Radiomic machine learning for predicting prognostic biomarkers and molecular subtypes of breast cancer using tumor heterogeneity and angiogenesis properties on MRI

Objectives To investigate machine learning approaches for radiomics-based prediction of prognostic biomarkers and molecular subtypes of breast cancer using quantification of tumor heterogeneity and angiogenesis properties on magnetic resonance imaging (MRI). Methods This prospective study examined 2...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 32; no. 1; pp. 650 - 660
Main Authors Lee, Ji Young, Lee, Kwang-sig, Seo, Bo Kyoung, Cho, Kyu Ran, Woo, Ok Hee, Song, Sung Eun, Kim, Eun-Kyung, Lee, Hye Yoon, Kim, Jung Sun, Cha, Jaehyung
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objectives To investigate machine learning approaches for radiomics-based prediction of prognostic biomarkers and molecular subtypes of breast cancer using quantification of tumor heterogeneity and angiogenesis properties on magnetic resonance imaging (MRI). Methods This prospective study examined 291 invasive cancers in 288 patients who underwent breast MRI at 3 T before treatment between May 2017 and July 2019. Texture and perfusion analyses were performed and a total of 160 parameters for each cancer were extracted. Relationships between MRI parameters and prognostic biomarkers were analyzed using five machine learning algorithms. Each model was built using only texture features, only perfusion features, or both. Model performance was compared using the area under the receiver-operating characteristic curve (AUC) and the DeLong method, and the importance of MRI parameters in prediction was derived. Results Texture parameters were associated with the status of hormone receptors, human epidermal growth factor receptor 2, and Ki67, tumor size, grade, and molecular subtypes ( p < 0.002). Perfusion parameters were associated with the status of hormone receptors and Ki67, grade, and molecular subtypes ( p < 0.003). The random forest model integrating texture and perfusion parameters showed the highest performance (AUC = 0.75). The performance of the random forest model was the best with a special scale filter of 0 (AUC = 0.80). The important parameters for prediction were texture irregularity (entropy) and relative extracellular extravascular space ( V e ). Conclusions Radiomic machine learning that integrates tumor heterogeneity and angiogenesis properties on MRI has the potential to noninvasively predict prognostic factors of breast cancer. Key Points • Machine learning, integrating tumor heterogeneity and angiogenesis properties on MRI, can be applied to predict prognostic biomarkers and molecular subtypes in breast cancer. • The random forest model showed the best predictive performance among the five machine learning models (logistic regression, decision tree, naïve Bayes, random forest, and artificial neural network). • The most important MRI parameters for predicting prognostic factors in breast cancer were texture irregularity (entropy) among texture parameters and relative extracellular extravascular space (V e ) among perfusion parameters.
AbstractList To investigate machine learning approaches for radiomics-based prediction of prognostic biomarkers and molecular subtypes of breast cancer using quantification of tumor heterogeneity and angiogenesis properties on magnetic resonance imaging (MRI).OBJECTIVESTo investigate machine learning approaches for radiomics-based prediction of prognostic biomarkers and molecular subtypes of breast cancer using quantification of tumor heterogeneity and angiogenesis properties on magnetic resonance imaging (MRI).This prospective study examined 291 invasive cancers in 288 patients who underwent breast MRI at 3 T before treatment between May 2017 and July 2019. Texture and perfusion analyses were performed and a total of 160 parameters for each cancer were extracted. Relationships between MRI parameters and prognostic biomarkers were analyzed using five machine learning algorithms. Each model was built using only texture features, only perfusion features, or both. Model performance was compared using the area under the receiver-operating characteristic curve (AUC) and the DeLong method, and the importance of MRI parameters in prediction was derived.METHODSThis prospective study examined 291 invasive cancers in 288 patients who underwent breast MRI at 3 T before treatment between May 2017 and July 2019. Texture and perfusion analyses were performed and a total of 160 parameters for each cancer were extracted. Relationships between MRI parameters and prognostic biomarkers were analyzed using five machine learning algorithms. Each model was built using only texture features, only perfusion features, or both. Model performance was compared using the area under the receiver-operating characteristic curve (AUC) and the DeLong method, and the importance of MRI parameters in prediction was derived.Texture parameters were associated with the status of hormone receptors, human epidermal growth factor receptor 2, and Ki67, tumor size, grade, and molecular subtypes (p < 0.002). Perfusion parameters were associated with the status of hormone receptors and Ki67, grade, and molecular subtypes (p < 0.003). The random forest model integrating texture and perfusion parameters showed the highest performance (AUC = 0.75). The performance of the random forest model was the best with a special scale filter of 0 (AUC = 0.80). The important parameters for prediction were texture irregularity (entropy) and relative extracellular extravascular space (Ve).RESULTSTexture parameters were associated with the status of hormone receptors, human epidermal growth factor receptor 2, and Ki67, tumor size, grade, and molecular subtypes (p < 0.002). Perfusion parameters were associated with the status of hormone receptors and Ki67, grade, and molecular subtypes (p < 0.003). The random forest model integrating texture and perfusion parameters showed the highest performance (AUC = 0.75). The performance of the random forest model was the best with a special scale filter of 0 (AUC = 0.80). The important parameters for prediction were texture irregularity (entropy) and relative extracellular extravascular space (Ve).Radiomic machine learning that integrates tumor heterogeneity and angiogenesis properties on MRI has the potential to noninvasively predict prognostic factors of breast cancer.CONCLUSIONSRadiomic machine learning that integrates tumor heterogeneity and angiogenesis properties on MRI has the potential to noninvasively predict prognostic factors of breast cancer.• Machine learning, integrating tumor heterogeneity and angiogenesis properties on MRI, can be applied to predict prognostic biomarkers and molecular subtypes in breast cancer. • The random forest model showed the best predictive performance among the five machine learning models (logistic regression, decision tree, naïve Bayes, random forest, and artificial neural network). • The most important MRI parameters for predicting prognostic factors in breast cancer were texture irregularity (entropy) among texture parameters and relative extracellular extravascular space (Ve) among perfusion parameters.KEY POINTS• Machine learning, integrating tumor heterogeneity and angiogenesis properties on MRI, can be applied to predict prognostic biomarkers and molecular subtypes in breast cancer. • The random forest model showed the best predictive performance among the five machine learning models (logistic regression, decision tree, naïve Bayes, random forest, and artificial neural network). • The most important MRI parameters for predicting prognostic factors in breast cancer were texture irregularity (entropy) among texture parameters and relative extracellular extravascular space (Ve) among perfusion parameters.
Objectives To investigate machine learning approaches for radiomics-based prediction of prognostic biomarkers and molecular subtypes of breast cancer using quantification of tumor heterogeneity and angiogenesis properties on magnetic resonance imaging (MRI). Methods This prospective study examined 291 invasive cancers in 288 patients who underwent breast MRI at 3 T before treatment between May 2017 and July 2019. Texture and perfusion analyses were performed and a total of 160 parameters for each cancer were extracted. Relationships between MRI parameters and prognostic biomarkers were analyzed using five machine learning algorithms. Each model was built using only texture features, only perfusion features, or both. Model performance was compared using the area under the receiver-operating characteristic curve (AUC) and the DeLong method, and the importance of MRI parameters in prediction was derived. Results Texture parameters were associated with the status of hormone receptors, human epidermal growth factor receptor 2, and Ki67, tumor size, grade, and molecular subtypes ( p < 0.002). Perfusion parameters were associated with the status of hormone receptors and Ki67, grade, and molecular subtypes ( p < 0.003). The random forest model integrating texture and perfusion parameters showed the highest performance (AUC = 0.75). The performance of the random forest model was the best with a special scale filter of 0 (AUC = 0.80). The important parameters for prediction were texture irregularity (entropy) and relative extracellular extravascular space ( V e ). Conclusions Radiomic machine learning that integrates tumor heterogeneity and angiogenesis properties on MRI has the potential to noninvasively predict prognostic factors of breast cancer. Key Points • Machine learning, integrating tumor heterogeneity and angiogenesis properties on MRI, can be applied to predict prognostic biomarkers and molecular subtypes in breast cancer. • The random forest model showed the best predictive performance among the five machine learning models (logistic regression, decision tree, naïve Bayes, random forest, and artificial neural network). • The most important MRI parameters for predicting prognostic factors in breast cancer were texture irregularity (entropy) among texture parameters and relative extracellular extravascular space (V e ) among perfusion parameters.
ObjectivesTo investigate machine learning approaches for radiomics-based prediction of prognostic biomarkers and molecular subtypes of breast cancer using quantification of tumor heterogeneity and angiogenesis properties on magnetic resonance imaging (MRI).MethodsThis prospective study examined 291 invasive cancers in 288 patients who underwent breast MRI at 3 T before treatment between May 2017 and July 2019. Texture and perfusion analyses were performed and a total of 160 parameters for each cancer were extracted. Relationships between MRI parameters and prognostic biomarkers were analyzed using five machine learning algorithms. Each model was built using only texture features, only perfusion features, or both. Model performance was compared using the area under the receiver-operating characteristic curve (AUC) and the DeLong method, and the importance of MRI parameters in prediction was derived.ResultsTexture parameters were associated with the status of hormone receptors, human epidermal growth factor receptor 2, and Ki67, tumor size, grade, and molecular subtypes (p < 0.002). Perfusion parameters were associated with the status of hormone receptors and Ki67, grade, and molecular subtypes (p < 0.003). The random forest model integrating texture and perfusion parameters showed the highest performance (AUC = 0.75). The performance of the random forest model was the best with a special scale filter of 0 (AUC = 0.80). The important parameters for prediction were texture irregularity (entropy) and relative extracellular extravascular space (Ve).ConclusionsRadiomic machine learning that integrates tumor heterogeneity and angiogenesis properties on MRI has the potential to noninvasively predict prognostic factors of breast cancer.Key Points• Machine learning, integrating tumor heterogeneity and angiogenesis properties on MRI, can be applied to predict prognostic biomarkers and molecular subtypes in breast cancer.• The random forest model showed the best predictive performance among the five machine learning models (logistic regression, decision tree, naïve Bayes, random forest, and artificial neural network).• The most important MRI parameters for predicting prognostic factors in breast cancer were texture irregularity (entropy) among texture parameters and relative extracellular extravascular space (Ve) among perfusion parameters.
Author Lee, Hye Yoon
Woo, Ok Hee
Cha, Jaehyung
Lee, Ji Young
Lee, Kwang-sig
Kim, Eun-Kyung
Seo, Bo Kyoung
Song, Sung Eun
Cho, Kyu Ran
Kim, Jung Sun
Author_xml – sequence: 1
  givenname: Ji Young
  surname: Lee
  fullname: Lee, Ji Young
  organization: Department of Radiology, Ilsan Paik Hospital, Inje University College of Medicine
– sequence: 2
  givenname: Kwang-sig
  surname: Lee
  fullname: Lee, Kwang-sig
  organization: AI Center, Korea University Anam Hospital, Korea University College of Medicine
– sequence: 3
  givenname: Bo Kyoung
  orcidid: 0000-0002-9512-5361
  surname: Seo
  fullname: Seo, Bo Kyoung
  email: seoboky@korea.ac.kr, seoboky@gmail.com
  organization: Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine
– sequence: 4
  givenname: Kyu Ran
  surname: Cho
  fullname: Cho, Kyu Ran
  organization: Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine
– sequence: 5
  givenname: Ok Hee
  surname: Woo
  fullname: Woo, Ok Hee
  organization: Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine
– sequence: 6
  givenname: Sung Eun
  surname: Song
  fullname: Song, Sung Eun
  organization: Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine
– sequence: 7
  givenname: Eun-Kyung
  surname: Kim
  fullname: Kim, Eun-Kyung
  organization: Department of Radiology, Yongin Severance Hospital, Center for Clinical Imaging Data Science, Yonsei University College of Medicine
– sequence: 8
  givenname: Hye Yoon
  surname: Lee
  fullname: Lee, Hye Yoon
  organization: Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine
– sequence: 9
  givenname: Jung Sun
  surname: Kim
  fullname: Kim, Jung Sun
  organization: Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine
– sequence: 10
  givenname: Jaehyung
  surname: Cha
  fullname: Cha, Jaehyung
  organization: Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine
BookMark eNp9kUFvFSEUhYmpia_VP-CKxI2b0QvMY5ilabQ2qTFpdE2AufNKnYERmMX7Pf5RmfdMTLroisA957snnEtyEWJAQt4y-MAAuo8ZQAhogLMGFGtlo16QHWsFbxio9oLsoBeq6fq-fUUuc34EgJ613Y78uTeDj7N3dDbuwQekE5oUfDjQMSa6JBy8K9t1SfEQYi5VaqvDpF-YMjVhoHOc0K2TSTSvthwXzDSO1CY0uVBngsNE17wxyjpX6AMWrDAM6MvxRDDh4E8P2edt0YKp-A0T6Lf729fk5WimjG_-nVfk55fPP66_Nnffb26vP901rpW8NJIxaWS3R9UzPjLWt-DcwIQSVkjbWYmqG0A5Dh2y_d7gIJBZMHa0pg5BXJH3Z25N8HvFXPTss8NpMgHjmjXftxVdubJK3z2RPsY1hZpOcwmKS8FBVRU_q1yKOScc9ZJ8_bmjZqC33vS5N11706fe9GZST0zOF1N8DCUZPz1vFWdrrnvCAdP_VM-4_gL-77Kw
CitedBy_id crossref_primary_10_1007_s11517_024_03031_0
crossref_primary_10_1038_s41523_024_00678_8
crossref_primary_10_3390_ijms24097781
crossref_primary_10_1088_1361_6560_acfade
crossref_primary_10_3389_fonc_2022_964605
crossref_primary_10_1002_prm2_12089
crossref_primary_10_1016_j_critrevonc_2022_103823
crossref_primary_10_1007_s10278_023_00799_9
crossref_primary_10_1007_s00330_023_09960_y
crossref_primary_10_1186_s13244_024_01713_9
crossref_primary_10_3389_fonc_2025_1536039
crossref_primary_10_1007_s10462_023_10543_y
crossref_primary_10_1007_s11547_023_01694_7
crossref_primary_10_1007_s10278_024_01064_3
crossref_primary_10_3389_fgene_2023_1283090
crossref_primary_10_1007_s11042_022_12385_2
crossref_primary_10_6009_jjrt_2023_2269
crossref_primary_10_1186_s43055_023_01087_w
crossref_primary_10_3390_bioengineering10050504
crossref_primary_10_3389_fonc_2022_848726
crossref_primary_10_3390_cancers13215547
crossref_primary_10_1016_j_csbj_2023_03_046
crossref_primary_10_3389_fonc_2023_1219071
crossref_primary_10_1016_j_patter_2023_100826
crossref_primary_10_1038_s41598_022_16234_y
crossref_primary_10_2139_ssrn_4127749
crossref_primary_10_3390_diagnostics12040826
crossref_primary_10_1177_15330338241288751
crossref_primary_10_1186_s12967_024_05018_9
crossref_primary_10_1016_j_ejro_2022_100441
crossref_primary_10_3389_fonc_2021_706733
crossref_primary_10_1007_s00234_025_03551_y
crossref_primary_10_1016_j_compbiomed_2022_106147
crossref_primary_10_1007_s10278_024_01012_1
crossref_primary_10_1038_s41523_023_00517_2
crossref_primary_10_1007_s11684_024_1085_3
crossref_primary_10_1186_s13244_024_01869_4
crossref_primary_10_1088_1361_6560_ad25c0
crossref_primary_10_1038_s41598_024_53137_6
crossref_primary_10_31083_j_fbl2703101
crossref_primary_10_1186_s13058_023_01668_7
crossref_primary_10_1007_s10278_023_00923_9
crossref_primary_10_3390_cancers13236013
crossref_primary_10_1016_j_nicl_2022_103223
crossref_primary_10_1109_TMI_2023_3331301
crossref_primary_10_1007_s10479_022_05086_4
crossref_primary_10_1007_s44196_024_00712_4
crossref_primary_10_1002_mco2_722
crossref_primary_10_3390_ijms24097714
crossref_primary_10_1016_j_dld_2024_06_033
crossref_primary_10_3389_fimmu_2024_1482020
crossref_primary_10_1002_imo2_19
crossref_primary_10_1088_1361_6560_acfdef
crossref_primary_10_1038_s41598_022_25746_6
crossref_primary_10_1080_14737140_2023_2286001
crossref_primary_10_1186_s12885_024_12844_z
crossref_primary_10_1093_bjrai_ubae011
crossref_primary_10_1186_s13244_024_01810_9
crossref_primary_10_1002_jmri_28895
crossref_primary_10_1016_j_cmpb_2024_108194
crossref_primary_10_3389_fcvm_2024_1340022
crossref_primary_10_3389_fonc_2024_1307907
crossref_primary_10_1002_jmri_28611
crossref_primary_10_1136_jitc_2024_009348
crossref_primary_10_1016_j_acra_2023_12_012
crossref_primary_10_1186_s12911_023_02114_6
crossref_primary_10_3390_diagnostics12112740
crossref_primary_10_1016_j_clbc_2024_03_006
crossref_primary_10_1016_j_csbj_2023_11_016
crossref_primary_10_1155_2022_9619102
crossref_primary_10_1038_s41598_023_32332_x
Cites_doi 10.1007/s00261-015-0438-4
10.1002/jmri.26184
10.1259/bjr/50743919
10.1186/s12957-018-1538-8
10.1038/bjc.2014.512
10.1245/s10434-018-6486-6
10.1093/annonc/mdz108
10.1038/srep13087
10.1148/radiol.2019182718
10.1007/s00330-020-06693-0
10.1038/srep35569
10.1016/j.canlet.2017.06.004
10.1186/s13058-020-01292-9
10.1002/jmri.24541
10.1148/radiol.2017170143
10.1002/jmri.26908
10.1056/NEJM197111182852108
10.1038/s41416-018-0185-8
10.1177/1533033820916191
10.1148/radiol.2016160261
10.1002/jmri.23635
10.1002/mrm.10496
10.1088/0031-9155/61/13/R150
10.1002/jmri.1880070113
10.1007/s13244-012-0196-6
10.3389/fmed.2017.00227
10.1002/jmri.20991
10.1148/radiol.2015151169
10.1007/s00330-011-2220-5
10.1148/radiol.14131332
10.1038/s41598-019-54371-z
10.1259/bjr.20160665
10.1007/s00330-015-3845-6
10.1007/s12282-018-0899-8
10.1007/s00330-014-3100-6
10.1186/s40644-020-00311-4
10.1148/radiol.2018171820
10.1097/RLI.0000000000000174
10.1038/npjbcancer.2016.12
10.1007/s00330-020-07274-x
ContentType Journal Article
Copyright European Society of Radiology 2021
European Society of Radiology 2021.
2021. European Society of Radiology.
Copyright_xml – notice: European Society of Radiology 2021
– notice: European Society of Radiology 2021.
– notice: 2021. European Society of Radiology.
DBID AAYXX
CITATION
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00330-021-08146-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Nursing and Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 660
ExternalDocumentID 10_1007_s00330_021_08146_8
GrantInformation_xml – fundername: Korea University
  grantid: K2011241
– fundername: Ministry of Science and ICT (MSIT) of Korea
  grantid: NRF-2021R1A2C1010565; IITP-2018-0-01405
– fundername: Dongkook Life Science Co.,Ltd.
  grantid: NA
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7QO
7XB
8FD
8FK
ABRTQ
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c462t-6116a675e8912f11940ccd1383b36b7b6e87d08c207e155aed3e1b0abfbab6e03
IEDL.DBID U2A
ISSN 0938-7994
1432-1084
IngestDate Thu Jul 10 20:36:22 EDT 2025
Fri Jul 25 19:00:38 EDT 2025
Tue Jul 01 03:08:26 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Fri Feb 21 02:47:44 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Breast neoplasms
Biomarkers, tumor
Perfusion imaging
Magnetic resonance imaging
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-6116a675e8912f11940ccd1383b36b7b6e87d08c207e155aed3e1b0abfbab6e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9512-5361
OpenAccessLink https://ir.ymlib.yonsei.ac.kr/handle/22282913/187857
PQID 2608263208
PQPubID 54162
PageCount 11
ParticipantIDs proquest_miscellaneous_2548911946
proquest_journals_2608263208
crossref_primary_10_1007_s00330_021_08146_8
crossref_citationtrail_10_1007_s00330_021_08146_8
springer_journals_10_1007_s00330_021_08146_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Giuliano, Edge, Hortobagyi (CR15) 2018; 25
Ahn, Park, Park (CR23) 2015; 50
Yi, Kang, Yoon (CR33) 2014; 24
CR14
Zhang, He, Ouyang (CR21) 2017; 403
Kim, Ko, Lim (CR6) 2017; 282
Papanikolaou, Matos, Koh (CR9) 2020; 20
Koo, Cho, Song (CR30) 2012; 36
Yip, Aerts (CR7) 2016; 61
Onishi, Sadinski, Hughes (CR38) 2020; 22
Folkman (CR4) 1971; 285
Cho, Im, Park (CR19) 2014; 272
Parmar, Grossmann, Bussink, Lambin, Aerts (CR20) 2015; 5
Liu, Wang, Li (CR31) 2018; 16
Choy, Khalilzadeh, Michalski (CR10) 2018; 288
Karahaliou, Vassiou, Arikidis, Skiadopoulos, Kanavou, Costaridou (CR28) 2010; 83
Shin, Cho, Kim, Lee, Chang, Moon (CR39) 2020; 30
Turashvili, Brogi (CR3) 2017; 4
Gibbs, Turnbull (CR27) 2003; 50
Nagasaka, Satake, Ishigaki, Kawai, Naganawa (CR32) 2019; 26
Just (CR2) 2014; 111
Saha, Harowicz, Grimm (CR13) 2018; 119
CR26
Barrett, Brechbiel, Bernardo, Choyke (CR5) 2007; 26
Ye, Wang, Yu (CR22) 2020; 19
Lambregts, Beets, Maas (CR36) 2011; 21
Larue, Defraene, De Ruysscher, Lambin, van Elmpt (CR37) 2017; 90
Lubner, Stabo, Lubner (CR35) 2015; 40
Tofts (CR17) 1997; 7
Waugh, Purdie, Jordan (CR24) 2016; 26
Trebeschi, Drago, Birkbak (CR34) 2019; 30
Iima, Honda, Sigmund, Ohno Kishimoto, Kataoka, Togashi (CR40) 2020; 52
Park, Lee, Seo (CR11) 2019; 9
Chamming’s, Ueno, Ferré (CR16) 2018; 286
Yeo, Oh, Jung (CR18) 2015; 41
Ytre-Hauge, Dybvik, Lundervold (CR25) 2018; 48
Tao, Wang, Hui (CR29) 2016; 6
Davnall, Yip, Ljungqvist (CR1) 2012; 3
Gillies, Kinahan, Hricak (CR8) 2016; 278
Eun, Kang, Son (CR12) 2020; 294
N Papanikolaou (8146_CR9) 2020; 20
8146_CR14
DM Ye (8146_CR22) 2020; 19
RJ Gillies (8146_CR8) 2016; 278
P Gibbs (8146_CR27) 2003; 50
N Onishi (8146_CR38) 2020; 22
JH Kim (8146_CR6) 2017; 282
N Cho (8146_CR19) 2014; 272
G Choy (8146_CR10) 2018; 288
EK Park (8146_CR11) 2019; 9
X Tao (8146_CR29) 2016; 6
A Saha (8146_CR13) 2018; 119
MG Lubner (8146_CR35) 2015; 40
SY Ahn (8146_CR23) 2015; 50
RT Larue (8146_CR37) 2017; 90
DM Yeo (8146_CR18) 2015; 41
A Karahaliou (8146_CR28) 2010; 83
HR Koo (8146_CR30) 2012; 36
S Ytre-Hauge (8146_CR25) 2018; 48
F Chamming’s (8146_CR16) 2018; 286
8146_CR26
N Just (8146_CR2) 2014; 111
S Trebeschi (8146_CR34) 2019; 30
B Zhang (8146_CR21) 2017; 403
NL Eun (8146_CR12) 2020; 294
DM Lambregts (8146_CR36) 2011; 21
C Parmar (8146_CR20) 2015; 5
K Nagasaka (8146_CR32) 2019; 26
T Barrett (8146_CR5) 2007; 26
G Turashvili (8146_CR3) 2017; 4
SS Yip (8146_CR7) 2016; 61
F Davnall (8146_CR1) 2012; 3
F Liu (8146_CR31) 2018; 16
AE Giuliano (8146_CR15) 2018; 25
B Yi (8146_CR33) 2014; 24
SU Shin (8146_CR39) 2020; 30
SA Waugh (8146_CR24) 2016; 26
PS Tofts (8146_CR17) 1997; 7
M Iima (8146_CR40) 2020; 52
J Folkman (8146_CR4) 1971; 285
References_xml – volume: 40
  start-page: 2331
  year: 2015
  end-page: 2337
  ident: CR35
  article-title: CT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes
  publication-title: Abdom Imaging
  doi: 10.1007/s00261-015-0438-4
– volume: 48
  start-page: 1637
  year: 2018
  end-page: 1647
  ident: CR25
  article-title: Preoperative tumor texture analysis on MRI predicts high-risk disease and reduced survival in endometrial cancer
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26184
– volume: 83
  start-page: 296
  year: 2010
  end-page: 309
  ident: CR28
  article-title: Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis
  publication-title: Br J Radiol
  doi: 10.1259/bjr/50743919
– volume: 16
  start-page: 239
  year: 2018
  ident: CR31
  article-title: Role of perfusion parameters on DCE-MRI and ADC values on DWMRI for invasive ductal carcinoma at 3.0 Tesla
  publication-title: World J Surg Oncol
  doi: 10.1186/s12957-018-1538-8
– volume: 111
  start-page: 2205
  year: 2014
  end-page: 2213
  ident: CR2
  article-title: Improving tumour heterogeneity MRI assessment with histograms
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2014.512
– volume: 25
  start-page: 1783
  year: 2018
  end-page: 1785
  ident: CR15
  article-title: Eighth edition of the AJCC Cancer Staging Manual: Breast Cancer
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-018-6486-6
– volume: 30
  start-page: 998
  year: 2019
  end-page: 1004
  ident: CR34
  article-title: Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdz108
– volume: 5
  start-page: 13087
  year: 2015
  ident: CR20
  article-title: Machine learning methods for quantitative radiomic biomarkers
  publication-title: Sci Rep
  doi: 10.1038/srep13087
– volume: 294
  start-page: 31
  year: 2020
  end-page: 41
  ident: CR12
  article-title: Texture analysis with 3.0-T MRI for association of response to neoadjuvant chemotherapy in breast cancer
  publication-title: Radiology
  doi: 10.1148/radiol.2019182718
– ident: CR14
– volume: 30
  start-page: 4058
  year: 2020
  end-page: 4068
  ident: CR39
  article-title: Time-to-enhancement at ultrafast breast DCE-MRI: potential imaging biomarker of tumour aggressiveness
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06693-0
– volume: 6
  start-page: 35569
  year: 2016
  ident: CR29
  article-title: DCE-MRI perfusion and permeability parameters as predictors of tumor response to CCRT in patients with locally advanced NSCLC
  publication-title: Sci Rep
  doi: 10.1038/srep35569
– volume: 403
  start-page: 21
  year: 2017
  end-page: 27
  ident: CR21
  article-title: Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2017.06.004
– volume: 22
  start-page: 58
  year: 2020
  ident: CR38
  article-title: Ultrafast dynamic contrast-enhanced breast MRI may generate prognostic imaging markers of breast cancer
  publication-title: Breast Cancer Res
  doi: 10.1186/s13058-020-01292-9
– volume: 41
  start-page: 474
  year: 2015
  end-page: 480
  ident: CR18
  article-title: Correlation of dynamic contrast-enhanced MRI perfusion parameters with angiogenesis and biologic aggressiveness of rectal cancer: Preliminary results
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24541
– volume: 286
  start-page: 412
  year: 2018
  end-page: 420
  ident: CR16
  article-title: Features from computerized texture analysis of breast cancers at pretreatment MR imaging are associated with response to neoadjuvant chemotherapy
  publication-title: Radiology
  doi: 10.1148/radiol.2017170143
– volume: 52
  start-page: 70
  year: 2020
  end-page: 90
  ident: CR40
  article-title: Diffusion MRI of the breast: current status and future directions
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26908
– volume: 285
  start-page: 1182
  year: 1971
  end-page: 1186
  ident: CR4
  article-title: Tumor angiogenesis: therapeutic implications
  publication-title: N Engl J Med
  doi: 10.1056/NEJM197111182852108
– volume: 119
  start-page: 508
  year: 2018
  end-page: 516
  ident: CR13
  article-title: A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features
  publication-title: Br J Cancer
  doi: 10.1038/s41416-018-0185-8
– volume: 19
  start-page: 1533033820916191
  year: 2020
  ident: CR22
  article-title: The application of radiomics in breast MRI: a review
  publication-title: Technol Cancer Res Treat
  doi: 10.1177/1533033820916191
– volume: 282
  start-page: 665
  year: 2017
  end-page: 675
  ident: CR6
  article-title: Breast cancer heterogeneity: MR imaging texture analysis and survival outcomes
  publication-title: Radiology
  doi: 10.1148/radiol.2016160261
– volume: 36
  start-page: 145
  year: 2012
  end-page: 151
  ident: CR30
  article-title: Correlation of perfusion parameters on dynamic contrast-enhanced MRI with prognostic factors and subtypes of breast cancers
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.23635
– volume: 50
  start-page: 92
  year: 2003
  end-page: 98
  ident: CR27
  article-title: Textural analysis of contrast-enhanced MR images of the breast
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10496
– volume: 61
  start-page: R150
  year: 2016
  end-page: R166
  ident: CR7
  article-title: Applications and limitations of radiomics
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/61/13/R150
– volume: 7
  start-page: 91
  year: 1997
  end-page: 101
  ident: CR17
  article-title: Modeling tracer kinetics in dynamic Gd-DTPA MR imaging
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.1880070113
– volume: 3
  start-page: 573
  year: 2012
  end-page: 589
  ident: CR1
  article-title: Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice?
  publication-title: Insights Imaging
  doi: 10.1007/s13244-012-0196-6
– volume: 4
  start-page: 227
  year: 2017
  ident: CR3
  article-title: Tumor heterogeneity in breast cancer
  publication-title: Front Med (Lausanne)
  doi: 10.3389/fmed.2017.00227
– volume: 26
  start-page: 235
  year: 2007
  end-page: 249
  ident: CR5
  article-title: MRI of tumor angiogenesis
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20991
– volume: 278
  start-page: 563
  year: 2016
  end-page: 577
  ident: CR8
  article-title: Radiomics: images are more than pictures, they are data
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– volume: 21
  start-page: 2567
  year: 2011
  end-page: 2574
  ident: CR36
  article-title: Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability
  publication-title: Eur Radiol
  doi: 10.1007/s00330-011-2220-5
– volume: 272
  start-page: 385
  year: 2014
  end-page: 396
  ident: CR19
  article-title: Breast cancer: early prediction of response to neoadjuvant chemotherapy using parametric response maps for MR imaging
  publication-title: Radiology
  doi: 10.1148/radiol.14131332
– volume: 9
  start-page: 17847
  year: 2019
  ident: CR11
  article-title: Machine learning approaches to radiogenomics of breast cancer using low-dose perfusion computed tomography: predicting prognostic biomarkers and molecular subtypes
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-54371-z
– volume: 90
  start-page: 20160665
  year: 2017
  ident: CR37
  article-title: Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20160665
– volume: 26
  start-page: 322
  year: 2016
  end-page: 330
  ident: CR24
  article-title: Magnetic resonance imaging texture analysis classification of primary breast cancer
  publication-title: Eur Radiol
  doi: 10.1007/s00330-015-3845-6
– volume: 26
  start-page: 113
  year: 2019
  end-page: 124
  ident: CR32
  article-title: Histogram analysis of quantitative pharmacokinetic parameters on DCE-MRI: correlations with prognostic factors and molecular subtypes in breast cancer
  publication-title: Breast Cancer
  doi: 10.1007/s12282-018-0899-8
– volume: 24
  start-page: 1089
  year: 2014
  end-page: 1096
  ident: CR33
  article-title: Is there any correlation between model-based perfusion parameters and model-free parameters of time-signal intensity curve on dynamic contrast enhanced MRI in breast cancer patients?
  publication-title: Eur Radiol
  doi: 10.1007/s00330-014-3100-6
– volume: 20
  start-page: 33
  year: 2020
  ident: CR9
  article-title: How to develop a meaningful radiomic signature for clinical use in oncologic patients
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-020-00311-4
– volume: 288
  start-page: 318
  year: 2018
  end-page: 328
  ident: CR10
  article-title: Current applications and future impact of machine learning in radiology
  publication-title: Radiology
  doi: 10.1148/radiol.2018171820
– volume: 50
  start-page: 719
  year: 2015
  end-page: 725
  ident: CR23
  article-title: Prognostic value of computed tomography texture features in non–small cell lung cancers treated with definitive concomitant chemoradiotherapy
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000174
– ident: CR26
– volume: 26
  start-page: 322
  year: 2016
  ident: 8146_CR24
  publication-title: Eur Radiol
  doi: 10.1007/s00330-015-3845-6
– volume: 30
  start-page: 998
  year: 2019
  ident: 8146_CR34
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdz108
– volume: 286
  start-page: 412
  year: 2018
  ident: 8146_CR16
  publication-title: Radiology
  doi: 10.1148/radiol.2017170143
– volume: 30
  start-page: 4058
  year: 2020
  ident: 8146_CR39
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06693-0
– volume: 19
  start-page: 153303382091619
  year: 2020
  ident: 8146_CR22
  publication-title: Technol Cancer Res Treat
  doi: 10.1177/1533033820916191
– volume: 282
  start-page: 665
  year: 2017
  ident: 8146_CR6
  publication-title: Radiology
  doi: 10.1148/radiol.2016160261
– volume: 288
  start-page: 318
  year: 2018
  ident: 8146_CR10
  publication-title: Radiology
  doi: 10.1148/radiol.2018171820
– volume: 272
  start-page: 385
  year: 2014
  ident: 8146_CR19
  publication-title: Radiology
  doi: 10.1148/radiol.14131332
– volume: 83
  start-page: 296
  year: 2010
  ident: 8146_CR28
  publication-title: Br J Radiol
  doi: 10.1259/bjr/50743919
– volume: 52
  start-page: 70
  year: 2020
  ident: 8146_CR40
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26908
– volume: 278
  start-page: 563
  year: 2016
  ident: 8146_CR8
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– volume: 61
  start-page: R150
  year: 2016
  ident: 8146_CR7
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/61/13/R150
– volume: 26
  start-page: 235
  year: 2007
  ident: 8146_CR5
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20991
– volume: 26
  start-page: 113
  year: 2019
  ident: 8146_CR32
  publication-title: Breast Cancer
  doi: 10.1007/s12282-018-0899-8
– volume: 9
  start-page: 17847
  year: 2019
  ident: 8146_CR11
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-54371-z
– volume: 50
  start-page: 719
  year: 2015
  ident: 8146_CR23
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000174
– volume: 41
  start-page: 474
  year: 2015
  ident: 8146_CR18
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24541
– volume: 4
  start-page: 227
  year: 2017
  ident: 8146_CR3
  publication-title: Front Med (Lausanne)
  doi: 10.3389/fmed.2017.00227
– volume: 3
  start-page: 573
  year: 2012
  ident: 8146_CR1
  publication-title: Insights Imaging
  doi: 10.1007/s13244-012-0196-6
– volume: 22
  start-page: 58
  year: 2020
  ident: 8146_CR38
  publication-title: Breast Cancer Res
  doi: 10.1186/s13058-020-01292-9
– volume: 36
  start-page: 145
  year: 2012
  ident: 8146_CR30
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.23635
– volume: 294
  start-page: 31
  year: 2020
  ident: 8146_CR12
  publication-title: Radiology
  doi: 10.1148/radiol.2019182718
– ident: 8146_CR26
  doi: 10.1038/npjbcancer.2016.12
– volume: 403
  start-page: 21
  year: 2017
  ident: 8146_CR21
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2017.06.004
– volume: 40
  start-page: 2331
  year: 2015
  ident: 8146_CR35
  publication-title: Abdom Imaging
  doi: 10.1007/s00261-015-0438-4
– volume: 25
  start-page: 1783
  year: 2018
  ident: 8146_CR15
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-018-6486-6
– volume: 24
  start-page: 1089
  year: 2014
  ident: 8146_CR33
  publication-title: Eur Radiol
  doi: 10.1007/s00330-014-3100-6
– volume: 119
  start-page: 508
  year: 2018
  ident: 8146_CR13
  publication-title: Br J Cancer
  doi: 10.1038/s41416-018-0185-8
– volume: 285
  start-page: 1182
  year: 1971
  ident: 8146_CR4
  publication-title: N Engl J Med
  doi: 10.1056/NEJM197111182852108
– volume: 48
  start-page: 1637
  year: 2018
  ident: 8146_CR25
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26184
– volume: 50
  start-page: 92
  year: 2003
  ident: 8146_CR27
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10496
– volume: 21
  start-page: 2567
  year: 2011
  ident: 8146_CR36
  publication-title: Eur Radiol
  doi: 10.1007/s00330-011-2220-5
– volume: 6
  start-page: 35569
  year: 2016
  ident: 8146_CR29
  publication-title: Sci Rep
  doi: 10.1038/srep35569
– volume: 5
  start-page: 13087
  year: 2015
  ident: 8146_CR20
  publication-title: Sci Rep
  doi: 10.1038/srep13087
– volume: 7
  start-page: 91
  year: 1997
  ident: 8146_CR17
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.1880070113
– volume: 16
  start-page: 239
  year: 2018
  ident: 8146_CR31
  publication-title: World J Surg Oncol
  doi: 10.1186/s12957-018-1538-8
– volume: 111
  start-page: 2205
  year: 2014
  ident: 8146_CR2
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2014.512
– volume: 20
  start-page: 33
  year: 2020
  ident: 8146_CR9
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-020-00311-4
– volume: 90
  start-page: 20160665
  year: 2017
  ident: 8146_CR37
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20160665
– ident: 8146_CR14
  doi: 10.1007/s00330-020-07274-x
SSID ssj0009147
Score 2.6111717
Snippet Objectives To investigate machine learning approaches for radiomics-based prediction of prognostic biomarkers and molecular subtypes of breast cancer using...
ObjectivesTo investigate machine learning approaches for radiomics-based prediction of prognostic biomarkers and molecular subtypes of breast cancer using...
To investigate machine learning approaches for radiomics-based prediction of prognostic biomarkers and molecular subtypes of breast cancer using quantification...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 650
SubjectTerms Algorithms
Angiogenesis
Artificial neural networks
Bayesian analysis
Biomarkers
Breast
Breast cancer
Decision trees
Diagnostic Radiology
Entropy
Epidermal growth factor
Growth factors
Heterogeneity
Imaging
Internal Medicine
Interventional Radiology
Invasiveness
Irregularities
Learning algorithms
Machine learning
Magnetic properties
Magnetic resonance imaging
Mathematical models
Medical prognosis
Medicine
Medicine & Public Health
Neural networks
Neuroradiology
Parameters
Performance prediction
Perfusion
Predictions
Radiology
Radiomics
Receptors
Regression analysis
Texture
Tumors
Ultrasound
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBf9gNKX0a0dy9qOG_StFZNsR5afSikN2SB9KC3kzViynAUaO4udv2j_aO9UOWGF9dX6wrqTdB-_u2PsIktdOayk5sPKkYKiYp7FieZCZcqk0dCqiuyQk3s1fkp-TYfTYHBrA6yyvxP9RV02lmzkP1Du1pRbXOjr5R9OVaPIuxpKaOyyfUpdRlydTtNt0l3pC4yh0q55mmVJCJrxoXNUxExwAigIsoJx_e_DtJU23zhI_bszOmIfgsAIN68U_sh2XP2JHUyCS_yY_X0oyjmFFsPC4yIdhEIQM0B5FJYr6knYZiAoVt1QXmagoHvC5axaKOoSFn2NXGjXhoyyLTQVGMKrd2CJL1ZAAPkZdOsFTvqbMDQNsp5DGd7PUNSzuf_QzltaaElwbZqmhsnDzxP2NLp7vB3zUHmB20RFHeqTUhWoSjidyajCrU2EtaVEbdbESEKjnE5LoW0kUocCSeHK2EkjClOZAhtF_Jnt1U3tvjBA_VPGNo1iyiPv4iqTpRYqss7QeO0GTPbbntuQlpyqYzznm4TKnlQ5kir3pMr1gF1uxixfk3K82_usp2YeDmibb9lpwL5vmvFokb-kqF2zxj6ozWX082rArnou2E7x_xW_vr_iKTuMKIjCG3LO2F63WrtzFG06883z7wu6t_YO
  priority: 102
  providerName: ProQuest
Title Radiomic machine learning for predicting prognostic biomarkers and molecular subtypes of breast cancer using tumor heterogeneity and angiogenesis properties on MRI
URI https://link.springer.com/article/10.1007/s00330-021-08146-8
https://www.proquest.com/docview/2608263208
https://www.proquest.com/docview/2548911946
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9swEBbdXSi9lD5putswhd5ag-SHLB2Tkuy2JaGEBtKTsWQ5G2jsEDu_qH90Z7R2Qktb6MUCSxphj2TPJ30zw9g7nboiKYUKktIRQJFRoKNYBVxqadIwsbKkfcjZXN4s48-rZNU5hTU9270_kvRf6qOzG6Ud4wFRCjjtWwXqjF0kiN2JyLUMR6dQu8KnFUOoroJU67hzlfmzjF9_Rycb87djUf-3mT5hjzszEUb3en3KHrjqGXs46w7Cn7Ofi7zYkEMxbD0b0kGX_mENaIXCbk8tidEMRMCqaorGDORqT2ycfQN5VcC2z4wLzcHQVmwDdQmGWOotWJoNeyBa_BrawxaF3hJzpsYJ59By9xLyar3xN5pNQwPtiKRNYiqYLT69YMvp5NvHm6DLtxDYWIYtokghcwQQTmkRlkLomFtbCMSwJkLFGelUWnBlQ546NENyV0ROGJ6b0uRYyaOX7LyqK_eKAaJOEdk0jCh6vItKLQrFZWidof7KDZjoX3tmu2DklBPjR3YMo-xVlaGqMq-qTA3Y-2Of3X0ojn-2vuq1mXXLsskQvCkKUM-x-u2xGhcUnZLklasP2AYxnKaHlwP2oZ8FJxF_H_H1_zW_ZI9CcqXw2zlX7LzdH9wbNHBaM2Rn6SrFq5peD9nFaDoez6m8_v5lguV4Mv-6GPo5fweVcflk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwEB4tiwRcEL-isICR4AQRtpM69gEhBJSW3e5htSvtLcSOUyrRpDSpEM_DnWdkxk1agcTe9hrb4yQztmfG38wAPDepL4al0NGw9GSgqDgycaIjroyyqRw6VZIfcnqsxmfJ5_Ph-R787mNhCFbZ74lhoy5qRz7y16h3a8otzvXb5feIqkbR7WpfQmMjFof-5w802Zo3kw_I3xdSjj6evh9HXVWByCVKtmgrCZWjmuy1EbIUaMRz5wqBlpqN8fWs8jotuHaSpx4P29wXsReW57a0OTbyGOlegatJjCc5RaaPPu2S_IpQ0Iwb3ERSY5IuSCeE6lHRNB4RIIKT1y3Sfx-EO-32nwvZcM6NbsHNTkFl7zYSdRv2fHUHrk27K_i78OskL-YUyswWAYfpWVd4YsZQ_2XLFfUkLDUj6FdVUx5oRkH-hANaNSyvCrboa_KyZm3JCdywumSW8PEtcySHK0aA_Blr1wsk-pUwOzWKukebIVDIq9k8PGjmDU20JHg4kanY9GRyD84uhSf3Yb-qK_8AGNq7InapjClvvY9LIwrNlXTe0njtByD63565Lg06VeP4lm0TOAdWZciqLLAq0wN4uR2z3CQBubD3Qc_NrNsQmmwnvgN4tm3GpUz3M3nl6zX2QevR0MerAbzqpWBH4v8zPrx4xqdwfXw6PcqOJseHj-CGpACO4EQ6gP12tfaPUa1q7ZMgywy-XPbi-QPDvjL3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTpp4QYw_ojCGkeAJotlO6zgPCLE_1cpoNVVM2luIHadUoklpUiE-D9-CT8edm7QCib3ttXHObe9s3-_8uzuAV3Hksn4udNDPHQEUFQZx2NMBV7EykexblVMccjRW51e9j9f96x343ebCEK2y3RP9Rp2VlmLkR-h3a6otzvVR3tAiLk8H7xffA-ogRTetbTuNtYlcuJ8_EL5V74anqOvXUg7OPp-cB02HgcD2lKwRNwmVosvsdCxkLhDQc2szgajNhPhVjXI6yri2kkcOD97UZaEThqcmNyk-5CHKvQO7EaGiDuwen40vJ9uSv8K3N-MxbilRHPealB2fuEct1HhA9AhOMbhA_30sbn3df65n_ak3uA_3GneVfVjb1z7suOIB7I2aC_mH8GuSZjNKbGZzz8p0rGlDMWXoDbPFkkYSs5oREawoqSo0o5R_YgUtK5YWGZu3HXpZtTIUEq5YmTNDbPmaWbLKJSN6_pTVqzkK_UoMnhIN3yGC8BLSYjrzH1SziiZaEFmcxBRsNBk-gqtb0cpj6BRl4Z4AQ_QrQhvJkKrYuzCPRaa5ktYZel-7Loj2b09sUxSdenN8SzblnL2qElRV4lWV6C682byzWJcEuXH0QavNpNkeqmRrzF14uXmMC5tua9LClSscg1gyph-vuvC2tYKtiP_P-PTmGV_AHi6c5NNwfPEM7krK5vARpQPo1MuVe44-Vm0OG2Nm8OW2188fMDo4iQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiomic+machine+learning+for+predicting+prognostic+biomarkers+and+molecular+subtypes+of+breast+cancer+using+tumor+heterogeneity+and+angiogenesis+properties+on+MRI&rft.jtitle=European+radiology&rft.au=Lee%2C+Ji+Young&rft.au=Lee%2C+Kwang-sig&rft.au=Seo%2C+Bo+Kyoung&rft.au=Cho%2C+Kyu+Ran&rft.date=2022-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=32&rft.issue=1&rft.spage=650&rft.epage=660&rft_id=info:doi/10.1007%2Fs00330-021-08146-8&rft.externalDocID=10_1007_s00330_021_08146_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon