: 997 year: 2020 end-page: 1011 ident: CR10 article-title: Alfalfa MsCBL4 enhances calcium metabolism but not sodium transport in transgenic tobacco under salt and saline–alkali stress publication-title: Plant Cell Rep doi: 10.1007/s00299-020-02543-x – volume: 159 start-page: 257 year: 2021 end-page: 267 ident: CR94 article-title: Maize transcription factor ZmEREB20 enhanced salt tolerance in transgenic Arabidopsis publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2020.12.027 – volume: 8 start-page: 610 issue: 12 year: 2019 ident: CR52 article-title: Melatonin positively influences the photosynthetic machinery and antioxidant system of during salinity stress publication-title: Plants doi: 10.3390/plants8120610 – volume: 11 start-page: 758 year: 2022 ident: CR79 article-title: Melatonin alleviates copper toxicity via improving ROS metabolism and antioxidant defense response in tomato seedlings publication-title: Antioxidants doi: 10.3390/antiox11040758 – volume: 29 start-page: 639 issue: 7 year: 2014 end-page: 649 ident: CR2 article-title: Genetic stability analysis of introduced , , and families in saline-alkali soil of northeastern China publication-title: Scand J For Res doi: 10.1080/02827581.2014.960892 – volume: 64 start-page: 162 issue: 2 year: 2017 end-page: 173 ident: CR57 article-title: Antioxidant system and photosynthetic characteristics responses to short-term PEG-induced drought stress in cucumber seedling leaves publication-title: Russ J Plant Physiol doi: 10.1134/S1021443717020042 – volume: 35 start-page: 1613 issue: 5 year: 2021 end-page: 1626 ident: CR58 article-title: Stomatal and mesophyll conductance are dominant limitations to photosynthesis in response to heat stress during severe drought in a temperate and a tropical tree species publication-title: Trees doi: 10.1007/s00468-021-02140-9 – volume: 59 start-page: 91 issue: 1 year: 2015 end-page: 101 ident: CR73 article-title: (2015) Melatonin delays leaf senescence and enhances salt stress tolerance in rice publication-title: J Pineal Res doi: 10.1111/jpi.12243 – volume: 6 start-page: 100 year: 2022 end-page: 122 ident: CR69 article-title: Astaxanthin synthesized gold nanoparticles enhance salt stress tolerance in rice by enhancing tetrapyrrole biosynthesis and scavenging reactive oxygen species in vitro publication-title: Plant Stress doi: 10.1016/j.stress.2022.100122 – volume: 10 start-page: 886 issue: 5 year: 2021 end-page: 886 ident: CR90 article-title: Beneficial effects of exogenous melatonin on overcoming salt stress in sugar beets ( L.) publication-title: Plants doi: 10.3390/plants10050886 – volume: 9 start-page: 640 issue: 11 year: 2019 ident: CR83 article-title: 24-Epibrassinolide (EBR) confers tolerance against NaCl stress in soybean plants by up-regulating antioxidant system, ascorbate-glutathione cycle, and glyoxalase system publication-title: Biomolecules doi: 10.3390/biom9110640 – volume: 39 start-page: 413 year: 2015 end-page: 420 ident: CR87 article-title: Physiological characteristics, antioxidant enzyme activities, and gene expression in 2 spring canola ( L.) cultivars under drought stress conditions publication-title: Turkish J Agric For doi: 10.3906/tar-1405-102 – volume: 10 start-page: 1227 issue: 8 year: 2021 ident: CR96 article-title: Antioxidative and metabolic contribution to salinity stress responses in two rapeseed cultivars during the early seedling stage publication-title: Antioxidants doi: 10.3390/antiox10081227 – volume: 278 start-page: 153813 year: 2022 end-page: 153813 ident: CR20 article-title: EuRBG10 involved in indole al-kaloids biosynthesis in induced by drought and salt stresses publication-title: J Plant Physiol doi: 10.1016/j.jplph.2022.153813 – volume: 18 start-page: 1 issue: 1 year: 2018 end-page: 13 ident: CR63 article-title: Chlorophyll fluorescence analysis revealed essential roles of FtsH11 protease in regulation of the adaptive responses of photosynthetic systems to high temperature publication-title: BMC Plant Biol doi: 10.1186/s12870-018-1228-2 – volume: 32 start-page: 3380 issue: 11 year: 2020 end-page: 3381 ident: CR98 article-title: A DNA methylation reader with an affinity for salt stress publication-title: Plant Cell doi: 10.1105/tpc.20.00800 – volume: 95 start-page: 763 year: 2016 end-page: 769 ident: CR3 article-title: Salt-alkali tolerance during germination and establishment of in the Songnen Grassland of China publication-title: Ecol Eng J Ecotechnol doi: 10.1016/j.ecoleng.2016.07.011 – volume: 20 start-page: 953 issue: 3 year: 2019 end-page: 960 ident: CR62 article-title: Effect of silicon on photosynthetic rate and the chlorophyll fluorescence parameters at hydroponically grown cucumber plants under salinity stress publication-title: J Central Eur Agric doi: 10.5513/JCEA01/20.3.2312 – volume: 98 start-page: 219 issue: 2 year: 2022 end-page: 233 ident: CR26 article-title: Exogenous melatonin application improves resistance to high manganese stress through regulating reactive oxygen species scavenging and ion homeostasis in tobacco publication-title: Plant Growth Regul doi: 10.1007/s10725-022-00857-2 – volume: 46 start-page: 2127 issue: 17 year: 2015 end-page: 2138 ident: CR4 article-title: The positive effects of silicon on rice seedlings under saline-alkali mixed stress publication-title: Commun Soil Sci Plant Anal doi: 10.1080/00103624.2015.1059848 – volume: 5 start-page: 1047 issue: 2 year: 2018 end-page: 1053 ident: CR9 article-title: Effect of gypsum and cow manure on yield, proline content, and K/Na ratio of soybean genotypes under saline conditions publication-title: J Degraded Mining Lands Manag doi: 10.15243/jdmlm.2018.052.1047 – volume: 10 start-page: 845 year: 2021 ident: CR39 article-title: Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in L publication-title: Plants doi: 10.3390/plants10050845 – volume: 245 start-page: 154 year: 2019 end-page: 162 ident: CR95 article-title: Comparative physiological responses and adaptive strategies of apple to salt, alkali and saline-alkali stress publication-title: Sci Hortic doi: 10.1016/j.scienta.2018.10.017 – volume: 164 start-page: 237 year: 2021 end-page: 246 ident: CR86 article-title: RBOH1-dependent H2O2 mediates spermine-induced antioxidant enzyme system to enhance tomato seedling tolerance to salinity–alkalinity stress publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2021.04.017 – volume: 118 start-page: 460 year: 2017 end-page: 470 ident: CR92 article-title: Exogenous application of poly-γ-glutamic acid enhances stress defense in L. seedlings by inducing cross-talks between Ca2+, H2O2, brassinolide, and jasmonic acid in leaves publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2017.07.015 – volume: 4 start-page: 580 issue: 8 year: 2010 end-page: 585 ident: CR59 article-title: Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars publication-title: Aust J Crop Sci – volume: 169 start-page: 152 year: 2021 end-page: 168 ident: CR61 article-title: Seed priming with melatonin improves salt tolerance in cotton through regulating photosynthesis, scavenging reactive oxygen species and coordinating with phyto-hormone signal pathways publication-title: Ind Crops Prod doi: 10.1016/j.indcrop.2021.113671 – volume: 12 start-page: 899 issue: 3 year: 2022 end-page: 907 ident: CR42 article-title: The relationship between relative water content of leaves, soluble sugars, accumulation of dry matter, and yield components of rice ( L.) under water-stress condition during the generative stage publication-title: Int J Adv Sci Eng Inf Technol. doi: 10.18517/ijaseit.12.3.13311 – volume: 19 start-page: 371 issue: 6 year: 2014 end-page: 379 ident: CR11 article-title: Plant salt-tolerance mechanisms publication-title: Trendsin Plant Science doi: 10.1016/j.tplants.2014.02.001 – volume: 102 start-page: 1081 issue: 4 year: 2010 end-page: 1089 ident: CR12 article-title: Physiological roles of organic acids in alkali-tolerance of the alkali-tolerant halophyte publication-title: Agron J doi: 10.2134/agronj2009.0471 – volume: 12 start-page: 165 issue: 1 year: 2000 end-page: 178 ident: CR15 article-title: Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells publication-title: Plant Cell – volume: 11 start-page: 639 issue: 5 year: 2022 end-page: 639 ident: CR22 article-title: Salicylic acid improves antioxidant defense system and photosynthetic performance in plants subjected to moderate drought stress publication-title: Plants doi: 10.3390/plants11050639 – volume: 413 year: 2021 ident: CR99 article-title: Abscisic acid signaling reduced transpiration flow, regulated Na + ion homeostasis and antioxidant enzyme activities to induce salinity tolerance in wheat ( L.) seedlings publication-title: Environ Technol Innov doi: 10.1016/j.eti.2021.101808 – volume: 12 year: 2021 ident: CR81 article-title: Exogenous 6-benzyladenine improves waterlogging tolerance in maize seedlings by mitigating oxidative stress and upregulating the ascorbate-glutathione cycle publication-title: Front Plant Sci doi: 10.3389/fpls.2021.680376 – volume: 109 year: 2022 ident: CR47 article-title: Factor analysis and cluster analysis of mineral elements contents in different blueberry cultivars publication-title: J Food Compos Anal doi: 10.1016/j.jfca.2022.104507 – volume: 164 start-page: 349 issue: 3 year: 2018 end-page: 363 ident: CR77 article-title: Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity publication-title: Physiol Plant doi: 10.1111/ppl.12737 – volume: 39 start-page: 1 year: 2019 end-page: 10 ident: CR27 article-title: Application of melatonin-enhanced tolerance to high-temperature stress in cherry radish ( L. var. radculus pers) publication-title: J Plant Growth Regul – volume: 92 start-page: 19 year: 2013 end-page: 31 ident: CR7 article-title: Sodium (Na ) homeostasis and salt tolerance of plants publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2013.03.001 – volume: 148 start-page: 104 year: 2022 end-page: 111 ident: CR75 article-title: Growth, photosynthesis and antioxidant enzyme modulations in broccoli ( L. var. italica) under salinity stress publication-title: South Afr J Bot. doi: 10.1016/j.sajb.2022.03.050 – volume: 12 start-page: 19 issue: 1 year: 2017 end-page: 27 ident: CR88 article-title: Biomass and some physiological aspects of spartina patens grown under salt affected environment in south Sinai publication-title: Int J Agric Res doi: 10.3923/ijar.2017.19.27 – volume: 194 start-page: 651 year: 2023 end-page: 663 ident: CR85 article-title: (2023) Nitric oxide and hydrogen sulfide work together to improve tolerance to salinity stress in wheat plants by upraising the AsA-GSH cycle publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2022.11.041 – volume: 22 start-page: 552 issue: 1 year: 2022 end-page: 552 ident: CR100 article-title: Combined transcriptome and metabolome analysis revealed pathways involved in improved salt tolerance of L. seedlings in response to exogenous melatonin application publication-title: BMC Plant Biol doi: 10.1186/s12870-022-03930-0 – volume: 495 start-page: 286 year: 2017 end-page: 291 ident: CR1 article-title: Plant salt-tolerance mechanism: a review publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2017.11.043 – volume: 106 start-page: 226 year: 2019 end-page: 231 ident: CR41 article-title: Effect of trisodium phosphate treatment on black spot of apple fruit and the roles of anti-oxidative enzymes publication-title: Physiol Mol Plant Pathol doi: 10.1016/j.pmpp.2019.03.003 – volume: 55 start-page: 90 issue: 2 year: 2020 end-page: 97 ident: CR33 article-title: Effects of melatonin on photosynthetic and physiological characteristics of under saline-alkali combined stress publication-title: J Gansu Agric Univ – volume: 11 start-page: 1151 issue: 9 year: 2022 end-page: 1151 ident: CR31 article-title: Melatonin mitigates drought induced oxidative stress in potato plants through modulation of osmolytes, sugar metabolism, ABA homeostasis and antioxidant enzymes publication-title: Plants doi: 10.3390/plants11091151 – volume: 53 start-page: 54 year: 2016 ident: 577_CR8 publication-title: Nitric Oxide doi: 10.1016/j.niox.2016.01.003 – volume: 177 start-page: 46 year: 2022 ident: 577_CR60 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2022.02.004 – volume: 11 start-page: 1151 issue: 9 year: 2022 ident: 577_CR31 publication-title: Plants doi: 10.3390/plants11091151 – volume: 92 start-page: 19 year: 2013 ident: 577_CR7 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2013.03.001 – volume: 19 start-page: 371 issue: 6 year: 2014 ident: 577_CR11 publication-title: Trendsin Plant Science doi: 10.1016/j.tplants.2014.02.001 – volume: 46 start-page: 2127 issue: 17 year: 2015 ident: 577_CR4 publication-title: Commun Soil Sci Plant Anal doi: 10.1080/00103624.2015.1059848 – volume: 24 start-page: 1 year: 1949 ident: 577_CR35 publication-title: Plant Physiol doi: 10.1104/pp.24.1.1 – volume: 5 start-page: 79 issue: 2 year: 2019 ident: 577_CR56 publication-title: Hortic Plant J. doi: 10.1016/j.hpj.2019.01.002 – volume: 35 start-page: 1613 issue: 5 year: 2021 ident: 577_CR58 publication-title: Trees doi: 10.1007/s00468-021-02140-9 – volume: 257 start-page: 108761 year: 2019 ident: 577_CR84 publication-title: Sci Hortic doi: 10.1016/j.scienta.2019.108761 – volume: 102 start-page: 1081 issue: 4 year: 2010 ident: 577_CR12 publication-title: Agron J doi: 10.2134/agronj2009.0471 – volume: 10 start-page: 1227 issue: 8 year: 2021 ident: 577_CR96 publication-title: Antioxidants doi: 10.3390/antiox10081227 – volume: 164 start-page: 237 year: 2021 ident: 577_CR86 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2021.04.017 – volume: 13 year: 2022 ident: 577_CR40 publication-title: Front Plant Sci doi: 10.3389/fpls.2022.965996 – volume: 185 start-page: 336 year: 2022 ident: 577_CR91 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2022.06.019 – volume: 2 start-page: 85 issue: 1 year: 2018 ident: 577_CR43 publication-title: Earth Syst Environ doi: 10.1007/s41748-017-0033-7 – volume: 159 start-page: 257 year: 2021 ident: 577_CR94 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2020.12.027 – volume: 17 start-page: 2031782 issue: 1 year: 2022 ident: 577_CR13 publication-title: Plant Signal Behav doi: 10.1080/15592324.2022.2031782 – volume: 164 start-page: 349 issue: 3 year: 2018 ident: 577_CR77 publication-title: Physiol Plant doi: 10.1111/ppl.12737 – volume: 8 start-page: 384 issue: 9 year: 2019 ident: 577_CR82 publication-title: Antioxidants doi: 10.3390/antiox8090384 – volume: 163 start-page: 367 year: 2021 ident: 577_CR67 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2021.03.058 – volume: 217 start-page: 1086 issue: 3 year: 2018 ident: 577_CR46 publication-title: New Phytol doi: 10.1111/nph.14891 – volume: 17 start-page: 328 issue: 2 year: 2016 ident: 577_CR28 publication-title: J Integr Agric – volume: 3 start-page: 1 year: 2021 ident: 577_CR44 publication-title: J Plant Growth Regul – volume: 69 start-page: 105 issue: 2 year: 2010 ident: 577_CR78 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2010.03.004 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 577_CR32 publication-title: Hortic Res doi: 10.1038/s41438-019-0172-0 – volume: 162 start-page: 357 year: 2019 ident: 577_CR24 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2019.03.015 – volume: 12 start-page: 165 issue: 1 year: 2000 ident: 577_CR15 publication-title: Plant Cell – volume: 6 start-page: 100 year: 2022 ident: 577_CR69 publication-title: Plant Stress doi: 10.1016/j.stress.2022.100122 – volume: 9 start-page: 1939 year: 2019 ident: 577_CR49 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01939 – volume: 12 start-page: 19 issue: 1 year: 2017 ident: 577_CR88 publication-title: Int J Agric Res doi: 10.3923/ijar.2017.19.27 – volume: 11 start-page: 639 issue: 5 year: 2022 ident: 577_CR22 publication-title: Plants doi: 10.3390/plants11050639 – volume: 12 start-page: 567782 year: 2021 ident: 577_CR48 publication-title: Front Plant Sci doi: 10.3389/fpls.2021.567782 – volume: 9 start-page: 640 issue: 11 year: 2019 ident: 577_CR83 publication-title: Biomolecules doi: 10.3390/biom9110640 – volume: 495 start-page: 286 year: 2017 ident: 577_CR1 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2017.11.043 – volume: 106 start-page: 226 year: 2019 ident: 577_CR41 publication-title: Physiol Mol Plant Pathol doi: 10.1016/j.pmpp.2019.03.003 – volume: 13 start-page: 998293 year: 2022 ident: 577_CR29 publication-title: Front Plant Sci doi: 10.3389/fpls.2022.998293 – volume: 32 start-page: 3380 issue: 11 year: 2020 ident: 577_CR98 publication-title: Plant Cell doi: 10.1105/tpc.20.00800 – volume: 29 start-page: 639 issue: 7 year: 2014 ident: 577_CR2 publication-title: Scand J For Res doi: 10.1080/02827581.2014.960892 – volume: 138 start-page: 395 issue: 5 year: 2013 ident: 577_CR37 publication-title: J Am Soc Hortic Sci doi: 10.21273/JASHS.138.5.395 – volume: 8 start-page: 610 issue: 12 year: 2019 ident: 577_CR52 publication-title: Plants doi: 10.3390/plants8120610 – volume: 22 start-page: 552 issue: 1 year: 2022 ident: 577_CR100 publication-title: BMC Plant Biol doi: 10.1186/s12870-022-03930-0 – volume: 7 start-page: 20819 issue: 24 year: 2022 ident: 577_CR68 publication-title: ACS Omega doi: 10.1021/acsomega.2c01427 – volume: 5 start-page: 60 issue: 2 year: 2012 ident: 577_CR71 publication-title: Plant Omics. – volume: 8 start-page: 707 issue: 10 year: 2017 ident: 577_CR74 publication-title: Protein Cell doi: 10.1007/s13238-017-0454-y – volume: 130 start-page: 1319 issue: 3 year: 2002 ident: 577_CR80 publication-title: Plant Physiol doi: 10.1104/pp.011254 – volume: 20 start-page: 953 issue: 3 year: 2019 ident: 577_CR62 publication-title: J Central Eur Agric doi: 10.5513/JCEA01/20.3.2312 – volume: 229 start-page: 911 issue: 4 year: 2009 ident: 577_CR66 publication-title: Planta doi: 10.1007/s00425-008-0878-y – volume: 246 start-page: 34 year: 2019 ident: 577_CR76 publication-title: Sci Hortic doi: 10.1016/j.scienta.2018.10.058 – volume: 6 year: 2022 ident: 577_CR19 publication-title: Plant Stress. doi: 10.1016/j.stress.2022.100111 – volume: 278 start-page: 153813 year: 2022 ident: 577_CR20 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2022.153813 – volume: 95 start-page: 763 year: 2016 ident: 577_CR3 publication-title: Ecol Eng J Ecotechnol doi: 10.1016/j.ecoleng.2016.07.011 – volume: 12 start-page: 1917 issue: 11 year: 2023 ident: 577_CR34 publication-title: Antioxidants doi: 10.3390/antiox12111917 – volume: 13 issue: 10 year: 2017 ident: 577_CR17 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1007086 – volume: 10 start-page: 845 year: 2021 ident: 577_CR39 publication-title: Plants doi: 10.3390/plants10050845 – volume: 20 start-page: 1735 issue: 7 year: 2019 ident: 577_CR51 publication-title: Int J Mol Sci doi: 10.3390/ijms20071735 – volume: 39 start-page: 413 year: 2015 ident: 577_CR87 publication-title: Turkish J Agric For doi: 10.3906/tar-1405-102 – volume: 109 year: 2022 ident: 577_CR47 publication-title: J Food Compos Anal doi: 10.1016/j.jfca.2022.104507 – volume: 13 year: 2022 ident: 577_CR65 publication-title: Front Plant Sci doi: 10.3389/fpls.2022.905100 – volume: 7 start-page: 276 year: 2016 ident: 577_CR72 publication-title: Front Plant Sci – volume: 148 start-page: 104 year: 2022 ident: 577_CR75 publication-title: South Afr J Bot. doi: 10.1016/j.sajb.2022.03.050 – volume: 299 year: 2022 ident: 577_CR21 publication-title: Sci Hortic doi: 10.1016/j.scienta.2022.111002 – volume: 63 start-page: 635 issue: 5 year: 2020 ident: 577_CR97 publication-title: Sci China Life Sci doi: 10.1007/s11427-020-1683-x – volume: 11 start-page: 758 year: 2022 ident: 577_CR79 publication-title: Antioxidants doi: 10.3390/antiox11040758 – volume: 413 year: 2021 ident: 577_CR99 publication-title: Environ Technol Innov doi: 10.1016/j.eti.2021.101808 – volume: 2 start-page: 1 issue: 1 year: 2022 ident: 577_CR5 publication-title: Stress Biol doi: 10.1007/s44154-022-00061-2 – volume: 18 start-page: 18 year: 2015 ident: 577_CR50 publication-title: Sci Hortic doi: 10.1016/j.scienta.2014.10.049 – volume: 55 start-page: 90 issue: 2 year: 2020 ident: 577_CR33 publication-title: J Gansu Agric Univ – volume: 18 start-page: 1 issue: 1 year: 2018 ident: 577_CR63 publication-title: BMC Plant Biol doi: 10.1186/s12870-018-1228-2 – volume: 59 start-page: 91 issue: 1 year: 2015 ident: 577_CR73 publication-title: J Pineal Res doi: 10.1111/jpi.12243 – volume: 165 start-page: 157 year: 2016 ident: 577_CR45 publication-title: J Photochem Photobiol, B doi: 10.1016/j.jphotobiol.2016.10.026 – volume: 105 start-page: 249 issue: 3 year: 2010 ident: 577_CR64 publication-title: Photosynth Res doi: 10.1007/s11120-010-9588-y – volume: 117 start-page: 96 year: 2015 ident: 577_CR70 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2015.03.023 – volume: 194 start-page: 651 year: 2023 ident: 577_CR85 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2022.11.041 – volume: 92 start-page: 1614 issue: 8 year: 2012 ident: 577_CR55 publication-title: J Sci Food Agric doi: 10.1002/jsfa.4746 – volume: 8 start-page: 133 issue: 2 year: 2022 ident: 577_CR36 publication-title: Hortic Plant J doi: 10.1016/j.hpj.2021.03.008 – volume: 157 start-page: 1 year: 2013 ident: 577_CR14 publication-title: Sci Hortic doi: 10.1016/j.scienta.2013.03.032 – volume: 98 start-page: 219 issue: 2 year: 2022 ident: 577_CR26 publication-title: Plant Growth Regul doi: 10.1007/s10725-022-00857-2 – volume: 282 year: 2021 ident: 577_CR93 publication-title: Sci Hortic doi: 10.1016/j.scienta.2021.110026 – volume: 64 start-page: 209 issue: 2 year: 2006 ident: 577_CR53 publication-title: J Arid Environ doi: 10.1016/j.jaridenv.2005.04.015 – volume: 40 start-page: 1 issue: 6 year: 2020 ident: 577_CR30 publication-title: J Plant Growth Regul – volume: 63 start-page: 1442 issue: 3 year: 2023 ident: 577_CR89 publication-title: Crop Sci doi: 10.1002/csc2.20949 – volume: 245 start-page: 154 year: 2019 ident: 577_CR95 publication-title: Sci Hortic doi: 10.1016/j.scienta.2018.10.017 – volume: 12 start-page: 899 issue: 3 year: 2022 ident: 577_CR42 publication-title: Int J Adv Sci Eng Inf Technol. doi: 10.18517/ijaseit.12.3.13311 – volume: 39 start-page: 1 year: 2019 ident: 577_CR27 publication-title: J Plant Growth Regul – volume: 91 start-page: 657 issue: 4 year: 2017 ident: 577_CR16 publication-title: Plant J doi: 10.1111/tpj.13595 – volume: 171 start-page: 1665 issue: 3 year: 2016 ident: 577_CR18 publication-title: Plant Physiol doi: 10.1104/pp.16.00648 – volume: 118 start-page: 460 year: 2017 ident: 577_CR92 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2017.07.015 – volume: 13 start-page: 998861 year: 2022 ident: 577_CR25 publication-title: Front Plant Sci doi: 10.3389/fpls.2022.998861 – volume: 10 start-page: 886 issue: 5 year: 2021 ident: 577_CR90 publication-title: Plants doi: 10.3390/plants10050886 – volume: 4 start-page: 580 issue: 8 year: 2010 ident: 577_CR59 publication-title: Aust J Crop Sci – volume: 12 year: 2021 ident: 577_CR81 publication-title: Front Plant Sci doi: 10.3389/fpls.2021.680376 – volume: 12 start-page: 1393 issue: 6 year: 2022 ident: 577_CR54 publication-title: Agronomy doi: 10.3390/agronomy12061393 – volume: 5 start-page: 1047 issue: 2 year: 2018 ident: 577_CR9 publication-title: J Degraded Mining Lands Manag doi: 10.15243/jdmlm.2018.052.1047 – volume: 47 start-page: 505 issue: 4 year: 2016 ident: 577_CR6 publication-title: Commun Soil Sci Plant Anal – volume: 159 start-page: 95 year: 2019 ident: 577_CR23 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2018.12.011 – volume: 64 start-page: 162 issue: 2 year: 2017 ident: 577_CR57 publication-title: Russ J Plant Physiol doi: 10.1134/S1021443717020042 – volume: 39 start-page: 997 year: 2020 ident: 577_CR10 publication-title: Plant Cell Rep doi: 10.1007/s00299-020-02543-x – volume: 46 start-page: 82 issue: 1 year: 2018 ident: 577_CR38 publication-title: Funct Plant Biol doi: 10.1071/FP18120 – volume: 169 start-page: 152 year: 2021 ident: 577_CR61 publication-title: Ind Crops Prod doi: 10.1016/j.indcrop.2021.113671 |
SSID | ssj0001218973 |
Score | 2.3558233 |
Snippet | Melatonin (MT) is an important plant growth regulator that significantly regulates the growth and development of plants. Previous studies confirmed the... Abstract Melatonin (MT) is an important plant growth regulator that significantly regulates the growth and development of plants. Previous studies confirmed... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 58 |
SubjectTerms | Accumulation Agriculture antioxidant activity antioxidant enzymes Antioxidants apples ASA-GSH cycle ascorbate oxidase ascorbate peroxidase Ascorbic acid auxins biomass production Biomedical and Life Sciences Catalase Chlorophyll Damage Environmental degradation Enzymatic activity Enzyme activity fluorescence Free radicals Gas exchange Gene expression Genes Gibberellins Glutathione growth and development Growth regulators Hydrogen peroxide Indoleacetic acid Ion homeostasis L-Ascorbate peroxidase Life Sciences M9-T337 Melatonin monodehydroascorbate reductase (NADH) Organic Chemistry Osmoregulation Osmotic stress Oxidative damage Oxygen Parameters Peroxidase Photosynthesis Plant Biochemistry Plant growth plant height Plant Physiology Plant stress proline Reactive oxygen species Reductases root growth rootstocks Saline-alkaline stress Seedlings Soil Science & Conservation starch stress tolerance superoxide anion Superoxide anions Superoxide dismutase surface area Toxicity Zeatin |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPEWgoEHiBlY3iV85FtSqQiqnVurNsh17VXXJoibA7g_ifzLjJEuLBFy4RJFjW1Zm7PnG9nzD2JuyCggKkuDCKXzokLhJIfAk0bq1UnitKHb49JM6ORcfL-TFjVRfdCdspAcef9wBkeWmpkmV8NhSRKeJI004XH0XsTGeVl-0eTecqXF3pTSNrucoGaMOekQmOLfRJHEKwNR8c8sSZcL-Wyjzt4PRbG-OH7D7E1CEw3GAD9md2D1i9w6X1xNZRnzMfhxt1iPHKnymO220swoU_NEtidOgh94RiORudYUvMIaFwLBeRcqmEQFr0_l1BETPA4LAcAWnDT-raw09GjUKVO_Bb7He5UAS7Jbg4Bs518MW1gnyrsi8eILrWvCXlIArMxAA5Tr-7rb9E3Z-fHT24YRPaRd4EKoauBIytgj8kkfjnkSqpDGtNE0wdagbVSZP1xGr0pUmKOlNhbJV5NtW0tWtEfVTttetu_iMgaGiBXpMgQ5YS-219G0wArvSwihfsHIWgQ0TJzmlxljZ7JsYZUexWRSbzWKzm4K93bX5MjJy_LX2e5LsriaxaecC1DE76Zj9l44VbH_WCztN8d7WC0FMQbqRBXu9-4yTk05cXBdR-LZGe6JpWVQFezfr068u_jzs5_9j2C_Y3Yr0PV--2Wd7w_XX-BIh1OBf5dnyE1fHFwE priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Journals Complete - Open Access dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-kvuiD-ImnVUbwTRcvyX7lsZaWItSnFvq27G52j9IzKZeovT_I_9OZTXJSUcGX40gmITAzO7_Z2fkNY2-LMiAoSIILp_BHh8RNCoEnidGtkcJrRb3Dp5_Vybn4dCEvpqawfj7tPpck80qd3dqoDz1CC3ROjCmcOig1R-R4V2LuTnZ9OPU4jDsrhal1NXfI_PHRW1Eok_XfQpi_FUVzrDl-yB5MIBEORq0-Yndi-5jdP1htJqKM-IT9OLrpRn5V-ELn2WhXFajxo10Rn0EPvSMAyd36Cv_A2BICQ7eONEkjAkpT7ToCIucBAWC4gtOan1WVhh4DGjWp9-C3KHc5kPbaFTj4Ron1sIUuQd4RmRdOcG0D_pKGb2X2AaA5x9_dtn_Kzo-Pzg5P-DRygQehyoErIWODoC95DOxJpFIa00hTB1OFqlZF8nQUsSxcYYKS3pSoV0V5bSld1RhRPWN7bdfG5wwMXVpithSouFpor6VvghH4Ki2M8gtWzCqwYeIjp7EYa5vzEqPsqDaLarNZbfZmwd7tnrke2Tj-Kf2RNLuTJCbtfKHbrOzkmJbImFNdp1J4tEwRnSYOPuEwui9jbfAz92e7sJN797ZaCmIJ0rVcsDe72-iYVG1xbUTl2wpjiaYlUS3Y-9mefr3i75_94v_EX7J7JVl2PmKzz_aGzdf4CoHS4F9nv_gJ6N8Msg priority: 102 providerName: Springer Nature |
Title | Exogenous melatonin strengthens saline-alkali stress tolerance in apple rootstock M9-T337 seedlings by initiating a variety of physiological and biochemical pathways |
URI | https://link.springer.com/article/10.1186/s40538-024-00577-x https://www.proquest.com/docview/3043578795 https://www.proquest.com/docview/3153704256 https://doaj.org/article/8075f99f24b54b4ea796094a3410e98b |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEF6a-NIeSp_UbWq20Fu7JJL2pVNxjEMwJJQ2gdyW3dWuCXGl1FJS-wf1f3ZGlpym0FyEkFYPmPfMzjeEfExSD05B5IxbCQflI9PRexYFWLdCcKck9g6fnMrjcz67EBddwq3utlX2OrFV1EXlMUe-D2E3ArOoXHy5_slwahRWV7sRGjtkACpYQ_A1OJyefv32V5Yl0bnK-m4ZLfdr8FBAxsE0MWzEVGx1zyK1wP33vM1_CqSt3Tl6Rp52DiMdbyj8nDwK5QvyZDxfdqAZ4SX5PV1VG6xV-gP3tmGGlWITSDlHbIOa1hadSWYXV3BCN-0htKkWAadqBAqrsY4dKHjRDTiD_oqe5OwsyxStwbhhw3pN3RrWXTZIyXJOLb3FILtZ0yrSNjvSK1Fqy4K6SxzE1SIRUJx5_Muu61fk_Gh6Njlm3fgF5rlMGya5CAU4gNGBkY88pkLrQujc68xnuUyiw22JaWIT7aVwOgUaS4xxU2GzQvPsNdktqzK8IVTjpQOInDwWWhPllHCF1xxepbiWbkiSngTGd9jkOCJjYdoYRUuzIZsBspmWbGY1JJ-2z1xvkDkeXH2IlN2uRFTt9kK1nJtOSA0CM8c8jyl3wKU8WIV4fNyCpT8IuYbf3Ov5wnSiXps7xhySD9vbIKRYebFlAOKbDOyKQvUoh-Rzz093r_j_b799-IvvyOMUObndXrNHdpvlTXgPTlLjRmQwHs--z0adRIzIziTleJSTUZt4-AMAaxUG |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKegAOiKcILWAkOMGq3V2v7T0g1EKqlDYRQqnUm7G9dlQ17LbZhSY_iCu_kZl9pBSJ3nqJoo3jtTTjmW88nm8IeR1GFkCBZwHTHD6E9YH01gY-Ae-WJcwIjrXDozEfHrHPx8nxGvnd1cLgtcrOJtaGOissnpFvQdiNxCwiTT6cnQfYNQqzq10LjUYtDtzyAkK28v3-J5DvmyjaG0w-DoO2q0BgGY-qgLPEZYBrvAHf5ZmPEimzRKZWxjZOeegN3raLQh1KyxMjI1g6x9AtSnScSRbDvLfIOoshlOmR9d3B-MvXv051QpmKuKvOkXyrBEQENgVcYYCFnyJYXPGAdaOAK-j2n4Rs7ef27pN7LUClO41GPSBrLn9I7u5M5y1Jh3tEfg0WRcPtSr_jXTo80aVYdJJPkUuhpKVG8Bro2Sl8oU05Cq2KmcMuHo7CaMybOwqovQLwaU_pKA0mcSxoCc4UC-RLapYw7qRCzcmnVNOfGNRXS1p4Wp_GdEab6jyj5gQbf9XMBxR7LF_oZfmYHN2IYJ6QXl7k7imhEh9tQ6RmMbEbCiMSk1nJYCrBJDd9EnYiULblQseWHDNVx0SSq0ZsCsSmarGpRZ-8Xf3nrGECuXb0Lkp2NRJZvOsHxXyqWqOgkAjap6mPmIFdwZwWyP_HNCCLbZdKWOZmpxeqNS2lutwIffJq9TMYBcz06NyB8FUMfkygOeZ98q7Tp8sp_r_sZ9e_8SW5PZyMDtXh_vhgg9yJUKvrqz2bpFfNf7jnANAq86LdFZR8u-mN-AcOUUvF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyF4QFy1wgAjwRNEbRLHdh4Q2lirjbFqQpu0N2M7djWtJKMJrP1B_Al-Hefk0jEk9raXKkpdN9G5fcfnRsjrMLIACjwLmObwIawPpLc28AlYtyxhRnCsHT6Y8N1j9ukkOVkjv7taGEyr7HRiraizwuIZ-QDcbmzMItJk4Nu0iMOd8Yfz7wFOkMJIazdOo2GRfbe8APetfL-3A7R-E0Xj0dHH3aCdMBBYxqMq4CxxGWAcb8COeeajRMoskamVsY1THnqDmXdRqENpeWJkBK_B0Y2LEh1nksWw7y2yLsArGvbI-vZocvjlrxOeUKYi7ip1JB-UgI5Av4BZDLAIVASLK9awHhpwBen-E5ytbd74PrnXglW61XDXA7Lm8ofk7tZ03jbscI_Ir9GiaPq80m-YV4enuxQLUPIp9lUoaakRyAZ6dgYXtClNoVUxczjRw1FYjTF0RwHBVwBE7Rk9SIOjOBa0BMOKxfIlNUtYd1ohF-VTqulPdPCrJS08rU9mOgVOdZ5Rc4pDwOouCBTnLV_oZfmYHN8IYZ6QXl7kboNQibeG4LVZDPKGwojEZFYy2EowyU2fhB0JlG37ouN4jpmq_SPJVUM2BWRTNdnUok_ern5z3nQFuXb1NlJ2tRI7etc3ivlUtQpCYVNon6Y-YgYkhDktsBcg04Ayhi6V8JibHV-oVs2U6lIo-uTV6mtQEBj10bkD4qsYbJpA1cz75F3HT5db_P-xn17_jy_JbRBA9Xlvsv-M3ImQqessn03Sq-Y_3HPAapV50QoFJV9vWg7_AJZJT_o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exogenous+melatonin+strengthens+saline-alkali+stress+tolerance+in+apple+rootstock+M9-T337+seedlings+by+initiating+a+variety+of+physiological+and+biochemical+pathways&rft.jtitle=Chemical+and+biological+technologies+in+agriculture&rft.au=Xian%2C+Xulin&rft.au=Zhang%2C+Zhongxing&rft.au=Wang%2C+Shuangcheng&rft.au=Cheng%2C+Jiao&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.eissn=2196-5641&rft.volume=11&rft.issue=1&rft.spage=58&rft_id=info:doi/10.1186%2Fs40538-024-00577-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-5641&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-5641&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-5641&client=summon |