Subject-Independent Deep Architecture for EEG-Based Motor Imagery Classification

Motor imagery (MI) classification based on electroencephalogram (EEG) is a widely-used technique in non-invasive brain-computer interface (BCI) systems. Since EEG recordings suffer from heterogeneity across subjects and labeled data insufficiency, designing a classifier that performs the MI independ...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 718 - 727
Main Authors Sartipi, Shadi, Cetin, Mujdat
Format Journal Article
LanguageEnglish
Published United States IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motor imagery (MI) classification based on electroencephalogram (EEG) is a widely-used technique in non-invasive brain-computer interface (BCI) systems. Since EEG recordings suffer from heterogeneity across subjects and labeled data insufficiency, designing a classifier that performs the MI independently from the subject with limited labeled samples would be desirable. To overcome these limitations, we propose a novel subject-independent semi-supervised deep architecture (SSDA). The proposed SSDA consists of two parts: an unsupervised and a supervised element. The training set contains both labeled and unlabeled data samples from multiple subjects. First, the unsupervised part, known as the columnar spatiotemporal auto-encoder (CST-AE), extracts latent features from all the training samples by maximizing the similarity between the original and reconstructed data. A dimensional scaling approach is employed to reduce the dimensionality of the representations while preserving their discriminability. Second, a supervised part learns a classifier based on the labeled training samples using the latent features acquired in the unsupervised part. Moreover, we employ center loss in the supervised part to minimize the embedding space distance of each point in a class to its center. The model optimizes both parts of the network in an end-to-end fashion. The performance of the proposed SSDA is evaluated on test subjects who were not seen by the model during the training phase. To assess the performance, we use two benchmark EEG-based MI task datasets. The results demonstrate that SSDA outperforms state-of-the-art methods and that a small number of labeled training samples can be sufficient for strong classification performance.
AbstractList Motor imagery (MI) classification based on electroencephalogram (EEG) is a widely-used technique in non-invasive brain-computer interface (BCI) systems. Since EEG recordings suffer from heterogeneity across subjects and labeled data insufficiency, designing a classifier that performs the MI independently from the subject with limited labeled samples would be desirable. To overcome these limitations, we propose a novel subject-independent semi-supervised deep architecture (SSDA). The proposed SSDA consists of two parts: an unsupervised and a supervised element. The training set contains both labeled and unlabeled data samples from multiple subjects. First, the unsupervised part, known as the columnar spatiotemporal auto-encoder (CST-AE), extracts latent features from all the training samples by maximizing the similarity between the original and reconstructed data. A dimensional scaling approach is employed to reduce the dimensionality of the representations while preserving their discriminability. Second, a supervised part learns a classifier based on the labeled training samples using the latent features acquired in the unsupervised part. Moreover, we employ center loss in the supervised part to minimize the embedding space distance of each point in a class to its center. The model optimizes both parts of the network in an end-to-end fashion. The performance of the proposed SSDA is evaluated on test subjects who were not seen by the model during the training phase. To assess the performance, we use two benchmark EEG-based MI task datasets. The results demonstrate that SSDA outperforms state-of-the-art methods and that a small number of labeled training samples can be sufficient for strong classification performance.Motor imagery (MI) classification based on electroencephalogram (EEG) is a widely-used technique in non-invasive brain-computer interface (BCI) systems. Since EEG recordings suffer from heterogeneity across subjects and labeled data insufficiency, designing a classifier that performs the MI independently from the subject with limited labeled samples would be desirable. To overcome these limitations, we propose a novel subject-independent semi-supervised deep architecture (SSDA). The proposed SSDA consists of two parts: an unsupervised and a supervised element. The training set contains both labeled and unlabeled data samples from multiple subjects. First, the unsupervised part, known as the columnar spatiotemporal auto-encoder (CST-AE), extracts latent features from all the training samples by maximizing the similarity between the original and reconstructed data. A dimensional scaling approach is employed to reduce the dimensionality of the representations while preserving their discriminability. Second, a supervised part learns a classifier based on the labeled training samples using the latent features acquired in the unsupervised part. Moreover, we employ center loss in the supervised part to minimize the embedding space distance of each point in a class to its center. The model optimizes both parts of the network in an end-to-end fashion. The performance of the proposed SSDA is evaluated on test subjects who were not seen by the model during the training phase. To assess the performance, we use two benchmark EEG-based MI task datasets. The results demonstrate that SSDA outperforms state-of-the-art methods and that a small number of labeled training samples can be sufficient for strong classification performance.
