Crosstalk Between the MSI Status and Tumor Microenvironment in Colorectal Cancer
Colorectal cancer (CRC) patients, especially those with deficient mismatch repair (dMMR)/microsatellite instability-high (MSI-H) tumors, whose sensitivity to immune checkpoint inhibitors (ICIs) is significantly higher than that of patients with microsatellite-stable (MSS)/microsatellite instability-...
Saved in:
Published in | Frontiers in immunology Vol. 11; p. 2039 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
12.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Colorectal cancer (CRC) patients, especially those with deficient mismatch repair (dMMR)/microsatellite instability-high (MSI-H) tumors, whose sensitivity to immune checkpoint inhibitors (ICIs) is significantly higher than that of patients with microsatellite-stable (MSS)/microsatellite instability-low (MSI-L) tumors, have derived clinical benefits from immunotherapy. Most studies have not systematically evaluated the immune characteristics and immune microenvironments of MSI-H and MSS/MSI-L CRCs. We analyzed the relationship between the MSI status and prognosis of ICI treatment in an immunotherapy cohort. We further used mutation data for the immunotherapy and The Cancer Genome Atlas (TCGA)-CRC [colon adenocarcinoma (COAD) + rectum adenocarcinoma (READ)] cohorts. For mRNA expression, mutation data analysis of the immune microenvironment and immunogenicity under different MSI statuses was performed. Compared with CRC patients with MSS/MSI-L tumors, those with MSI-H tumors significantly benefited from ICI treatment. MSI-H CRC had more immune cell infiltration, higher expression of immune-related genes, and higher immunogenicity than MSS/MSI-L CRC. The MANTIS score, which is used to predict the MSI status, was positively correlated with immune cells, immune-related genes, and immunogenicity. In addition, subtype analysis showed that COAD and READ might have different immune microenvironments. MSI-H CRC may have an inflammatory tumor microenvironment and increased sensitivity to ICIs. Unlike those of MSI-H READ, the immune characteristics of MSI-H COAD may be consistent with those of MSI-H CRC. |
---|---|
AbstractList | Colorectal cancer (CRC) patients, especially those with deficient mismatch repair (dMMR)/microsatellite instability-high (MSI-H) tumors, whose sensitivity to immune checkpoint inhibitors (ICIs) is significantly higher than that of patients with microsatellite-stable (MSS)/microsatellite instability-low (MSI-L) tumors, have derived clinical benefits from immunotherapy. Most studies have not systematically evaluated the immune characteristics and immune microenvironments of MSI-H and MSS/MSI-L CRCs. We analyzed the relationship between the MSI status and prognosis of ICI treatment in an immunotherapy cohort. We further used mutation data for the immunotherapy and The Cancer Genome Atlas (TCGA)-CRC [colon adenocarcinoma (COAD) + rectum adenocarcinoma (READ)] cohorts. For mRNA expression, mutation data analysis of the immune microenvironment and immunogenicity under different MSI statuses was performed. Compared with CRC patients with MSS/MSI-L tumors, those with MSI-H tumors significantly benefited from ICI treatment. MSI-H CRC had more immune cell infiltration, higher expression of immune-related genes, and higher immunogenicity than MSS/MSI-L CRC. The MANTIS score, which is used to predict the MSI status, was positively correlated with immune cells, immune-related genes, and immunogenicity. In addition, subtype analysis showed that COAD and READ might have different immune microenvironments. MSI-H CRC may have an inflammatory tumor microenvironment and increased sensitivity to ICIs. Unlike those of MSI-H READ, the immune characteristics of MSI-H COAD may be consistent with those of MSI-H CRC. Colorectal cancer (CRC) patients, especially those with deficient mismatch repair (dMMR)/microsatellite instability-high (MSI-H) tumors, whose sensitivity to immune checkpoint inhibitors (ICIs) is significantly higher than that of patients with microsatellite-stable (MSS)/microsatellite instability-low (MSI-L) tumors, have derived clinical benefits from immunotherapy. Most studies have not systematically evaluated the immune characteristics and immune microenvironments of MSI-H and MSS/MSI-L CRCs. We analyzed the relationship between the MSI status and prognosis of ICI treatment in an immunotherapy cohort. We further used mutation data for the immunotherapy and The Cancer Genome Atlas (TCGA)-CRC [colon adenocarcinoma (COAD) + rectum adenocarcinoma (READ)] cohorts. For mRNA expression, mutation data analysis of the immune microenvironment and immunogenicity under different MSI statuses was performed. Compared with CRC patients with MSS/MSI-L tumors, those with MSI-H tumors significantly benefited from ICI treatment. MSI-H CRC had more immune cell infiltration, higher expression of immune-related genes, and higher immunogenicity than MSS/MSI-L CRC. The MANTIS score, which is used to predict the MSI status, was positively correlated with immune cells, immune-related genes, and immunogenicity. In addition, subtype analysis showed that COAD and READ might have different immune microenvironments. MSI-H CRC may have an inflammatory tumor microenvironment and increased sensitivity to ICIs. Unlike those of MSI-H READ, the immune characteristics of MSI-H COAD may be consistent with those of MSI-H CRC.Colorectal cancer (CRC) patients, especially those with deficient mismatch repair (dMMR)/microsatellite instability-high (MSI-H) tumors, whose sensitivity to immune checkpoint inhibitors (ICIs) is significantly higher than that of patients with microsatellite-stable (MSS)/microsatellite instability-low (MSI-L) tumors, have derived clinical benefits from immunotherapy. Most studies have not systematically evaluated the immune characteristics and immune microenvironments of MSI-H and MSS/MSI-L CRCs. We analyzed the relationship between the MSI status and prognosis of ICI treatment in an immunotherapy cohort. We further used mutation data for the immunotherapy and The Cancer Genome Atlas (TCGA)-CRC [colon adenocarcinoma (COAD) + rectum adenocarcinoma (READ)] cohorts. For mRNA expression, mutation data analysis of the immune microenvironment and immunogenicity under different MSI statuses was performed. Compared with CRC patients with MSS/MSI-L tumors, those with MSI-H tumors significantly benefited from ICI treatment. MSI-H CRC had more immune cell infiltration, higher expression of immune-related genes, and higher immunogenicity than MSS/MSI-L CRC. The MANTIS score, which is used to predict the MSI status, was positively correlated with immune cells, immune-related genes, and immunogenicity. In addition, subtype analysis showed that COAD and READ might have different immune microenvironments. MSI-H CRC may have an inflammatory tumor microenvironment and increased sensitivity to ICIs. Unlike those of MSI-H READ, the immune characteristics of MSI-H COAD may be consistent with those of MSI-H CRC. |
Author | Luo, Peng Zhang, Jian Lin, Anqi |
AuthorAffiliation | Department of Oncology, Zhujiang Hospital, Southern Medical University , Guangzhou , China |
AuthorAffiliation_xml | – name: Department of Oncology, Zhujiang Hospital, Southern Medical University , Guangzhou , China |
Author_xml | – sequence: 1 givenname: Anqi surname: Lin fullname: Lin, Anqi – sequence: 2 givenname: Jian surname: Zhang fullname: Zhang, Jian – sequence: 3 givenname: Peng surname: Luo fullname: Luo, Peng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32903444$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9rFDEUx4NUbK29e5Icveya35tcBB2qLrQotJ5DJnlpU2eSmpmp-N87s9tKKxgICcn7fh6Pz0t0kEsGhF5TsuZcm3cx9f20ZoSR9by5eYaOqFJixRkTB4_uh-hkGG7IvIThnMsX6JAzQ7gQ4gh9a2oZhtF1P_BHGH8BZDxeAz6_2OKL0Y3TgF0O-HLqS8XnydcC-S7VknvII04ZN6UrFfwMwI3LHuor9Dy6boCT-_MYff90etl8WZ19_bxtPpytvFBsXMlAmNCiDRtpIgQTtY480EiU4sYJBYZKSsVGeJhn40CV8FLGVuhWBkY3_Bht99xQ3I29ral39bctLtndQ6lX1tUx-Q6so4RIbig4QwRhwbU6tNERonngOi6s93vW7dT2EPw8W3XdE-jTn5yu7VW5sxvBJZFqBry9B9Tyc4JhtH0aPHSdy1CmwTIhqCJa70rfPO71t8mDkrlA7Qv8YqZCtD7NJlJZWqfOUmIX_Xan3y767U7_HCT_BB_Y_438AddGssw |
CitedBy_id | crossref_primary_10_3389_fgene_2022_829384 crossref_primary_10_1080_14737159_2023_2206520 crossref_primary_10_3389_fimmu_2022_1017120 crossref_primary_10_1002_ijc_34539 crossref_primary_10_3389_fgene_2021_623424 crossref_primary_10_3389_fonc_2022_836005 crossref_primary_10_32604_biocell_2023_027209 crossref_primary_10_3389_fimmu_2024_1433315 crossref_primary_10_1038_s41598_024_74907_2 crossref_primary_10_1186_s41065_023_00290_z crossref_primary_10_3390_genes14010039 crossref_primary_10_3390_ijms25179463 crossref_primary_10_3389_fmed_2022_827695 crossref_primary_10_2147_JIR_S386898 crossref_primary_10_3390_ijms231911024 crossref_primary_10_1002_cam4_4975 crossref_primary_10_1016_j_cmet_2024_10_019 crossref_primary_10_1007_s12672_024_01694_7 crossref_primary_10_1155_2022_8179799 crossref_primary_10_1007_s00262_022_03337_8 crossref_primary_10_1038_s41598_025_87194_2 crossref_primary_10_1038_s41392_023_01419_2 crossref_primary_10_3390_ijms232416197 crossref_primary_10_3389_fimmu_2021_778329 crossref_primary_10_1038_s41598_022_25823_w crossref_primary_10_4103_jcrt_jcrt_215_23 crossref_primary_10_3389_fphar_2024_1419040 crossref_primary_10_18632_aging_204980 crossref_primary_10_1038_s41598_024_61175_3 crossref_primary_10_1002_btm2_10610 crossref_primary_10_1016_j_mcpro_2022_100228 crossref_primary_10_3389_fgene_2022_933475 crossref_primary_10_1038_s41598_023_48098_1 crossref_primary_10_1111_jcmm_17634 crossref_primary_10_1158_1541_7786_MCR_21_0886 crossref_primary_10_3389_fphar_2022_868203 crossref_primary_10_1016_j_heliyon_2024_e30505 crossref_primary_10_3390_cancers13112638 crossref_primary_10_1016_j_esmoop_2024_104097 crossref_primary_10_3892_ol_2024_14698 crossref_primary_10_1097_COC_0000000000001161 crossref_primary_10_3389_fimmu_2022_943090 crossref_primary_10_4251_wjgo_v16_i11_4354 crossref_primary_10_1007_s13167_022_00305_1 crossref_primary_10_3389_fonc_2022_884423 crossref_primary_10_3892_ol_2024_14578 crossref_primary_10_3389_fonc_2025_1532602 crossref_primary_10_1155_2022_1254367 crossref_primary_10_3389_fimmu_2022_944286 crossref_primary_10_3390_cancers15010104 crossref_primary_10_1515_ntrev_2024_0134 crossref_primary_10_1016_j_ejca_2023_113356 crossref_primary_10_1016_j_ejso_2021_08_032 crossref_primary_10_1038_s41586_022_05515_1 crossref_primary_10_3389_fonc_2021_783564 crossref_primary_10_3389_fimmu_2021_759565 crossref_primary_10_1038_s41598_025_92817_9 crossref_primary_10_1158_2767_9764_CRC_24_0270 crossref_primary_10_3389_fcell_2024_1453630 crossref_primary_10_3390_jpm11121333 crossref_primary_10_3389_fgene_2021_723802 crossref_primary_10_3389_fimmu_2024_1462346 crossref_primary_10_1093_clinchem_hvae045 crossref_primary_10_1007_s10142_024_01311_4 crossref_primary_10_3390_vaccines12010063 crossref_primary_10_1016_j_cyto_2024_156834 crossref_primary_10_1016_j_intimp_2023_109783 crossref_primary_10_1186_s12967_024_05104_y crossref_primary_10_1016_j_arabjc_2021_103306 crossref_primary_10_1016_j_tranon_2023_101654 crossref_primary_10_3389_fbioe_2022_862619 crossref_primary_10_1016_j_ymthe_2022_08_025 crossref_primary_10_3390_medicina60030348 crossref_primary_10_1186_s13046_022_02469_0 crossref_primary_10_1002_jcp_30905 crossref_primary_10_1155_2022_2391265 crossref_primary_10_1016_j_phymed_2025_156390 crossref_primary_10_3390_cancers14041028 crossref_primary_10_1002_mc_23655 crossref_primary_10_3390_ijms25137346 crossref_primary_10_1097_CMR_0000000000000957 crossref_primary_10_1186_s12885_022_09595_0 crossref_primary_10_3389_fonc_2021_653625 crossref_primary_10_2147_OTT_S447319 crossref_primary_10_3389_fimmu_2023_1269341 crossref_primary_10_3389_fimmu_2023_1298524 crossref_primary_10_3390_cells11193114 crossref_primary_10_1186_s12935_022_02651_6 crossref_primary_10_3390_biomedicines9080906 crossref_primary_10_1016_j_gene_2023_147573 crossref_primary_10_1002_1878_0261_13736 crossref_primary_10_3389_fgene_2022_965033 crossref_primary_10_3389_fonc_2023_1135364 crossref_primary_10_1097_MD_0000000000033647 crossref_primary_10_3389_fonc_2022_1023565 crossref_primary_10_1615_CritRevEukaryotGeneExpr_2024057000 crossref_primary_10_3390_biomedicines10123121 crossref_primary_10_3389_fonc_2022_987302 crossref_primary_10_1016_j_tranon_2024_102009 crossref_primary_10_1016_j_heliyon_2024_e31875 crossref_primary_10_1016_j_ygeno_2022_110554 crossref_primary_10_3389_fonc_2021_764618 crossref_primary_10_1371_journal_pone_0277872 crossref_primary_10_3389_fonc_2021_725292 crossref_primary_10_1186_s40001_023_00993_z crossref_primary_10_3389_fimmu_2024_1462496 crossref_primary_10_1371_journal_pone_0311233 crossref_primary_10_1038_s41598_022_23852_z crossref_primary_10_3389_fonc_2022_881906 crossref_primary_10_3389_fnut_2022_869263 crossref_primary_10_3390_cancers14205158 crossref_primary_10_1002_1878_0261_70010 crossref_primary_10_3892_ol_2023_14099 crossref_primary_10_3389_fimmu_2022_988303 crossref_primary_10_1016_j_heliyon_2024_e28803 crossref_primary_10_1002_smll_202403201 crossref_primary_10_4251_wjgo_v16_i5_2219 crossref_primary_10_4251_wjgo_v14_i9_1675 crossref_primary_10_3389_fimmu_2024_1403533 crossref_primary_10_1186_s12885_023_11603_w crossref_primary_10_3389_fonc_2023_1179120 crossref_primary_10_1038_s41598_023_34154_3 crossref_primary_10_3390_ijms22189903 crossref_primary_10_3389_fonc_2021_801880 crossref_primary_10_3390_genes12020197 crossref_primary_10_3389_fimmu_2021_676922 crossref_primary_10_1002_cbf_3821 crossref_primary_10_3390_ijms252111830 crossref_primary_10_1002_cam4_4203 crossref_primary_10_1002_cbin_12027 crossref_primary_10_1155_2022_8069858 crossref_primary_10_1186_s12885_022_09958_7 crossref_primary_10_1186_s12935_023_03062_x crossref_primary_10_1007_s00761_021_01064_w crossref_primary_10_1097_MD_0000000000037314 crossref_primary_10_1186_s12951_024_02936_0 crossref_primary_10_1515_med_2024_1056 crossref_primary_10_1097_DCR_0000000000003017 crossref_primary_10_3389_fimmu_2021_638763 crossref_primary_10_1007_s10562_023_04310_5 crossref_primary_10_1016_j_heliyon_2024_e39861 crossref_primary_10_1080_21655979_2021_2014388 crossref_primary_10_3390_cancers13061374 crossref_primary_10_3389_fcell_2022_792564 crossref_primary_10_1007_s00432_024_05992_z crossref_primary_10_3389_fimmu_2021_665002 crossref_primary_10_1016_j_tranon_2024_101905 crossref_primary_10_3389_fgene_2022_934196 crossref_primary_10_1016_j_prp_2023_154372 crossref_primary_10_3389_fimmu_2022_819515 crossref_primary_10_1097_MD_0000000000041134 crossref_primary_10_1111_imm_13647 crossref_primary_10_3389_fimmu_2021_818492 crossref_primary_10_3389_fgene_2022_853648 crossref_primary_10_1038_s41598_022_10182_3 crossref_primary_10_1038_s41388_023_02806_3 crossref_primary_10_1007_s12672_024_01340_2 crossref_primary_10_18632_aging_204463 crossref_primary_10_3389_fonc_2021_769305 crossref_primary_10_1186_s12957_022_02581_7 crossref_primary_10_1016_j_arabjc_2022_103809 crossref_primary_10_1016_j_lfs_2024_123159 crossref_primary_10_1038_s41598_024_84553_3 crossref_primary_10_3389_fimmu_2023_1093716 crossref_primary_10_1080_17458080_2022_2050905 crossref_primary_10_1007_s12672_024_01708_4 crossref_primary_10_3389_fimmu_2021_667875 crossref_primary_10_3389_fimmu_2024_1440830 crossref_primary_10_3390_biomedicines9101460 crossref_primary_10_1159_000530161 crossref_primary_10_1177_1073274820976665 crossref_primary_10_1158_1541_7786_MCR_21_0248 crossref_primary_10_3390_cells12060861 crossref_primary_10_1016_j_omtn_2022_01_018 crossref_primary_10_3389_fgene_2021_646362 crossref_primary_10_1016_j_arabjc_2022_104219 crossref_primary_10_3389_fgene_2022_851373 crossref_primary_10_1080_14712598_2023_2226327 crossref_primary_10_1016_j_lfs_2024_122731 crossref_primary_10_1007_s12672_024_01527_7 crossref_primary_10_1016_j_heliyon_2023_e19035 crossref_primary_10_1038_s41598_023_48623_2 crossref_primary_10_3389_fphar_2021_723066 crossref_primary_10_1177_15330338241265396 crossref_primary_10_1186_s12967_025_06141_x crossref_primary_10_1186_s12916_023_02866_y crossref_primary_10_3389_fimmu_2022_790113 crossref_primary_10_1002_adbi_202400293 crossref_primary_10_52420_2071_5943_2023_22_2_16_23 crossref_primary_10_1186_s12885_025_13450_3 crossref_primary_10_1016_j_celrep_2022_111769 crossref_primary_10_1038_s41416_023_02500_x crossref_primary_10_3390_cimb43030108 crossref_primary_10_1016_j_isci_2023_107045 crossref_primary_10_1158_2326_6066_CIR_22_0283 crossref_primary_10_1016_j_critrevonc_2022_103663 crossref_primary_10_1186_s12957_023_03113_7 crossref_primary_10_1136_jitc_2023_008689 crossref_primary_10_1002_cbf_3906 crossref_primary_10_1155_2022_9365046 crossref_primary_10_1186_s40364_024_00640_7 crossref_primary_10_3389_fimmu_2022_1032314 crossref_primary_10_1002_cnr2_2007 crossref_primary_10_11569_wcjd_v31_i15_647 crossref_primary_10_18632_aging_204650 crossref_primary_10_3390_genes15081007 crossref_primary_10_1097_JS9_0000000000002007 crossref_primary_10_1158_2326_6066_CIR_22_0271 crossref_primary_10_1002_cam4_4895 crossref_primary_10_1007_s00432_024_05656_y crossref_primary_10_1093_bib_bbac129 crossref_primary_10_1002_cam4_6270 crossref_primary_10_1038_s41392_024_01838_9 crossref_primary_10_3390_cancers15215124 crossref_primary_10_1155_2022_2754836 crossref_primary_10_1002_jcla_23810 crossref_primary_10_1002_adbi_202300534 crossref_primary_10_1038_s41389_024_00517_2 crossref_primary_10_4251_wjgo_v16_i6_2816 crossref_primary_10_1186_s43556_024_00197_9 crossref_primary_10_1016_j_surg_2025_109318 crossref_primary_10_1007_s10904_023_02600_4 crossref_primary_10_3389_fonc_2022_952849 crossref_primary_10_1159_000519805 crossref_primary_10_1016_j_trecan_2024_07_009 crossref_primary_10_1038_s41598_023_48961_1 crossref_primary_10_20538_1682_0363_2023_4_57_64 crossref_primary_10_3389_fmolb_2022_776808 crossref_primary_10_1016_j_amjsurg_2024_115777 crossref_primary_10_3389_fgene_2021_739344 crossref_primary_10_1007_s12094_024_03691_2 crossref_primary_10_1007_s12672_024_01381_7 crossref_primary_10_1016_j_intimp_2023_110207 crossref_primary_10_1177_03946320241286565 crossref_primary_10_1080_2162402X_2024_2348254 crossref_primary_10_3389_fonc_2022_862564 |
Cites_doi | 10.1158/2159-8290.CD-14-1397 10.1080/2162402X.2017.1373234 10.3322/caac.21220 10.1056/NEJMoa1200694 10.1186/s12943-019-1062-7 10.1053/gast.2001.29978 10.1186/s13073-017-0424-2 10.1126/science.aaa1348 10.1016/j.cell.2014.12.033 10.1038/s41575-019-0126-x 10.1056/NEJMc1713444 10.1016/S0140-6736(17)31046-2 10.1016/j.ctrv.2019.101912 10.1097/CJI.0b013e3182a802cf 10.1007/0-387-29362-0_23 10.1053/j.gastro.2009.12.064 10.1056/NEJMoa1305133 10.1007/s00262-020-02668-8 10.1158/2159-8290.CD-12-0471 10.1084/jem.20190456 10.1126/science.aad1253 10.1158/2159-8290.CD-14-0863 10.1038/s41591-018-0136-1 10.3389/fonc.2019.01497 10.1016/j.jtho.2019.08.2509 10.7150/thno.48201 10.1038/nature13904 10.1093/nar/gkv1507 10.1016/j.immuni.2018.03.023 10.1200/JCO.2018.36.4_suppl.554 10.1200/JCO.2020.38.18_suppl.LBA4 10.1158/1535-7163.MCT-17-0386 10.1093/annonc/mdy424.019 10.3389/fimmu.2018.01578 10.1016/j.phrs.2020.105028 10.1126/science.aaf1490 10.1093/nar/gks1111 10.1093/bioinformatics/btw313 10.1038/nmeth.3337 10.1126/science.aan6733 10.1200/JCO.18.00283 10.1038/nrclinonc.2016.168 10.1038/s41588-018-0312-8 10.1056/NEJMoa1500596 10.1158/0008-5472.CAN-10-2907 10.1038/s41568-018-0081-9 10.1200/PO.17.00073 10.3892/ijo_00000720 10.1073/pnas.0506580102 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Lin, Zhang and Luo. Copyright © 2020 Lin, Zhang and Luo. 2020 Lin, Zhang and Luo |
Copyright_xml | – notice: Copyright © 2020 Lin, Zhang and Luo. – notice: Copyright © 2020 Lin, Zhang and Luo. 2020 Lin, Zhang and Luo |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3389/fimmu.2020.02039 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-3224 |
ExternalDocumentID | oai_doaj_org_article_a1005391ea90402dab8dbfa0083d38f7 PMC7435056 32903444 10_3389_fimmu_2020_02039 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM CGR CUY CVF ECM EIF IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c462t-5d02484bd759fed9f88f3d1f06639a46e91511474ce2033e164c55fb48b5d2173 |
IEDL.DBID | M48 |
ISSN | 1664-3224 |
IngestDate | Wed Aug 27 01:30:43 EDT 2025 Thu Aug 21 13:35:19 EDT 2025 Fri Jul 11 06:13:57 EDT 2025 Thu Apr 03 06:55:16 EDT 2025 Thu Apr 24 22:56:57 EDT 2025 Tue Jul 01 00:40:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | microsatellite instability immune checkpoint inhibitors tumor microenvironment colon adenocarcinoma rectum adenocarcinoma Colorectal cancer |
Language | English |
License | Copyright © 2020 Lin, Zhang and Luo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-5d02484bd759fed9f88f3d1f06639a46e91511474ce2033e164c55fb48b5d2173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Michael Morse, Duke University, United States; Matias I. Hepp, Universidad Católica de la Santísima Concepción, Chile; Christian Zevallos Delgado, The George Washington University, United States ORCID: Anqi Lin, orcid.org/0000-0002-6324-0410; Jian Zhang, orcid.org/0000-0001-7217-0111; Peng Luo, orcid.org/0000-0002-8215-2045 Edited by: Alejandro Villagra, The George Washington University, United States This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fimmu.2020.02039 |
PMID | 32903444 |
PQID | 2441608856 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a1005391ea90402dab8dbfa0083d38f7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7435056 proquest_miscellaneous_2441608856 pubmed_primary_32903444 crossref_citationtrail_10_3389_fimmu_2020_02039 crossref_primary_10_3389_fimmu_2020_02039 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-12 |
PublicationDateYYYYMMDD | 2020-08-12 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in immunology |
PublicationTitleAlternate | Front Immunol |
PublicationYear | 2020 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Arai (B42) 2019; 81 Yarchoan (B30) 2017; 377 Yang (B15) 2012; 41 Overman (B7) 2018; 36 Minoo (B47) 2010; 37 McGranahan (B36) 2016; 351 Chen (B40) 2018; 7 Gu (B21) 2016; 32 Tran (B32) 2015; 350 Ganesh (B5) 2019; 16 Tosolini (B10) 2011; 71 Zhang (B46) 2018; 9 Le (B6) 2015; 372 Lin (B39) 2019; 18 Vitiello (B41) 2020; 217 Newman (B16) 2015; 12 Hamid (B2) 2013; 369 Zhang (B35) Siegel (B29) 2014; 64 Jiang (B43) 2018; 24 Rooney (B18) 2015; 160 Altorki (B38) 2019; 19 Latham (B12) 2019; 37 Lin (B34) 2020; 159 Powles (B45) 2014; 515 Liu (B49) 2020; 10 Vilar (B24) 2013; 3 Lenz (B8) 2018; 29 Shen (B48) 2019; 9 Goel (B25) 2001; 121 Thorsson (B17) 2018; 48 El-Khoueiry (B44) 2017; 389 Luo (B33) 2019; 14 Lu (B37) 2013; 36 Xiao (B26) 2015; 5 Goodman (B27) 2017; 16 Le (B31) 2017; 357 Llosa (B9) 2015; 5 Smyth (B14) Goodman (B1) 2017; 14 Samstein (B11) 2019; 51 Andre (B23) 2020; 38 Boland (B4) 2010; 138 Bonneville (B19) 2017; 2017 Brahmer (B3) 2012; 366 Subramanian (B22) 2005; 102 Rizvi (B28) 2015; 348 Colaprico (B13) 2016; 44 Chalmers (B20) 2017; 9 |
References_xml | – volume: 5 start-page: 16 year: 2015 ident: B26 article-title: The microsatellite instable subset of colorectal cancer is a particularly good candidate for checkpoint blockade immunotherapy. publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-14-1397 – volume: 7 year: 2018 ident: B40 article-title: IL-17 induces antitumor immunity by promoting beneficial neutrophil recruitment and activation in esophageal squamous cell carcinoma. publication-title: OncoImmunology. doi: 10.1080/2162402X.2017.1373234 – volume: 64 start-page: 104 year: 2014 ident: B29 article-title: Colorectal cancer statistics, 2014. publication-title: CA Cancer J Clin. doi: 10.3322/caac.21220 – volume: 366 start-page: 2455 year: 2012 ident: B3 article-title: Safety and activity of Anti–PD-L1 antibody in patients with advanced cancer. publication-title: N Engl J Med. doi: 10.1056/NEJMoa1200694 – volume: 18 year: 2019 ident: B39 article-title: Role of the dynamic tumor microenvironment in controversies regarding immune checkpoint inhibitors for the treatment of non-small cell lung cancer (NSCLC) with EGFR mutations. publication-title: Mol Cancer. doi: 10.1186/s12943-019-1062-7 – volume: 121 start-page: 1497 year: 2001 ident: B25 article-title: Multistep progression of colorectal cancer in the setting of microsatellite instability: new details and novel insights. publication-title: Gastroenterology. doi: 10.1053/gast.2001.29978 – volume: 9 year: 2017 ident: B20 article-title: Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. publication-title: Genome Med. doi: 10.1186/s13073-017-0424-2 – volume: 348 start-page: 124 year: 2015 ident: B28 article-title: Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. publication-title: Science. doi: 10.1126/science.aaa1348 – volume: 160 start-page: 48 year: 2015 ident: B18 article-title: Molecular and genetic properties of tumors associated with local immune cytolytic activity. publication-title: Cell. doi: 10.1016/j.cell.2014.12.033 – volume: 16 start-page: 361 year: 2019 ident: B5 article-title: Immunotherapy in colorectal cancer: rationale, challenges and potential. publication-title: Nat Rev Gastroenterol Hepatol. doi: 10.1038/s41575-019-0126-x – volume: 377 start-page: 2500 year: 2017 ident: B30 article-title: Tumor mutational burden and response rate to PD-1 inhibition. publication-title: N Engl J Med. doi: 10.1056/NEJMc1713444 – volume: 389 start-page: 2492 year: 2017 ident: B44 article-title: Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. publication-title: Lancet. doi: 10.1016/S0140-6736(17)31046-2 – volume: 81 year: 2019 ident: B42 article-title: Molecular insight of regorafenib treatment for colorectal cancer. publication-title: Cancer Treat Rev. doi: 10.1016/j.ctrv.2019.101912 – volume: 36 start-page: 451 year: 2013 ident: B37 article-title: IL-17A promotes immune cell recruitment in human esophageal cancers and the infiltrating dendritic cells represent a positive prognostic marker for patient survival. publication-title: J Immunother. doi: 10.1097/CJI.0b013e3182a802cf – start-page: 397 ident: B14 article-title: Limma: linear models for microarray data. publication-title: Bioinformatics and Computational Biology Solutions Using R and Bioconductor. doi: 10.1007/0-387-29362-0_23 – volume: 138 start-page: 2073 year: 2010 ident: B4 article-title: Microsatellite instability in colorectal cancer. publication-title: Gastroenterology. doi: 10.1053/j.gastro.2009.12.064 – volume: 369 start-page: 134 year: 2013 ident: B2 article-title: Safety and tumor responses with lambrolizumab (Anti–PD-1) in melanoma. publication-title: N Engl J Med. doi: 10.1056/NEJMoa1305133 – ident: B35 article-title: ZFHX3 mutation as a protective biomarker for immune checkpoint blockade in non-small cell lung cancer. publication-title: Cancer Immunol Immunother. doi: 10.1007/s00262-020-02668-8 – volume: 3 start-page: 502 year: 2013 ident: B24 article-title: Molecular dissection of microsatellite instable colorectal cancer. publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-12-0471 – volume: 217 year: 2020 ident: B41 article-title: Targeting the interleukin-17 immune axis for cancer immunotherapy. publication-title: J Exp Med. doi: 10.1084/jem.20190456 – volume: 350 start-page: 1387 year: 2015 ident: B32 article-title: Immunogenicity of somatic mutations in human gastrointestinal cancers. publication-title: Science. doi: 10.1126/science.aad1253 – volume: 5 start-page: 43 year: 2015 ident: B9 article-title: The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-14-0863 – volume: 24 start-page: 1550 year: 2018 ident: B43 article-title: Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. publication-title: Nat Med. doi: 10.1038/s41591-018-0136-1 – volume: 9 year: 2019 ident: B48 article-title: Identification of distinct immune subtypes in colorectal cancer based on the stromal compartment. publication-title: Front Oncol. doi: 10.3389/fonc.2019.01497 – volume: 14 start-page: e276 year: 2019 ident: B33 article-title: DDR pathway alteration, tumor mutation burden, and cisplatin sensitivity in small cell lung cancer: difference detected by whole exome and targeted gene sequencing. publication-title: J Thorac Oncol. doi: 10.1016/j.jtho.2019.08.2509 – volume: 10 start-page: 8851 year: 2020 ident: B49 article-title: Single-cell analysis reveals immune landscape in kidneys of patients with chronic transplant rejection. publication-title: Theranostics. doi: 10.7150/thno.48201 – volume: 515 start-page: 558 year: 2014 ident: B45 article-title: MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. publication-title: Nature. doi: 10.1038/nature13904 – volume: 44 start-page: e71 year: 2016 ident: B13 article-title: TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1507 – volume: 48 start-page: 812 year: 2018 ident: B17 article-title: The immune landscape of cancer. publication-title: Immunity. doi: 10.1016/j.immuni.2018.03.023 – volume: 36 start-page: 554 year: 2018 ident: B7 article-title: Nivolumab in patients with DNA mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) metastatic colorectal cancer (mCRC): long-term survival according to prior line of treatment from CheckMate-142. publication-title: J Clin Oncol. doi: 10.1200/JCO.2018.36.4_suppl.554 – volume: 38 start-page: LBA4 year: 2020 ident: B23 article-title: Pembrolizumab versus chemotherapy for microsatellite instability-high/mismatch repair deficient metastatic colorectal cancer: the phase 3 KEYNOTE-177 study. publication-title: J Clin Oncol. doi: 10.1200/JCO.2020.38.18_suppl.LBA4 – volume: 16 start-page: 2598 year: 2017 ident: B27 article-title: Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. publication-title: Mol Cancer Ther. doi: 10.1158/1535-7163.MCT-17-0386 – volume: 29 year: 2018 ident: B8 article-title: Durable clinical benefit with nivolumab (NIVO) plus low-dose ipilimumab (IPI) as first-line therapy in microsatellite instability-high/mismatch repair deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC). publication-title: Ann Oncol. doi: 10.1093/annonc/mdy424.019 – volume: 9 year: 2018 ident: B46 article-title: Immune landscape of colorectal cancer tumor microenvironment from different primary tumor location. publication-title: Front Immunol. doi: 10.3389/fimmu.2018.01578 – volume: 159 year: 2020 ident: B34 article-title: Age, sex, and specific gene mutations affect the effects of immune checkpoint inhibitors in colorectal cancer. publication-title: Pharmacol Res. doi: 10.1016/j.phrs.2020.105028 – volume: 351 start-page: 1463 year: 2016 ident: B36 article-title: Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. publication-title: Science. doi: 10.1126/science.aaf1490 – volume: 41 start-page: D955 year: 2012 ident: B15 article-title: Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1111 – volume: 32 start-page: 2847 year: 2016 ident: B21 article-title: Complex heatmaps reveal patterns and correlations in multidimensional genomic data. publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btw313 – volume: 12 start-page: 453 year: 2015 ident: B16 article-title: Robust enumeration of cell subsets from tissue expression profiles. publication-title: Nat Methods. doi: 10.1038/nmeth.3337 – volume: 357 start-page: 409 year: 2017 ident: B31 article-title: Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. publication-title: Science. doi: 10.1126/science.aan6733 – volume: 37 start-page: 286 year: 2019 ident: B12 article-title: Microsatellite instability is associated with the presence of lynch syndrome pan-cancer. publication-title: J Clin Oncol. doi: 10.1200/JCO.18.00283 – volume: 14 start-page: 203 year: 2017 ident: B1 article-title: PD-1–PD-L1 immune-checkpoint blockade in B-cell lymphomas. publication-title: Nat Rev Clin Oncol. doi: 10.1038/nrclinonc.2016.168 – volume: 51 start-page: 202 year: 2019 ident: B11 article-title: Tumor mutational load predicts survival after immunotherapy across multiple cancer types. publication-title: Nat Genet. doi: 10.1038/s41588-018-0312-8 – volume: 372 start-page: 2509 year: 2015 ident: B6 article-title: PD-1 blockade in tumors with mismatch-repair deficiency. publication-title: N Engl J Med. doi: 10.1056/NEJMoa1500596 – volume: 71 start-page: 1263 year: 2011 ident: B10 article-title: Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer. publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-2907 – volume: 19 start-page: 9 year: 2019 ident: B38 article-title: The lung microenvironment: an important regulator of tumour growth and metastasis. publication-title: Nat Rev Cancer. doi: 10.1038/s41568-018-0081-9 – volume: 2017 start-page: 1 year: 2017 ident: B19 article-title: Landscape of microsatellite instability across 39 cancer types. publication-title: JCO Precis Oncol. doi: 10.1200/PO.17.00073 – volume: 37 start-page: 707 year: 2010 ident: B47 article-title: Characterization of rectal, proximal and distal colon cancers based on clinicopathological, molecular and protein profiles. publication-title: Int J Oncol. doi: 10.3892/ijo_00000720 – volume: 102 start-page: 15545 year: 2005 ident: B22 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.0506580102 |
SSID | ssj0000493335 |
Score | 2.638502 |
Snippet | Colorectal cancer (CRC) patients, especially those with deficient mismatch repair (dMMR)/microsatellite instability-high (MSI-H) tumors, whose sensitivity to... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2039 |
SubjectTerms | colon adenocarcinoma Colorectal cancer Colorectal Neoplasms - etiology Colorectal Neoplasms - metabolism Colorectal Neoplasms - mortality Colorectal Neoplasms - pathology Computational Biology - methods Disease Management Disease Susceptibility DNA Damage Female Gene Expression Profiling Humans immune checkpoint inhibitors Immune Checkpoint Inhibitors - pharmacology Immune Checkpoint Inhibitors - therapeutic use Immunology Immunomodulation - genetics Male Microsatellite Instability Molecular Targeted Therapy Mutation Prognosis rectum adenocarcinoma Signal Transduction Transcriptome Treatment Outcome tumor microenvironment Tumor Microenvironment - drug effects Tumor Microenvironment - genetics Tumor Microenvironment - immunology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwELYQ0kpcECyvsOzKSFw4lJL4Efu4VIsAqQgJkLhZdmyLAk1XpTnw75mJS9UiBBeuiZNxZsb298XjGUIOgJhIUXKwgIwFEBQtOk5hgI0qlQhRWhbwcHL_Up7d8os7cTdX6gtjwlJ64KS4rs3RT3QerAZ_K7x1yrtoETp4pmJ7jhzWvDky9ZBwL2NMpH1JYGG6GwfDYQN8sDg-ws03vbAOten6P8KY70Ml59ae0zWyOgWN9G_q7DpZCvVP8iOVkXzZIFc9FAEo-pGepLArCrCO9q_PKWLJ5pna2tObZjga0z4G4M2dbqODmvbgPTjxgYgeOsF4k9ye_rvpnXWmlRI6FZfFpCM8pibjzpdCx-B1VCoyn0fEE9pyGTQs7DkveRXg21kAjlQJER1XTnggJWyLLNejOuwQKlzFnLIwjJXnqrLuuAql0yqvShAgfUa6b3oz1TSNOFazeDJAJ1DTptW0QU2bVtMZOZw98T-l0Pik7QmaYtYOk1-3F8AlzNQlzFcukZH9N0MaGCy4A2LrMGqeDWCZXMK8KmRGtpNhZ6JYoTH9Ic9IuWDyhb4s3qkH921CbkBhCCR3v6Pzv8gKqgN_W-fFHlmejJvwG3DPxP1pXfwV7xYAJw priority: 102 providerName: Directory of Open Access Journals |
Title | Crosstalk Between the MSI Status and Tumor Microenvironment in Colorectal Cancer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32903444 https://www.proquest.com/docview/2441608856 https://pubmed.ncbi.nlm.nih.gov/PMC7435056 https://doaj.org/article/a1005391ea90402dab8dbfa0083d38f7 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCLQXxPfCx2QkXnjotsTfDwixijGQipBYpb5ZdmyPwpqOtJHYf89dkpYVVTzwkofEziV3vrvf2eczIa8gMJFCcZCATAUEKEYMvMYEG620iEk6FnFz8uizPB3zTxMx-bM9umfgYmtoh-dJjeuLg18_r96Cwr_BiBP87WGazmYNhHrF0QGuq5mb5Bb4JYVqOurB_vcOCzPGRLdWubXjLrnDCoNF8PiGm2qr-W-DoH9nUl5zTSf3yN0eU9J33SC4T27E6gG53Z0yefWQfBkiCfi_H_S4y8qigPro6OtHilCzWVBXBXrWzOY1HWF-3rXNb3Ra0SG8B-0ikBjiGKkfkfHJ-7Ph6aA_SGFQclksByJg5TLugxImxWCS1omFPCHcMI7LaMDv51zxMgIbWIQQqhQiea69CBCzsMdkp5pXcY9Q4UvmtQMt14Hr0vmjMipvdF4qICBDRg5XfLNlX2UcD7u4sBBtINNty3SLTLct0zPyet3jsquw8Y-2xyiKdTusjd3emNfntlc163K0LCaPzoCFKoLzOvjkEGwGppPKyMuVIC3oEi6QuCrOm4UFqJNLMLtCZuRJJ9g1qdXAyIjaEPnGt2w-qabf2nrdANIQZz79757PyC7yAKey8-I52VnWTXwBWGjp99s5BLh-mOT77XD_DX_5CpI |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crosstalk+Between+the+MSI+Status+and+Tumor+Microenvironment+in+Colorectal+Cancer&rft.jtitle=Frontiers+in+immunology&rft.au=Lin%2C+Anqi&rft.au=Zhang%2C+Jian&rft.au=Luo%2C+Peng&rft.date=2020-08-12&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-3224&rft.volume=11&rft_id=info:doi/10.3389%2Ffimmu.2020.02039&rft_id=info%3Apmid%2F32903444&rft.externalDocID=PMC7435056 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |