SSVEP-DAN: Cross-Domain Data Alignment for SSVEP-Based Brain-Computer Interfaces
Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) offer a non-invasive means of communication through high-speed speller systems. However, their efficiency is highly dependent on individual training data acquired during time-consuming calibration sessions. To addres...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 2027 - 2037 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) offer a non-invasive means of communication through high-speed speller systems. However, their efficiency is highly dependent on individual training data acquired during time-consuming calibration sessions. To address the challenge of data insufficiency in SSVEP-based BCIs, we introduce SSVEP-DAN, the first dedicated neural network model designed to align SSVEP data across different domains, encompassing various sessions, subjects, or devices. Our experimental results demonstrate the ability of SSVEP-DAN to transform existing source SSVEP data into supplementary calibration data. This results in a significant improvement in SSVEP decoding accuracy while reducing the calibration time. We envision SSVEP-DAN playing a crucial role in future applications of high-performance SSVEP-based BCIs. The source code for this work is available at: https://github.com/CECNL/SSVEP-DAN . |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1534-4320 1558-0210 1558-0210 |
DOI: | 10.1109/TNSRE.2024.3404432 |