Exogenous melatonin strengthens saline-alkali stress tolerance in apple rootstock M9-T337 seedlings by initiating a variety of physiological and biochemical pathways

Melatonin (MT) is an important plant growth regulator that significantly regulates the growth and development of plants. Previous studies confirmed the effectiveness of MT in improving plant stress tolerance. In this study, annual M9-T337 seedlings were selected as subjects, and five treatments were...

Full description

Saved in:
Bibliographic Details
Published inChemical and biological technologies in agriculture Vol. 11; no. 1; p. 58
Main Authors Xian, Xulin, Zhang, Zhongxing, Wang, Shuangcheng, Cheng, Jiao, Gao, Yanlong, Ma, Naiying, Li, Cailong, Wang, Yanxiu
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Melatonin (MT) is an important plant growth regulator that significantly regulates the growth and development of plants. Previous studies confirmed the effectiveness of MT in improving plant stress tolerance. In this study, annual M9-T337 seedlings were selected as subjects, and five treatments were applied: control (CK), in which only half the concentration of Hoagland was applied; Saline-alkaline stress treatment (SA, 100 mmol·L −1 saline-alkaline solution); melatonin treatment (MT, CK + 200 μmol L −1 exogenous MT); Saline-alkaline + melatonin treatment (MS, SA + 200 μmol L −1 exogenous MT); and saline-alkaline stress + melatonin + inhibitor treatment (HS, additional 100 μmol L −1 p-CPA treatment to MS). The results showed that saline-alkaline stress negatively affected the growth of M9-T337 seedlings by reducing photosynthetic capacity, increasing Na + , promoting reactive oxygen species such as H 2 O 2 , and changing the osmotic content and antioxidant system. However, the application of exogenous MT effectively alleviated saline-alkaline damage and significantly promoted the growth of M9-T337 seedlings. It significantly increased plant height, diameter, root length, root surface area, volume and activity. Furthermore, MT alleviated osmotic stress by accumulating proline, soluble sugars, soluble proteins and starch. MT improved photosynthetic capacity by delaying chlorophyll degradation and regulating gas exchange parameters as well as fluorescence parameters in leaves. Additionally, MT reduced the Na + /K + ratio to reduce ion toxicity by upregulating the expression of Na + transporter genes ( MhCAX5 , MhCHX15 , MhSOS1 , and MhALT1 ) and downregulating the expression of K + transporter genes ( MhSKOR and MhNHX4 ). In addition, MT can increase antioxidant enzyme activity (superoxide dismutase (SOD), peroxidase(POD), catalase (CAT), ascorbic acid oxidase (AAO), ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR)) in the ASA-GSH cycle and increase ascorbic acid (AsA), reduced glutathione (GSH) and oxidized glutathione (GSSG) levels to counteract the accumulation of reactive oxygen species (ROS) such as hydrogen peroxide (H 2 O 2 ) and Superoxide anion free radicals (O 2 − ), reducing oxidative damage. Exogenous MT promotes M9-T337 seedlings growth under saline-alkaline stress by responding synergistically with auxin (IAA), gibberellin (GA 3 ) and zeatin (ZT) to saline-alkaline stress. Our results confirm that MT has the potential to alleviate Saline-alkaline stress by promoting root growth, increasing biomass accumulation and photosynthetic capacity, strengthening the antioxidant defense system, maintaining ionic balance, the ascorbate–glutathione cycle and the Osmoregulation facilitates and regulates endogenous hormone levels in M9-T337 seedlings. Graphical Abstract
AbstractList Melatonin (MT) is an important plant growth regulator that significantly regulates the growth and development of plants. Previous studies confirmed the effectiveness of MT in improving plant stress tolerance. In this study, annual M9-T337 seedlings were selected as subjects, and five treatments were applied: control (CK), in which only half the concentration of Hoagland was applied; Saline-alkaline stress treatment (SA, 100 mmol·L⁻¹ saline-alkaline solution); melatonin treatment (MT, CK + 200 μmol L⁻¹ exogenous MT); Saline-alkaline + melatonin treatment (MS, SA + 200 μmol L⁻¹ exogenous MT); and saline-alkaline stress + melatonin + inhibitor treatment (HS, additional 100 μmol L⁻¹ p-CPA treatment to MS). The results showed that saline-alkaline stress negatively affected the growth of M9-T337 seedlings by reducing photosynthetic capacity, increasing Na⁺, promoting reactive oxygen species such as H₂O₂, and changing the osmotic content and antioxidant system. However, the application of exogenous MT effectively alleviated saline-alkaline damage and significantly promoted the growth of M9-T337 seedlings. It significantly increased plant height, diameter, root length, root surface area, volume and activity. Furthermore, MT alleviated osmotic stress by accumulating proline, soluble sugars, soluble proteins and starch. MT improved photosynthetic capacity by delaying chlorophyll degradation and regulating gas exchange parameters as well as fluorescence parameters in leaves. Additionally, MT reduced the Na⁺/K⁺ ratio to reduce ion toxicity by upregulating the expression of Na⁺ transporter genes (MhCAX5, MhCHX15, MhSOS1, and MhALT1) and downregulating the expression of K⁺ transporter genes (MhSKOR and MhNHX4). In addition, MT can increase antioxidant enzyme activity (superoxide dismutase (SOD), peroxidase(POD), catalase (CAT), ascorbic acid oxidase (AAO), ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR)) in the ASA-GSH cycle and increase ascorbic acid (AsA), reduced glutathione (GSH) and oxidized glutathione (GSSG) levels to counteract the accumulation of reactive oxygen species (ROS) such as hydrogen peroxide (H₂O₂) and Superoxide anion free radicals (O₂⁻), reducing oxidative damage. Exogenous MT promotes M9-T337 seedlings growth under saline-alkaline stress by responding synergistically with auxin (IAA), gibberellin (GA₃) and zeatin (ZT) to saline-alkaline stress. Our results confirm that MT has the potential to alleviate Saline-alkaline stress by promoting root growth, increasing biomass accumulation and photosynthetic capacity, strengthening the antioxidant defense system, maintaining ionic balance, the ascorbate–glutathione cycle and the Osmoregulation facilitates and regulates endogenous hormone levels in M9-T337 seedlings.
Melatonin (MT) is an important plant growth regulator that significantly regulates the growth and development of plants. Previous studies confirmed the effectiveness of MT in improving plant stress tolerance. In this study, annual M9-T337 seedlings were selected as subjects, and five treatments were applied: control (CK), in which only half the concentration of Hoagland was applied; Saline-alkaline stress treatment (SA, 100 mmol·L−1 saline-alkaline solution); melatonin treatment (MT, CK + 200 μmol L−1 exogenous MT); Saline-alkaline + melatonin treatment (MS, SA + 200 μmol L−1 exogenous MT); and saline-alkaline stress + melatonin + inhibitor treatment (HS, additional 100 μmol L−1 p-CPA treatment to MS). The results showed that saline-alkaline stress negatively affected the growth of M9-T337 seedlings by reducing photosynthetic capacity, increasing Na+, promoting reactive oxygen species such as H2O2, and changing the osmotic content and antioxidant system. However, the application of exogenous MT effectively alleviated saline-alkaline damage and significantly promoted the growth of M9-T337 seedlings. It significantly increased plant height, diameter, root length, root surface area, volume and activity. Furthermore, MT alleviated osmotic stress by accumulating proline, soluble sugars, soluble proteins and starch. MT improved photosynthetic capacity by delaying chlorophyll degradation and regulating gas exchange parameters as well as fluorescence parameters in leaves. Additionally, MT reduced the Na+/K+ ratio to reduce ion toxicity by upregulating the expression of Na+ transporter genes (MhCAX5, MhCHX15, MhSOS1, and MhALT1) and downregulating the expression of K+ transporter genes (MhSKOR and MhNHX4). In addition, MT can increase antioxidant enzyme activity (superoxide dismutase (SOD), peroxidase(POD), catalase (CAT), ascorbic acid oxidase (AAO), ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR)) in the ASA-GSH cycle and increase ascorbic acid (AsA), reduced glutathione (GSH) and oxidized glutathione (GSSG) levels to counteract the accumulation of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and Superoxide anion free radicals (O2−), reducing oxidative damage. Exogenous MT promotes M9-T337 seedlings growth under saline-alkaline stress by responding synergistically with auxin (IAA), gibberellin (GA3) and zeatin (ZT) to saline-alkaline stress. Our results confirm that MT has the potential to alleviate Saline-alkaline stress by promoting root growth, increasing biomass accumulation and photosynthetic capacity, strengthening the antioxidant defense system, maintaining ionic balance, the ascorbate–glutathione cycle and the Osmoregulation facilitates and regulates endogenous hormone levels in M9-T337 seedlings.
Abstract Melatonin (MT) is an important plant growth regulator that significantly regulates the growth and development of plants. Previous studies confirmed the effectiveness of MT in improving plant stress tolerance. In this study, annual M9-T337 seedlings were selected as subjects, and five treatments were applied: control (CK), in which only half the concentration of Hoagland was applied; Saline-alkaline stress treatment (SA, 100 mmol·L−1 saline-alkaline solution); melatonin treatment (MT, CK + 200 μmol L−1 exogenous MT); Saline-alkaline + melatonin treatment (MS, SA + 200 μmol L−1 exogenous MT); and saline-alkaline stress + melatonin + inhibitor treatment (HS, additional 100 μmol L−1 p-CPA treatment to MS). The results showed that saline-alkaline stress negatively affected the growth of M9-T337 seedlings by reducing photosynthetic capacity, increasing Na+, promoting reactive oxygen species such as H2O2, and changing the osmotic content and antioxidant system. However, the application of exogenous MT effectively alleviated saline-alkaline damage and significantly promoted the growth of M9-T337 seedlings. It significantly increased plant height, diameter, root length, root surface area, volume and activity. Furthermore, MT alleviated osmotic stress by accumulating proline, soluble sugars, soluble proteins and starch. MT improved photosynthetic capacity by delaying chlorophyll degradation and regulating gas exchange parameters as well as fluorescence parameters in leaves. Additionally, MT reduced the Na+/K+ ratio to reduce ion toxicity by upregulating the expression of Na+ transporter genes (MhCAX5, MhCHX15, MhSOS1, and MhALT1) and downregulating the expression of K+ transporter genes (MhSKOR and MhNHX4). In addition, MT can increase antioxidant enzyme activity (superoxide dismutase (SOD), peroxidase(POD), catalase (CAT), ascorbic acid oxidase (AAO), ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR)) in the ASA-GSH cycle and increase ascorbic acid (AsA), reduced glutathione (GSH) and oxidized glutathione (GSSG) levels to counteract the accumulation of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and Superoxide anion free radicals (O2 −), reducing oxidative damage. Exogenous MT promotes M9-T337 seedlings growth under saline-alkaline stress by responding synergistically with auxin (IAA), gibberellin (GA3) and zeatin (ZT) to saline-alkaline stress. Our results confirm that MT has the potential to alleviate Saline-alkaline stress by promoting root growth, increasing biomass accumulation and photosynthetic capacity, strengthening the antioxidant defense system, maintaining ionic balance, the ascorbate–glutathione cycle and the Osmoregulation facilitates and regulates endogenous hormone levels in M9-T337 seedlings. Graphical Abstract
Melatonin (MT) is an important plant growth regulator that significantly regulates the growth and development of plants. Previous studies confirmed the effectiveness of MT in improving plant stress tolerance. In this study, annual M9-T337 seedlings were selected as subjects, and five treatments were applied: control (CK), in which only half the concentration of Hoagland was applied; Saline-alkaline stress treatment (SA, 100 mmol·L −1 saline-alkaline solution); melatonin treatment (MT, CK + 200 μmol L −1 exogenous MT); Saline-alkaline + melatonin treatment (MS, SA + 200 μmol L −1 exogenous MT); and saline-alkaline stress + melatonin + inhibitor treatment (HS, additional 100 μmol L −1 p-CPA treatment to MS). The results showed that saline-alkaline stress negatively affected the growth of M9-T337 seedlings by reducing photosynthetic capacity, increasing Na + , promoting reactive oxygen species such as H 2 O 2 , and changing the osmotic content and antioxidant system. However, the application of exogenous MT effectively alleviated saline-alkaline damage and significantly promoted the growth of M9-T337 seedlings. It significantly increased plant height, diameter, root length, root surface area, volume and activity. Furthermore, MT alleviated osmotic stress by accumulating proline, soluble sugars, soluble proteins and starch. MT improved photosynthetic capacity by delaying chlorophyll degradation and regulating gas exchange parameters as well as fluorescence parameters in leaves. Additionally, MT reduced the Na + /K + ratio to reduce ion toxicity by upregulating the expression of Na + transporter genes ( MhCAX5 , MhCHX15 , MhSOS1 , and MhALT1 ) and downregulating the expression of K + transporter genes ( MhSKOR and MhNHX4 ). In addition, MT can increase antioxidant enzyme activity (superoxide dismutase (SOD), peroxidase(POD), catalase (CAT), ascorbic acid oxidase (AAO), ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR)) in the ASA-GSH cycle and increase ascorbic acid (AsA), reduced glutathione (GSH) and oxidized glutathione (GSSG) levels to counteract the accumulation of reactive oxygen species (ROS) such as hydrogen peroxide (H 2 O 2 ) and Superoxide anion free radicals (O 2 − ), reducing oxidative damage. Exogenous MT promotes M9-T337 seedlings growth under saline-alkaline stress by responding synergistically with auxin (IAA), gibberellin (GA 3 ) and zeatin (ZT) to saline-alkaline stress. Our results confirm that MT has the potential to alleviate Saline-alkaline stress by promoting root growth, increasing biomass accumulation and photosynthetic capacity, strengthening the antioxidant defense system, maintaining ionic balance, the ascorbate–glutathione cycle and the Osmoregulation facilitates and regulates endogenous hormone levels in M9-T337 seedlings. Graphical Abstract
ArticleNumber 58
Author Cheng, Jiao
Ma, Naiying
Wang, Yanxiu
Gao, Yanlong
Zhang, Zhongxing
Li, Cailong
Xian, Xulin
Wang, Shuangcheng
Author_xml – sequence: 1
  givenname: Xulin
  surname: Xian
  fullname: Xian, Xulin
  organization: College of Horticulture, Gansu Agricultural University
– sequence: 2
  givenname: Zhongxing
  surname: Zhang
  fullname: Zhang, Zhongxing
  organization: College of Horticulture, Gansu Agricultural University
– sequence: 3
  givenname: Shuangcheng
  surname: Wang
  fullname: Wang, Shuangcheng
  organization: College of Horticulture, Gansu Agricultural University
– sequence: 4
  givenname: Jiao
  surname: Cheng
  fullname: Cheng, Jiao
  organization: College of Horticulture, Gansu Agricultural University
– sequence: 5
  givenname: Yanlong
  surname: Gao
  fullname: Gao, Yanlong
  organization: College of Horticulture, Gansu Agricultural University
– sequence: 6
  givenname: Naiying
  surname: Ma
  fullname: Ma, Naiying
  organization: College of Horticulture, Gansu Agricultural University
– sequence: 7
  givenname: Cailong
  surname: Li
  fullname: Li, Cailong
  organization: College of Horticulture, Gansu Agricultural University
– sequence: 8
  givenname: Yanxiu
  surname: Wang
  fullname: Wang, Yanxiu
  email: wangxy@gsau.edu.cn
  organization: College of Horticulture, Gansu Agricultural University
BookMark eNp9ks1u1DAUhSNUJErpC7CyxIZNwL-JvURVKZWK2JS1deM4GU89drA9MPNAvCdmAgJ10ZXvtb9z5Ht1XjZnIQbbNK8JfkeI7N5njgWTLaa8xVj0fXt41pxTorpWdJyc_Ve_aC5z3mKMCSVS9ey8-Xl9iLMNcZ_RznooMbiAckk2zGVjQ0YZvAu2Bf9Qi9NLzqhEbxMEY1GlYVm8RSnGkks0D-izau8Z61G2dqzaOaPhWDlXHJTaIkDfITlbjihOaNkcs4s-zs6ARxBGNLhoNnZ36hcomx9wzK-a5xP4bC__nBfN14_X91ef2rsvN7dXH-5awzta2o4LOxJFp4ETMfGJCilHIZWRzDDVkWnAWHFKgEjTiUHSyZiu5z2hAtgoObtoblffMcJWL8ntIB11BKdPFzHNGlJxxlstcS8mpSbKB8EHbqFXXTUHxgm2Sg7V6-3qtaT4bW9z0TuXjfUegq3r1owI1mNORVfRN4_QbdynUCfVDHMmetkrUSm5UibFnJOdtHGlrjSGksB5TbD-HQe9xkHXOOhTHPShSukj6d_ZnhSxVZQrHGab_v3qCdUvSdfMBw
CitedBy_id crossref_primary_10_1080_15592324_2024_2379695
crossref_primary_10_1016_j_stress_2025_100789
crossref_primary_10_3390_ijms26020574
crossref_primary_10_1016_j_indcrop_2024_120002
Cites_doi 10.1016/j.plaphy.2022.02.004
10.3390/ijms20071735
10.1007/s00425-008-0878-y
10.1016/j.plaphy.2021.03.058
10.1016/j.hpj.2019.01.002
10.1016/j.plaphy.2022.06.019
10.3389/fpls.2022.998861
10.1016/j.niox.2016.01.003
10.1016/j.envexpbot.2018.12.011
10.3389/fpls.2018.01939
10.1016/j.hpj.2021.03.008
10.21273/JASHS.138.5.395
10.1016/j.scienta.2013.03.032
10.1080/15592324.2022.2031782
10.1104/pp.24.1.1
10.1016/j.scienta.2022.111002
10.1016/j.jaridenv.2005.04.015
10.1071/FP18120
10.1016/j.scienta.2019.108761
10.1007/s11427-020-1683-x
10.3389/fpls.2022.965996
10.3390/agronomy12061393
10.1002/csc2.20949
10.1007/s11120-010-9588-y
10.1371/journal.pgen.1007086
10.1007/s13238-017-0454-y
10.1007/s41748-017-0033-7
10.1016/j.envexpbot.2019.03.015
10.3389/fpls.2022.905100
10.1016/j.ecoenv.2015.03.023
10.3389/fpls.2021.567782
10.1016/j.stress.2022.100111
10.1016/j.scienta.2014.10.049
10.1038/s41438-019-0172-0
10.3390/antiox12111917
10.1002/jsfa.4746
10.1016/j.scienta.2021.110026
10.3389/fpls.2022.998293
10.1016/j.scienta.2018.10.058
10.1111/tpj.13595
10.1104/pp.011254
10.3390/antiox8090384
10.1104/pp.16.00648
10.1111/nph.14891
10.1016/j.jphotobiol.2016.10.026
10.1007/s44154-022-00061-2
10.1021/acsomega.2c01427
10.1016/j.envexpbot.2010.03.004
10.1007/s00299-020-02543-x
10.1016/j.plaphy.2020.12.027
10.3390/plants8120610
10.3390/antiox11040758
10.1080/02827581.2014.960892
10.1134/S1021443717020042
10.1007/s00468-021-02140-9
10.1111/jpi.12243
10.1016/j.stress.2022.100122
10.3390/plants10050886
10.3390/biom9110640
10.3906/tar-1405-102
10.3390/antiox10081227
10.1016/j.jplph.2022.153813
10.1186/s12870-018-1228-2
10.1105/tpc.20.00800
10.1016/j.ecoleng.2016.07.011
10.5513/JCEA01/20.3.2312
10.1007/s10725-022-00857-2
10.1080/00103624.2015.1059848
10.15243/jdmlm.2018.052.1047
10.3390/plants10050845
10.1016/j.scienta.2018.10.017
10.1016/j.plaphy.2021.04.017
10.1016/j.plaphy.2017.07.015
10.1016/j.indcrop.2021.113671
10.18517/ijaseit.12.3.13311
10.1016/j.tplants.2014.02.001
10.2134/agronj2009.0471
10.3390/plants11050639
10.1016/j.eti.2021.101808
10.3389/fpls.2021.680376
10.1016/j.jfca.2022.104507
10.1111/ppl.12737
10.1016/j.envexpbot.2013.03.001
10.1016/j.sajb.2022.03.050
10.3923/ijar.2017.19.27
10.1016/j.plaphy.2022.11.041
10.1186/s12870-022-03930-0
10.1016/j.bbrc.2017.11.043
10.1016/j.pmpp.2019.03.003
10.3390/plants11091151
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M0K
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
DOA
DOI 10.1186/s40538-024-00577-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Agricultural Science Database


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2196-5641
EndPage 58
ExternalDocumentID oai_doaj_org_article_8075f99f24b54b4ea796094a3410e98b
10_1186_s40538_024_00577_x
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 32160696
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID 0R~
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAJSJ
AAKKN
ABEEZ
ACACY
ACGFS
ACULB
ADBBV
ADINQ
AEUYN
AFGXO
AFKRA
AFPKN
AHBYD
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
ATCPS
BBNVY
BCNDV
BENPR
BHPHI
C24
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
HCIFZ
IAO
KQ8
LK8
M0K
M7P
M~E
OK1
PIMPY
PROAC
RSV
RVI
SOJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
3V.
8FK
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c462t-645ed192fb415f4f2588d589c83c3961fb009421a18c65b82fcc6747125a3d843
IEDL.DBID BENPR
ISSN 2196-5641
IngestDate Wed Aug 27 01:18:56 EDT 2025
Thu Jul 10 17:36:11 EDT 2025
Fri Jul 25 11:12:35 EDT 2025
Thu Apr 24 23:09:53 EDT 2025
Tue Jul 01 03:41:16 EDT 2025
Fri Feb 21 02:40:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords M9-T337
Saline-alkaline stress
Ion homeostasis
Oxidative damage
ASA-GSH cycle
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-645ed192fb415f4f2588d589c83c3961fb009421a18c65b82fcc6747125a3d843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3043578795?pq-origsite=%requestingapplication%
PQID 3043578795
PQPubID 2034788
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_8075f99f24b54b4ea796094a3410e98b
proquest_miscellaneous_3153704256
proquest_journals_3043578795
crossref_citationtrail_10_1186_s40538_024_00577_x
crossref_primary_10_1186_s40538_024_00577_x
springer_journals_10_1186_s40538_024_00577_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Chemical and biological technologies in agriculture
PublicationTitleAbbrev Chem. Biol. Technol. Agric
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Gao, Liu, Zhang (CR33) 2020; 55
Liang, Ma, Wan, Liu (CR1) 2017; 495
Arnon (CR35) 1949; 24
Wu, Hu, Liao, Mohammed, Lyu, Xie, Feng, Calderón-Urrea, Yu (CR84) 2019; 257
Goda, Shimada, Asami, Fujioka, Yoshida (CR80) 2002; 130
Jia, Zhang, Liu, Zou, Ma, Xu, Chun (CR27) 2019; 39
Jia, Zhu, Hu, Zhang, Cheng, Zhu, Zhao, Zhang, Wang (CR32) 2019; 6
Gong, Wen, Vandenlangenbery, Wei, Yang, Shi, Wamh (CR14) 2013; 157
González, Reyes, Tighe, Inostroza, Escobar, Bravo (CR22) 2022; 11
María, Maria, Maria, Hu, Sandalio (CR18) 2016; 171
Eros, Shriravi (CR45) 2016; 165
Zhang, Zhou, Dong, Zhang, He, Chen, Zhu, Zhao (CR61) 2021; 169
Li, Yang, Zhang (CR24) 2019; 162
Yang, Guo, Shi (CR12) 2010; 102
Su, Rahat, Ren, Kojima, Takebayashi, Sakakibara, Wang, Chen, Qi (CR93) 2021; 282
Pu, An, Han, Zhang (CR70) 2015; 117
Ren, Zhang (CR74) 2017; 8
Yan, Zhang, Li, Ding, Zhong, Xu, Wei, Li (CR67) 2021; 163
Singh, Bhatla (CR8) 2016; 53
Omena-Garcia, Martins, Medeiros, Vallarino, Ribeiro, Fernie, Araújo, Nunes-Nesi (CR23) 2019; 159
Mehta, Allakhverdiev, Jajoo (CR64) 2010; 105
Hayat, Hasan, Yusuf, Hayat, Ahmad (CR78) 2010; 69
Zhang, Wang, Ma, Ouyang, Deng, Shen, Dong, Du, Dong, Guo (CR79) 2022; 11
Tawfik, Badr, Ibrahim (CR88) 2017; 12
Varghese, Alyammahi, Nasreddine, Alhassani, Gururani (CR52) 2019; 8
Liu, Song, Li, Yuan, Li, Fu, Zhang, Ma, Liu, Zou, Cheng (CR28) 2016; 17
Dhokne, Pandey, Yadav, Ramachandran, Rath, Subramanyam (CR60) 2022; 177
Yuan, Xu, Duan, Fan, Li (CR37) 2013; 138
Ali, Shaheen, Ihsan, Masood, Zubair, Shehzad, Khalid (CR75) 2022; 148
Sengupta, Majumder (CR66) 2009; 229
Chen, Burke, John, Xin (CR63) 2018; 18
Chu, Bao, Li, Sun, Liu, Shi, Huang (CR34) 2023; 12
Ashraf, Orooj (CR53) 2006; 64
Zuo, Li, Guan, Jia, Xu, Zhamg, Lu, Li, Li, Pang (CR20) 2022; 278
Fan, Ding, Xu, Du (CR57) 2017; 64
High (CR72) 2016; 7
El-Badri, Batool, Mohamed, Wang, Khatab, Sherif, Ahmad, Khan, Hassan, Elrewainy (CR96) 2021; 10
Liang, Fang, Ji, Zheng (CR4) 2015; 46
Lin, Niu, Jiang, Yu, Wang, Qiao (CR36) 2022; 8
Wang, Wang, Lv, Khanzada, Huang, Cai, Zhou, Huo, Jiang (CR44) 2021; 3
An, Chen, Gao, Li, Chao (CR17) 2017; 13
Gong, Xiong, Shi, Yang, Herrera-Estrella, Xu, Chao, Li, Wang, Qin, Li, Ding, Shi, Wang, Yang, Guo, Zhu (CR97) 2020; 63
Cut, Rita, Bakhtiar, Sabaruddin, Efendi (CR42) 2022; 12
José, Carlos (CR56) 2019; 5
Yamika, Aini, Setiawan, Purwaningrahayu (CR9) 2018; 5
Reeta, Sonal, Deepali, Neeti, Amit (CR19) 2022; 6
Wang, Jie, Peng, Hua, Yan, Zhou, Lin (CR49) 2019; 9
Xu, Kang, Zhu, Zhao, Yuan, Yang, Zhen, Hu (CR86) 2021; 164
Liang, Ni, Xia, Xie, Lv, Wang, Lin, Deng, Luo (CR76) 2019; 246
An, Yang, Zhang, Zhang, Du, Yao, Li, Guo (CR10) 2020; 39
Ge, Chen, Li, Wei, Li, Tang, Duan (CR41) 2019; 106
Hnilickova, Kraus, Vachova, Hnilicka (CR39) 2021; 10
Zhang, Liu, Wang, Wang, Zhang, Chen, Liu, Wang, Li (CR90) 2021; 10
Harizanova, Koleva-Valkova (CR62) 2019; 20
Lu, Tian, Hou, Jia, Li, Hao, Jiang, Liu (CR5) 2022; 2
Wang, Sheng, Shi, Yu, Li (CR3) 2016; 95
Soumya, Satish (CR30) 2020; 40
Hasegawa (CR7) 2013; 92
Li, Xie, Yu, Lv, Zhang, Ding, Li, Zhang, Bakpa, Yang, Niu, Gao (CR29) 2022; 13
Ullah, Tian, Xu, Abid, Lei, Khanzada, Zeeshan, Sun, Yu, Dai (CR40) 2022; 13
Zhu, Li, Thorpe, Charles, Song (CR58) 2021; 35
Yan, Chong, Zhao (CR13) 2022; 17
Saima (CR98) 2020; 32
Liu, Jin, Wang, Gong, Wen, Wang, Wei, Shi (CR50) 2015; 18
He, Zhou, Lü, Liang (CR54) 2022; 12
Eiyazied, Ibrahim, Ibrahim, Nasef, AlQahtani, AlHarbi (CR31) 2022; 11
Şevket, Melayib (CR43) 2018; 2
Jiang, Ye, Liu, Brestic, Li (CR25) 2022; 13
Zheng, Zhao, Shan, Shi, Wang, Li, Wang, Zhou, Yao, Xue, Fang, Chu, Guo, Kong (CR46) 2018; 217
Wang, Wang, Zhu, Li (CR81) 2021; 12
Fu, Zhu, Wang, Liu, Shen, Xu, Wang (CR94) 2021; 159
Li, Fu, Li, Yin, Xi (CR21) 2022; 299
Chen, Mao, Sun, Huang, Ding, Gu (CR77) 2018; 164
Wang, Liu, Yang, Wu, Wang, He, Zhou (CR91) 2022; 185
Pravej, Thamer, Albalawi, Altalayan, Mohammad, Vaseem, Muhammad, Parvaiz (CR83) 2019; 9
Kaya (CR85) 2023; 194
Xu, Lei, Pang, Li, Feng, Xu (CR92) 2017; 118
Kobayashi, Yamaji, Yamamoto, Okubo, Ueno, Costa, Horie (CR16) 2017; 91
Mafakheri, Siosemardeh, Bahramnejad (CR59) 2010; 4
Mirza, Bhuyan, Taufika, Khursheda, Kamrun, Mahmud, Masayuki (CR82) 2019; 8
Jia, Wang, Svetla, Zhu, Hu, Cheng, Zhao, Wang (CR95) 2019; 245
Mikolajczyk (CR15) 2000; 12
Weisany, Sohrabi, Heidari, Siosemardeh, Ghassemi-Golezani (CR71) 2012; 5
Wei, Li, Ming, Peng (CR100) 2022; 22
Zhao, Bian, Li, Wang, Yang, Ciu, Kentbayev, Kentbayeva (CR2) 2014; 29
Yuan, Liang, Li, Yin, Wang (CR38) 2018; 46
An, Gao, Tong, Liu (CR48) 2021; 12
Gao, Huang, Gong, Wang, Qiao, Xiao, Yang, Yu, Guo, Yu, Zhang (CR26) 2022; 98
Cai, He, Lin, Nie, Li, Liu, Ma (CR89) 2023; 63
Yan, Mei, Dong, Zhou, Cui, Sun (CR65) 2022; 13
Parveen, Ahmar, Kamran, Ali, Riaz (CR99) 2021; 413
Li, Liu, Zhu, Zhao, Li, Chen (CR51) 2019; 20
Kuang, Wang, Zhang, Xu, Li (CR47) 2022; 109
Deinlein, Stephan, Horie, Cuo, Xu, Schroeder (CR11) 2014; 19
Song, Zheng, Basne, Li, Chen, Jiang (CR69) 2022; 6
Liang, Zheng, Li, Wang, Hu, Wang, Wu, Qian, Zhu, Tan, Chen, Chu (CR73) 2015; 59
Taârit, Msaada, Hosni, Marzouk (CR55) 2012; 92
Alharbi, Al-Osaimi, Alghamdi (CR68) 2022; 7
Capula, Valdez, Cartmill, Alia (CR6) 2016; 47
Hosseini, Hasanloo, Mohammadi (CR87) 2015; 39
H Hnilickova (577_CR39) 2021; 10
PM Hasegawa (577_CR7) 2013; 92
L Kuang (577_CR47) 2022; 109
T Zhang (577_CR79) 2022; 11
JW Xu (577_CR86) 2021; 164
Y Ren (577_CR74) 2017; 8
K Alharbi (577_CR68) 2022; 7
Y Song (577_CR69) 2022; 6
YE Chen (577_CR77) 2018; 164
PR Omena-Garcia (577_CR23) 2019; 159
CW Yang (577_CR12) 2010; 102
JH Yuan (577_CR37) 2013; 138
M Jiang (577_CR25) 2022; 13
CZ Liang (577_CR73) 2015; 59
Y An (577_CR48) 2021; 12
C Kaya (577_CR85) 2023; 194
M Mikolajczyk (577_CR15) 2000; 12
MM Cai (577_CR89) 2023; 63
AM El-Badri (577_CR96) 2021; 10
K Reeta (577_CR19) 2022; 6
LL Zhu (577_CR58) 2021; 35
X Jia (577_CR32) 2019; 6
N Liu (577_CR50) 2015; 18
HF Fan (577_CR57) 2017; 64
B Gong (577_CR14) 2013; 157
S Hayat (577_CR78) 2010; 69
K Dhokne (577_CR60) 2022; 177
A Pravej (577_CR83) 2019; 9
J Fu (577_CR94) 2021; 159
XH Pu (577_CR70) 2015; 117
YJ Zuo (577_CR20) 2022; 278
LY Gao (577_CR33) 2020; 55
Y Wu (577_CR84) 2019; 257
A Harizanova (577_CR62) 2019; 20
J Chen (577_CR63) 2018; 18
ZQ Xu (577_CR92) 2017; 118
Y Chu (577_CR34) 2023; 12
YH Ge (577_CR41) 2019; 106
F Yuan (577_CR38) 2018; 46
FN Wang (577_CR3) 2016; 95
P Mehta (577_CR64) 2010; 105
R Capula (577_CR6) 2016; 47
HM Wang (577_CR91) 2022; 185
CC Lu (577_CR5) 2022; 2
Z Liu (577_CR28) 2016; 17
D Liang (577_CR76) 2019; 246
H Goda (577_CR80) 2002; 130
Y Zhang (577_CR61) 2021; 169
D An (577_CR17) 2017; 13
A Parveen (577_CR99) 2021; 413
XD Zheng (577_CR46) 2018; 217
J Wang (577_CR81) 2021; 12
A Mafakheri (577_CR59) 2010; 4
H Mirza (577_CR82) 2019; 8
J Li (577_CR51) 2019; 20
Q Li (577_CR24) 2019; 162
CH Jia (577_CR27) 2019; 39
W Weisany (577_CR71) 2012; 5
BB Li (577_CR21) 2022; 299
K Yan (577_CR65) 2022; 13
DI Arnon (577_CR35) 1949; 24
XY Zhao (577_CR2) 2014; 29
S Saima (577_CR98) 2020; 32
VJ González (577_CR22) 2022; 11
HS Gao (577_CR26) 2022; 98
L Lin (577_CR36) 2022; 8
R Wei (577_CR100) 2022; 22
U Deinlein (577_CR11) 2014; 19
LC José (577_CR56) 2019; 5
M Soumya (577_CR30) 2020; 40
K Eros (577_CR45) 2016; 165
N Singh (577_CR8) 2016; 53
A Ullah (577_CR40) 2022; 13
XM Jia (577_CR95) 2019; 245
Z Gong (577_CR97) 2020; 63
PF Zhang (577_CR90) 2021; 10
J Li (577_CR29) 2022; 13
RS María (577_CR18) 2016; 171
FY Yan (577_CR67) 2021; 163
WSD Yamika (577_CR9) 2018; 5
M Ashraf (577_CR53) 2006; 64
NI Cut (577_CR42) 2022; 12
SM Hosseini (577_CR87) 2015; 39
L Ali (577_CR75) 2022; 148
SI High (577_CR72) 2016; 7
AA Eiyazied (577_CR31) 2022; 11
MM Tawfik (577_CR88) 2017; 12
Y An (577_CR10) 2020; 39
WL Wang (577_CR44) 2021; 3
NI Kobayashi (577_CR16) 2017; 91
S Sengupta (577_CR66) 2009; 229
MB Taârit (577_CR55) 2012; 92
N Varghese (577_CR52) 2019; 8
XL Liang (577_CR4) 2015; 46
SP Yan (577_CR13) 2022; 17
YN Wang (577_CR49) 2019; 9
WJ Liang (577_CR1) 2017; 495
T Şevket (577_CR43) 2018; 2
L Su (577_CR93) 2021; 282
H He (577_CR54) 2022; 12
References_xml – volume: 177
  start-page: 46
  year: 2022
  end-page: 60
  ident: CR60
  article-title: Change in the photochemical and structural organization of thylakoids from pea ( ) under salt stress
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2022.02.004
– volume: 20
  start-page: 1735
  issue: 7
  year: 2019
  ident: CR51
  article-title: The role of melatonin in salt stress responses
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20071735
– volume: 229
  start-page: 911
  issue: 4
  year: 2009
  end-page: 929
  ident: CR66
  article-title: Insight into the salt tolerance factors of a wild halophytic rice, : a physio-logical and proteomic approach
  publication-title: Planta
  doi: 10.1007/s00425-008-0878-y
– volume: 163
  start-page: 367
  year: 2021
  end-page: 375
  ident: CR67
  article-title: Exogenous melatonin alleviates salt stress by improving leaf photosynthesis in rice seedlings
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2021.03.058
– volume: 3
  start-page: 1
  year: 2021
  end-page: 14
  ident: CR44
  article-title: Effects of cold and salicylic acid priming on free proline and sucrose accumulation in winter wheat under freezing stress
  publication-title: J Plant Growth Regul
– volume: 5
  start-page: 79
  issue: 2
  year: 2019
  end-page: 87
  ident: CR56
  article-title: Effect of exogenous melatonin on seed germination and seedling growth in melon ( L.) under salt stress
  publication-title: Hortic Plant J.
  doi: 10.1016/j.hpj.2019.01.002
– volume: 185
  start-page: 336
  year: 2022
  end-page: 343
  ident: CR91
  article-title: Potassium application promote cotton acclimation to soil waterlogging stress by regulating endogenous protective enzymes activities and hormones contents
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2022.06.019
– volume: 13
  start-page: 998861
  year: 2022
  end-page: 998861
  ident: CR25
  article-title: Rhizosphere melatonin application reprograms nitrogen-cycling related micro-organisms to modulate low temperature response in barley
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.998861
– volume: 53
  start-page: 54
  year: 2016
  end-page: 64
  ident: CR8
  article-title: Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2016.01.003
– volume: 159
  start-page: 95
  year: 2019
  end-page: 107
  ident: CR23
  article-title: Growth and metabolic adjustments in response to gibberellin deficiency in drought stressed tomato plants
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2018.12.011
– volume: 9
  start-page: 1939
  year: 2019
  ident: CR49
  article-title: Physiological adaptive strategies of oil seed crop early seedlings (cotyledon vs. true leaf) under salt and alkali stresses: from the growth, photosynthesis and chlorophyll fluorescence
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01939
– volume: 8
  start-page: 133
  issue: 2
  year: 2022
  end-page: 142
  ident: CR36
  article-title: Influences of open-central canopy on photosynthetic parameters and fruit quality of apples (Malus × domestica) in the Loess Plateau of China
  publication-title: Hortic Plant J
  doi: 10.1016/j.hpj.2021.03.008
– volume: 138
  start-page: 395
  issue: 5
  year: 2013
  end-page: 402
  ident: CR37
  article-title: Effects of whole-root and half-root water stress on gas exchange and chlorophyll fluorescence parameters in apple trees
  publication-title: J Am Soc Hortic Sci
  doi: 10.21273/JASHS.138.5.395
– volume: 157
  start-page: 1
  year: 2013
  end-page: 12
  ident: CR14
  article-title: Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2013.03.032
– volume: 17
  start-page: 2031782
  issue: 1
  year: 2022
  end-page: 2031782
  ident: CR13
  article-title: Effect of salt stress on the photosynthetic characteristics and endogenous hormones, and: a comprehensive evaluation of salt tolerance in seedlings
  publication-title: Plant Signal Behav
  doi: 10.1080/15592324.2022.2031782
– volume: 24
  start-page: 1
  year: 1949
  end-page: 15
  ident: CR35
  article-title: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in
  publication-title: Plant Physiol
  doi: 10.1104/pp.24.1.1
– volume: 299
  year: 2022
  ident: CR21
  article-title: Brassinosteroids alleviate cadmium phytotoxicity by minimizing oxidative stress in grape seedlings: toward regulating the ascorbate-glutathione cycle
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2022.111002
– volume: 64
  start-page: 209
  issue: 2
  year: 2006
  end-page: 220
  ident: CR53
  article-title: Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain ( [L.] Sprague)
  publication-title: J Arid Environ
  doi: 10.1016/j.jaridenv.2005.04.015
– volume: 46
  start-page: 82
  issue: 1
  year: 2018
  end-page: 92
  ident: CR38
  article-title: Methyl jasmonate improves tolerance to high salt stress in the recretohalophyte Limonium bicolor
  publication-title: Funct Plant Biol
  doi: 10.1071/FP18120
– volume: 257
  start-page: 108761
  year: 2019
  end-page: 108761
  ident: CR84
  article-title: Foliar application of 5-aminolevulinic acid (ALA) alleviates NaCl stress in cucumber ( L.) seedlings through the enhancement of ascorbate-glutathione cycle
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2019.108761
– volume: 63
  start-page: 635
  issue: 5
  year: 2020
  end-page: 674
  ident: CR97
  article-title: Plant abiotic stress response and nutrient use efficiency
  publication-title: Sci China Life Sci
  doi: 10.1007/s11427-020-1683-x
– volume: 40
  start-page: 1
  issue: 6
  year: 2020
  end-page: 13
  ident: CR30
  article-title: Exogenous melatonin modulates endogenous H 2 S homeostasis and L-Cysteine desulfhydrase activity in salt-stressed tomato ( L. var. cherry) seedling cotyledons
  publication-title: J Plant Growth Regul
– volume: 47
  start-page: 505
  issue: 4
  year: 2016
  end-page: 511
  ident: CR6
  article-title: Supplementary calcium and potassium improve the response of Tomato ( L.) to simultaneous alkalinity salinity and boron stress
  publication-title: Commun Soil Sci Plant Anal
– volume: 13
  year: 2022
  ident: CR40
  article-title: Improving the effects of drought priming against post-anthesis drought stress in wheat ( L.) using nitrogen
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.965996
– volume: 12
  start-page: 1393
  issue: 6
  year: 2022
  ident: CR54
  article-title: Growth, leaf morphological and physiological adaptability of leaf beet ( var. cicla) to salt stress: a soil culture experiment
  publication-title: Agronomy
  doi: 10.3390/agronomy12061393
– volume: 63
  start-page: 1442
  issue: 3
  year: 2023
  end-page: 1457
  ident: CR89
  article-title: Comparative physiological, transcriptome, and qRT-PCR analysis provide insights into osmotic adjustment in the licorice species under salt stress
  publication-title: Crop Sci
  doi: 10.1002/csc2.20949
– volume: 105
  start-page: 249
  issue: 3
  year: 2010
  end-page: 255
  ident: CR64
  article-title: Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves ( )
  publication-title: Photosynth Res
  doi: 10.1007/s11120-010-9588-y
– volume: 13
  issue: 10
  year: 2017
  ident: CR17
  article-title: drives adaptation of to salinity by reducing floral sodium content
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1007086
– volume: 8
  start-page: 707
  issue: 10
  year: 2017
  end-page: 710
  ident: CR74
  article-title: The excessive response: a preparation for harder conditions
  publication-title: Protein Cell
  doi: 10.1007/s13238-017-0454-y
– volume: 2
  start-page: 85
  issue: 1
  year: 2018
  end-page: 94
  ident: CR43
  article-title: Enhanced soluble protein and biochemical methane potential of apple biowaste by different pre-treatment
  publication-title: Earth Syst Environ
  doi: 10.1007/s41748-017-0033-7
– volume: 7
  start-page: 276
  year: 2016
  ident: CR72
  article-title: Different oxidative stress and antioxidant responses in maize seedlings organs
  publication-title: Front Plant Sci
– volume: 162
  start-page: 357
  year: 2019
  end-page: 363
  ident: CR24
  article-title: Higher endogenous bioactive gibberellins and α-amylase activity confer greater tolerance of rice seed germination to saline-alkaline stress
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2019.03.015
– volume: 13
  year: 2022
  ident: CR65
  article-title: Dissecting photosynthetic electron transport and photosystems performance in Jerusalem artichoke ( L.) under salt stress
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.905100
– volume: 117
  start-page: 96
  year: 2015
  end-page: 106
  ident: CR70
  article-title: Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass ( L.) cultivars
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2015.03.023
– volume: 12
  start-page: 567782
  year: 2021
  end-page: 567782
  ident: CR48
  article-title: Morphological and physiological traits related to the response and adaption of seedlings grown under salt-alkaline stress conditions
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2021.567782
– volume: 6
  year: 2022
  ident: CR19
  article-title: Potential of organic amendments (AM fungi, PGPR, vermicompost and seaweeds) in combating salt stress- a review
  publication-title: Plant Stress.
  doi: 10.1016/j.stress.2022.100111
– volume: 18
  start-page: 18
  year: 2015
  end-page: 25
  ident: CR50
  article-title: Sodic alkaline stress mitigation with exogenous melatonin involves reactive oxygen metabolism and ion homeostasis in tomato
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2014.10.049
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  end-page: 19
  ident: CR32
  article-title: Integrated physiologic, proteomic, and metabolomic analyses of adaptation to saline–alkali stress
  publication-title: Hortic Res
  doi: 10.1038/s41438-019-0172-0
– volume: 12
  start-page: 1917
  issue: 11
  year: 2023
  ident: CR34
  article-title: Melatonin alleviates antimony toxicity by regulating the antioxidant response and reducing antimony accumulation in L
  publication-title: Antioxidants
  doi: 10.3390/antiox12111917
– volume: 92
  start-page: 1614
  issue: 8
  year: 2012
  end-page: 1619
  ident: CR55
  article-title: Physiological changes, phenolic content and antioxidant activity of L. grown under saline conditions
  publication-title: J Sci Food Agric
  doi: 10.1002/jsfa.4746
– volume: 282
  year: 2021
  ident: CR93
  article-title: Cytokinin and auxin modulate cucumber parthenocarpy fruit development
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2021.110026
– volume: 13
  start-page: 998293
  year: 2022
  end-page: 998293
  ident: CR29
  article-title: Melatonin enhanced low-temperature combined with low-light tolerance of pepper ( L.) seedlings by regulating root growth, antioxidant defense system, and osmotic adjustment
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.998293
– volume: 5
  start-page: 60
  issue: 2
  year: 2012
  end-page: 67
  ident: CR71
  article-title: Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean ( L.)
  publication-title: Plant Omics.
– volume: 246
  start-page: 34
  year: 2019
  end-page: 43
  ident: CR76
  article-title: Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2018.10.058
– volume: 91
  start-page: 657
  issue: 4
  year: 2017
  end-page: 670
  ident: CR16
  article-title: OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice
  publication-title: Plant J
  doi: 10.1111/tpj.13595
– volume: 130
  start-page: 1319
  issue: 3
  year: 2002
  end-page: 1334
  ident: CR80
  article-title: Microarray analysis of brassinosteroid-regulated genes in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.011254
– volume: 8
  start-page: 384
  issue: 9
  year: 2019
  end-page: 384
  ident: CR82
  article-title: Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress
  publication-title: Antioxidants
  doi: 10.3390/antiox8090384
– volume: 17
  start-page: 328
  issue: 2
  year: 2016
  end-page: 335
  ident: CR28
  article-title: Exogenous ap-plication of a low concentration of melatonin enhances salt tolerance in rapeseed ( L.) seedlings
  publication-title: J Integr Agric
– volume: 171
  start-page: 1665
  issue: 3
  year: 2016
  end-page: 1674
  ident: CR18
  article-title: Peroxisomes extend peroxules in a fast response to stress via a reactive oxygen species-mediated induction of the peroxin PEX11a
  publication-title: Plant Physiol
  doi: 10.1104/pp.16.00648
– volume: 217
  start-page: 1086
  issue: 3
  year: 2018
  end-page: 1098
  ident: CR46
  article-title: MdWRKY9 overexpression confers intensive dwarfing in the M26 rootstock of apple by directly inhibiting brassinosteroid synthetase expression
  publication-title: New Phytol
  doi: 10.1111/nph.14891
– volume: 165
  start-page: 157
  year: 2016
  end-page: 162
  ident: CR45
  article-title: Deficiency in phytochrome A alters photosynthetic activity, leaf starch metabolism and shoot biomass production in tomato
  publication-title: J Photochem Photobiol, B
  doi: 10.1016/j.jphotobiol.2016.10.026
– volume: 2
  start-page: 1
  issue: 1
  year: 2022
  end-page: 14
  ident: CR5
  article-title: Multiple forms of vitamin B6 regulate salt tolerance by balancing ROS and abscisic acid levels in maize root
  publication-title: Stress Biol
  doi: 10.1007/s44154-022-00061-2
– volume: 7
  start-page: 20819
  issue: 24
  year: 2022
  end-page: 20832
  ident: CR68
  article-title: Sodium chloride (NaCl)-induced physiological alteration and oxidative stress generation in (L.): a toxicity assessment
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c01427
– volume: 69
  start-page: 105
  issue: 2
  year: 2010
  end-page: 112
  ident: CR78
  article-title: Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2010.03.004
– volume: 39
  start-page: 997
  year: 2020
  end-page: 1011
  ident: CR10
  article-title: Alfalfa MsCBL4 enhances calcium metabolism but not sodium transport in transgenic tobacco under salt and saline–alkali stress
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-020-02543-x
– volume: 159
  start-page: 257
  year: 2021
  end-page: 267
  ident: CR94
  article-title: Maize transcription factor ZmEREB20 enhanced salt tolerance in transgenic Arabidopsis
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2020.12.027
– volume: 8
  start-page: 610
  issue: 12
  year: 2019
  ident: CR52
  article-title: Melatonin positively influences the photosynthetic machinery and antioxidant system of during salinity stress
  publication-title: Plants
  doi: 10.3390/plants8120610
– volume: 11
  start-page: 758
  year: 2022
  ident: CR79
  article-title: Melatonin alleviates copper toxicity via improving ROS metabolism and antioxidant defense response in tomato seedlings
  publication-title: Antioxidants
  doi: 10.3390/antiox11040758
– volume: 29
  start-page: 639
  issue: 7
  year: 2014
  end-page: 649
  ident: CR2
  article-title: Genetic stability analysis of introduced , , and families in saline-alkali soil of northeastern China
  publication-title: Scand J For Res
  doi: 10.1080/02827581.2014.960892
– volume: 64
  start-page: 162
  issue: 2
  year: 2017
  end-page: 173
  ident: CR57
  article-title: Antioxidant system and photosynthetic characteristics responses to short-term PEG-induced drought stress in cucumber seedling leaves
  publication-title: Russ J Plant Physiol
  doi: 10.1134/S1021443717020042
– volume: 35
  start-page: 1613
  issue: 5
  year: 2021
  end-page: 1626
  ident: CR58
  article-title: Stomatal and mesophyll conductance are dominant limitations to photosynthesis in response to heat stress during severe drought in a temperate and a tropical tree species
  publication-title: Trees
  doi: 10.1007/s00468-021-02140-9
– volume: 59
  start-page: 91
  issue: 1
  year: 2015
  end-page: 101
  ident: CR73
  article-title: (2015) Melatonin delays leaf senescence and enhances salt stress tolerance in rice
  publication-title: J Pineal Res
  doi: 10.1111/jpi.12243
– volume: 6
  start-page: 100
  year: 2022
  end-page: 122
  ident: CR69
  article-title: Astaxanthin synthesized gold nanoparticles enhance salt stress tolerance in rice by enhancing tetrapyrrole biosynthesis and scavenging reactive oxygen species in vitro
  publication-title: Plant Stress
  doi: 10.1016/j.stress.2022.100122
– volume: 10
  start-page: 886
  issue: 5
  year: 2021
  end-page: 886
  ident: CR90
  article-title: Beneficial effects of exogenous melatonin on overcoming salt stress in sugar beets ( L.)
  publication-title: Plants
  doi: 10.3390/plants10050886
– volume: 9
  start-page: 640
  issue: 11
  year: 2019
  ident: CR83
  article-title: 24-Epibrassinolide (EBR) confers tolerance against NaCl stress in soybean plants by up-regulating antioxidant system, ascorbate-glutathione cycle, and glyoxalase system
  publication-title: Biomolecules
  doi: 10.3390/biom9110640
– volume: 39
  start-page: 413
  year: 2015
  end-page: 420
  ident: CR87
  article-title: Physiological characteristics, antioxidant enzyme activities, and gene expression in 2 spring canola ( L.) cultivars under drought stress conditions
  publication-title: Turkish J Agric For
  doi: 10.3906/tar-1405-102
– volume: 10
  start-page: 1227
  issue: 8
  year: 2021
  ident: CR96
  article-title: Antioxidative and metabolic contribution to salinity stress responses in two rapeseed cultivars during the early seedling stage
  publication-title: Antioxidants
  doi: 10.3390/antiox10081227
– volume: 278
  start-page: 153813
  year: 2022
  end-page: 153813
  ident: CR20
  article-title: EuRBG10 involved in indole al-kaloids biosynthesis in induced by drought and salt stresses
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2022.153813
– volume: 18
  start-page: 1
  issue: 1
  year: 2018
  end-page: 13
  ident: CR63
  article-title: Chlorophyll fluorescence analysis revealed essential roles of FtsH11 protease in regulation of the adaptive responses of photosynthetic systems to high temperature
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-018-1228-2
– volume: 32
  start-page: 3380
  issue: 11
  year: 2020
  end-page: 3381
  ident: CR98
  article-title: A DNA methylation reader with an affinity for salt stress
  publication-title: Plant Cell
  doi: 10.1105/tpc.20.00800
– volume: 95
  start-page: 763
  year: 2016
  end-page: 769
  ident: CR3
  article-title: Salt-alkali tolerance during germination and establishment of in the Songnen Grassland of China
  publication-title: Ecol Eng J Ecotechnol
  doi: 10.1016/j.ecoleng.2016.07.011
– volume: 20
  start-page: 953
  issue: 3
  year: 2019
  end-page: 960
  ident: CR62
  article-title: Effect of silicon on photosynthetic rate and the chlorophyll fluorescence parameters at hydroponically grown cucumber plants under salinity stress
  publication-title: J Central Eur Agric
  doi: 10.5513/JCEA01/20.3.2312
– volume: 98
  start-page: 219
  issue: 2
  year: 2022
  end-page: 233
  ident: CR26
  article-title: Exogenous melatonin application improves resistance to high manganese stress through regulating reactive oxygen species scavenging and ion homeostasis in tobacco
  publication-title: Plant Growth Regul
  doi: 10.1007/s10725-022-00857-2
– volume: 46
  start-page: 2127
  issue: 17
  year: 2015
  end-page: 2138
  ident: CR4
  article-title: The positive effects of silicon on rice seedlings under saline-alkali mixed stress
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103624.2015.1059848
– volume: 5
  start-page: 1047
  issue: 2
  year: 2018
  end-page: 1053
  ident: CR9
  article-title: Effect of gypsum and cow manure on yield, proline content, and K/Na ratio of soybean genotypes under saline conditions
  publication-title: J Degraded Mining Lands Manag
  doi: 10.15243/jdmlm.2018.052.1047
– volume: 10
  start-page: 845
  year: 2021
  ident: CR39
  article-title: Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in L
  publication-title: Plants
  doi: 10.3390/plants10050845
– volume: 245
  start-page: 154
  year: 2019
  end-page: 162
  ident: CR95
  article-title: Comparative physiological responses and adaptive strategies of apple to salt, alkali and saline-alkali stress
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2018.10.017
– volume: 164
  start-page: 237
  year: 2021
  end-page: 246
  ident: CR86
  article-title: RBOH1-dependent H2O2 mediates spermine-induced antioxidant enzyme system to enhance tomato seedling tolerance to salinity–alkalinity stress
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2021.04.017
– volume: 118
  start-page: 460
  year: 2017
  end-page: 470
  ident: CR92
  article-title: Exogenous application of poly-γ-glutamic acid enhances stress defense in L. seedlings by inducing cross-talks between Ca2+, H2O2, brassinolide, and jasmonic acid in leaves
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2017.07.015
– volume: 4
  start-page: 580
  issue: 8
  year: 2010
  end-page: 585
  ident: CR59
  article-title: Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars
  publication-title: Aust J Crop Sci
– volume: 169
  start-page: 152
  year: 2021
  end-page: 168
  ident: CR61
  article-title: Seed priming with melatonin improves salt tolerance in cotton through regulating photosynthesis, scavenging reactive oxygen species and coordinating with phyto-hormone signal pathways
  publication-title: Ind Crops Prod
  doi: 10.1016/j.indcrop.2021.113671
– volume: 12
  start-page: 899
  issue: 3
  year: 2022
  end-page: 907
  ident: CR42
  article-title: The relationship between relative water content of leaves, soluble sugars, accumulation of dry matter, and yield components of rice ( L.) under water-stress condition during the generative stage
  publication-title: Int J Adv Sci Eng Inf Technol.
  doi: 10.18517/ijaseit.12.3.13311
– volume: 19
  start-page: 371
  issue: 6
  year: 2014
  end-page: 379
  ident: CR11
  article-title: Plant salt-tolerance mechanisms
  publication-title: Trendsin Plant Science
  doi: 10.1016/j.tplants.2014.02.001
– volume: 102
  start-page: 1081
  issue: 4
  year: 2010
  end-page: 1089
  ident: CR12
  article-title: Physiological roles of organic acids in alkali-tolerance of the alkali-tolerant halophyte
  publication-title: Agron J
  doi: 10.2134/agronj2009.0471
– volume: 12
  start-page: 165
  issue: 1
  year: 2000
  end-page: 178
  ident: CR15
  article-title: Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells
  publication-title: Plant Cell
– volume: 11
  start-page: 639
  issue: 5
  year: 2022
  end-page: 639
  ident: CR22
  article-title: Salicylic acid improves antioxidant defense system and photosynthetic performance in plants subjected to moderate drought stress
  publication-title: Plants
  doi: 10.3390/plants11050639
– volume: 413
  year: 2021
  ident: CR99
  article-title: Abscisic acid signaling reduced transpiration flow, regulated Na + ion homeostasis and antioxidant enzyme activities to induce salinity tolerance in wheat ( L.) seedlings
  publication-title: Environ Technol Innov
  doi: 10.1016/j.eti.2021.101808
– volume: 12
  year: 2021
  ident: CR81
  article-title: Exogenous 6-benzyladenine improves waterlogging tolerance in maize seedlings by mitigating oxidative stress and upregulating the ascorbate-glutathione cycle
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2021.680376
– volume: 109
  year: 2022
  ident: CR47
  article-title: Factor analysis and cluster analysis of mineral elements contents in different blueberry cultivars
  publication-title: J Food Compos Anal
  doi: 10.1016/j.jfca.2022.104507
– volume: 164
  start-page: 349
  issue: 3
  year: 2018
  end-page: 363
  ident: CR77
  article-title: Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity
  publication-title: Physiol Plant
  doi: 10.1111/ppl.12737
– volume: 39
  start-page: 1
  year: 2019
  end-page: 10
  ident: CR27
  article-title: Application of melatonin-enhanced tolerance to high-temperature stress in cherry radish ( L. var. radculus pers)
  publication-title: J Plant Growth Regul
– volume: 92
  start-page: 19
  year: 2013
  end-page: 31
  ident: CR7
  article-title: Sodium (Na ) homeostasis and salt tolerance of plants
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2013.03.001
– volume: 148
  start-page: 104
  year: 2022
  end-page: 111
  ident: CR75
  article-title: Growth, photosynthesis and antioxidant enzyme modulations in broccoli ( L. var. italica) under salinity stress
  publication-title: South Afr J Bot.
  doi: 10.1016/j.sajb.2022.03.050
– volume: 12
  start-page: 19
  issue: 1
  year: 2017
  end-page: 27
  ident: CR88
  article-title: Biomass and some physiological aspects of spartina patens grown under salt affected environment in south Sinai
  publication-title: Int J Agric Res
  doi: 10.3923/ijar.2017.19.27
– volume: 194
  start-page: 651
  year: 2023
  end-page: 663
  ident: CR85
  article-title: (2023) Nitric oxide and hydrogen sulfide work together to improve tolerance to salinity stress in wheat plants by upraising the AsA-GSH cycle
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2022.11.041
– volume: 22
  start-page: 552
  issue: 1
  year: 2022
  end-page: 552
  ident: CR100
  article-title: Combined transcriptome and metabolome analysis revealed pathways involved in improved salt tolerance of L. seedlings in response to exogenous melatonin application
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-022-03930-0
– volume: 495
  start-page: 286
  year: 2017
  end-page: 291
  ident: CR1
  article-title: Plant salt-tolerance mechanism: a review
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2017.11.043
– volume: 106
  start-page: 226
  year: 2019
  end-page: 231
  ident: CR41
  article-title: Effect of trisodium phosphate treatment on black spot of apple fruit and the roles of anti-oxidative enzymes
  publication-title: Physiol Mol Plant Pathol
  doi: 10.1016/j.pmpp.2019.03.003
– volume: 55
  start-page: 90
  issue: 2
  year: 2020
  end-page: 97
  ident: CR33
  article-title: Effects of melatonin on photosynthetic and physiological characteristics of under saline-alkali combined stress
  publication-title: J Gansu Agric Univ
– volume: 11
  start-page: 1151
  issue: 9
  year: 2022
  end-page: 1151
  ident: CR31
  article-title: Melatonin mitigates drought induced oxidative stress in potato plants through modulation of osmolytes, sugar metabolism, ABA homeostasis and antioxidant enzymes
  publication-title: Plants
  doi: 10.3390/plants11091151
– volume: 53
  start-page: 54
  year: 2016
  ident: 577_CR8
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2016.01.003
– volume: 177
  start-page: 46
  year: 2022
  ident: 577_CR60
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2022.02.004
– volume: 11
  start-page: 1151
  issue: 9
  year: 2022
  ident: 577_CR31
  publication-title: Plants
  doi: 10.3390/plants11091151
– volume: 92
  start-page: 19
  year: 2013
  ident: 577_CR7
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2013.03.001
– volume: 19
  start-page: 371
  issue: 6
  year: 2014
  ident: 577_CR11
  publication-title: Trendsin Plant Science
  doi: 10.1016/j.tplants.2014.02.001
– volume: 46
  start-page: 2127
  issue: 17
  year: 2015
  ident: 577_CR4
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103624.2015.1059848
– volume: 24
  start-page: 1
  year: 1949
  ident: 577_CR35
  publication-title: Plant Physiol
  doi: 10.1104/pp.24.1.1
– volume: 5
  start-page: 79
  issue: 2
  year: 2019
  ident: 577_CR56
  publication-title: Hortic Plant J.
  doi: 10.1016/j.hpj.2019.01.002
– volume: 35
  start-page: 1613
  issue: 5
  year: 2021
  ident: 577_CR58
  publication-title: Trees
  doi: 10.1007/s00468-021-02140-9
– volume: 257
  start-page: 108761
  year: 2019
  ident: 577_CR84
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2019.108761
– volume: 102
  start-page: 1081
  issue: 4
  year: 2010
  ident: 577_CR12
  publication-title: Agron J
  doi: 10.2134/agronj2009.0471
– volume: 10
  start-page: 1227
  issue: 8
  year: 2021
  ident: 577_CR96
  publication-title: Antioxidants
  doi: 10.3390/antiox10081227
– volume: 164
  start-page: 237
  year: 2021
  ident: 577_CR86
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2021.04.017
– volume: 13
  year: 2022
  ident: 577_CR40
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.965996
– volume: 185
  start-page: 336
  year: 2022
  ident: 577_CR91
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2022.06.019
– volume: 2
  start-page: 85
  issue: 1
  year: 2018
  ident: 577_CR43
  publication-title: Earth Syst Environ
  doi: 10.1007/s41748-017-0033-7
– volume: 159
  start-page: 257
  year: 2021
  ident: 577_CR94
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2020.12.027
– volume: 17
  start-page: 2031782
  issue: 1
  year: 2022
  ident: 577_CR13
  publication-title: Plant Signal Behav
  doi: 10.1080/15592324.2022.2031782
– volume: 164
  start-page: 349
  issue: 3
  year: 2018
  ident: 577_CR77
  publication-title: Physiol Plant
  doi: 10.1111/ppl.12737
– volume: 8
  start-page: 384
  issue: 9
  year: 2019
  ident: 577_CR82
  publication-title: Antioxidants
  doi: 10.3390/antiox8090384
– volume: 163
  start-page: 367
  year: 2021
  ident: 577_CR67
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2021.03.058
– volume: 217
  start-page: 1086
  issue: 3
  year: 2018
  ident: 577_CR46
  publication-title: New Phytol
  doi: 10.1111/nph.14891
– volume: 17
  start-page: 328
  issue: 2
  year: 2016
  ident: 577_CR28
  publication-title: J Integr Agric
– volume: 3
  start-page: 1
  year: 2021
  ident: 577_CR44
  publication-title: J Plant Growth Regul
– volume: 69
  start-page: 105
  issue: 2
  year: 2010
  ident: 577_CR78
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2010.03.004
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 577_CR32
  publication-title: Hortic Res
  doi: 10.1038/s41438-019-0172-0
– volume: 162
  start-page: 357
  year: 2019
  ident: 577_CR24
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2019.03.015
– volume: 12
  start-page: 165
  issue: 1
  year: 2000
  ident: 577_CR15
  publication-title: Plant Cell
– volume: 6
  start-page: 100
  year: 2022
  ident: 577_CR69
  publication-title: Plant Stress
  doi: 10.1016/j.stress.2022.100122
– volume: 9
  start-page: 1939
  year: 2019
  ident: 577_CR49
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01939
– volume: 12
  start-page: 19
  issue: 1
  year: 2017
  ident: 577_CR88
  publication-title: Int J Agric Res
  doi: 10.3923/ijar.2017.19.27
– volume: 11
  start-page: 639
  issue: 5
  year: 2022
  ident: 577_CR22
  publication-title: Plants
  doi: 10.3390/plants11050639
– volume: 12
  start-page: 567782
  year: 2021
  ident: 577_CR48
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2021.567782
– volume: 9
  start-page: 640
  issue: 11
  year: 2019
  ident: 577_CR83
  publication-title: Biomolecules
  doi: 10.3390/biom9110640
– volume: 495
  start-page: 286
  year: 2017
  ident: 577_CR1
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2017.11.043
– volume: 106
  start-page: 226
  year: 2019
  ident: 577_CR41
  publication-title: Physiol Mol Plant Pathol
  doi: 10.1016/j.pmpp.2019.03.003
– volume: 13
  start-page: 998293
  year: 2022
  ident: 577_CR29
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.998293
– volume: 32
  start-page: 3380
  issue: 11
  year: 2020
  ident: 577_CR98
  publication-title: Plant Cell
  doi: 10.1105/tpc.20.00800
– volume: 29
  start-page: 639
  issue: 7
  year: 2014
  ident: 577_CR2
  publication-title: Scand J For Res
  doi: 10.1080/02827581.2014.960892
– volume: 138
  start-page: 395
  issue: 5
  year: 2013
  ident: 577_CR37
  publication-title: J Am Soc Hortic Sci
  doi: 10.21273/JASHS.138.5.395
– volume: 8
  start-page: 610
  issue: 12
  year: 2019
  ident: 577_CR52
  publication-title: Plants
  doi: 10.3390/plants8120610
– volume: 22
  start-page: 552
  issue: 1
  year: 2022
  ident: 577_CR100
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-022-03930-0
– volume: 7
  start-page: 20819
  issue: 24
  year: 2022
  ident: 577_CR68
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c01427
– volume: 5
  start-page: 60
  issue: 2
  year: 2012
  ident: 577_CR71
  publication-title: Plant Omics.
– volume: 8
  start-page: 707
  issue: 10
  year: 2017
  ident: 577_CR74
  publication-title: Protein Cell
  doi: 10.1007/s13238-017-0454-y
– volume: 130
  start-page: 1319
  issue: 3
  year: 2002
  ident: 577_CR80
  publication-title: Plant Physiol
  doi: 10.1104/pp.011254
– volume: 20
  start-page: 953
  issue: 3
  year: 2019
  ident: 577_CR62
  publication-title: J Central Eur Agric
  doi: 10.5513/JCEA01/20.3.2312
– volume: 229
  start-page: 911
  issue: 4
  year: 2009
  ident: 577_CR66
  publication-title: Planta
  doi: 10.1007/s00425-008-0878-y
– volume: 246
  start-page: 34
  year: 2019
  ident: 577_CR76
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2018.10.058
– volume: 6
  year: 2022
  ident: 577_CR19
  publication-title: Plant Stress.
  doi: 10.1016/j.stress.2022.100111
– volume: 278
  start-page: 153813
  year: 2022
  ident: 577_CR20
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2022.153813
– volume: 95
  start-page: 763
  year: 2016
  ident: 577_CR3
  publication-title: Ecol Eng J Ecotechnol
  doi: 10.1016/j.ecoleng.2016.07.011
– volume: 12
  start-page: 1917
  issue: 11
  year: 2023
  ident: 577_CR34
  publication-title: Antioxidants
  doi: 10.3390/antiox12111917
– volume: 13
  issue: 10
  year: 2017
  ident: 577_CR17
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1007086
– volume: 10
  start-page: 845
  year: 2021
  ident: 577_CR39
  publication-title: Plants
  doi: 10.3390/plants10050845
– volume: 20
  start-page: 1735
  issue: 7
  year: 2019
  ident: 577_CR51
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20071735
– volume: 39
  start-page: 413
  year: 2015
  ident: 577_CR87
  publication-title: Turkish J Agric For
  doi: 10.3906/tar-1405-102
– volume: 109
  year: 2022
  ident: 577_CR47
  publication-title: J Food Compos Anal
  doi: 10.1016/j.jfca.2022.104507
– volume: 13
  year: 2022
  ident: 577_CR65
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.905100
– volume: 7
  start-page: 276
  year: 2016
  ident: 577_CR72
  publication-title: Front Plant Sci
– volume: 148
  start-page: 104
  year: 2022
  ident: 577_CR75
  publication-title: South Afr J Bot.
  doi: 10.1016/j.sajb.2022.03.050
– volume: 299
  year: 2022
  ident: 577_CR21
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2022.111002
– volume: 63
  start-page: 635
  issue: 5
  year: 2020
  ident: 577_CR97
  publication-title: Sci China Life Sci
  doi: 10.1007/s11427-020-1683-x
– volume: 11
  start-page: 758
  year: 2022
  ident: 577_CR79
  publication-title: Antioxidants
  doi: 10.3390/antiox11040758
– volume: 413
  year: 2021
  ident: 577_CR99
  publication-title: Environ Technol Innov
  doi: 10.1016/j.eti.2021.101808
– volume: 2
  start-page: 1
  issue: 1
  year: 2022
  ident: 577_CR5
  publication-title: Stress Biol
  doi: 10.1007/s44154-022-00061-2
– volume: 18
  start-page: 18
  year: 2015
  ident: 577_CR50
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2014.10.049
– volume: 55
  start-page: 90
  issue: 2
  year: 2020
  ident: 577_CR33
  publication-title: J Gansu Agric Univ
– volume: 18
  start-page: 1
  issue: 1
  year: 2018
  ident: 577_CR63
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-018-1228-2
– volume: 59
  start-page: 91
  issue: 1
  year: 2015
  ident: 577_CR73
  publication-title: J Pineal Res
  doi: 10.1111/jpi.12243
– volume: 165
  start-page: 157
  year: 2016
  ident: 577_CR45
  publication-title: J Photochem Photobiol, B
  doi: 10.1016/j.jphotobiol.2016.10.026
– volume: 105
  start-page: 249
  issue: 3
  year: 2010
  ident: 577_CR64
  publication-title: Photosynth Res
  doi: 10.1007/s11120-010-9588-y
– volume: 117
  start-page: 96
  year: 2015
  ident: 577_CR70
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2015.03.023
– volume: 194
  start-page: 651
  year: 2023
  ident: 577_CR85
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2022.11.041
– volume: 92
  start-page: 1614
  issue: 8
  year: 2012
  ident: 577_CR55
  publication-title: J Sci Food Agric
  doi: 10.1002/jsfa.4746
– volume: 8
  start-page: 133
  issue: 2
  year: 2022
  ident: 577_CR36
  publication-title: Hortic Plant J
  doi: 10.1016/j.hpj.2021.03.008
– volume: 157
  start-page: 1
  year: 2013
  ident: 577_CR14
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2013.03.032
– volume: 98
  start-page: 219
  issue: 2
  year: 2022
  ident: 577_CR26
  publication-title: Plant Growth Regul
  doi: 10.1007/s10725-022-00857-2
– volume: 282
  year: 2021
  ident: 577_CR93
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2021.110026
– volume: 64
  start-page: 209
  issue: 2
  year: 2006
  ident: 577_CR53
  publication-title: J Arid Environ
  doi: 10.1016/j.jaridenv.2005.04.015
– volume: 40
  start-page: 1
  issue: 6
  year: 2020
  ident: 577_CR30
  publication-title: J Plant Growth Regul
– volume: 63
  start-page: 1442
  issue: 3
  year: 2023
  ident: 577_CR89
  publication-title: Crop Sci
  doi: 10.1002/csc2.20949
– volume: 245
  start-page: 154
  year: 2019
  ident: 577_CR95
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2018.10.017
– volume: 12
  start-page: 899
  issue: 3
  year: 2022
  ident: 577_CR42
  publication-title: Int J Adv Sci Eng Inf Technol.
  doi: 10.18517/ijaseit.12.3.13311
– volume: 39
  start-page: 1
  year: 2019
  ident: 577_CR27
  publication-title: J Plant Growth Regul
– volume: 91
  start-page: 657
  issue: 4
  year: 2017
  ident: 577_CR16
  publication-title: Plant J
  doi: 10.1111/tpj.13595
– volume: 171
  start-page: 1665
  issue: 3
  year: 2016
  ident: 577_CR18
  publication-title: Plant Physiol
  doi: 10.1104/pp.16.00648
– volume: 118
  start-page: 460
  year: 2017
  ident: 577_CR92
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2017.07.015
– volume: 13
  start-page: 998861
  year: 2022
  ident: 577_CR25
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.998861
– volume: 10
  start-page: 886
  issue: 5
  year: 2021
  ident: 577_CR90
  publication-title: Plants
  doi: 10.3390/plants10050886
– volume: 4
  start-page: 580
  issue: 8
  year: 2010
  ident: 577_CR59
  publication-title: Aust J Crop Sci
– volume: 12
  year: 2021
  ident: 577_CR81
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2021.680376
– volume: 12
  start-page: 1393
  issue: 6
  year: 2022
  ident: 577_CR54
  publication-title: Agronomy
  doi: 10.3390/agronomy12061393
– volume: 5
  start-page: 1047
  issue: 2
  year: 2018
  ident: 577_CR9
  publication-title: J Degraded Mining Lands Manag
  doi: 10.15243/jdmlm.2018.052.1047
– volume: 47
  start-page: 505
  issue: 4
  year: 2016
  ident: 577_CR6
  publication-title: Commun Soil Sci Plant Anal
– volume: 159
  start-page: 95
  year: 2019
  ident: 577_CR23
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2018.12.011
– volume: 64
  start-page: 162
  issue: 2
  year: 2017
  ident: 577_CR57
  publication-title: Russ J Plant Physiol
  doi: 10.1134/S1021443717020042
– volume: 39
  start-page: 997
  year: 2020
  ident: 577_CR10
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-020-02543-x
– volume: 46
  start-page: 82
  issue: 1
  year: 2018
  ident: 577_CR38
  publication-title: Funct Plant Biol
  doi: 10.1071/FP18120
– volume: 169
  start-page: 152
  year: 2021
  ident: 577_CR61
  publication-title: Ind Crops Prod
  doi: 10.1016/j.indcrop.2021.113671
SSID ssj0001218973
Score 2.3558233
Snippet Melatonin (MT) is an important plant growth regulator that significantly regulates the growth and development of plants. Previous studies confirmed the...
Abstract Melatonin (MT) is an important plant growth regulator that significantly regulates the growth and development of plants. Previous studies confirmed...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 58
SubjectTerms Accumulation
Agriculture
antioxidant activity
antioxidant enzymes
Antioxidants
apples
ASA-GSH cycle
ascorbate oxidase
ascorbate peroxidase
Ascorbic acid
auxins
biomass production
Biomedical and Life Sciences
Catalase
Chlorophyll
Damage
Environmental degradation
Enzymatic activity
Enzyme activity
fluorescence
Free radicals
Gas exchange
Gene expression
Genes
Gibberellins
Glutathione
growth and development
Growth regulators
Hydrogen peroxide
Indoleacetic acid
Ion homeostasis
L-Ascorbate peroxidase
Life Sciences
M9-T337
Melatonin
monodehydroascorbate reductase (NADH)
Organic Chemistry
Osmoregulation
Osmotic stress
Oxidative damage
Oxygen
Parameters
Peroxidase
Photosynthesis
Plant Biochemistry
Plant growth
plant height
Plant Physiology
Plant stress
proline
Reactive oxygen species
Reductases
root growth
rootstocks
Saline-alkaline stress
Seedlings
Soil Science & Conservation
starch
stress tolerance
superoxide anion
Superoxide anions
Superoxide dismutase
surface area
Toxicity
Zeatin
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPEWgoEHiBlY3iV85FtSqQiqnVurNsh17VXXJoibA7g_ifzLjJEuLBFy4RJFjW1Zm7PnG9nzD2JuyCggKkuDCKXzokLhJIfAk0bq1UnitKHb49JM6ORcfL-TFjVRfdCdspAcef9wBkeWmpkmV8NhSRKeJI004XH0XsTGeVl-0eTecqXF3pTSNrucoGaMOekQmOLfRJHEKwNR8c8sSZcL-Wyjzt4PRbG-OH7D7E1CEw3GAD9md2D1i9w6X1xNZRnzMfhxt1iPHKnymO220swoU_NEtidOgh94RiORudYUvMIaFwLBeRcqmEQFr0_l1BETPA4LAcAWnDT-raw09GjUKVO_Bb7He5UAS7Jbg4Bs518MW1gnyrsi8eILrWvCXlIArMxAA5Tr-7rb9E3Z-fHT24YRPaRd4EKoauBIytgj8kkfjnkSqpDGtNE0wdagbVSZP1xGr0pUmKOlNhbJV5NtW0tWtEfVTttetu_iMgaGiBXpMgQ5YS-219G0wArvSwihfsHIWgQ0TJzmlxljZ7JsYZUexWRSbzWKzm4K93bX5MjJy_LX2e5LsriaxaecC1DE76Zj9l44VbH_WCztN8d7WC0FMQbqRBXu9-4yTk05cXBdR-LZGe6JpWVQFezfr068u_jzs5_9j2C_Y3Yr0PV--2Wd7w_XX-BIh1OBf5dnyE1fHFwE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Journals Complete - Open Access
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-kvuiD-ImnVUbwTRcvyX7lsZaWItSnFvq27G52j9IzKZeovT_I_9OZTXJSUcGX40gmITAzO7_Z2fkNY2-LMiAoSIILp_BHh8RNCoEnidGtkcJrRb3Dp5_Vybn4dCEvpqawfj7tPpck80qd3dqoDz1CC3ROjCmcOig1R-R4V2LuTnZ9OPU4jDsrhal1NXfI_PHRW1Eok_XfQpi_FUVzrDl-yB5MIBEORq0-Yndi-5jdP1htJqKM-IT9OLrpRn5V-ELn2WhXFajxo10Rn0EPvSMAyd36Cv_A2BICQ7eONEkjAkpT7ToCIucBAWC4gtOan1WVhh4DGjWp9-C3KHc5kPbaFTj4Ron1sIUuQd4RmRdOcG0D_pKGb2X2AaA5x9_dtn_Kzo-Pzg5P-DRygQehyoErIWODoC95DOxJpFIa00hTB1OFqlZF8nQUsSxcYYKS3pSoV0V5bSld1RhRPWN7bdfG5wwMXVpithSouFpor6VvghH4Ki2M8gtWzCqwYeIjp7EYa5vzEqPsqDaLarNZbfZmwd7tnrke2Tj-Kf2RNLuTJCbtfKHbrOzkmJbImFNdp1J4tEwRnSYOPuEwui9jbfAz92e7sJN797ZaCmIJ0rVcsDe72-iYVG1xbUTl2wpjiaYlUS3Y-9mefr3i75_94v_EX7J7JVl2PmKzz_aGzdf4CoHS4F9nv_gJ6N8Msg
  priority: 102
  providerName: Springer Nature
Title Exogenous melatonin strengthens saline-alkali stress tolerance in apple rootstock M9-T337 seedlings by initiating a variety of physiological and biochemical pathways
URI https://link.springer.com/article/10.1186/s40538-024-00577-x
https://www.proquest.com/docview/3043578795
https://www.proquest.com/docview/3153704256
https://doaj.org/article/8075f99f24b54b4ea796094a3410e98b
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEF6a-NIeSp_UbWq20Fu7JJL2pVNxjEMwJJQ2gdyW3dWuCXGl1FJS-wf1f3ZGlpym0FyEkFYPmPfMzjeEfExSD05B5IxbCQflI9PRexYFWLdCcKck9g6fnMrjcz67EBddwq3utlX2OrFV1EXlMUe-D2E3ArOoXHy5_slwahRWV7sRGjtkACpYQ_A1OJyefv32V5Yl0bnK-m4ZLfdr8FBAxsE0MWzEVGx1zyK1wP33vM1_CqSt3Tl6Rp52DiMdbyj8nDwK5QvyZDxfdqAZ4SX5PV1VG6xV-gP3tmGGlWITSDlHbIOa1hadSWYXV3BCN-0htKkWAadqBAqrsY4dKHjRDTiD_oqe5OwsyxStwbhhw3pN3RrWXTZIyXJOLb3FILtZ0yrSNjvSK1Fqy4K6SxzE1SIRUJx5_Muu61fk_Gh6Njlm3fgF5rlMGya5CAU4gNGBkY88pkLrQujc68xnuUyiw22JaWIT7aVwOgUaS4xxU2GzQvPsNdktqzK8IVTjpQOInDwWWhPllHCF1xxepbiWbkiSngTGd9jkOCJjYdoYRUuzIZsBspmWbGY1JJ-2z1xvkDkeXH2IlN2uRFTt9kK1nJtOSA0CM8c8jyl3wKU8WIV4fNyCpT8IuYbf3Ov5wnSiXps7xhySD9vbIKRYebFlAOKbDOyKQvUoh-Rzz093r_j_b799-IvvyOMUObndXrNHdpvlTXgPTlLjRmQwHs--z0adRIzIziTleJSTUZt4-AMAaxUG
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKegAOiKcILWAkOMGq3V2v7T0g1EKqlDYRQqnUm7G9dlQ17LbZhSY_iCu_kZl9pBSJ3nqJoo3jtTTjmW88nm8IeR1GFkCBZwHTHD6E9YH01gY-Ae-WJcwIjrXDozEfHrHPx8nxGvnd1cLgtcrOJtaGOissnpFvQdiNxCwiTT6cnQfYNQqzq10LjUYtDtzyAkK28v3-J5DvmyjaG0w-DoO2q0BgGY-qgLPEZYBrvAHf5ZmPEimzRKZWxjZOeegN3raLQh1KyxMjI1g6x9AtSnScSRbDvLfIOoshlOmR9d3B-MvXv051QpmKuKvOkXyrBEQENgVcYYCFnyJYXPGAdaOAK-j2n4Rs7ef27pN7LUClO41GPSBrLn9I7u5M5y1Jh3tEfg0WRcPtSr_jXTo80aVYdJJPkUuhpKVG8Bro2Sl8oU05Cq2KmcMuHo7CaMybOwqovQLwaU_pKA0mcSxoCc4UC-RLapYw7qRCzcmnVNOfGNRXS1p4Wp_GdEab6jyj5gQbf9XMBxR7LF_oZfmYHN2IYJ6QXl7k7imhEh9tQ6RmMbEbCiMSk1nJYCrBJDd9EnYiULblQseWHDNVx0SSq0ZsCsSmarGpRZ-8Xf3nrGECuXb0Lkp2NRJZvOsHxXyqWqOgkAjap6mPmIFdwZwWyP_HNCCLbZdKWOZmpxeqNS2lutwIffJq9TMYBcz06NyB8FUMfkygOeZ98q7Tp8sp_r_sZ9e_8SW5PZyMDtXh_vhgg9yJUKvrqz2bpFfNf7jnANAq86LdFZR8u-mN-AcOUUvF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyF4QFy1wgAjwRNEbRLHdh4Q2lirjbFqQpu0N2M7djWtJKMJrP1B_Al-Hefk0jEk9raXKkpdN9G5fcfnRsjrMLIACjwLmObwIawPpLc28AlYtyxhRnCsHT6Y8N1j9ukkOVkjv7taGEyr7HRiraizwuIZ-QDcbmzMItJk4Nu0iMOd8Yfz7wFOkMJIazdOo2GRfbe8APetfL-3A7R-E0Xj0dHH3aCdMBBYxqMq4CxxGWAcb8COeeajRMoskamVsY1THnqDmXdRqENpeWJkBK_B0Y2LEh1nksWw7y2yLsArGvbI-vZocvjlrxOeUKYi7ip1JB-UgI5Av4BZDLAIVASLK9awHhpwBen-E5ytbd74PrnXglW61XDXA7Lm8ofk7tZ03jbscI_Ir9GiaPq80m-YV4enuxQLUPIp9lUoaakRyAZ6dgYXtClNoVUxczjRw1FYjTF0RwHBVwBE7Rk9SIOjOBa0BMOKxfIlNUtYd1ohF-VTqulPdPCrJS08rU9mOgVOdZ5Rc4pDwOouCBTnLV_oZfmYHN8IYZ6QXl7kboNQibeG4LVZDPKGwojEZFYy2EowyU2fhB0JlG37ouN4jpmq_SPJVUM2BWRTNdnUok_ern5z3nQFuXb1NlJ2tRI7etc3ivlUtQpCYVNon6Y-YgYkhDktsBcg04Ayhi6V8JibHV-oVs2U6lIo-uTV6mtQEBj10bkD4qsYbJpA1cz75F3HT5db_P-xn17_jy_JbRBA9Xlvsv-M3ImQqessn03Sq-Y_3HPAapV50QoFJV9vWg7_AJZJT_o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exogenous+melatonin+strengthens+saline-alkali+stress+tolerance+in+apple+rootstock+M9-T337+seedlings+by+initiating+a+variety+of+physiological+and+biochemical+pathways&rft.jtitle=Chemical+and+biological+technologies+in+agriculture&rft.au=Xian%2C+Xulin&rft.au=Zhang%2C+Zhongxing&rft.au=Wang%2C+Shuangcheng&rft.au=Cheng%2C+Jiao&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.eissn=2196-5641&rft.volume=11&rft.issue=1&rft.spage=58&rft_id=info:doi/10.1186%2Fs40538-024-00577-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-5641&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-5641&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-5641&client=summon