Motor imagery (MI) classification based on electroencephalogram (EEG) is a widely-used technique in non-invasive brain-computer interface (BCI) systems. Since EEG recordings suffer from heterogeneity across subjects and labeled data insufficiency, designing a classifier that performs the MI independently from the subject with limited labeled samples would be desirable. To overcome these limitations, we propose a novel subject-independent semi-supervised deep architecture (SSDA). The proposed SSDA consists of two parts: an unsupervised and a supervised element. The training set contains both labeled and unlabeled data samples from multiple subjects. First, the unsupervised part, known as the columnar spatiotemporal auto-encoder (CST-AE), extracts latent features from all the training samples by maximizing the similarity between the original and reconstructed data. A dimensional scaling approach is employed to reduce the dimensionality of the representations while preserving their discriminability. Second, a supervised part learns a classifier based on the labeled training samples using the latent features acquired in the unsupervised part. Moreover, we employ center loss in the supervised part to minimize the embedding space distance of each point in a class to its center. The model optimizes both parts of the network in an end-to-end fashion. The performance of the proposed SSDA is evaluated on test subjects who were not seen by the model during the training phase. To assess the performance, we use two benchmark EEG-based MI task datasets. The results demonstrate that SSDA outperforms state-of-the-art methods and that a small number of labeled training samples can be sufficient for strong classification performance.
Author Sartipi, Shadi
Cetin, Mujdat
Author_xml – sequence: 1
  givenname: Shadi
  orcidid: 0000-0002-8441-4475
  surname: Sartipi
  fullname: Sartipi, Shadi
  email: ssartipi@ur.rochester.edu
  organization: Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
– sequence: 2
  givenname: Mujdat
  orcidid: 0000-0002-9824-1229
  surname: Cetin
  fullname: Cetin, Mujdat
  email: mujdat.cetin@rochester.edu
  organization: Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38289842$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv3CAUhVGVqHm0f6CqKkvddOMpD4NhmU6n6UhpGyXpGmF8SRl5zATwIv--zCNVlEU3wIXvHF3uOUNHYxgBoXcEzwjB6vPdz9ubxYxi2swYE5io5hU6JZzLGlOCj7Zn1tQNo_gEnaW0wpi0grev0QmTVCrZ0FN0fTt1K7C5Xo49bKAsY66-Amyqi2j_-FyepgiVC7FaLC7rLyZBX_0IudTLtbmH-FjNB5OSd96a7MP4Bh07MyR4e9jP0e9vi7v59_rq1-VyfnFV20bQXAvWKwWYO4odVQrzlqu2Y5T2tBNOWGKNwn0rXA9SYSuscgIK7TqHDRENO0fLvW8fzEpvol-b-KiD8Xp3EeK9NjF7O4CWzjDOJAdcRiV41xFOOyZEIyw2XMni9WnvtYnhYYKU9donC8NgRghT0lTR0iChLS_oxxfoKkxxLD_dUg1morCF-nCgpm4N_b_2nuZeALkHbAwpRXDa-rybX47GD5pgvY1Y7yLW24j1IeIipS-kT-7_Fb3fizwAPBM0RAhJ2V99la7p
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107458
crossref_primary_10_1016_j_knosys_2025_113096
crossref_primary_10_1109_JBHI_2024_3472097
crossref_primary_10_3390_brainsci15020098
crossref_primary_10_1016_j_neucom_2024_127805
Cites_doi 10.1109/TBME.2010.2082539
10.1109/TNNLS.2018.2789927
10.1016/j.bspc.2021.103101
10.1162/NECO_a_00838
10.1088/1741-2552/ab0ab5
10.1109/APWC-on-CSE.2016.017
10.1109/MCI.2021.3061875
10.1109/TCYB.2019.2905157
10.3389/fnins.2020.00087
10.1109/ICInfA.2013.6720327
10.1016/j.neucom.2015.02.005
10.1109/TNSRE.2019.2938295
10.1038/s41598-023-27978-6
10.1109/ACCESS.2022.3171906
10.1145/3397318
10.1088/1741-2552/aace8c
10.1016/j.neunet.2020.12.013
10.1016/j.ijleo.2016.10.117
10.1109/ACII52823.2021.9597449
10.1109/TPAMI.2012.69
10.1109/ACCESS.2022.3195513
10.1109/TII.2022.3227736
10.1109/TETCI.2023.3301385
10.1088/1741-2552/acae07
10.1007/978-3-030-11018-5_63
10.1016/j.patcog.2017.10.003
10.1109/TCYB.2018.2797176
10.1109/CVPR.2019.00411
10.1109/TBME.2014.2345458
10.1109/TBME.2015.2467312
10.1109/TNSRE.2019.2943362
10.1016/j.dsp.2022.103816
10.1109/JBHI.2020.2967128
10.1161/01.CIR.101.23.e21
10.1109/TIM.2021.3051996
10.1038/s41598-022-08490-9
10.1177/155005941104200411
10.1002/hbm.23730
10.1609/aaai.v32i1.11496
10.1109/BSN51625.2021.9507038
10.1109/RBME.2009.2035356
10.1109/TNSRE.2018.2884641
10.1007/BF02289565
10.1002/cnm.1362
10.1186/1475-925X-13-158
10.1109/tcds.2023.3293321
10.1109/TBME.2022.3193277
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2024.3360194
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 727
ExternalDocumentID oai_doaj_org_article_8fa35385e002465bb152b36646c0a598
38289842
10_1109_TNSRE_2024_3360194
10416682
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: CCF-1934962; DGE-1922591
  funderid: 10.13039/100000001
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c462t-63d99e05f20f299057597b322d2b6f6c1ca90d76fde890c6c9f6e5f2fbf0a1643
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:26:24 EDT 2025
Thu Jul 10 18:48:27 EDT 2025
Fri Jul 25 07:57:06 EDT 2025
Wed Feb 19 01:58:20 EST 2025
Tue Jul 01 00:43:30 EDT 2025
Thu Apr 24 23:02:07 EDT 2025
Wed Aug 27 02:12:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-63d99e05f20f299057597b322d2b6f6c1ca90d76fde890c6c9f6e5f2fbf0a1643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9824-1229
0000-0002-8441-4475
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10416682
PMID 38289842
PQID 2924036920
PQPubID 85423
PageCount 10
ParticipantIDs proquest_miscellaneous_2920571275
doaj_primary_oai_doaj_org_article_8fa35385e002465bb152b36646c0a598
proquest_journals_2924036920
ieee_primary_10416682
crossref_citationtrail_10_1109_TNSRE_2024_3360194
crossref_primary_10_1109_TNSRE_2024_3360194
pubmed_primary_38289842
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
Laine (ref43) 2016
ref51
ref50
Lee (ref41); 3
Brunner (ref13) 2008; 16
ref46
ref45
ref44
ref49
ref8
Bashivan (ref48) 2015
ref7
ref9
ref4
Oliver (ref42); 31
ref3
ref6
ref5
ref40
Zhu (ref36) 2005
ref35
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Cortes (ref47) 2012
Keng Ang (ref18)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref16
  doi: 10.1109/TBME.2010.2082539
– ident: ref26
  doi: 10.1109/TNNLS.2018.2789927
– volume: 31
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref42
  article-title: Realistic evaluation of deep semi-supervised learning algorithms
– ident: ref3
  doi: 10.1016/j.bspc.2021.103101
– ident: ref14
  doi: 10.1162/NECO_a_00838
– ident: ref6
  doi: 10.1088/1741-2552/ab0ab5
– ident: ref21
  doi: 10.1109/APWC-on-CSE.2016.017
– ident: ref27
  doi: 10.1109/MCI.2021.3061875
– ident: ref49
  doi: 10.1109/TCYB.2019.2905157
– ident: ref54
  doi: 10.3389/fnins.2020.00087
– volume: 16
  start-page: 136
  volume-title: BCI competition 2008—Graz data set A
  year: 2008
  ident: ref13
– ident: ref39
  doi: 10.1109/ICInfA.2013.6720327
– volume-title: Semi-supervised learning literature survey
  year: 2005
  ident: ref36
– ident: ref35
  doi: 10.1016/j.neucom.2015.02.005
– ident: ref25
  doi: 10.1109/TNSRE.2019.2938295
– ident: ref53
  doi: 10.1038/s41598-023-27978-6
– ident: ref30
  doi: 10.1109/ACCESS.2022.3171906
– ident: ref44
  doi: 10.1145/3397318
– year: 2015
  ident: ref48
  article-title: Learning representations from EEG with deep recurrent-convolutional neural networks
  publication-title: arXiv:1511.06448
– ident: ref7
  doi: 10.1088/1741-2552/aace8c
– ident: ref28
  doi: 10.1016/j.neunet.2020.12.013
– start-page: 2390
  volume-title: Proc. IEEE Int. Joint Conf. Neural Netw.
  ident: ref18
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
– ident: ref24
  doi: 10.1016/j.ijleo.2016.10.117
– ident: ref38
  doi: 10.1109/ACII52823.2021.9597449
– ident: ref4
  doi: 10.1109/TPAMI.2012.69
– ident: ref32
  doi: 10.1109/ACCESS.2022.3195513
– ident: ref51
  doi: 10.1109/TII.2022.3227736
– ident: ref52
  doi: 10.1109/TETCI.2023.3301385
– ident: ref33
  doi: 10.1088/1741-2552/acae07
– ident: ref11
  doi: 10.1007/978-3-030-11018-5_63
– ident: ref20
  doi: 10.1016/j.patcog.2017.10.003
– year: 2012
  ident: ref47
  article-title: L2 regularization for learning kernels
  publication-title: arXiv:1205.2653
– ident: ref9
  doi: 10.1109/TCYB.2018.2797176
– year: 2016
  ident: ref43
  article-title: Temporal ensembling for semi-supervised learning
  publication-title: arXiv:1610.02242
– ident: ref10
  doi: 10.1109/CVPR.2019.00411
– ident: ref17
  doi: 10.1109/TBME.2014.2345458
– ident: ref15
  doi: 10.1109/TBME.2015.2467312
– ident: ref50
  doi: 10.1109/TNSRE.2019.2943362
– ident: ref34
  doi: 10.1016/j.dsp.2022.103816
– ident: ref31
  doi: 10.1109/JBHI.2020.2967128
– ident: ref12
  doi: 10.1161/01.CIR.101.23.e21
– ident: ref19
  doi: 10.1109/TIM.2021.3051996
– ident: ref37
  doi: 10.1038/s41598-022-08490-9
– ident: ref2
  doi: 10.1177/155005941104200411
– ident: ref22
  doi: 10.1002/hbm.23730
– ident: ref8
  doi: 10.1609/aaai.v32i1.11496
– ident: ref23
  doi: 10.1109/BSN51625.2021.9507038
– ident: ref1
  doi: 10.1109/RBME.2009.2035356
– ident: ref55
  doi: 10.1109/TNSRE.2018.2884641
– volume: 3
  start-page: 896
  issue: 2
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref41
  article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
– ident: ref46
  doi: 10.1007/BF02289565
– ident: ref40
  doi: 10.1002/cnm.1362
– ident: ref5
  doi: 10.1186/1475-925X-13-158
– ident: ref45
  doi: 10.1109/tcds.2023.3293321
– ident: ref29
  doi: 10.1109/TBME.2022.3193277
SSID ssj0017657
Score 2.462068
Snippet Motor imagery (MI) classification based on electroencephalogram (EEG) is a widely-used technique in non-invasive brain-computer interface (BCI) systems. Since...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 718
SubjectTerms Algorithms
Benchmarking
Brain
Brain modeling
Brain-Computer Interfaces
Classification
Classifiers
Computer applications
Convolutional neural networks
EEG
Electroencephalography
Electroencephalography - methods
Embedding
Feature extraction
Heterogeneity
Human-computer interface
Humans
Image classification
Imagination
Implants
Learning
Machine Learning
Mental task performance
motor imagery
Performance assessment
Recording
semi-supervised deep architecture
Task analysis
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VnLhUUCgEaGWklgtK8Tr2bHzksTwqgRBdJG5W4tgn2F3R5cC_Z8bJRsuh7aXXxHGcmXFmPo_9DcC3asC0bFWTa93YXBca8xI5hdioemB8iHXK4F_f4OW9_vlgHpZKffGesJYeuBXcURmrgialCexN0NTUg6oLRI1eVsamY77k8xZgqssfDNEMF0dkpD0a3_y6GxEYVPpHURAEsfqdG0ps_V15lT9HmsnjnK_Bxy5UFMftENfhQ5h8gu_LtMBi3HICiANx945xewNu6Y_ASyz5VV_ndi7OQpiJ46XUgaCQVYxGF_kJObNGXE8JgYurJ-a1eBWpXibvJEpdbsL9-Wh8epl31RNyr1HNcywaa4M0UcnIPocrcQ5rmr-kBYzoB76yshlibEJppUdvIwZqHesoSYO6-Awrk-kkbIOI3lZYEpLy5MwJMlYKrQkUlxOebJSJGQwWwnS--1CucPHoEsSQ1iUFOFaA6xSQwWH_zKwl1vhr6xPWUd-SSbHTBTIV15mK-5epZLDJGl56HUWjWKoM9hYqd90M_u2UZaZCtEpmsN_fprnHCZVqEqYvqQ2JlSnyM9hqTaXvvGAoW2q18z9GvgurLI126WcPVubPL-ELBUPz-muy-zcdn__B
  priority: 102
  providerName: Directory of Open Access Journals
Title Subject-Independent Deep Architecture for EEG-Based Motor Imagery Classification
URI https://ieeexplore.ieee.org/document/10416682
https://www.ncbi.nlm.nih.gov/pubmed/38289842
https://www.proquest.com/docview/2924036920
https://www.proquest.com/docview/2920571275
https://doaj.org/article/8fa35385e002465bb152b36646c0a598
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5BT1ygQIGFUhkJuKANjtc7WR9bSGmRGqGSSr1Zu35cgKQqmwP8ema8D6VIRdyixLHX-814Zjz2NwCv6ynTstU-19qbXBca8wo5hehVMy1diE3K4J8t8ORCf74sL_vL6ukuTAghHT4LE_6Ycvl-7Ta8VUYaTu4DVrTi3qXIrbusNaYMZphoPUmDNY2p5HBDRpr3y8XX8znFgkpPioIiEMPVeAqONSqtbhikxNvfF1q53edMtuf4ASyGp-6OnHybbNpm4n7_Rej439Pahfu9FyoOO7F5CHfC6hG82WYcFsuObkC8Fec3yLwfwxdabHj3Jj8dS-i24mMIV-JwKyshyBsW8_mn_IjspBdnawruxekPpsz4JVIpTj6klLrcg4vj-fLDSd4XZsidRtXmWHhjgiyjkpHNGRf5nDW0NBDAGNFNXW2kn2H0oTLSoTMRA7WOTZQkHLp4Ajur9So8AxGdqbGiIM2Rn0DRaK3QlIFcfgpVvSpjBtMBHev6iXLxjO82RS_S2ASuZXBtD24G78b_XHWcHf9sfcSgjy2Zbzt9QRjZXn1tFeuCTEMZ2KfBsiE5Vk2BqNHJujRVBnuM69ZwHaQZ7A8yZPvF4adVhkkQ0SiZwavxZ1JrztXUq7DepDb0Wpl9P4OnneyNnQ-S-_yWQV_APZ5gt1G0Dzvt9Sa8JNepbQ7SlsNBUpw_VHAPyw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6hcoALzwILBYwEXNAGx-udrI8tpCTQRKikUm_Wrte-AEkFmwP8ema8D6VIRdyixLHX-814Zjz2NwAvyzHTspV1qnVtUp1pTAvkFGKtqnHufKhiBn-xxNmZ_nien3eX1eNdGO99PHzmR_wx5vLrjdvyVhlpOLkPWNCKe50Mf67a61pD0mCCkdiTdFjTqEr2d2SkebtafjmdUjSo9CjLKAYxXI8n42ij0OqSSYrM_V2plau9zmh9jm_Dsn_u9tDJ19G2qUbu91-Ujv89sTtwq_NDxWErOHfhml_fg1e7nMNi1RIOiNfi9BKd9334TMsN79-k86GIbiPee38hDnfyEoL8YTGdfkiPyFLWYrGh8F7MvzNpxi8Ri3HyMaXY5T6cHU9X72ZpV5ohdRpVk2JWG-NlHpQMbNC4zOekosWBIMaAbuxKI-sJhtoXRjp0JqCn1qEKksRDZw9gb71Z-0cggjMlFhSmOfIUKB4tFZrck9NPwWqt8pDAuEfHum6iXD7jm43xizQ2gmsZXNuBm8Cb4T8XLWvHP1sfMehDS2bcjl8QRrZTYFuEMiPjkHv2ajCvSJJVlSFqdLLMTZHAPuO6M1wLaQIHvQzZbnn4aZVhGkQ0SibwYviZFJuzNeXab7axDb1W5t9P4GEre0PnveQ-vmLQ53Bjtlqc2JP58tMTuMmTbbeNDmCv-bH1T8mRaqpnUX3-AD-6EiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-Independent+Deep+Architecture+for+EEG-Based+Motor+Imagery+Classification&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Sartipi%2C+Shadi&rft.au=Cetin%2C+Mujdat&rft.date=2024&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=32&rft.spage=718&rft.epage=727&rft_id=info:doi/10.1109%2FTNSRE.2024.3360194&rft_id=info%3Apmid%2F38289842&rft.externalDocID=10416682
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon