SSVEP-DAN: Cross-Domain Data Alignment for SSVEP-Based Brain-Computer Interfaces
Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) offer a non-invasive means of communication through high-speed speller systems. However, their efficiency is highly dependent on individual training data acquired during time-consuming calibration sessions. To addres...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 2027 - 2037 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1534-4320 1558-0210 1558-0210 |
DOI | 10.1109/TNSRE.2024.3404432 |
Cover
Loading…
Abstract | Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) offer a non-invasive means of communication through high-speed speller systems. However, their efficiency is highly dependent on individual training data acquired during time-consuming calibration sessions. To address the challenge of data insufficiency in SSVEP-based BCIs, we introduce SSVEP-DAN, the first dedicated neural network model designed to align SSVEP data across different domains, encompassing various sessions, subjects, or devices. Our experimental results demonstrate the ability of SSVEP-DAN to transform existing source SSVEP data into supplementary calibration data. This results in a significant improvement in SSVEP decoding accuracy while reducing the calibration time. We envision SSVEP-DAN playing a crucial role in future applications of high-performance SSVEP-based BCIs. The source code for this work is available at: https://github.com/CECNL/SSVEP-DAN . |
---|---|
AbstractList | Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) offer a non-invasive means of communication through high-speed speller systems. However, their efficiency is highly dependent on individual training data acquired during time-consuming calibration sessions. To address the challenge of data insufficiency in SSVEP-based BCIs, we introduce SSVEP-DAN, the first dedicated neural network model designed to align SSVEP data across different domains, encompassing various sessions, subjects, or devices. Our experimental results demonstrate the ability of SSVEP-DAN to transform existing source SSVEP data into supplementary calibration data. This results in a significant improvement in SSVEP decoding accuracy while reducing the calibration time. We envision SSVEP-DAN playing a crucial role in future applications of high-performance SSVEP-based BCIs. The source code for this work is available at: https://github.com/CECNL/SSVEP-DAN. Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) offer a non-invasive means of communication through high-speed speller systems. However, their efficiency is highly dependent on individual training data acquired during time-consuming calibration sessions. To address the challenge of data insufficiency in SSVEP-based BCIs, we introduce SSVEP-DAN, the first dedicated neural network model designed to align SSVEP data across different domains, encompassing various sessions, subjects, or devices. Our experimental results demonstrate the ability of SSVEP-DAN to transform existing source SSVEP data into supplementary calibration data. This results in a significant improvement in SSVEP decoding accuracy while reducing the calibration time. We envision SSVEP-DAN playing a crucial role in future applications of high-performance SSVEP-based BCIs. The source code for this work is available at: https://github.com/CECNL/SSVEP-DAN.Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) offer a non-invasive means of communication through high-speed speller systems. However, their efficiency is highly dependent on individual training data acquired during time-consuming calibration sessions. To address the challenge of data insufficiency in SSVEP-based BCIs, we introduce SSVEP-DAN, the first dedicated neural network model designed to align SSVEP data across different domains, encompassing various sessions, subjects, or devices. Our experimental results demonstrate the ability of SSVEP-DAN to transform existing source SSVEP data into supplementary calibration data. This results in a significant improvement in SSVEP decoding accuracy while reducing the calibration time. We envision SSVEP-DAN playing a crucial role in future applications of high-performance SSVEP-based BCIs. The source code for this work is available at: https://github.com/CECNL/SSVEP-DAN. |
Author | Wei, Chun-Shu Chen, Sung-Yu Chang, Chi-Min Chiang, Kuan-Jung |
Author_xml | – sequence: 1 givenname: Sung-Yu orcidid: 0009-0002-8830-8730 surname: Chen fullname: Chen, Sung-Yu organization: Department of Computer Science, National Yang Ming Chiao Tung University (NYCU), Hsinchu, Taiwan – sequence: 2 givenname: Chi-Min orcidid: 0009-0001-9802-9420 surname: Chang fullname: Chang, Chi-Min organization: Department of Computer Science, National Yang Ming Chiao Tung University (NYCU), Hsinchu, Taiwan – sequence: 3 givenname: Kuan-Jung orcidid: 0000-0002-2163-071X surname: Chiang fullname: Chiang, Kuan-Jung organization: Arctop Inc., La Jolla, CA, USA – sequence: 4 givenname: Chun-Shu orcidid: 0000-0002-5259-2015 surname: Wei fullname: Wei, Chun-Shu email: wei@nycu.edu.tw organization: Department of Computer Science, the Institute of Education, and the Institute of Biomedical Engineering, National Yang Ming Chiao Tung University (NYCU), Hsinchu, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38781061$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS1URNuBF0AIRWLDJsN1_M9uOjPASFWpmMLWcpKbKqMknjrJgrfHaaYIdcHGtq6-c3R9ziU563yHhLylsKQUzKe7m_2P7TKDjC8ZB85Z9oJcUCF0ChmFs-nNeBrHcE4u-_4AQJUU6hU5Z1ppCpJekNv9_tf2Nt2sbj4n6-D7Pt341tVdsnGDS1ZNfd-12A1J5UMyo1euxzK5ChFK1749jgOGZNfFs3IF9q_Jy8o1Pb453Qvy88v2bv0tvf7-dbdeXacFl9mQCq3AcFMYARKB5pUQiDpjDpmiwmSVYw6o0xwcVaXQPEeDeWmcpBpzVbEF2c2-pXcHewx168Jv611tHwc-3FsXhrpo0CrNqAQUzIDjTMtcaMN5dJRaGpWL6PVx9joG_zBiP9i27gtsGtehH3vLQAJTksaIF-TDM_Tgx9DFn04U5cJozSL1_kSNeYvl3_Weco-AnoFiyjxgZYt6cEPtuyEG21gKdqrYPlZsp4rtqeIozZ5Jn9z_K3o3i2pE_EcgmMoYsD9NKKyH |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_3390_app142310818 |
Cites_doi | 10.1109/TBME.2018.2889705 10.1109/EMBC.2013.6611145 10.3389/fnins.2023.1133933 10.1155/2012/578295 10.1088/1741-2552/ac823e 10.3389/fnhum.2022.1049985 10.1088/1741-2560/6/4/046002 10.1109/TBME.2021.3105331 10.1016/j.eswa.2022.117574 10.3389/fnhum.2021.765525 10.1109/TBME.2006.889197 10.1088/2057-1976/ac6300 10.1016/j.neucom.2020.09.017 10.1088/1741-2552/ac8dc5 10.1016/j.bspc.2023.105220 10.1145/1296843.1296845 10.1109/TBME.2019.2929745 10.1109/TBME.2017.2694818 10.1088/1741-2552/abcb6e 10.1109/TCDS.2020.3007453 10.1186/1475-925X-13-28 10.1109/TBME.2020.2975552 10.1109/TNSRE.2020.3038718 10.1364/JOSA.67.001475 10.1109/NER.2019.8716937 10.1109/TNSRE.2016.2627556 10.1038/s41598-018-32283-8 10.1088/1741-2552/aae5d8 10.1142/S0129065714500191 10.1109/TNSRE.2023.3260842 10.1073/pnas.1508080112 10.1038/s41598-022-12733-0 10.1109/JAS.2022.106004 10.1167/15.6.4 10.1109/TKDE.2009.191 10.1088/1741-2560/12/4/046008 10.1109/TBME.2002.803536 10.1109/TBME.2021.3110440 10.4249/scholarpedia.2088 10.1007/978-3-642-38256-7_2 10.1007/s40815-016-0289-3 10.3390/brainsci13030483 10.3390/s21041256 10.1109/EMBC46164.2021.9630031 10.1111/j.1469-8986.2006.00456.x 10.23919/JCC.2022.02.001 10.1155/2016/3861425 10.1109/ISIE.2011.5984288 10.1088/1741-2552/ab6a67 10.1109/THMS.2015.2513014 10.1109/IJCNN.2019.8852227 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 DOA |
DOI | 10.1109/TNSRE.2024.3404432 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 2037 |
ExternalDocumentID | oai_doaj_org_article_783160e5390a4386b589444be68697b5 38781061 10_1109_TNSRE_2024_3404432 10537230 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science and Technology Council (NSTC) grantid: 109-2222-E-009-006-MY3; 110-2221-E-A49-130-MY2; 110-2314-B-037-061; 112-2321-B-A49-012; 112-2222-E-A49-008-MY2 – fundername: Higher Education Sprout Project of National Yang Ming Chiao Tung University and Ministry of Education funderid: 10.13039/501100002481 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c462t-5870949c9506e01bf55ee823ae371592fa3a01a840a17d584be9ebd9a618eb7f3 |
IEDL.DBID | DOA |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:20:52 EDT 2025 Thu Jul 10 22:08:35 EDT 2025 Fri Jul 25 04:02:04 EDT 2025 Wed Feb 19 01:58:15 EST 2025 Thu Apr 24 22:54:43 EDT 2025 Tue Jul 01 00:43:31 EDT 2025 Wed Aug 27 02:05:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-5870949c9506e01bf55ee823ae371592fa3a01a840a17d584be9ebd9a618eb7f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0002-8830-8730 0000-0002-2163-071X 0000-0002-5259-2015 0009-0001-9802-9420 |
OpenAccessLink | https://doaj.org/article/783160e5390a4386b589444be68697b5 |
PMID | 38781061 |
PQID | 3061459883 |
PQPubID | 85423 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_TNSRE_2024_3404432 doaj_primary_oai_doaj_org_article_783160e5390a4386b589444be68697b5 crossref_primary_10_1109_TNSRE_2024_3404432 ieee_primary_10537230 pubmed_primary_38781061 proquest_miscellaneous_3060376144 proquest_journals_3061459883 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 Kingma (ref40) 2014 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref34 ref37 ref36 ref30 ref32 ref2 ref1 ref39 ref38 Sarafraz (ref33) 2022 Pan (ref31) 2023 Van der Maaten (ref49) 2008; 9 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref25 doi: 10.1109/TBME.2018.2889705 – ident: ref12 doi: 10.1109/EMBC.2013.6611145 – ident: ref19 doi: 10.3389/fnins.2023.1133933 – ident: ref54 doi: 10.1155/2012/578295 – ident: ref21 doi: 10.1088/1741-2552/ac823e – ident: ref28 doi: 10.3389/fnhum.2022.1049985 – ident: ref14 doi: 10.1088/1741-2560/6/4/046002 – ident: ref27 doi: 10.1109/TBME.2021.3105331 – ident: ref30 doi: 10.1016/j.eswa.2022.117574 – ident: ref52 doi: 10.3389/fnhum.2021.765525 – ident: ref13 doi: 10.1109/TBME.2006.889197 – ident: ref44 doi: 10.1088/2057-1976/ac6300 – ident: ref34 doi: 10.1016/j.neucom.2020.09.017 – ident: ref53 doi: 10.1088/1741-2552/ac8dc5 – ident: ref16 doi: 10.1016/j.bspc.2023.105220 – ident: ref5 doi: 10.1145/1296843.1296845 – ident: ref26 doi: 10.1109/TBME.2019.2929745 – ident: ref15 doi: 10.1109/TBME.2017.2694818 – ident: ref23 doi: 10.1088/1741-2552/abcb6e – ident: ref35 doi: 10.1109/TCDS.2020.3007453 – ident: ref22 doi: 10.1186/1475-925X-13-28 – ident: ref32 doi: 10.1109/TBME.2020.2975552 – ident: ref20 doi: 10.1109/TNSRE.2020.3038718 – ident: ref1 doi: 10.1364/JOSA.67.001475 – ident: ref37 doi: 10.1109/NER.2019.8716937 – ident: ref42 doi: 10.1109/TNSRE.2016.2627556 – ident: ref46 doi: 10.1038/s41598-018-32283-8 – ident: ref4 doi: 10.1088/1741-2552/aae5d8 – ident: ref48 doi: 10.1142/S0129065714500191 – ident: ref55 doi: 10.1109/TNSRE.2023.3260842 – ident: ref8 doi: 10.1073/pnas.1508080112 – ident: ref17 doi: 10.1038/s41598-022-12733-0 – ident: ref47 doi: 10.1109/JAS.2022.106004 – ident: ref2 doi: 10.1167/15.6.4 – year: 2014 ident: ref40 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref24 doi: 10.1109/TKDE.2009.191 – ident: ref41 doi: 10.1088/1741-2560/12/4/046008 – ident: ref7 doi: 10.1109/TBME.2002.803536 – ident: ref39 doi: 10.1109/TBME.2021.3110440 – ident: ref36 doi: 10.4249/scholarpedia.2088 – year: 2022 ident: ref33 article-title: Domain adaptation and generalization on functional medical images: A systematic survey publication-title: arXiv:2212.03176 – ident: ref45 doi: 10.1007/978-3-642-38256-7_2 – ident: ref10 doi: 10.1007/s40815-016-0289-3 – ident: ref51 doi: 10.3390/brainsci13030483 – ident: ref43 doi: 10.3390/s21041256 – ident: ref50 doi: 10.1109/EMBC46164.2021.9630031 – ident: ref6 doi: 10.1111/j.1469-8986.2006.00456.x – volume: 9 start-page: 1 issue: 11 year: 2008 ident: ref49 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref18 doi: 10.23919/JCC.2022.02.001 – ident: ref9 doi: 10.1155/2016/3861425 – ident: ref11 doi: 10.1109/ISIE.2011.5984288 – ident: ref38 doi: 10.1088/1741-2552/ab6a67 – year: 2023 ident: ref31 article-title: Short-length SSVEP data extension by a novel generative adversarial networks based framework publication-title: arXiv:2301.05599 – ident: ref3 doi: 10.1109/THMS.2015.2513014 – ident: ref29 doi: 10.1109/IJCNN.2019.8852227 |
SSID | ssj0017657 |
Score | 2.4259844 |
Snippet | Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) offer a non-invasive means of communication through high-speed speller... |
SourceID | doaj proquest pubmed crossref ieee |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2027 |
SubjectTerms | Adaptation models Adult Algorithms Brain-Computer Interfaces brain–computer interface (BCI) Calibration Data acquisition data alignment Data models Decoding domain adaptation Electroencephalogram (EEG) Electroencephalography Evoked Potentials, Visual - physiology Female Human-computer interface Humans Interfaces Male Neural networks Neural Networks, Computer Reproducibility of Results Source code Spatial filters steady-state visual-evoked potentials (SSVEPs) Training Visual evoked potentials Visualization Young Adult |
SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoD6gXyqNAoCAjARfkxYnt2Oa2292qQmJVdbeot8hObFRRshVkL_x6xnYStUhF3KJkYnv0zdgztmcGobfacCubRhJtfUF4rhyxOQdZrq0OcZjONiF2-MuyPDnnny_ERR-sHmNhnHPx8pmbhMd4lt9s6m3YKgMNF0yCzbyDdsBzS8Fa45GBLGNaT9BgTjgr6BAhQ_XH9XJ1tgBfsOATximHr3voPlNSBX_o1oIU8_b3hVbutjnj2nO8j5bDqNOVk--TbWcn9e-_Ejr-N1sP0YPeCsXTJDaP0D3XPkbvbmYcxuuUbgC_x2e3knk_Qaer1dfFKZlPl5_wUeCJzDc_zGWL56YzeHp1-S3eMMBgDuNEOoOlssGzUI2CDGUkcNyL9OFG2AE6P16sj05IX5iB1LwsOiJAyTXXtRa0dDS3XgjnVMGMYxLMo8IbZmhuwHc0uWzAxLFOA-jalCALVnr2FO22m9Y9RxjmEF8b5n3hOffQViE9tEwbsFQ41yxD-YBOVfeMhuIZV1X0XqiuIrhVALfqwc3Qh_Gf65Sz45_UswD6SBnybccXgFHVq28lFctL6gTT1HCmSisUDA_4KlWppRUZOgi43uguQZqhw0GGqn5y-FWx4IULrRRw92b8DGodzmpM6zbbSENh7gd3N0PPkuyNjQ-S--KOTl-ivcBg2ig6RLvdz617BaZTZ19HlfkD8N0NrA priority: 102 providerName: IEEE |
Title | SSVEP-DAN: Cross-Domain Data Alignment for SSVEP-Based Brain-Computer Interfaces |
URI | https://ieeexplore.ieee.org/document/10537230 https://www.ncbi.nlm.nih.gov/pubmed/38781061 https://www.proquest.com/docview/3061459883 https://www.proquest.com/docview/3060376144 https://doaj.org/article/783160e5390a4386b589444be68697b5 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQlAKBUhkJuCBTx9_mttvdqkJiVXW3qDfLTuyqUskiuv3_jJ1ktT0AF67JxLE9M5l5jv0GoffWi6DbVhMbEiOiNpGEWoAtN8Hmc5gxtPns8LeFOrsUX6_k1U6pr7wnrKcH7ifuWBteKxolYHMvuFFBGmhChKiMsjoU9lKIeSOYGv4faFU4PsGdBRGc0fG4DLXHq8XyYg7AkInPXFAhOHsQkgpz_1Bq5c9ZZ4k-p0_RkyFtxJO-u8_Qo9jtow-7FMF41fMD4I_44gH79nN0vlx-n5-T2WTxBZ_kLpDZ-oe_6fDMbzye3N5cly0BGPJX3ItOIba1eJrLR5Cx7gMui4cpb-E6QJen89XJGRkqKZBGKLYhErzSCttYSVWkdUhSxmgY95FryGdY8tzT2gPY87VuIScJ0YKWrFegvKATf4H2unUXXyEMTp8az1NiSYgEbTGdoGXaQmohhOUVqsfJdM0w0Fzt4tYVuEGtKwpwWQFuUECFPm2f-dmTbPxVepp1tJXMBNnlApiNG8zG_ctsKnSQNbzzOsk1wLEKHY4qd4M33zmeYbO0xsDo3m1vgx_mnyu-i-v7IkPhYw34tEIve1PZNs6NNhl6v_4fPX-DHufZ6JeBDtHe5td9fAuJ0SYcFR84KmcYfwP49wES |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgSLAXPgcEBhgJeEEuTmzHMW_t2qnAVk1rN-3NshMbTYwUQfrCX8_Z-dCGNMRblFxsn3539p3tu0PojTLcyqqSRFmfEZ4WjtiUgyyXVoU4TGerEDt8uMjnJ_zzmTjrgtVjLIxzLl4-c6PwGM_yq3W5CVtloOGCSbCZb6JbIkTjtuFaw6GBzGNiT9BhTjjLaB8jQ9WH1WJ5PANvMOMjximHr9voNitkETyiK0tSzNzflVq53uqMq8_-PbTox91eOvk22jR2VP7-K6XjfzN2H93t7FA8bgXnAbrh6ofo7eWcw3jVJhzA7_DxlXTej9DRcnk6OyLT8eIj3gs8ken6uzmv8dQ0Bo8vzr_GOwYYDGLckk5gsazwJNSjIH0hCRx3I324E7aDTvZnq7056UozkJLnWUMEqLniqlSC5o6m1gvhXJEx45gEAynzhhmaGvAeTSorMHKsUwC7MjlIg5WePUZb9bp2TxGGWcSXhnmfec49tJVJDy3TCmwVzhVLUNqjo8uO0VA-40JH_4UqHcHVAVzdgZug98M_P9qsHf-kngTQB8qQcTu-AIx0p8BaFizNqRNMUcNZkVtRwPCAr7zIlbQiQTsB10vdtZAmaLeXId1ND780C364UEUB3L0ePoNih9MaU7v1JtJQmP3B4U3Qk1b2hsZ7yX12Taev0J356vBAH3xafHmOtgOz7bbRLtpqfm7cCzCkGvsyqs8fJGkQ9A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SSVEP-DAN%3A+Cross-Domain+Data+Alignment+for+SSVEP-Based+Brain-Computer+Interfaces&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Chen%2C+Sung-Yu&rft.au=Chang%2C+Chi-Min&rft.au=Chiang%2C+Kuan-Jung&rft.au=Wei%2C+Chun-Shu&rft.date=2024&rft.eissn=1558-0210&rft.volume=32&rft.spage=2027&rft_id=info:doi/10.1109%2FTNSRE.2024.3404432&rft_id=info%3Apmid%2F38781061&rft.externalDocID=38781061 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |