Subject-Independent Deep Architecture for EEG-Based Motor Imagery Classification
Motor imagery (MI) classification based on electroencephalogram (EEG) is a widely-used technique in non-invasive brain-computer interface (BCI) systems. Since EEG recordings suffer from heterogeneity across subjects and labeled data insufficiency, designing a classifier that performs the MI independ...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 718 - 727 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Motor imagery (MI) classification based on electroencephalogram (EEG) is a widely-used technique in non-invasive brain-computer interface (BCI) systems. Since EEG recordings suffer from heterogeneity across subjects and labeled data insufficiency, designing a classifier that performs the MI independently from the subject with limited labeled samples would be desirable. To overcome these limitations, we propose a novel subject-independent semi-supervised deep architecture (SSDA). The proposed SSDA consists of two parts: an unsupervised and a supervised element. The training set contains both labeled and unlabeled data samples from multiple subjects. First, the unsupervised part, known as the columnar spatiotemporal auto-encoder (CST-AE), extracts latent features from all the training samples by maximizing the similarity between the original and reconstructed data. A dimensional scaling approach is employed to reduce the dimensionality of the representations while preserving their discriminability. Second, a supervised part learns a classifier based on the labeled training samples using the latent features acquired in the unsupervised part. Moreover, we employ center loss in the supervised part to minimize the embedding space distance of each point in a class to its center. The model optimizes both parts of the network in an end-to-end fashion. The performance of the proposed SSDA is evaluated on test subjects who were not seen by the model during the training phase. To assess the performance, we use two benchmark EEG-based MI task datasets. The results demonstrate that SSDA outperforms state-of-the-art methods and that a small number of labeled training samples can be sufficient for strong classification performance. |
---|---|
AbstractList | Motor imagery (MI) classification based on electroencephalogram (EEG) is a widely-used technique in non-invasive brain-computer interface (BCI) systems. Since EEG recordings suffer from heterogeneity across subjects and labeled data insufficiency, designing a classifier that performs the MI independently from the subject with limited labeled samples would be desirable. To overcome these limitations, we propose a novel subject-independent semi-supervised deep architecture (SSDA). The proposed SSDA consists of two parts: an unsupervised and a supervised element. The training set contains both labeled and unlabeled data samples from multiple subjects. First, the unsupervised part, known as the columnar spatiotemporal auto-encoder (CST-AE), extracts latent features from all the training samples by maximizing the similarity between the original and reconstructed data. A dimensional scaling approach is employed to reduce the dimensionality of the representations while preserving their discriminability. Second, a supervised part learns a classifier based on the labeled training samples using the latent features acquired in the unsupervised part. Moreover, we employ center loss in the supervised part to minimize the embedding space distance of each point in a class to its center. The model optimizes both parts of the network in an end-to-end fashion. The performance of the proposed SSDA is evaluated on test subjects who were not seen by the model during the training phase. To assess the performance, we use two benchmark EEG-based MI task datasets. The results demonstrate that SSDA outperforms state-of-the-art methods and that a small number of labeled training samples can be sufficient for strong classification performance.Motor imagery (MI) classification based on electroencephalogram (EEG) is a widely-used technique in non-invasive brain-computer interface (BCI) systems. Since EEG recordings suffer from heterogeneity across subjects and labeled data insufficiency, designing a classifier that performs the MI independently from the subject with limited labeled samples would be desirable. To overcome these limitations, we propose a novel subject-independent semi-supervised deep architecture (SSDA). The proposed SSDA consists of two parts: an unsupervised and a supervised element. The training set contains both labeled and unlabeled data samples from multiple subjects. First, the unsupervised part, known as the columnar spatiotemporal auto-encoder (CST-AE), extracts latent features from all the training samples by maximizing the similarity between the original and reconstructed data. A dimensional scaling approach is employed to reduce the dimensionality of the representations while preserving their discriminability. Second, a supervised part learns a classifier based on the labeled training samples using the latent features acquired in the unsupervised part. Moreover, we employ center loss in the supervised part to minimize the embedding space distance of each point in a class to its center. The model optimizes both parts of the network in an end-to-end fashion. The performance of the proposed SSDA is evaluated on test subjects who were not seen by the model during the training phase. To assess the performance, we use two benchmark EEG-based MI task datasets. The results demonstrate that SSDA outperforms state-of-the-art methods and that a small number of labeled training samples can be sufficient for strong classification performance. Motor imagery (MI) classification based on electroencephalogram (EEG) is a widely-used technique in non-invasive brain-computer interface (BCI) systems. Since EEG recordings suffer from heterogeneity across subjects and labeled data insufficiency, designing a classifier that performs the MI independently from the subject with limited labeled samples would be desirable. To overcome these limitations, we propose a novel subject-independent semi-supervised deep architecture (SSDA). The proposed SSDA consists of two parts: an unsupervised and a supervised element. The training set contains both labeled and unlabeled data samples from multiple subjects. First, the unsupervised part, known as the columnar spatiotemporal auto-encoder (CST-AE), extracts latent features from all the training samples by maximizing the similarity between the original and reconstructed data. A dimensional scaling approach is employed to reduce the dimensionality of the representations while preserving their discriminability. Second, a supervised part learns a classifier based on the labeled training samples using the latent features acquired in the unsupervised part. Moreover, we employ center loss in the supervised part to minimize the embedding space distance of each point in a class to its center. The model optimizes both parts of the network in an end-to-end fashion. The performance of the proposed SSDA is evaluated on test subjects who were not seen by the model during the training phase. To assess the performance, we use two benchmark EEG-based MI task datasets. The results demonstrate that SSDA outperforms state-of-the-art methods and that a small number of labeled training samples can be sufficient for strong classification performance. |
Author | Sartipi, Shadi Cetin, Mujdat |
Author_xml | – sequence: 1 givenname: Shadi orcidid: 0000-0002-8441-4475 surname: Sartipi fullname: Sartipi, Shadi email: ssartipi@ur.rochester.edu organization: Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA – sequence: 2 givenname: Mujdat orcidid: 0000-0002-9824-1229 surname: Cetin fullname: Cetin, Mujdat email: mujdat.cetin@rochester.edu organization: Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38289842$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv3CAUhVGVqHm0f6CqKkvddOMpD4NhmU6n6UhpGyXpGmF8SRl5zATwIv--zCNVlEU3wIXvHF3uOUNHYxgBoXcEzwjB6vPdz9ubxYxi2swYE5io5hU6JZzLGlOCj7Zn1tQNo_gEnaW0wpi0grev0QmTVCrZ0FN0fTt1K7C5Xo49bKAsY66-Amyqi2j_-FyepgiVC7FaLC7rLyZBX_0IudTLtbmH-FjNB5OSd96a7MP4Bh07MyR4e9jP0e9vi7v59_rq1-VyfnFV20bQXAvWKwWYO4odVQrzlqu2Y5T2tBNOWGKNwn0rXA9SYSuscgIK7TqHDRENO0fLvW8fzEpvol-b-KiD8Xp3EeK9NjF7O4CWzjDOJAdcRiV41xFOOyZEIyw2XMni9WnvtYnhYYKU9donC8NgRghT0lTR0iChLS_oxxfoKkxxLD_dUg1morCF-nCgpm4N_b_2nuZeALkHbAwpRXDa-rybX47GD5pgvY1Y7yLW24j1IeIipS-kT-7_Fb3fizwAPBM0RAhJ2V99la7p |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107458 crossref_primary_10_1016_j_knosys_2025_113096 crossref_primary_10_1109_JBHI_2024_3472097 crossref_primary_10_3390_brainsci15020098 crossref_primary_10_1016_j_neucom_2024_127805 |
Cites_doi | 10.1109/TBME.2010.2082539 10.1109/TNNLS.2018.2789927 10.1016/j.bspc.2021.103101 10.1162/NECO_a_00838 10.1088/1741-2552/ab0ab5 10.1109/APWC-on-CSE.2016.017 10.1109/MCI.2021.3061875 10.1109/TCYB.2019.2905157 10.3389/fnins.2020.00087 10.1109/ICInfA.2013.6720327 10.1016/j.neucom.2015.02.005 10.1109/TNSRE.2019.2938295 10.1038/s41598-023-27978-6 10.1109/ACCESS.2022.3171906 10.1145/3397318 10.1088/1741-2552/aace8c 10.1016/j.neunet.2020.12.013 10.1016/j.ijleo.2016.10.117 10.1109/ACII52823.2021.9597449 10.1109/TPAMI.2012.69 10.1109/ACCESS.2022.3195513 10.1109/TII.2022.3227736 10.1109/TETCI.2023.3301385 10.1088/1741-2552/acae07 10.1007/978-3-030-11018-5_63 10.1016/j.patcog.2017.10.003 10.1109/TCYB.2018.2797176 10.1109/CVPR.2019.00411 10.1109/TBME.2014.2345458 10.1109/TBME.2015.2467312 10.1109/TNSRE.2019.2943362 10.1016/j.dsp.2022.103816 10.1109/JBHI.2020.2967128 10.1161/01.CIR.101.23.e21 10.1109/TIM.2021.3051996 10.1038/s41598-022-08490-9 10.1177/155005941104200411 10.1002/hbm.23730 10.1609/aaai.v32i1.11496 10.1109/BSN51625.2021.9507038 10.1109/RBME.2009.2035356 10.1109/TNSRE.2018.2884641 10.1007/BF02289565 10.1002/cnm.1362 10.1186/1475-925X-13-158 10.1109/tcds.2023.3293321 10.1109/TBME.2022.3193277 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 DOA |
DOI | 10.1109/TNSRE.2024.3360194 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 727 |
ExternalDocumentID | oai_doaj_org_article_8fa35385e002465bb152b36646c0a598 38289842 10_1109_TNSRE_2024_3360194 10416682 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: CCF-1934962; DGE-1922591 funderid: 10.13039/100000001 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c462t-63d99e05f20f299057597b322d2b6f6c1ca90d76fde890c6c9f6e5f2fbf0a1643 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:26:24 EDT 2025 Thu Jul 10 18:48:27 EDT 2025 Fri Jul 25 07:57:06 EDT 2025 Wed Feb 19 01:58:20 EST 2025 Tue Jul 01 00:43:30 EDT 2025 Thu Apr 24 23:02:07 EDT 2025 Wed Aug 27 02:12:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-63d99e05f20f299057597b322d2b6f6c1ca90d76fde890c6c9f6e5f2fbf0a1643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9824-1229 0000-0002-8441-4475 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10416682 |
PMID | 38289842 |
PQID | 2924036920 |
PQPubID | 85423 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2920571275 doaj_primary_oai_doaj_org_article_8fa35385e002465bb152b36646c0a598 proquest_journals_2924036920 ieee_primary_10416682 crossref_citationtrail_10_1109_TNSRE_2024_3360194 crossref_primary_10_1109_TNSRE_2024_3360194 pubmed_primary_38289842 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 Laine (ref43) 2016 ref51 ref50 Lee (ref41); 3 Brunner (ref13) 2008; 16 ref46 ref45 ref44 ref49 ref8 Bashivan (ref48) 2015 ref7 ref9 ref4 Oliver (ref42); 31 ref3 ref6 ref5 ref40 Zhu (ref36) 2005 ref35 ref34 ref37 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Cortes (ref47) 2012 Keng Ang (ref18) ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref16 doi: 10.1109/TBME.2010.2082539 – ident: ref26 doi: 10.1109/TNNLS.2018.2789927 – volume: 31 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref42 article-title: Realistic evaluation of deep semi-supervised learning algorithms – ident: ref3 doi: 10.1016/j.bspc.2021.103101 – ident: ref14 doi: 10.1162/NECO_a_00838 – ident: ref6 doi: 10.1088/1741-2552/ab0ab5 – ident: ref21 doi: 10.1109/APWC-on-CSE.2016.017 – ident: ref27 doi: 10.1109/MCI.2021.3061875 – ident: ref49 doi: 10.1109/TCYB.2019.2905157 – ident: ref54 doi: 10.3389/fnins.2020.00087 – volume: 16 start-page: 136 volume-title: BCI competition 2008—Graz data set A year: 2008 ident: ref13 – ident: ref39 doi: 10.1109/ICInfA.2013.6720327 – volume-title: Semi-supervised learning literature survey year: 2005 ident: ref36 – ident: ref35 doi: 10.1016/j.neucom.2015.02.005 – ident: ref25 doi: 10.1109/TNSRE.2019.2938295 – ident: ref53 doi: 10.1038/s41598-023-27978-6 – ident: ref30 doi: 10.1109/ACCESS.2022.3171906 – ident: ref44 doi: 10.1145/3397318 – year: 2015 ident: ref48 article-title: Learning representations from EEG with deep recurrent-convolutional neural networks publication-title: arXiv:1511.06448 – ident: ref7 doi: 10.1088/1741-2552/aace8c – ident: ref28 doi: 10.1016/j.neunet.2020.12.013 – start-page: 2390 volume-title: Proc. IEEE Int. Joint Conf. Neural Netw. ident: ref18 article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface – ident: ref24 doi: 10.1016/j.ijleo.2016.10.117 – ident: ref38 doi: 10.1109/ACII52823.2021.9597449 – ident: ref4 doi: 10.1109/TPAMI.2012.69 – ident: ref32 doi: 10.1109/ACCESS.2022.3195513 – ident: ref51 doi: 10.1109/TII.2022.3227736 – ident: ref52 doi: 10.1109/TETCI.2023.3301385 – ident: ref33 doi: 10.1088/1741-2552/acae07 – ident: ref11 doi: 10.1007/978-3-030-11018-5_63 – ident: ref20 doi: 10.1016/j.patcog.2017.10.003 – year: 2012 ident: ref47 article-title: L2 regularization for learning kernels publication-title: arXiv:1205.2653 – ident: ref9 doi: 10.1109/TCYB.2018.2797176 – year: 2016 ident: ref43 article-title: Temporal ensembling for semi-supervised learning publication-title: arXiv:1610.02242 – ident: ref10 doi: 10.1109/CVPR.2019.00411 – ident: ref17 doi: 10.1109/TBME.2014.2345458 – ident: ref15 doi: 10.1109/TBME.2015.2467312 – ident: ref50 doi: 10.1109/TNSRE.2019.2943362 – ident: ref34 doi: 10.1016/j.dsp.2022.103816 – ident: ref31 doi: 10.1109/JBHI.2020.2967128 – ident: ref12 doi: 10.1161/01.CIR.101.23.e21 – ident: ref19 doi: 10.1109/TIM.2021.3051996 – ident: ref37 doi: 10.1038/s41598-022-08490-9 – ident: ref2 doi: 10.1177/155005941104200411 – ident: ref22 doi: 10.1002/hbm.23730 – ident: ref8 doi: 10.1609/aaai.v32i1.11496 – ident: ref23 doi: 10.1109/BSN51625.2021.9507038 – ident: ref1 doi: 10.1109/RBME.2009.2035356 – ident: ref55 doi: 10.1109/TNSRE.2018.2884641 – volume: 3 start-page: 896 issue: 2 volume-title: Proc. Int. Conf. Mach. Learn. (ICML) ident: ref41 article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks – ident: ref46 doi: 10.1007/BF02289565 – ident: ref40 doi: 10.1002/cnm.1362 – ident: ref5 doi: 10.1186/1475-925X-13-158 – ident: ref45 doi: 10.1109/tcds.2023.3293321 – ident: ref29 doi: 10.1109/TBME.2022.3193277 |
SSID | ssj0017657 |
Score | 2.462068 |
Snippet | Motor imagery (MI) classification based on electroencephalogram (EEG) is a widely-used technique in non-invasive brain-computer interface (BCI) systems. Since... |
SourceID | doaj proquest pubmed crossref ieee |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 718 |
SubjectTerms | Algorithms Benchmarking Brain Brain modeling Brain-Computer Interfaces Classification Classifiers Computer applications Convolutional neural networks EEG Electroencephalography Electroencephalography - methods Embedding Feature extraction Heterogeneity Human-computer interface Humans Image classification Imagination Implants Learning Machine Learning Mental task performance motor imagery Performance assessment Recording semi-supervised deep architecture Task analysis Training |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VnLhUUCgEaGWklgtK8Tr2bHzksTwqgRBdJG5W4tgn2F3R5cC_Z8bJRsuh7aXXxHGcmXFmPo_9DcC3asC0bFWTa93YXBca8xI5hdioemB8iHXK4F_f4OW9_vlgHpZKffGesJYeuBXcURmrgialCexN0NTUg6oLRI1eVsamY77k8xZgqssfDNEMF0dkpD0a3_y6GxEYVPpHURAEsfqdG0ps_V15lT9HmsnjnK_Bxy5UFMftENfhQ5h8gu_LtMBi3HICiANx945xewNu6Y_ASyz5VV_ndi7OQpiJ46XUgaCQVYxGF_kJObNGXE8JgYurJ-a1eBWpXibvJEpdbsL9-Wh8epl31RNyr1HNcywaa4M0UcnIPocrcQ5rmr-kBYzoB76yshlibEJppUdvIwZqHesoSYO6-Awrk-kkbIOI3lZYEpLy5MwJMlYKrQkUlxOebJSJGQwWwnS--1CucPHoEsSQ1iUFOFaA6xSQwWH_zKwl1vhr6xPWUd-SSbHTBTIV15mK-5epZLDJGl56HUWjWKoM9hYqd90M_u2UZaZCtEpmsN_fprnHCZVqEqYvqQ2JlSnyM9hqTaXvvGAoW2q18z9GvgurLI126WcPVubPL-ELBUPz-muy-zcdn__B priority: 102 providerName: Directory of Open Access Journals |
Title | Subject-Independent Deep Architecture for EEG-Based Motor Imagery Classification |
URI | https://ieeexplore.ieee.org/document/10416682 https://www.ncbi.nlm.nih.gov/pubmed/38289842 https://www.proquest.com/docview/2924036920 https://www.proquest.com/docview/2920571275 https://doaj.org/article/8fa35385e002465bb152b36646c0a598 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5BT1ygQIGFUhkJuKANjtc7WR9bSGmRGqGSSr1Zu35cgKQqmwP8ema8D6VIRdyixLHX-814Zjz2NwCv6ynTstU-19qbXBca8wo5hehVMy1diE3K4J8t8ORCf74sL_vL6ukuTAghHT4LE_6Ycvl-7Ta8VUYaTu4DVrTi3qXIrbusNaYMZphoPUmDNY2p5HBDRpr3y8XX8znFgkpPioIiEMPVeAqONSqtbhikxNvfF1q53edMtuf4ASyGp-6OnHybbNpm4n7_Rej439Pahfu9FyoOO7F5CHfC6hG82WYcFsuObkC8Fec3yLwfwxdabHj3Jj8dS-i24mMIV-JwKyshyBsW8_mn_IjspBdnawruxekPpsz4JVIpTj6klLrcg4vj-fLDSd4XZsidRtXmWHhjgiyjkpHNGRf5nDW0NBDAGNFNXW2kn2H0oTLSoTMRA7WOTZQkHLp4Ajur9So8AxGdqbGiIM2Rn0DRaK3QlIFcfgpVvSpjBtMBHev6iXLxjO82RS_S2ASuZXBtD24G78b_XHWcHf9sfcSgjy2Zbzt9QRjZXn1tFeuCTEMZ2KfBsiE5Vk2BqNHJujRVBnuM69ZwHaQZ7A8yZPvF4adVhkkQ0SiZwavxZ1JrztXUq7DepDb0Wpl9P4OnneyNnQ-S-_yWQV_APZ5gt1G0Dzvt9Sa8JNepbQ7SlsNBUpw_VHAPyw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6hcoALzwILBYwEXNAGx-udrI8tpCTQRKikUm_Wrte-AEkFmwP8ema8D6VIRdyixLHX-814Zjz2NwAvyzHTspV1qnVtUp1pTAvkFGKtqnHufKhiBn-xxNmZ_nien3eX1eNdGO99PHzmR_wx5vLrjdvyVhlpOLkPWNCKe50Mf67a61pD0mCCkdiTdFjTqEr2d2SkebtafjmdUjSo9CjLKAYxXI8n42ij0OqSSYrM_V2plau9zmh9jm_Dsn_u9tDJ19G2qUbu91-Ujv89sTtwq_NDxWErOHfhml_fg1e7nMNi1RIOiNfi9BKd9334TMsN79-k86GIbiPee38hDnfyEoL8YTGdfkiPyFLWYrGh8F7MvzNpxi8Ri3HyMaXY5T6cHU9X72ZpV5ohdRpVk2JWG-NlHpQMbNC4zOekosWBIMaAbuxKI-sJhtoXRjp0JqCn1qEKksRDZw9gb71Z-0cggjMlFhSmOfIUKB4tFZrck9NPwWqt8pDAuEfHum6iXD7jm43xizQ2gmsZXNuBm8Cb4T8XLWvHP1sfMehDS2bcjl8QRrZTYFuEMiPjkHv2ajCvSJJVlSFqdLLMTZHAPuO6M1wLaQIHvQzZbnn4aZVhGkQ0SibwYviZFJuzNeXab7axDb1W5t9P4GEre0PnveQ-vmLQ53Bjtlqc2JP58tMTuMmTbbeNDmCv-bH1T8mRaqpnUX3-AD-6EiA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-Independent+Deep+Architecture+for+EEG-Based+Motor+Imagery+Classification&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Sartipi%2C+Shadi&rft.au=Cetin%2C+Mujdat&rft.date=2024&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=32&rft.spage=718&rft.epage=727&rft_id=info:doi/10.1109%2FTNSRE.2024.3360194&rft_id=info%3Apmid%2F38289842&rft.externalDocID=10416682 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |