SSVEP-DAN: Cross-Domain Data Alignment for SSVEP-Based Brain-Computer Interfaces

Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) offer a non-invasive means of communication through high-speed speller systems. However, their efficiency is highly dependent on individual training data acquired during time-consuming calibration sessions. To addres...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 2027 - 2037
Main Authors Chen, Sung-Yu, Chang, Chi-Min, Chiang, Kuan-Jung, Wei, Chun-Shu
Format Journal Article
LanguageEnglish
Published United States IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2024.3404432

Cover

Loading…
Abstract Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) offer a non-invasive means of communication through high-speed speller systems. However, their efficiency is highly dependent on individual training data acquired during time-consuming calibration sessions. To address the challenge of data insufficiency in SSVEP-based BCIs, we introduce SSVEP-DAN, the first dedicated neural network model designed to align SSVEP data across different domains, encompassing various sessions, subjects, or devices. Our experimental results demonstrate the ability of SSVEP-DAN to transform existing source SSVEP data into supplementary calibration data. This results in a significant improvement in SSVEP decoding accuracy while reducing the calibration time. We envision SSVEP-DAN playing a crucial role in future applications of high-performance SSVEP-based BCIs. The source code for this work is available at: https://github.com/CECNL/SSVEP-DAN .
AbstractList Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) offer a non-invasive means of communication through high-speed speller systems. However, their efficiency is highly dependent on individual training data acquired during time-consuming calibration sessions. To address the challenge of data insufficiency in SSVEP-based BCIs, we introduce SSVEP-DAN, the first dedicated neural network model designed to align SSVEP data across different domains, encompassing various sessions, subjects, or devices. Our experimental results demonstrate the ability of SSVEP-DAN to transform existing source SSVEP data into supplementary calibration data. This results in a significant improvement in SSVEP decoding accuracy while reducing the calibration time. We envision SSVEP-DAN playing a crucial role in future applications of high-performance SSVEP-based BCIs. The source code for this work is available at: https://github.com/CECNL/SSVEP-DAN.
Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) offer a non-invasive means of communication through high-speed speller systems. However, their efficiency is highly dependent on individual training data acquired during time-consuming calibration sessions. To address the challenge of data insufficiency in SSVEP-based BCIs, we introduce SSVEP-DAN, the first dedicated neural network model designed to align SSVEP data across different domains, encompassing various sessions, subjects, or devices. Our experimental results demonstrate the ability of SSVEP-DAN to transform existing source SSVEP data into supplementary calibration data. This results in a significant improvement in SSVEP decoding accuracy while reducing the calibration time. We envision SSVEP-DAN playing a crucial role in future applications of high-performance SSVEP-based BCIs. The source code for this work is available at: https://github.com/CECNL/SSVEP-DAN.Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) offer a non-invasive means of communication through high-speed speller systems. However, their efficiency is highly dependent on individual training data acquired during time-consuming calibration sessions. To address the challenge of data insufficiency in SSVEP-based BCIs, we introduce SSVEP-DAN, the first dedicated neural network model designed to align SSVEP data across different domains, encompassing various sessions, subjects, or devices. Our experimental results demonstrate the ability of SSVEP-DAN to transform existing source SSVEP data into supplementary calibration data. This results in a significant improvement in SSVEP decoding accuracy while reducing the calibration time. We envision SSVEP-DAN playing a crucial role in future applications of high-performance SSVEP-based BCIs. The source code for this work is available at: https://github.com/CECNL/SSVEP-DAN.
Author Wei, Chun-Shu
Chen, Sung-Yu
Chang, Chi-Min
Chiang, Kuan-Jung
Author_xml – sequence: 1
  givenname: Sung-Yu
  orcidid: 0009-0002-8830-8730
  surname: Chen
  fullname: Chen, Sung-Yu
  organization: Department of Computer Science, National Yang Ming Chiao Tung University (NYCU), Hsinchu, Taiwan
– sequence: 2
  givenname: Chi-Min
  orcidid: 0009-0001-9802-9420
  surname: Chang
  fullname: Chang, Chi-Min
  organization: Department of Computer Science, National Yang Ming Chiao Tung University (NYCU), Hsinchu, Taiwan
– sequence: 3
  givenname: Kuan-Jung
  orcidid: 0000-0002-2163-071X
  surname: Chiang
  fullname: Chiang, Kuan-Jung
  organization: Arctop Inc., La Jolla, CA, USA
– sequence: 4
  givenname: Chun-Shu
  orcidid: 0000-0002-5259-2015
  surname: Wei
  fullname: Wei, Chun-Shu
  email: wei@nycu.edu.tw
  organization: Department of Computer Science, the Institute of Education, and the Institute of Biomedical Engineering, National Yang Ming Chiao Tung University (NYCU), Hsinchu, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38781061$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URNuBF0AIRWLDJsN1_M9uOjPASFWpmMLWcpKbKqMknjrJgrfHaaYIdcHGtq6-c3R9ziU563yHhLylsKQUzKe7m_2P7TKDjC8ZB85Z9oJcUCF0ChmFs-nNeBrHcE4u-_4AQJUU6hU5Z1ppCpJekNv9_tf2Nt2sbj4n6-D7Pt341tVdsnGDS1ZNfd-12A1J5UMyo1euxzK5ChFK1749jgOGZNfFs3IF9q_Jy8o1Pb453Qvy88v2bv0tvf7-dbdeXacFl9mQCq3AcFMYARKB5pUQiDpjDpmiwmSVYw6o0xwcVaXQPEeDeWmcpBpzVbEF2c2-pXcHewx168Jv611tHwc-3FsXhrpo0CrNqAQUzIDjTMtcaMN5dJRaGpWL6PVx9joG_zBiP9i27gtsGtehH3vLQAJTksaIF-TDM_Tgx9DFn04U5cJozSL1_kSNeYvl3_Weco-AnoFiyjxgZYt6cEPtuyEG21gKdqrYPlZsp4rtqeIozZ5Jn9z_K3o3i2pE_EcgmMoYsD9NKKyH
CODEN ITNSB3
CitedBy_id crossref_primary_10_3390_app142310818
Cites_doi 10.1109/TBME.2018.2889705
10.1109/EMBC.2013.6611145
10.3389/fnins.2023.1133933
10.1155/2012/578295
10.1088/1741-2552/ac823e
10.3389/fnhum.2022.1049985
10.1088/1741-2560/6/4/046002
10.1109/TBME.2021.3105331
10.1016/j.eswa.2022.117574
10.3389/fnhum.2021.765525
10.1109/TBME.2006.889197
10.1088/2057-1976/ac6300
10.1016/j.neucom.2020.09.017
10.1088/1741-2552/ac8dc5
10.1016/j.bspc.2023.105220
10.1145/1296843.1296845
10.1109/TBME.2019.2929745
10.1109/TBME.2017.2694818
10.1088/1741-2552/abcb6e
10.1109/TCDS.2020.3007453
10.1186/1475-925X-13-28
10.1109/TBME.2020.2975552
10.1109/TNSRE.2020.3038718
10.1364/JOSA.67.001475
10.1109/NER.2019.8716937
10.1109/TNSRE.2016.2627556
10.1038/s41598-018-32283-8
10.1088/1741-2552/aae5d8
10.1142/S0129065714500191
10.1109/TNSRE.2023.3260842
10.1073/pnas.1508080112
10.1038/s41598-022-12733-0
10.1109/JAS.2022.106004
10.1167/15.6.4
10.1109/TKDE.2009.191
10.1088/1741-2560/12/4/046008
10.1109/TBME.2002.803536
10.1109/TBME.2021.3110440
10.4249/scholarpedia.2088
10.1007/978-3-642-38256-7_2
10.1007/s40815-016-0289-3
10.3390/brainsci13030483
10.3390/s21041256
10.1109/EMBC46164.2021.9630031
10.1111/j.1469-8986.2006.00456.x
10.23919/JCC.2022.02.001
10.1155/2016/3861425
10.1109/ISIE.2011.5984288
10.1088/1741-2552/ab6a67
10.1109/THMS.2015.2513014
10.1109/IJCNN.2019.8852227
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2024.3404432
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 2037
ExternalDocumentID oai_doaj_org_article_783160e5390a4386b589444be68697b5
38781061
10_1109_TNSRE_2024_3404432
10537230
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science and Technology Council (NSTC)
  grantid: 109-2222-E-009-006-MY3; 110-2221-E-A49-130-MY2; 110-2314-B-037-061; 112-2321-B-A49-012; 112-2222-E-A49-008-MY2
– fundername: Higher Education Sprout Project of National Yang Ming Chiao Tung University and Ministry of Education
  funderid: 10.13039/501100002481
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c462t-5870949c9506e01bf55ee823ae371592fa3a01a840a17d584be9ebd9a618eb7f3
IEDL.DBID DOA
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:20:52 EDT 2025
Thu Jul 10 22:08:35 EDT 2025
Fri Jul 25 04:02:04 EDT 2025
Wed Feb 19 01:58:15 EST 2025
Thu Apr 24 22:54:43 EDT 2025
Tue Jul 01 00:43:31 EDT 2025
Wed Aug 27 02:05:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-5870949c9506e01bf55ee823ae371592fa3a01a840a17d584be9ebd9a618eb7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0002-8830-8730
0000-0002-2163-071X
0000-0002-5259-2015
0009-0001-9802-9420
OpenAccessLink https://doaj.org/article/783160e5390a4386b589444be68697b5
PMID 38781061
PQID 3061459883
PQPubID 85423
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TNSRE_2024_3404432
doaj_primary_oai_doaj_org_article_783160e5390a4386b589444be68697b5
crossref_primary_10_1109_TNSRE_2024_3404432
ieee_primary_10537230
pubmed_primary_38781061
proquest_miscellaneous_3060376144
proquest_journals_3061459883
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
Kingma (ref40) 2014
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref34
ref37
ref36
ref30
ref32
ref2
ref1
ref39
ref38
Sarafraz (ref33) 2022
Pan (ref31) 2023
Van der Maaten (ref49) 2008; 9
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref25
  doi: 10.1109/TBME.2018.2889705
– ident: ref12
  doi: 10.1109/EMBC.2013.6611145
– ident: ref19
  doi: 10.3389/fnins.2023.1133933
– ident: ref54
  doi: 10.1155/2012/578295
– ident: ref21
  doi: 10.1088/1741-2552/ac823e
– ident: ref28
  doi: 10.3389/fnhum.2022.1049985
– ident: ref14
  doi: 10.1088/1741-2560/6/4/046002
– ident: ref27
  doi: 10.1109/TBME.2021.3105331
– ident: ref30
  doi: 10.1016/j.eswa.2022.117574
– ident: ref52
  doi: 10.3389/fnhum.2021.765525
– ident: ref13
  doi: 10.1109/TBME.2006.889197
– ident: ref44
  doi: 10.1088/2057-1976/ac6300
– ident: ref34
  doi: 10.1016/j.neucom.2020.09.017
– ident: ref53
  doi: 10.1088/1741-2552/ac8dc5
– ident: ref16
  doi: 10.1016/j.bspc.2023.105220
– ident: ref5
  doi: 10.1145/1296843.1296845
– ident: ref26
  doi: 10.1109/TBME.2019.2929745
– ident: ref15
  doi: 10.1109/TBME.2017.2694818
– ident: ref23
  doi: 10.1088/1741-2552/abcb6e
– ident: ref35
  doi: 10.1109/TCDS.2020.3007453
– ident: ref22
  doi: 10.1186/1475-925X-13-28
– ident: ref32
  doi: 10.1109/TBME.2020.2975552
– ident: ref20
  doi: 10.1109/TNSRE.2020.3038718
– ident: ref1
  doi: 10.1364/JOSA.67.001475
– ident: ref37
  doi: 10.1109/NER.2019.8716937
– ident: ref42
  doi: 10.1109/TNSRE.2016.2627556
– ident: ref46
  doi: 10.1038/s41598-018-32283-8
– ident: ref4
  doi: 10.1088/1741-2552/aae5d8
– ident: ref48
  doi: 10.1142/S0129065714500191
– ident: ref55
  doi: 10.1109/TNSRE.2023.3260842
– ident: ref8
  doi: 10.1073/pnas.1508080112
– ident: ref17
  doi: 10.1038/s41598-022-12733-0
– ident: ref47
  doi: 10.1109/JAS.2022.106004
– ident: ref2
  doi: 10.1167/15.6.4
– year: 2014
  ident: ref40
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref24
  doi: 10.1109/TKDE.2009.191
– ident: ref41
  doi: 10.1088/1741-2560/12/4/046008
– ident: ref7
  doi: 10.1109/TBME.2002.803536
– ident: ref39
  doi: 10.1109/TBME.2021.3110440
– ident: ref36
  doi: 10.4249/scholarpedia.2088
– year: 2022
  ident: ref33
  article-title: Domain adaptation and generalization on functional medical images: A systematic survey
  publication-title: arXiv:2212.03176
– ident: ref45
  doi: 10.1007/978-3-642-38256-7_2
– ident: ref10
  doi: 10.1007/s40815-016-0289-3
– ident: ref51
  doi: 10.3390/brainsci13030483
– ident: ref43
  doi: 10.3390/s21041256
– ident: ref50
  doi: 10.1109/EMBC46164.2021.9630031
– ident: ref6
  doi: 10.1111/j.1469-8986.2006.00456.x
– volume: 9
  start-page: 1
  issue: 11
  year: 2008
  ident: ref49
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref18
  doi: 10.23919/JCC.2022.02.001
– ident: ref9
  doi: 10.1155/2016/3861425
– ident: ref11
  doi: 10.1109/ISIE.2011.5984288
– ident: ref38
  doi: 10.1088/1741-2552/ab6a67
– year: 2023
  ident: ref31
  article-title: Short-length SSVEP data extension by a novel generative adversarial networks based framework
  publication-title: arXiv:2301.05599
– ident: ref3
  doi: 10.1109/THMS.2015.2513014
– ident: ref29
  doi: 10.1109/IJCNN.2019.8852227
SSID ssj0017657
Score 2.4259844
Snippet Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) offer a non-invasive means of communication through high-speed speller...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2027
SubjectTerms Adaptation models
Adult
Algorithms
Brain-Computer Interfaces
brain–computer interface (BCI)
Calibration
Data acquisition
data alignment
Data models
Decoding
domain adaptation
Electroencephalogram (EEG)
Electroencephalography
Evoked Potentials, Visual - physiology
Female
Human-computer interface
Humans
Interfaces
Male
Neural networks
Neural Networks, Computer
Reproducibility of Results
Source code
Spatial filters
steady-state visual-evoked potentials (SSVEPs)
Training
Visual evoked potentials
Visualization
Young Adult
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoD6gXyqNAoCAjARfkxYnt2Oa2292qQmJVdbeot8hObFRRshVkL_x6xnYStUhF3KJkYnv0zdgztmcGobfacCubRhJtfUF4rhyxOQdZrq0OcZjONiF2-MuyPDnnny_ERR-sHmNhnHPx8pmbhMd4lt9s6m3YKgMNF0yCzbyDdsBzS8Fa45GBLGNaT9BgTjgr6BAhQ_XH9XJ1tgBfsOATximHr3voPlNSBX_o1oIU8_b3hVbutjnj2nO8j5bDqNOVk--TbWcn9e-_Ejr-N1sP0YPeCsXTJDaP0D3XPkbvbmYcxuuUbgC_x2e3knk_Qaer1dfFKZlPl5_wUeCJzDc_zGWL56YzeHp1-S3eMMBgDuNEOoOlssGzUI2CDGUkcNyL9OFG2AE6P16sj05IX5iB1LwsOiJAyTXXtRa0dDS3XgjnVMGMYxLMo8IbZmhuwHc0uWzAxLFOA-jalCALVnr2FO22m9Y9RxjmEF8b5n3hOffQViE9tEwbsFQ41yxD-YBOVfeMhuIZV1X0XqiuIrhVALfqwc3Qh_Gf65Sz45_UswD6SBnybccXgFHVq28lFctL6gTT1HCmSisUDA_4KlWppRUZOgi43uguQZqhw0GGqn5y-FWx4IULrRRw92b8DGodzmpM6zbbSENh7gd3N0PPkuyNjQ-S--KOTl-ivcBg2ig6RLvdz617BaZTZ19HlfkD8N0NrA
  priority: 102
  providerName: IEEE
Title SSVEP-DAN: Cross-Domain Data Alignment for SSVEP-Based Brain-Computer Interfaces
URI https://ieeexplore.ieee.org/document/10537230
https://www.ncbi.nlm.nih.gov/pubmed/38781061
https://www.proquest.com/docview/3061459883
https://www.proquest.com/docview/3060376144
https://doaj.org/article/783160e5390a4386b589444be68697b5
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQlAKBUhkJuCBTx9_mttvdqkJiVXW3qDfLTuyqUskiuv3_jJ1ktT0AF67JxLE9M5l5jv0GoffWi6DbVhMbEiOiNpGEWoAtN8Hmc5gxtPns8LeFOrsUX6_k1U6pr7wnrKcH7ifuWBteKxolYHMvuFFBGmhChKiMsjoU9lKIeSOYGv4faFU4PsGdBRGc0fG4DLXHq8XyYg7AkInPXFAhOHsQkgpz_1Bq5c9ZZ4k-p0_RkyFtxJO-u8_Qo9jtow-7FMF41fMD4I_44gH79nN0vlx-n5-T2WTxBZ_kLpDZ-oe_6fDMbzye3N5cly0BGPJX3ItOIba1eJrLR5Cx7gMui4cpb-E6QJen89XJGRkqKZBGKLYhErzSCttYSVWkdUhSxmgY95FryGdY8tzT2gPY87VuIScJ0YKWrFegvKATf4H2unUXXyEMTp8az1NiSYgEbTGdoGXaQmohhOUVqsfJdM0w0Fzt4tYVuEGtKwpwWQFuUECFPm2f-dmTbPxVepp1tJXMBNnlApiNG8zG_ctsKnSQNbzzOsk1wLEKHY4qd4M33zmeYbO0xsDo3m1vgx_mnyu-i-v7IkPhYw34tEIve1PZNs6NNhl6v_4fPX-DHufZ6JeBDtHe5td9fAuJ0SYcFR84KmcYfwP49wES
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgSLAXPgcEBhgJeEEuTmzHMW_t2qnAVk1rN-3NshMbTYwUQfrCX8_Z-dCGNMRblFxsn3539p3tu0PojTLcyqqSRFmfEZ4WjtiUgyyXVoU4TGerEDt8uMjnJ_zzmTjrgtVjLIxzLl4-c6PwGM_yq3W5CVtloOGCSbCZb6JbIkTjtuFaw6GBzGNiT9BhTjjLaB8jQ9WH1WJ5PANvMOMjximHr9voNitkETyiK0tSzNzflVq53uqMq8_-PbTox91eOvk22jR2VP7-K6XjfzN2H93t7FA8bgXnAbrh6ofo7eWcw3jVJhzA7_DxlXTej9DRcnk6OyLT8eIj3gs8ken6uzmv8dQ0Bo8vzr_GOwYYDGLckk5gsazwJNSjIH0hCRx3I324E7aDTvZnq7056UozkJLnWUMEqLniqlSC5o6m1gvhXJEx45gEAynzhhmaGvAeTSorMHKsUwC7MjlIg5WePUZb9bp2TxGGWcSXhnmfec49tJVJDy3TCmwVzhVLUNqjo8uO0VA-40JH_4UqHcHVAVzdgZug98M_P9qsHf-kngTQB8qQcTu-AIx0p8BaFizNqRNMUcNZkVtRwPCAr7zIlbQiQTsB10vdtZAmaLeXId1ND780C364UEUB3L0ePoNih9MaU7v1JtJQmP3B4U3Qk1b2hsZ7yX12Taev0J356vBAH3xafHmOtgOz7bbRLtpqfm7cCzCkGvsyqs8fJGkQ9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SSVEP-DAN%3A+Cross-Domain+Data+Alignment+for+SSVEP-Based+Brain-Computer+Interfaces&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Chen%2C+Sung-Yu&rft.au=Chang%2C+Chi-Min&rft.au=Chiang%2C+Kuan-Jung&rft.au=Wei%2C+Chun-Shu&rft.date=2024&rft.eissn=1558-0210&rft.volume=32&rft.spage=2027&rft_id=info:doi/10.1109%2FTNSRE.2024.3404432&rft_id=info%3Apmid%2F38781061&rft.externalDocID=38781061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon