Radiomic machine learning for predicting prognostic biomarkers and molecular subtypes of breast cancer using tumor heterogeneity and angiogenesis properties on MRI
Objectives To investigate machine learning approaches for radiomics-based prediction of prognostic biomarkers and molecular subtypes of breast cancer using quantification of tumor heterogeneity and angiogenesis properties on magnetic resonance imaging (MRI). Methods This prospective study examined 2...
Saved in:
Published in | European radiology Vol. 32; no. 1; pp. 650 - 660 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objectives
To investigate machine learning approaches for radiomics-based prediction of prognostic biomarkers and molecular subtypes of breast cancer using quantification of tumor heterogeneity and angiogenesis properties on magnetic resonance imaging (MRI).
Methods
This prospective study examined 291 invasive cancers in 288 patients who underwent breast MRI at 3 T before treatment between May 2017 and July 2019. Texture and perfusion analyses were performed and a total of 160 parameters for each cancer were extracted. Relationships between MRI parameters and prognostic biomarkers were analyzed using five machine learning algorithms. Each model was built using only texture features, only perfusion features, or both. Model performance was compared using the area under the receiver-operating characteristic curve (AUC) and the DeLong method, and the importance of MRI parameters in prediction was derived.
Results
Texture parameters were associated with the status of hormone receptors, human epidermal growth factor receptor 2, and Ki67, tumor size, grade, and molecular subtypes (
p
< 0.002). Perfusion parameters were associated with the status of hormone receptors and Ki67, grade, and molecular subtypes (
p
< 0.003). The random forest model integrating texture and perfusion parameters showed the highest performance (AUC = 0.75). The performance of the random forest model was the best with a special scale filter of 0 (AUC = 0.80). The important parameters for prediction were texture irregularity (entropy) and relative extracellular extravascular space (
V
e
).
Conclusions
Radiomic machine learning that integrates tumor heterogeneity and angiogenesis properties on MRI has the potential to noninvasively predict prognostic factors of breast cancer.
Key Points
•
Machine learning, integrating tumor heterogeneity and angiogenesis properties on MRI, can be applied to predict prognostic biomarkers and molecular subtypes in breast cancer.
•
The random forest model showed the best predictive performance among the five machine learning models (logistic regression, decision tree, naïve Bayes, random forest, and artificial neural network).
•
The most important MRI parameters for predicting prognostic factors in breast cancer were texture irregularity (entropy) among texture parameters and relative extracellular extravascular space (V
e
) among perfusion parameters. |
---|---|
AbstractList | To investigate machine learning approaches for radiomics-based prediction of prognostic biomarkers and molecular subtypes of breast cancer using quantification of tumor heterogeneity and angiogenesis properties on magnetic resonance imaging (MRI).OBJECTIVESTo investigate machine learning approaches for radiomics-based prediction of prognostic biomarkers and molecular subtypes of breast cancer using quantification of tumor heterogeneity and angiogenesis properties on magnetic resonance imaging (MRI).This prospective study examined 291 invasive cancers in 288 patients who underwent breast MRI at 3 T before treatment between May 2017 and July 2019. Texture and perfusion analyses were performed and a total of 160 parameters for each cancer were extracted. Relationships between MRI parameters and prognostic biomarkers were analyzed using five machine learning algorithms. Each model was built using only texture features, only perfusion features, or both. Model performance was compared using the area under the receiver-operating characteristic curve (AUC) and the DeLong method, and the importance of MRI parameters in prediction was derived.METHODSThis prospective study examined 291 invasive cancers in 288 patients who underwent breast MRI at 3 T before treatment between May 2017 and July 2019. Texture and perfusion analyses were performed and a total of 160 parameters for each cancer were extracted. Relationships between MRI parameters and prognostic biomarkers were analyzed using five machine learning algorithms. Each model was built using only texture features, only perfusion features, or both. Model performance was compared using the area under the receiver-operating characteristic curve (AUC) and the DeLong method, and the importance of MRI parameters in prediction was derived.Texture parameters were associated with the status of hormone receptors, human epidermal growth factor receptor 2, and Ki67, tumor size, grade, and molecular subtypes (p < 0.002). Perfusion parameters were associated with the status of hormone receptors and Ki67, grade, and molecular subtypes (p < 0.003). The random forest model integrating texture and perfusion parameters showed the highest performance (AUC = 0.75). The performance of the random forest model was the best with a special scale filter of 0 (AUC = 0.80). The important parameters for prediction were texture irregularity (entropy) and relative extracellular extravascular space (Ve).RESULTSTexture parameters were associated with the status of hormone receptors, human epidermal growth factor receptor 2, and Ki67, tumor size, grade, and molecular subtypes (p < 0.002). Perfusion parameters were associated with the status of hormone receptors and Ki67, grade, and molecular subtypes (p < 0.003). The random forest model integrating texture and perfusion parameters showed the highest performance (AUC = 0.75). The performance of the random forest model was the best with a special scale filter of 0 (AUC = 0.80). The important parameters for prediction were texture irregularity (entropy) and relative extracellular extravascular space (Ve).Radiomic machine learning that integrates tumor heterogeneity and angiogenesis properties on MRI has the potential to noninvasively predict prognostic factors of breast cancer.CONCLUSIONSRadiomic machine learning that integrates tumor heterogeneity and angiogenesis properties on MRI has the potential to noninvasively predict prognostic factors of breast cancer.• Machine learning, integrating tumor heterogeneity and angiogenesis properties on MRI, can be applied to predict prognostic biomarkers and molecular subtypes in breast cancer. • The random forest model showed the best predictive performance among the five machine learning models (logistic regression, decision tree, naïve Bayes, random forest, and artificial neural network). • The most important MRI parameters for predicting prognostic factors in breast cancer were texture irregularity (entropy) among texture parameters and relative extracellular extravascular space (Ve) among perfusion parameters.KEY POINTS• Machine learning, integrating tumor heterogeneity and angiogenesis properties on MRI, can be applied to predict prognostic biomarkers and molecular subtypes in breast cancer. • The random forest model showed the best predictive performance among the five machine learning models (logistic regression, decision tree, naïve Bayes, random forest, and artificial neural network). • The most important MRI parameters for predicting prognostic factors in breast cancer were texture irregularity (entropy) among texture parameters and relative extracellular extravascular space (Ve) among perfusion parameters. Objectives To investigate machine learning approaches for radiomics-based prediction of prognostic biomarkers and molecular subtypes of breast cancer using quantification of tumor heterogeneity and angiogenesis properties on magnetic resonance imaging (MRI). Methods This prospective study examined 291 invasive cancers in 288 patients who underwent breast MRI at 3 T before treatment between May 2017 and July 2019. Texture and perfusion analyses were performed and a total of 160 parameters for each cancer were extracted. Relationships between MRI parameters and prognostic biomarkers were analyzed using five machine learning algorithms. Each model was built using only texture features, only perfusion features, or both. Model performance was compared using the area under the receiver-operating characteristic curve (AUC) and the DeLong method, and the importance of MRI parameters in prediction was derived. Results Texture parameters were associated with the status of hormone receptors, human epidermal growth factor receptor 2, and Ki67, tumor size, grade, and molecular subtypes ( p < 0.002). Perfusion parameters were associated with the status of hormone receptors and Ki67, grade, and molecular subtypes ( p < 0.003). The random forest model integrating texture and perfusion parameters showed the highest performance (AUC = 0.75). The performance of the random forest model was the best with a special scale filter of 0 (AUC = 0.80). The important parameters for prediction were texture irregularity (entropy) and relative extracellular extravascular space ( V e ). Conclusions Radiomic machine learning that integrates tumor heterogeneity and angiogenesis properties on MRI has the potential to noninvasively predict prognostic factors of breast cancer. Key Points • Machine learning, integrating tumor heterogeneity and angiogenesis properties on MRI, can be applied to predict prognostic biomarkers and molecular subtypes in breast cancer. • The random forest model showed the best predictive performance among the five machine learning models (logistic regression, decision tree, naïve Bayes, random forest, and artificial neural network). • The most important MRI parameters for predicting prognostic factors in breast cancer were texture irregularity (entropy) among texture parameters and relative extracellular extravascular space (V e ) among perfusion parameters. ObjectivesTo investigate machine learning approaches for radiomics-based prediction of prognostic biomarkers and molecular subtypes of breast cancer using quantification of tumor heterogeneity and angiogenesis properties on magnetic resonance imaging (MRI).MethodsThis prospective study examined 291 invasive cancers in 288 patients who underwent breast MRI at 3 T before treatment between May 2017 and July 2019. Texture and perfusion analyses were performed and a total of 160 parameters for each cancer were extracted. Relationships between MRI parameters and prognostic biomarkers were analyzed using five machine learning algorithms. Each model was built using only texture features, only perfusion features, or both. Model performance was compared using the area under the receiver-operating characteristic curve (AUC) and the DeLong method, and the importance of MRI parameters in prediction was derived.ResultsTexture parameters were associated with the status of hormone receptors, human epidermal growth factor receptor 2, and Ki67, tumor size, grade, and molecular subtypes (p < 0.002). Perfusion parameters were associated with the status of hormone receptors and Ki67, grade, and molecular subtypes (p < 0.003). The random forest model integrating texture and perfusion parameters showed the highest performance (AUC = 0.75). The performance of the random forest model was the best with a special scale filter of 0 (AUC = 0.80). The important parameters for prediction were texture irregularity (entropy) and relative extracellular extravascular space (Ve).ConclusionsRadiomic machine learning that integrates tumor heterogeneity and angiogenesis properties on MRI has the potential to noninvasively predict prognostic factors of breast cancer.Key Points• Machine learning, integrating tumor heterogeneity and angiogenesis properties on MRI, can be applied to predict prognostic biomarkers and molecular subtypes in breast cancer.• The random forest model showed the best predictive performance among the five machine learning models (logistic regression, decision tree, naïve Bayes, random forest, and artificial neural network).• The most important MRI parameters for predicting prognostic factors in breast cancer were texture irregularity (entropy) among texture parameters and relative extracellular extravascular space (Ve) among perfusion parameters. |
Author | Lee, Hye Yoon Woo, Ok Hee Cha, Jaehyung Lee, Ji Young Lee, Kwang-sig Kim, Eun-Kyung Seo, Bo Kyoung Song, Sung Eun Cho, Kyu Ran Kim, Jung Sun |
Author_xml | – sequence: 1 givenname: Ji Young surname: Lee fullname: Lee, Ji Young organization: Department of Radiology, Ilsan Paik Hospital, Inje University College of Medicine – sequence: 2 givenname: Kwang-sig surname: Lee fullname: Lee, Kwang-sig organization: AI Center, Korea University Anam Hospital, Korea University College of Medicine – sequence: 3 givenname: Bo Kyoung orcidid: 0000-0002-9512-5361 surname: Seo fullname: Seo, Bo Kyoung email: seoboky@korea.ac.kr, seoboky@gmail.com organization: Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine – sequence: 4 givenname: Kyu Ran surname: Cho fullname: Cho, Kyu Ran organization: Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine – sequence: 5 givenname: Ok Hee surname: Woo fullname: Woo, Ok Hee organization: Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine – sequence: 6 givenname: Sung Eun surname: Song fullname: Song, Sung Eun organization: Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine – sequence: 7 givenname: Eun-Kyung surname: Kim fullname: Kim, Eun-Kyung organization: Department of Radiology, Yongin Severance Hospital, Center for Clinical Imaging Data Science, Yonsei University College of Medicine – sequence: 8 givenname: Hye Yoon surname: Lee fullname: Lee, Hye Yoon organization: Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine – sequence: 9 givenname: Jung Sun surname: Kim fullname: Kim, Jung Sun organization: Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine – sequence: 10 givenname: Jaehyung surname: Cha fullname: Cha, Jaehyung organization: Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine |
BookMark | eNp9kUFvFSEUhYmpia_VP-CKxI2b0QvMY5ilabQ2qTFpdE2AufNKnYERmMX7Pf5RmfdMTLroisA957snnEtyEWJAQt4y-MAAuo8ZQAhogLMGFGtlo16QHWsFbxio9oLsoBeq6fq-fUUuc34EgJ613Y78uTeDj7N3dDbuwQekE5oUfDjQMSa6JBy8K9t1SfEQYi5VaqvDpF-YMjVhoHOc0K2TSTSvthwXzDSO1CY0uVBngsNE17wxyjpX6AMWrDAM6MvxRDDh4E8P2edt0YKp-A0T6Lf729fk5WimjG_-nVfk55fPP66_Nnffb26vP901rpW8NJIxaWS3R9UzPjLWt-DcwIQSVkjbWYmqG0A5Dh2y_d7gIJBZMHa0pg5BXJH3Z25N8HvFXPTss8NpMgHjmjXftxVdubJK3z2RPsY1hZpOcwmKS8FBVRU_q1yKOScc9ZJ8_bmjZqC33vS5N11706fe9GZST0zOF1N8DCUZPz1vFWdrrnvCAdP_VM-4_gL-77Kw |
CitedBy_id | crossref_primary_10_1007_s11517_024_03031_0 crossref_primary_10_1038_s41523_024_00678_8 crossref_primary_10_3390_ijms24097781 crossref_primary_10_1088_1361_6560_acfade crossref_primary_10_3389_fonc_2022_964605 crossref_primary_10_1002_prm2_12089 crossref_primary_10_1016_j_critrevonc_2022_103823 crossref_primary_10_1007_s10278_023_00799_9 crossref_primary_10_1007_s00330_023_09960_y crossref_primary_10_1186_s13244_024_01713_9 crossref_primary_10_3389_fonc_2025_1536039 crossref_primary_10_1007_s10462_023_10543_y crossref_primary_10_1007_s11547_023_01694_7 crossref_primary_10_1007_s10278_024_01064_3 crossref_primary_10_3389_fgene_2023_1283090 crossref_primary_10_1007_s11042_022_12385_2 crossref_primary_10_6009_jjrt_2023_2269 crossref_primary_10_1186_s43055_023_01087_w crossref_primary_10_3390_bioengineering10050504 crossref_primary_10_3389_fonc_2022_848726 crossref_primary_10_3390_cancers13215547 crossref_primary_10_1016_j_csbj_2023_03_046 crossref_primary_10_3389_fonc_2023_1219071 crossref_primary_10_1016_j_patter_2023_100826 crossref_primary_10_1038_s41598_022_16234_y crossref_primary_10_2139_ssrn_4127749 crossref_primary_10_3390_diagnostics12040826 crossref_primary_10_1177_15330338241288751 crossref_primary_10_1186_s12967_024_05018_9 crossref_primary_10_1016_j_ejro_2022_100441 crossref_primary_10_3389_fonc_2021_706733 crossref_primary_10_1007_s00234_025_03551_y crossref_primary_10_1016_j_compbiomed_2022_106147 crossref_primary_10_1007_s10278_024_01012_1 crossref_primary_10_1038_s41523_023_00517_2 crossref_primary_10_1007_s11684_024_1085_3 crossref_primary_10_1186_s13244_024_01869_4 crossref_primary_10_1088_1361_6560_ad25c0 crossref_primary_10_1038_s41598_024_53137_6 crossref_primary_10_31083_j_fbl2703101 crossref_primary_10_1186_s13058_023_01668_7 crossref_primary_10_1007_s10278_023_00923_9 crossref_primary_10_3390_cancers13236013 crossref_primary_10_1016_j_nicl_2022_103223 crossref_primary_10_1109_TMI_2023_3331301 crossref_primary_10_1007_s10479_022_05086_4 crossref_primary_10_1007_s44196_024_00712_4 crossref_primary_10_1002_mco2_722 crossref_primary_10_3390_ijms24097714 crossref_primary_10_1016_j_dld_2024_06_033 crossref_primary_10_3389_fimmu_2024_1482020 crossref_primary_10_1002_imo2_19 crossref_primary_10_1088_1361_6560_acfdef crossref_primary_10_1038_s41598_022_25746_6 crossref_primary_10_1080_14737140_2023_2286001 crossref_primary_10_1186_s12885_024_12844_z crossref_primary_10_1093_bjrai_ubae011 crossref_primary_10_1186_s13244_024_01810_9 crossref_primary_10_1002_jmri_28895 crossref_primary_10_1016_j_cmpb_2024_108194 crossref_primary_10_3389_fcvm_2024_1340022 crossref_primary_10_3389_fonc_2024_1307907 crossref_primary_10_1002_jmri_28611 crossref_primary_10_1136_jitc_2024_009348 crossref_primary_10_1016_j_acra_2023_12_012 crossref_primary_10_1186_s12911_023_02114_6 crossref_primary_10_3390_diagnostics12112740 crossref_primary_10_1016_j_clbc_2024_03_006 crossref_primary_10_1016_j_csbj_2023_11_016 crossref_primary_10_1155_2022_9619102 crossref_primary_10_1038_s41598_023_32332_x |
Cites_doi | 10.1007/s00261-015-0438-4 10.1002/jmri.26184 10.1259/bjr/50743919 10.1186/s12957-018-1538-8 10.1038/bjc.2014.512 10.1245/s10434-018-6486-6 10.1093/annonc/mdz108 10.1038/srep13087 10.1148/radiol.2019182718 10.1007/s00330-020-06693-0 10.1038/srep35569 10.1016/j.canlet.2017.06.004 10.1186/s13058-020-01292-9 10.1002/jmri.24541 10.1148/radiol.2017170143 10.1002/jmri.26908 10.1056/NEJM197111182852108 10.1038/s41416-018-0185-8 10.1177/1533033820916191 10.1148/radiol.2016160261 10.1002/jmri.23635 10.1002/mrm.10496 10.1088/0031-9155/61/13/R150 10.1002/jmri.1880070113 10.1007/s13244-012-0196-6 10.3389/fmed.2017.00227 10.1002/jmri.20991 10.1148/radiol.2015151169 10.1007/s00330-011-2220-5 10.1148/radiol.14131332 10.1038/s41598-019-54371-z 10.1259/bjr.20160665 10.1007/s00330-015-3845-6 10.1007/s12282-018-0899-8 10.1007/s00330-014-3100-6 10.1186/s40644-020-00311-4 10.1148/radiol.2018171820 10.1097/RLI.0000000000000174 10.1038/npjbcancer.2016.12 10.1007/s00330-020-07274-x |
ContentType | Journal Article |
Copyright | European Society of Radiology 2021 European Society of Radiology 2021. 2021. European Society of Radiology. |
Copyright_xml | – notice: European Society of Radiology 2021 – notice: European Society of Radiology 2021. – notice: 2021. European Society of Radiology. |
DBID | AAYXX CITATION 3V. 7QO 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s00330-021-08146-8 |
DatabaseName | CrossRef ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Nursing and Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1432-1084 |
EndPage | 660 |
ExternalDocumentID | 10_1007_s00330_021_08146_8 |
GrantInformation_xml | – fundername: Korea University grantid: K2011241 – fundername: Ministry of Science and ICT (MSIT) of Korea grantid: NRF-2021R1A2C1010565; IITP-2018-0-01405 – fundername: Dongkook Life Science Co.,Ltd. grantid: NA |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 04C 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6PF 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECF ECT EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UDS UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Y Z7Z Z82 Z83 Z85 Z87 Z88 Z8M Z8O Z8R Z8S Z8T Z8V Z8W Z8Z Z91 Z92 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7QO 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c462t-6116a675e8912f11940ccd1383b36b7b6e87d08c207e155aed3e1b0abfbab6e03 |
IEDL.DBID | U2A |
ISSN | 0938-7994 1432-1084 |
IngestDate | Thu Jul 10 20:36:22 EDT 2025 Fri Jul 25 19:00:38 EDT 2025 Tue Jul 01 03:08:26 EDT 2025 Thu Apr 24 23:09:05 EDT 2025 Fri Feb 21 02:47:44 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Breast neoplasms Biomarkers, tumor Perfusion imaging Magnetic resonance imaging Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-6116a675e8912f11940ccd1383b36b7b6e87d08c207e155aed3e1b0abfbab6e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9512-5361 |
OpenAccessLink | https://ir.ymlib.yonsei.ac.kr/handle/22282913/187857 |
PQID | 2608263208 |
PQPubID | 54162 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2548911946 proquest_journals_2608263208 crossref_primary_10_1007_s00330_021_08146_8 crossref_citationtrail_10_1007_s00330_021_08146_8 springer_journals_10_1007_s00330_021_08146_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | European radiology |
PublicationTitleAbbrev | Eur Radiol |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Giuliano, Edge, Hortobagyi (CR15) 2018; 25 Ahn, Park, Park (CR23) 2015; 50 Yi, Kang, Yoon (CR33) 2014; 24 CR14 Zhang, He, Ouyang (CR21) 2017; 403 Kim, Ko, Lim (CR6) 2017; 282 Papanikolaou, Matos, Koh (CR9) 2020; 20 Koo, Cho, Song (CR30) 2012; 36 Yip, Aerts (CR7) 2016; 61 Onishi, Sadinski, Hughes (CR38) 2020; 22 Folkman (CR4) 1971; 285 Cho, Im, Park (CR19) 2014; 272 Parmar, Grossmann, Bussink, Lambin, Aerts (CR20) 2015; 5 Liu, Wang, Li (CR31) 2018; 16 Choy, Khalilzadeh, Michalski (CR10) 2018; 288 Karahaliou, Vassiou, Arikidis, Skiadopoulos, Kanavou, Costaridou (CR28) 2010; 83 Shin, Cho, Kim, Lee, Chang, Moon (CR39) 2020; 30 Turashvili, Brogi (CR3) 2017; 4 Gibbs, Turnbull (CR27) 2003; 50 Nagasaka, Satake, Ishigaki, Kawai, Naganawa (CR32) 2019; 26 Just (CR2) 2014; 111 Saha, Harowicz, Grimm (CR13) 2018; 119 CR26 Barrett, Brechbiel, Bernardo, Choyke (CR5) 2007; 26 Ye, Wang, Yu (CR22) 2020; 19 Lambregts, Beets, Maas (CR36) 2011; 21 Larue, Defraene, De Ruysscher, Lambin, van Elmpt (CR37) 2017; 90 Lubner, Stabo, Lubner (CR35) 2015; 40 Tofts (CR17) 1997; 7 Waugh, Purdie, Jordan (CR24) 2016; 26 Trebeschi, Drago, Birkbak (CR34) 2019; 30 Iima, Honda, Sigmund, Ohno Kishimoto, Kataoka, Togashi (CR40) 2020; 52 Park, Lee, Seo (CR11) 2019; 9 Chamming’s, Ueno, Ferré (CR16) 2018; 286 Yeo, Oh, Jung (CR18) 2015; 41 Ytre-Hauge, Dybvik, Lundervold (CR25) 2018; 48 Tao, Wang, Hui (CR29) 2016; 6 Davnall, Yip, Ljungqvist (CR1) 2012; 3 Gillies, Kinahan, Hricak (CR8) 2016; 278 Eun, Kang, Son (CR12) 2020; 294 N Papanikolaou (8146_CR9) 2020; 20 8146_CR14 DM Ye (8146_CR22) 2020; 19 RJ Gillies (8146_CR8) 2016; 278 P Gibbs (8146_CR27) 2003; 50 N Onishi (8146_CR38) 2020; 22 JH Kim (8146_CR6) 2017; 282 N Cho (8146_CR19) 2014; 272 G Choy (8146_CR10) 2018; 288 EK Park (8146_CR11) 2019; 9 X Tao (8146_CR29) 2016; 6 A Saha (8146_CR13) 2018; 119 MG Lubner (8146_CR35) 2015; 40 SY Ahn (8146_CR23) 2015; 50 RT Larue (8146_CR37) 2017; 90 DM Yeo (8146_CR18) 2015; 41 A Karahaliou (8146_CR28) 2010; 83 HR Koo (8146_CR30) 2012; 36 S Ytre-Hauge (8146_CR25) 2018; 48 F Chamming’s (8146_CR16) 2018; 286 8146_CR26 N Just (8146_CR2) 2014; 111 S Trebeschi (8146_CR34) 2019; 30 B Zhang (8146_CR21) 2017; 403 NL Eun (8146_CR12) 2020; 294 DM Lambregts (8146_CR36) 2011; 21 C Parmar (8146_CR20) 2015; 5 K Nagasaka (8146_CR32) 2019; 26 T Barrett (8146_CR5) 2007; 26 G Turashvili (8146_CR3) 2017; 4 SS Yip (8146_CR7) 2016; 61 F Davnall (8146_CR1) 2012; 3 F Liu (8146_CR31) 2018; 16 AE Giuliano (8146_CR15) 2018; 25 B Yi (8146_CR33) 2014; 24 SU Shin (8146_CR39) 2020; 30 SA Waugh (8146_CR24) 2016; 26 PS Tofts (8146_CR17) 1997; 7 M Iima (8146_CR40) 2020; 52 J Folkman (8146_CR4) 1971; 285 |
References_xml | – volume: 40 start-page: 2331 year: 2015 end-page: 2337 ident: CR35 article-title: CT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes publication-title: Abdom Imaging doi: 10.1007/s00261-015-0438-4 – volume: 48 start-page: 1637 year: 2018 end-page: 1647 ident: CR25 article-title: Preoperative tumor texture analysis on MRI predicts high-risk disease and reduced survival in endometrial cancer publication-title: J Magn Reson Imaging doi: 10.1002/jmri.26184 – volume: 83 start-page: 296 year: 2010 end-page: 309 ident: CR28 article-title: Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis publication-title: Br J Radiol doi: 10.1259/bjr/50743919 – volume: 16 start-page: 239 year: 2018 ident: CR31 article-title: Role of perfusion parameters on DCE-MRI and ADC values on DWMRI for invasive ductal carcinoma at 3.0 Tesla publication-title: World J Surg Oncol doi: 10.1186/s12957-018-1538-8 – volume: 111 start-page: 2205 year: 2014 end-page: 2213 ident: CR2 article-title: Improving tumour heterogeneity MRI assessment with histograms publication-title: Br J Cancer doi: 10.1038/bjc.2014.512 – volume: 25 start-page: 1783 year: 2018 end-page: 1785 ident: CR15 article-title: Eighth edition of the AJCC Cancer Staging Manual: Breast Cancer publication-title: Ann Surg Oncol doi: 10.1245/s10434-018-6486-6 – volume: 30 start-page: 998 year: 2019 end-page: 1004 ident: CR34 article-title: Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers publication-title: Ann Oncol doi: 10.1093/annonc/mdz108 – volume: 5 start-page: 13087 year: 2015 ident: CR20 article-title: Machine learning methods for quantitative radiomic biomarkers publication-title: Sci Rep doi: 10.1038/srep13087 – volume: 294 start-page: 31 year: 2020 end-page: 41 ident: CR12 article-title: Texture analysis with 3.0-T MRI for association of response to neoadjuvant chemotherapy in breast cancer publication-title: Radiology doi: 10.1148/radiol.2019182718 – ident: CR14 – volume: 30 start-page: 4058 year: 2020 end-page: 4068 ident: CR39 article-title: Time-to-enhancement at ultrafast breast DCE-MRI: potential imaging biomarker of tumour aggressiveness publication-title: Eur Radiol doi: 10.1007/s00330-020-06693-0 – volume: 6 start-page: 35569 year: 2016 ident: CR29 article-title: DCE-MRI perfusion and permeability parameters as predictors of tumor response to CCRT in patients with locally advanced NSCLC publication-title: Sci Rep doi: 10.1038/srep35569 – volume: 403 start-page: 21 year: 2017 end-page: 27 ident: CR21 article-title: Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma publication-title: Cancer Lett doi: 10.1016/j.canlet.2017.06.004 – volume: 22 start-page: 58 year: 2020 ident: CR38 article-title: Ultrafast dynamic contrast-enhanced breast MRI may generate prognostic imaging markers of breast cancer publication-title: Breast Cancer Res doi: 10.1186/s13058-020-01292-9 – volume: 41 start-page: 474 year: 2015 end-page: 480 ident: CR18 article-title: Correlation of dynamic contrast-enhanced MRI perfusion parameters with angiogenesis and biologic aggressiveness of rectal cancer: Preliminary results publication-title: J Magn Reson Imaging doi: 10.1002/jmri.24541 – volume: 286 start-page: 412 year: 2018 end-page: 420 ident: CR16 article-title: Features from computerized texture analysis of breast cancers at pretreatment MR imaging are associated with response to neoadjuvant chemotherapy publication-title: Radiology doi: 10.1148/radiol.2017170143 – volume: 52 start-page: 70 year: 2020 end-page: 90 ident: CR40 article-title: Diffusion MRI of the breast: current status and future directions publication-title: J Magn Reson Imaging doi: 10.1002/jmri.26908 – volume: 285 start-page: 1182 year: 1971 end-page: 1186 ident: CR4 article-title: Tumor angiogenesis: therapeutic implications publication-title: N Engl J Med doi: 10.1056/NEJM197111182852108 – volume: 119 start-page: 508 year: 2018 end-page: 516 ident: CR13 article-title: A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features publication-title: Br J Cancer doi: 10.1038/s41416-018-0185-8 – volume: 19 start-page: 1533033820916191 year: 2020 ident: CR22 article-title: The application of radiomics in breast MRI: a review publication-title: Technol Cancer Res Treat doi: 10.1177/1533033820916191 – volume: 282 start-page: 665 year: 2017 end-page: 675 ident: CR6 article-title: Breast cancer heterogeneity: MR imaging texture analysis and survival outcomes publication-title: Radiology doi: 10.1148/radiol.2016160261 – volume: 36 start-page: 145 year: 2012 end-page: 151 ident: CR30 article-title: Correlation of perfusion parameters on dynamic contrast-enhanced MRI with prognostic factors and subtypes of breast cancers publication-title: J Magn Reson Imaging doi: 10.1002/jmri.23635 – volume: 50 start-page: 92 year: 2003 end-page: 98 ident: CR27 article-title: Textural analysis of contrast-enhanced MR images of the breast publication-title: Magn Reson Med doi: 10.1002/mrm.10496 – volume: 61 start-page: R150 year: 2016 end-page: R166 ident: CR7 article-title: Applications and limitations of radiomics publication-title: Phys Med Biol doi: 10.1088/0031-9155/61/13/R150 – volume: 7 start-page: 91 year: 1997 end-page: 101 ident: CR17 article-title: Modeling tracer kinetics in dynamic Gd-DTPA MR imaging publication-title: J Magn Reson Imaging doi: 10.1002/jmri.1880070113 – volume: 3 start-page: 573 year: 2012 end-page: 589 ident: CR1 article-title: Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? publication-title: Insights Imaging doi: 10.1007/s13244-012-0196-6 – volume: 4 start-page: 227 year: 2017 ident: CR3 article-title: Tumor heterogeneity in breast cancer publication-title: Front Med (Lausanne) doi: 10.3389/fmed.2017.00227 – volume: 26 start-page: 235 year: 2007 end-page: 249 ident: CR5 article-title: MRI of tumor angiogenesis publication-title: J Magn Reson Imaging doi: 10.1002/jmri.20991 – volume: 278 start-page: 563 year: 2016 end-page: 577 ident: CR8 article-title: Radiomics: images are more than pictures, they are data publication-title: Radiology doi: 10.1148/radiol.2015151169 – volume: 21 start-page: 2567 year: 2011 end-page: 2574 ident: CR36 article-title: Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability publication-title: Eur Radiol doi: 10.1007/s00330-011-2220-5 – volume: 272 start-page: 385 year: 2014 end-page: 396 ident: CR19 article-title: Breast cancer: early prediction of response to neoadjuvant chemotherapy using parametric response maps for MR imaging publication-title: Radiology doi: 10.1148/radiol.14131332 – volume: 9 start-page: 17847 year: 2019 ident: CR11 article-title: Machine learning approaches to radiogenomics of breast cancer using low-dose perfusion computed tomography: predicting prognostic biomarkers and molecular subtypes publication-title: Sci Rep doi: 10.1038/s41598-019-54371-z – volume: 90 start-page: 20160665 year: 2017 ident: CR37 article-title: Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures publication-title: Br J Radiol doi: 10.1259/bjr.20160665 – volume: 26 start-page: 322 year: 2016 end-page: 330 ident: CR24 article-title: Magnetic resonance imaging texture analysis classification of primary breast cancer publication-title: Eur Radiol doi: 10.1007/s00330-015-3845-6 – volume: 26 start-page: 113 year: 2019 end-page: 124 ident: CR32 article-title: Histogram analysis of quantitative pharmacokinetic parameters on DCE-MRI: correlations with prognostic factors and molecular subtypes in breast cancer publication-title: Breast Cancer doi: 10.1007/s12282-018-0899-8 – volume: 24 start-page: 1089 year: 2014 end-page: 1096 ident: CR33 article-title: Is there any correlation between model-based perfusion parameters and model-free parameters of time-signal intensity curve on dynamic contrast enhanced MRI in breast cancer patients? publication-title: Eur Radiol doi: 10.1007/s00330-014-3100-6 – volume: 20 start-page: 33 year: 2020 ident: CR9 article-title: How to develop a meaningful radiomic signature for clinical use in oncologic patients publication-title: Cancer Imaging doi: 10.1186/s40644-020-00311-4 – volume: 288 start-page: 318 year: 2018 end-page: 328 ident: CR10 article-title: Current applications and future impact of machine learning in radiology publication-title: Radiology doi: 10.1148/radiol.2018171820 – volume: 50 start-page: 719 year: 2015 end-page: 725 ident: CR23 article-title: Prognostic value of computed tomography texture features in non–small cell lung cancers treated with definitive concomitant chemoradiotherapy publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000174 – ident: CR26 – volume: 26 start-page: 322 year: 2016 ident: 8146_CR24 publication-title: Eur Radiol doi: 10.1007/s00330-015-3845-6 – volume: 30 start-page: 998 year: 2019 ident: 8146_CR34 publication-title: Ann Oncol doi: 10.1093/annonc/mdz108 – volume: 286 start-page: 412 year: 2018 ident: 8146_CR16 publication-title: Radiology doi: 10.1148/radiol.2017170143 – volume: 30 start-page: 4058 year: 2020 ident: 8146_CR39 publication-title: Eur Radiol doi: 10.1007/s00330-020-06693-0 – volume: 19 start-page: 153303382091619 year: 2020 ident: 8146_CR22 publication-title: Technol Cancer Res Treat doi: 10.1177/1533033820916191 – volume: 282 start-page: 665 year: 2017 ident: 8146_CR6 publication-title: Radiology doi: 10.1148/radiol.2016160261 – volume: 288 start-page: 318 year: 2018 ident: 8146_CR10 publication-title: Radiology doi: 10.1148/radiol.2018171820 – volume: 272 start-page: 385 year: 2014 ident: 8146_CR19 publication-title: Radiology doi: 10.1148/radiol.14131332 – volume: 83 start-page: 296 year: 2010 ident: 8146_CR28 publication-title: Br J Radiol doi: 10.1259/bjr/50743919 – volume: 52 start-page: 70 year: 2020 ident: 8146_CR40 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.26908 – volume: 278 start-page: 563 year: 2016 ident: 8146_CR8 publication-title: Radiology doi: 10.1148/radiol.2015151169 – volume: 61 start-page: R150 year: 2016 ident: 8146_CR7 publication-title: Phys Med Biol doi: 10.1088/0031-9155/61/13/R150 – volume: 26 start-page: 235 year: 2007 ident: 8146_CR5 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.20991 – volume: 26 start-page: 113 year: 2019 ident: 8146_CR32 publication-title: Breast Cancer doi: 10.1007/s12282-018-0899-8 – volume: 9 start-page: 17847 year: 2019 ident: 8146_CR11 publication-title: Sci Rep doi: 10.1038/s41598-019-54371-z – volume: 50 start-page: 719 year: 2015 ident: 8146_CR23 publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000174 – volume: 41 start-page: 474 year: 2015 ident: 8146_CR18 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.24541 – volume: 4 start-page: 227 year: 2017 ident: 8146_CR3 publication-title: Front Med (Lausanne) doi: 10.3389/fmed.2017.00227 – volume: 3 start-page: 573 year: 2012 ident: 8146_CR1 publication-title: Insights Imaging doi: 10.1007/s13244-012-0196-6 – volume: 22 start-page: 58 year: 2020 ident: 8146_CR38 publication-title: Breast Cancer Res doi: 10.1186/s13058-020-01292-9 – volume: 36 start-page: 145 year: 2012 ident: 8146_CR30 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.23635 – volume: 294 start-page: 31 year: 2020 ident: 8146_CR12 publication-title: Radiology doi: 10.1148/radiol.2019182718 – ident: 8146_CR26 doi: 10.1038/npjbcancer.2016.12 – volume: 403 start-page: 21 year: 2017 ident: 8146_CR21 publication-title: Cancer Lett doi: 10.1016/j.canlet.2017.06.004 – volume: 40 start-page: 2331 year: 2015 ident: 8146_CR35 publication-title: Abdom Imaging doi: 10.1007/s00261-015-0438-4 – volume: 25 start-page: 1783 year: 2018 ident: 8146_CR15 publication-title: Ann Surg Oncol doi: 10.1245/s10434-018-6486-6 – volume: 24 start-page: 1089 year: 2014 ident: 8146_CR33 publication-title: Eur Radiol doi: 10.1007/s00330-014-3100-6 – volume: 119 start-page: 508 year: 2018 ident: 8146_CR13 publication-title: Br J Cancer doi: 10.1038/s41416-018-0185-8 – volume: 285 start-page: 1182 year: 1971 ident: 8146_CR4 publication-title: N Engl J Med doi: 10.1056/NEJM197111182852108 – volume: 48 start-page: 1637 year: 2018 ident: 8146_CR25 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.26184 – volume: 50 start-page: 92 year: 2003 ident: 8146_CR27 publication-title: Magn Reson Med doi: 10.1002/mrm.10496 – volume: 21 start-page: 2567 year: 2011 ident: 8146_CR36 publication-title: Eur Radiol doi: 10.1007/s00330-011-2220-5 – volume: 6 start-page: 35569 year: 2016 ident: 8146_CR29 publication-title: Sci Rep doi: 10.1038/srep35569 – volume: 5 start-page: 13087 year: 2015 ident: 8146_CR20 publication-title: Sci Rep doi: 10.1038/srep13087 – volume: 7 start-page: 91 year: 1997 ident: 8146_CR17 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.1880070113 – volume: 16 start-page: 239 year: 2018 ident: 8146_CR31 publication-title: World J Surg Oncol doi: 10.1186/s12957-018-1538-8 – volume: 111 start-page: 2205 year: 2014 ident: 8146_CR2 publication-title: Br J Cancer doi: 10.1038/bjc.2014.512 – volume: 20 start-page: 33 year: 2020 ident: 8146_CR9 publication-title: Cancer Imaging doi: 10.1186/s40644-020-00311-4 – volume: 90 start-page: 20160665 year: 2017 ident: 8146_CR37 publication-title: Br J Radiol doi: 10.1259/bjr.20160665 – ident: 8146_CR14 doi: 10.1007/s00330-020-07274-x |
SSID | ssj0009147 |
Score | 2.6111717 |
Snippet | Objectives
To investigate machine learning approaches for radiomics-based prediction of prognostic biomarkers and molecular subtypes of breast cancer using... ObjectivesTo investigate machine learning approaches for radiomics-based prediction of prognostic biomarkers and molecular subtypes of breast cancer using... To investigate machine learning approaches for radiomics-based prediction of prognostic biomarkers and molecular subtypes of breast cancer using quantification... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 650 |
SubjectTerms | Algorithms Angiogenesis Artificial neural networks Bayesian analysis Biomarkers Breast Breast cancer Decision trees Diagnostic Radiology Entropy Epidermal growth factor Growth factors Heterogeneity Imaging Internal Medicine Interventional Radiology Invasiveness Irregularities Learning algorithms Machine learning Magnetic properties Magnetic resonance imaging Mathematical models Medical prognosis Medicine Medicine & Public Health Neural networks Neuroradiology Parameters Performance prediction Perfusion Predictions Radiology Radiomics Receptors Regression analysis Texture Tumors Ultrasound |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBf9gNKX0a0dy9qOG_StFZNsR5afSikN2SB9KC3kzViynAUaO4udv2j_aO9UOWGF9dX6wrqTdB-_u2PsIktdOayk5sPKkYKiYp7FieZCZcqk0dCqiuyQk3s1fkp-TYfTYHBrA6yyvxP9RV02lmzkP1Du1pRbXOjr5R9OVaPIuxpKaOyyfUpdRlydTtNt0l3pC4yh0q55mmVJCJrxoXNUxExwAigIsoJx_e_DtJU23zhI_bszOmIfgsAIN68U_sh2XP2JHUyCS_yY_X0oyjmFFsPC4yIdhEIQM0B5FJYr6knYZiAoVt1QXmagoHvC5axaKOoSFn2NXGjXhoyyLTQVGMKrd2CJL1ZAAPkZdOsFTvqbMDQNsp5DGd7PUNSzuf_QzltaaElwbZqmhsnDzxP2NLp7vB3zUHmB20RFHeqTUhWoSjidyajCrU2EtaVEbdbESEKjnE5LoW0kUocCSeHK2EkjClOZAhtF_Jnt1U3tvjBA_VPGNo1iyiPv4iqTpRYqss7QeO0GTPbbntuQlpyqYzznm4TKnlQ5kir3pMr1gF1uxixfk3K82_usp2YeDmibb9lpwL5vmvFokb-kqF2zxj6ozWX082rArnou2E7x_xW_vr_iKTuMKIjCG3LO2F63WrtzFG06883z7wu6t_YO priority: 102 providerName: ProQuest |
Title | Radiomic machine learning for predicting prognostic biomarkers and molecular subtypes of breast cancer using tumor heterogeneity and angiogenesis properties on MRI |
URI | https://link.springer.com/article/10.1007/s00330-021-08146-8 https://www.proquest.com/docview/2608263208 https://www.proquest.com/docview/2548911946 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9swEBbdXSi9lD5putswhd5ag-SHLB2Tkuy2JaGEBtKTsWQ5G2jsEDu_qH90Z7R2Qktb6MUCSxphj2TPJ30zw9g7nboiKYUKktIRQJFRoKNYBVxqadIwsbKkfcjZXN4s48-rZNU5hTU9270_kvRf6qOzG6Ud4wFRCjjtWwXqjF0kiN2JyLUMR6dQu8KnFUOoroJU67hzlfmzjF9_Rycb87djUf-3mT5hjzszEUb3en3KHrjqGXs46w7Cn7Ofi7zYkEMxbD0b0kGX_mENaIXCbk8tidEMRMCqaorGDORqT2ycfQN5VcC2z4wLzcHQVmwDdQmGWOotWJoNeyBa_BrawxaF3hJzpsYJ59By9xLyar3xN5pNQwPtiKRNYiqYLT69YMvp5NvHm6DLtxDYWIYtokghcwQQTmkRlkLomFtbCMSwJkLFGelUWnBlQ546NENyV0ROGJ6b0uRYyaOX7LyqK_eKAaJOEdk0jCh6vItKLQrFZWidof7KDZjoX3tmu2DklBPjR3YMo-xVlaGqMq-qTA3Y-2Of3X0ojn-2vuq1mXXLsskQvCkKUM-x-u2xGhcUnZLklasP2AYxnKaHlwP2oZ8FJxF_H_H1_zW_ZI9CcqXw2zlX7LzdH9wbNHBaM2Rn6SrFq5peD9nFaDoez6m8_v5lguV4Mv-6GPo5fweVcflk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwEB4tiwRcEL-isICR4AQRtpM69gEhBJSW3e5htSvtLcSOUyrRpDSpEM_DnWdkxk1agcTe9hrb4yQztmfG38wAPDepL4al0NGw9GSgqDgycaIjroyyqRw6VZIfcnqsxmfJ5_Ph-R787mNhCFbZ74lhoy5qRz7y16h3a8otzvXb5feIqkbR7WpfQmMjFof-5w802Zo3kw_I3xdSjj6evh9HXVWByCVKtmgrCZWjmuy1EbIUaMRz5wqBlpqN8fWs8jotuHaSpx4P29wXsReW57a0OTbyGOlegatJjCc5RaaPPu2S_IpQ0Iwb3ERSY5IuSCeE6lHRNB4RIIKT1y3Sfx-EO-32nwvZcM6NbsHNTkFl7zYSdRv2fHUHrk27K_i78OskL-YUyswWAYfpWVd4YsZQ_2XLFfUkLDUj6FdVUx5oRkH-hANaNSyvCrboa_KyZm3JCdywumSW8PEtcySHK0aA_Blr1wsk-pUwOzWKukebIVDIq9k8PGjmDU20JHg4kanY9GRyD84uhSf3Yb-qK_8AGNq7InapjClvvY9LIwrNlXTe0njtByD63565Lg06VeP4lm0TOAdWZciqLLAq0wN4uR2z3CQBubD3Qc_NrNsQmmwnvgN4tm3GpUz3M3nl6zX2QevR0MerAbzqpWBH4v8zPrx4xqdwfXw6PcqOJseHj-CGpACO4EQ6gP12tfaPUa1q7ZMgywy-XPbi-QPDvjL3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTpp4QYw_ojCGkeAJotlO6zgPCLE_1cpoNVVM2luIHadUoklpUiE-D9-CT8edm7QCib3ttXHObe9s3-_8uzuAV3Hksn4udNDPHQEUFQZx2NMBV7EykexblVMccjRW51e9j9f96x343ebCEK2y3RP9Rp2VlmLkR-h3a6otzvVR3tAiLk8H7xffA-ogRTetbTuNtYlcuJ8_EL5V74anqOvXUg7OPp-cB02HgcD2lKwRNwmVosvsdCxkLhDQc2szgajNhPhVjXI6yri2kkcOD97UZaEThqcmNyk-5CHKvQO7EaGiDuwen40vJ9uSv8K3N-MxbilRHPealB2fuEct1HhA9AhOMbhA_30sbn3df65n_ak3uA_3GneVfVjb1z7suOIB7I2aC_mH8GuSZjNKbGZzz8p0rGlDMWXoDbPFkkYSs5oREawoqSo0o5R_YgUtK5YWGZu3HXpZtTIUEq5YmTNDbPmaWbLKJSN6_pTVqzkK_UoMnhIN3yGC8BLSYjrzH1SziiZaEFmcxBRsNBk-gqtb0cpj6BRl4Z4AQ_QrQhvJkKrYuzCPRaa5ktYZel-7Loj2b09sUxSdenN8SzblnL2qElRV4lWV6C682byzWJcEuXH0QavNpNkeqmRrzF14uXmMC5tua9LClSscg1gyph-vuvC2tYKtiP_P-PTmGV_AHi6c5NNwfPEM7krK5vARpQPo1MuVe44-Vm0OG2Nm8OW2188fMDo4iQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiomic+machine+learning+for+predicting+prognostic+biomarkers+and+molecular+subtypes+of+breast+cancer+using+tumor+heterogeneity+and+angiogenesis+properties+on+MRI&rft.jtitle=European+radiology&rft.au=Lee%2C+Ji+Young&rft.au=Lee%2C+Kwang-sig&rft.au=Seo%2C+Bo+Kyoung&rft.au=Cho%2C+Kyu+Ran&rft.date=2022-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=32&rft.issue=1&rft.spage=650&rft.epage=660&rft_id=info:doi/10.1007%2Fs00330-021-08146-8&rft.externalDocID=10_1007_s00330_021_08146_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon |