Characterization of flue gas desulphurized (FGD) gypsum of a coal-fired plant and its relevant risk of associated potential toxic elements in sodic soil reclamation

Thermal Power Plant generates FGD gypsum as by-product during coal combustion. This study evaluates the characterization (spectroscopic and elemental), potentially toxic elements (PTEs) distribution, and environmental risk assessment of FGD gypsum for safe and sustainable use in agriculture. The XRD...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; p. 19787
Main Authors Sundha, Parul, Mukhopadhyay, Raj, Basak, Nirmalendu, Rai, Arvind Kumar, Bedwal, Sandeep, Patel, Subedar, Kumar, Sanjay, Kaur, Harshpreet, Chandra, Priyanka, Sharma, Parbodh Chander, Saxena, Sanjeev Kumar, Parihar, Somendra Singh, Yadav, Rajender Kumar
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.11.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Thermal Power Plant generates FGD gypsum as by-product during coal combustion. This study evaluates the characterization (spectroscopic and elemental), potentially toxic elements (PTEs) distribution, and environmental risk assessment of FGD gypsum for safe and sustainable use in agriculture. The XRD and SEM analysis confirmed the dominance of crystalline CaSO 4 ·2H 2 O in FGD gypsum. The order of concentrations of PTEs in FGD gypsum was Fe > Al > Mn > Zn > Ni > Co. The residual fraction was the dominant pool, sharing 80–90% of the total PTEs. The heavy metals (HMs) were below the toxic range in the leachates. The Co, Ni, Al, Fe Mn, Zn had low (< 10%) risk assessment code and the ecotoxicity was in the range of 0.0–7.46%. The contamination factor was also low (0.0–0.16) at the normal recommended doses of FGD gypsum application for sodicity reclamation. The enrichment factor was in the order of Al < Mn < Co < Zn < Ni. Mn [enrichment factor (E f ) 1.2–2.0] and Co (E f 1.7–2.8) showed negligible enrichment of metals, whereas Ni (E f 4.3–5.2) and Zn (E f 4.5–5.6) reported moderate accumulation in soil. The application of FGD gypsum @ 10 t ha −1 for sodicity reclamation will develop a geo-accumulation index below the critical values indicating its safe and sustainable use to achieve land degradation neutrality (LDN) and UN’s Sustainable Development Goals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-45706-y